]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/tcp_input.c
net: Convert LIMIT_NETDEBUG to net_dbg_ratelimited
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
dca145ff 84int sysctl_tcp_max_reordering __read_mostly = 300;
4bc2f18b 85EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
86int sysctl_tcp_dsack __read_mostly = 1;
87int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 88int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 90
282f23c6
ED
91/* rfc5961 challenge ack rate limiting */
92int sysctl_tcp_challenge_ack_limit = 100;
93
ab32ea5d
BH
94int sysctl_tcp_stdurg __read_mostly;
95int sysctl_tcp_rfc1337 __read_mostly;
96int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 97int sysctl_tcp_frto __read_mostly = 2;
1da177e4 98
7e380175
AP
99int sysctl_tcp_thin_dupack __read_mostly;
100
ab32ea5d 101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 102int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 103
1da177e4
LT
104#define FLAG_DATA 0x01 /* Incoming frame contained data. */
105#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109#define FLAG_DATA_SACKED 0x20 /* New SACK. */
110#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 111#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 112#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 113#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 114#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 115#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 116#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
117
118#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122
1da177e4 123#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 124#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 125
e905a9ed 126/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 127 * real world.
e905a9ed 128 */
056834d9 129static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 130{
463c84b9 131 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 133 unsigned int len;
1da177e4 134
e905a9ed 135 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
136
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
139 */
056834d9 140 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
143 } else {
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
146 *
147 * "len" is invariant segment length, including TCP header.
148 */
9c70220b 149 len += skb->data - skb_transport_header(skb);
bee7ca9e 150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
155 */
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
161 */
463c84b9
ACM
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
1da177e4 164 if (len == lss) {
463c84b9 165 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
166 return;
167 }
168 }
1ef9696c
AK
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
172 }
173}
174
463c84b9 175static void tcp_incr_quickack(struct sock *sk)
1da177e4 176{
463c84b9 177 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 179
056834d9
IJ
180 if (quickacks == 0)
181 quickacks = 2;
463c84b9
ACM
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
184}
185
1b9f4092 186static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 187{
463c84b9
ACM
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
192}
193
194/* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
a2a385d6 198static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 199{
463c84b9 200 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 201
463c84b9 202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
203}
204
735d3831 205static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 206{
056834d9 207 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209}
210
735d3831 211static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
212{
213 if (tcp_hdr(skb)->cwr)
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215}
216
735d3831 217static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
218{
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220}
221
735d3831 222static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 223{
b82d1bb4 224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 225 case INET_ECN_NOT_ECT:
bdf1ee5d 226 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
229 */
230 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 231 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
232 break;
233 case INET_ECN_CE:
9890092e
FW
234 if (tcp_ca_needs_ecn((struct sock *)tp))
235 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
236
aae06bf5
ED
237 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 /* Better not delay acks, sender can have a very low cwnd */
239 tcp_enter_quickack_mode((struct sock *)tp);
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 }
9890092e
FW
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 break;
7a269ffa 244 default:
9890092e
FW
245 if (tcp_ca_needs_ecn((struct sock *)tp))
246 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 247 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 248 break;
bdf1ee5d
IJ
249 }
250}
251
735d3831
FW
252static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
253{
254 if (tp->ecn_flags & TCP_ECN_OK)
255 __tcp_ecn_check_ce(tp, skb);
256}
257
258static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 259{
056834d9 260 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
261 tp->ecn_flags &= ~TCP_ECN_OK;
262}
263
735d3831 264static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 265{
056834d9 266 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
267 tp->ecn_flags &= ~TCP_ECN_OK;
268}
269
735d3831 270static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 271{
056834d9 272 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
273 return true;
274 return false;
bdf1ee5d
IJ
275}
276
1da177e4
LT
277/* Buffer size and advertised window tuning.
278 *
279 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
280 */
281
6ae70532 282static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 283{
6ae70532
ED
284 const struct tcp_sock *tp = tcp_sk(sk);
285 int sndmem, per_mss;
286 u32 nr_segs;
287
288 /* Worst case is non GSO/TSO : each frame consumes one skb
289 * and skb->head is kmalloced using power of two area of memory
290 */
291 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
292 MAX_TCP_HEADER +
293 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
294
295 per_mss = roundup_pow_of_two(per_mss) +
296 SKB_DATA_ALIGN(sizeof(struct sk_buff));
297
298 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
299 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
300
301 /* Fast Recovery (RFC 5681 3.2) :
302 * Cubic needs 1.7 factor, rounded to 2 to include
303 * extra cushion (application might react slowly to POLLOUT)
304 */
305 sndmem = 2 * nr_segs * per_mss;
1da177e4 306
06a59ecb
ED
307 if (sk->sk_sndbuf < sndmem)
308 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
309}
310
311/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
312 *
313 * All tcp_full_space() is split to two parts: "network" buffer, allocated
314 * forward and advertised in receiver window (tp->rcv_wnd) and
315 * "application buffer", required to isolate scheduling/application
316 * latencies from network.
317 * window_clamp is maximal advertised window. It can be less than
318 * tcp_full_space(), in this case tcp_full_space() - window_clamp
319 * is reserved for "application" buffer. The less window_clamp is
320 * the smoother our behaviour from viewpoint of network, but the lower
321 * throughput and the higher sensitivity of the connection to losses. 8)
322 *
323 * rcv_ssthresh is more strict window_clamp used at "slow start"
324 * phase to predict further behaviour of this connection.
325 * It is used for two goals:
326 * - to enforce header prediction at sender, even when application
327 * requires some significant "application buffer". It is check #1.
328 * - to prevent pruning of receive queue because of misprediction
329 * of receiver window. Check #2.
330 *
331 * The scheme does not work when sender sends good segments opening
caa20d9a 332 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
333 * in common situations. Otherwise, we have to rely on queue collapsing.
334 */
335
336/* Slow part of check#2. */
9e412ba7 337static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 338{
9e412ba7 339 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 340 /* Optimize this! */
dfd4f0ae
ED
341 int truesize = tcp_win_from_space(skb->truesize) >> 1;
342 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
343
344 while (tp->rcv_ssthresh <= window) {
345 if (truesize <= skb->len)
463c84b9 346 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
347
348 truesize >>= 1;
349 window >>= 1;
350 }
351 return 0;
352}
353
cf533ea5 354static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 355{
9e412ba7
IJ
356 struct tcp_sock *tp = tcp_sk(sk);
357
1da177e4
LT
358 /* Check #1 */
359 if (tp->rcv_ssthresh < tp->window_clamp &&
360 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 361 !sk_under_memory_pressure(sk)) {
1da177e4
LT
362 int incr;
363
364 /* Check #2. Increase window, if skb with such overhead
365 * will fit to rcvbuf in future.
366 */
367 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 368 incr = 2 * tp->advmss;
1da177e4 369 else
9e412ba7 370 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
371
372 if (incr) {
4d846f02 373 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
374 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
375 tp->window_clamp);
463c84b9 376 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
377 }
378 }
379}
380
381/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
382static void tcp_fixup_rcvbuf(struct sock *sk)
383{
e9266a02 384 u32 mss = tcp_sk(sk)->advmss;
e9266a02 385 int rcvmem;
1da177e4 386
85f16525
YC
387 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
388 tcp_default_init_rwnd(mss);
e9266a02 389
b0983d3c
ED
390 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
391 * Allow enough cushion so that sender is not limited by our window
392 */
393 if (sysctl_tcp_moderate_rcvbuf)
394 rcvmem <<= 2;
395
e9266a02
ED
396 if (sk->sk_rcvbuf < rcvmem)
397 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
398}
399
caa20d9a 400/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
401 * established state.
402 */
10467163 403void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
404{
405 struct tcp_sock *tp = tcp_sk(sk);
406 int maxwin;
407
408 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
409 tcp_fixup_rcvbuf(sk);
410 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 411 tcp_sndbuf_expand(sk);
1da177e4
LT
412
413 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
414 tp->rcvq_space.time = tcp_time_stamp;
415 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
416
417 maxwin = tcp_full_space(sk);
418
419 if (tp->window_clamp >= maxwin) {
420 tp->window_clamp = maxwin;
421
422 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
423 tp->window_clamp = max(maxwin -
424 (maxwin >> sysctl_tcp_app_win),
425 4 * tp->advmss);
426 }
427
428 /* Force reservation of one segment. */
429 if (sysctl_tcp_app_win &&
430 tp->window_clamp > 2 * tp->advmss &&
431 tp->window_clamp + tp->advmss > maxwin)
432 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
433
434 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
435 tp->snd_cwnd_stamp = tcp_time_stamp;
436}
437
1da177e4 438/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 439static void tcp_clamp_window(struct sock *sk)
1da177e4 440{
9e412ba7 441 struct tcp_sock *tp = tcp_sk(sk);
6687e988 442 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 443
6687e988 444 icsk->icsk_ack.quick = 0;
1da177e4 445
326f36e9
JH
446 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
447 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
448 !sk_under_memory_pressure(sk) &&
449 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
450 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
451 sysctl_tcp_rmem[2]);
1da177e4 452 }
326f36e9 453 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 454 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
455}
456
40efc6fa
SH
457/* Initialize RCV_MSS value.
458 * RCV_MSS is an our guess about MSS used by the peer.
459 * We haven't any direct information about the MSS.
460 * It's better to underestimate the RCV_MSS rather than overestimate.
461 * Overestimations make us ACKing less frequently than needed.
462 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
463 */
464void tcp_initialize_rcv_mss(struct sock *sk)
465{
cf533ea5 466 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
467 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
468
056834d9 469 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 470 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
471 hint = max(hint, TCP_MIN_MSS);
472
473 inet_csk(sk)->icsk_ack.rcv_mss = hint;
474}
4bc2f18b 475EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 476
1da177e4
LT
477/* Receiver "autotuning" code.
478 *
479 * The algorithm for RTT estimation w/o timestamps is based on
480 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 481 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
482 *
483 * More detail on this code can be found at
631dd1a8 484 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
485 * though this reference is out of date. A new paper
486 * is pending.
487 */
488static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
489{
490 u32 new_sample = tp->rcv_rtt_est.rtt;
491 long m = sample;
492
493 if (m == 0)
494 m = 1;
495
496 if (new_sample != 0) {
497 /* If we sample in larger samples in the non-timestamp
498 * case, we could grossly overestimate the RTT especially
499 * with chatty applications or bulk transfer apps which
500 * are stalled on filesystem I/O.
501 *
502 * Also, since we are only going for a minimum in the
31f34269 503 * non-timestamp case, we do not smooth things out
caa20d9a 504 * else with timestamps disabled convergence takes too
1da177e4
LT
505 * long.
506 */
507 if (!win_dep) {
508 m -= (new_sample >> 3);
509 new_sample += m;
18a223e0
NC
510 } else {
511 m <<= 3;
512 if (m < new_sample)
513 new_sample = m;
514 }
1da177e4 515 } else {
caa20d9a 516 /* No previous measure. */
1da177e4
LT
517 new_sample = m << 3;
518 }
519
520 if (tp->rcv_rtt_est.rtt != new_sample)
521 tp->rcv_rtt_est.rtt = new_sample;
522}
523
524static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
525{
526 if (tp->rcv_rtt_est.time == 0)
527 goto new_measure;
528 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
529 return;
651913ce 530 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
531
532new_measure:
533 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
534 tp->rcv_rtt_est.time = tcp_time_stamp;
535}
536
056834d9
IJ
537static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
538 const struct sk_buff *skb)
1da177e4 539{
463c84b9 540 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
541 if (tp->rx_opt.rcv_tsecr &&
542 (TCP_SKB_CB(skb)->end_seq -
463c84b9 543 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
544 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
545}
546
547/*
548 * This function should be called every time data is copied to user space.
549 * It calculates the appropriate TCP receive buffer space.
550 */
551void tcp_rcv_space_adjust(struct sock *sk)
552{
553 struct tcp_sock *tp = tcp_sk(sk);
554 int time;
b0983d3c 555 int copied;
e905a9ed 556
1da177e4 557 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 558 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 559 return;
e905a9ed 560
b0983d3c
ED
561 /* Number of bytes copied to user in last RTT */
562 copied = tp->copied_seq - tp->rcvq_space.seq;
563 if (copied <= tp->rcvq_space.space)
564 goto new_measure;
565
566 /* A bit of theory :
567 * copied = bytes received in previous RTT, our base window
568 * To cope with packet losses, we need a 2x factor
569 * To cope with slow start, and sender growing its cwin by 100 %
570 * every RTT, we need a 4x factor, because the ACK we are sending
571 * now is for the next RTT, not the current one :
572 * <prev RTT . ><current RTT .. ><next RTT .... >
573 */
574
575 if (sysctl_tcp_moderate_rcvbuf &&
576 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
577 int rcvwin, rcvmem, rcvbuf;
1da177e4 578
b0983d3c
ED
579 /* minimal window to cope with packet losses, assuming
580 * steady state. Add some cushion because of small variations.
581 */
582 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 583
b0983d3c
ED
584 /* If rate increased by 25%,
585 * assume slow start, rcvwin = 3 * copied
586 * If rate increased by 50%,
587 * assume sender can use 2x growth, rcvwin = 4 * copied
588 */
589 if (copied >=
590 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
591 if (copied >=
592 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
593 rcvwin <<= 1;
594 else
595 rcvwin += (rcvwin >> 1);
596 }
1da177e4 597
b0983d3c
ED
598 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
599 while (tcp_win_from_space(rcvmem) < tp->advmss)
600 rcvmem += 128;
1da177e4 601
b0983d3c
ED
602 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
603 if (rcvbuf > sk->sk_rcvbuf) {
604 sk->sk_rcvbuf = rcvbuf;
1da177e4 605
b0983d3c
ED
606 /* Make the window clamp follow along. */
607 tp->window_clamp = rcvwin;
1da177e4
LT
608 }
609 }
b0983d3c 610 tp->rcvq_space.space = copied;
e905a9ed 611
1da177e4
LT
612new_measure:
613 tp->rcvq_space.seq = tp->copied_seq;
614 tp->rcvq_space.time = tcp_time_stamp;
615}
616
617/* There is something which you must keep in mind when you analyze the
618 * behavior of the tp->ato delayed ack timeout interval. When a
619 * connection starts up, we want to ack as quickly as possible. The
620 * problem is that "good" TCP's do slow start at the beginning of data
621 * transmission. The means that until we send the first few ACK's the
622 * sender will sit on his end and only queue most of his data, because
623 * he can only send snd_cwnd unacked packets at any given time. For
624 * each ACK we send, he increments snd_cwnd and transmits more of his
625 * queue. -DaveM
626 */
9e412ba7 627static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 628{
9e412ba7 629 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 630 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
631 u32 now;
632
463c84b9 633 inet_csk_schedule_ack(sk);
1da177e4 634
463c84b9 635 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
636
637 tcp_rcv_rtt_measure(tp);
e905a9ed 638
1da177e4
LT
639 now = tcp_time_stamp;
640
463c84b9 641 if (!icsk->icsk_ack.ato) {
1da177e4
LT
642 /* The _first_ data packet received, initialize
643 * delayed ACK engine.
644 */
463c84b9
ACM
645 tcp_incr_quickack(sk);
646 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 647 } else {
463c84b9 648 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 649
056834d9 650 if (m <= TCP_ATO_MIN / 2) {
1da177e4 651 /* The fastest case is the first. */
463c84b9
ACM
652 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
653 } else if (m < icsk->icsk_ack.ato) {
654 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
655 if (icsk->icsk_ack.ato > icsk->icsk_rto)
656 icsk->icsk_ack.ato = icsk->icsk_rto;
657 } else if (m > icsk->icsk_rto) {
caa20d9a 658 /* Too long gap. Apparently sender failed to
1da177e4
LT
659 * restart window, so that we send ACKs quickly.
660 */
463c84b9 661 tcp_incr_quickack(sk);
3ab224be 662 sk_mem_reclaim(sk);
1da177e4
LT
663 }
664 }
463c84b9 665 icsk->icsk_ack.lrcvtime = now;
1da177e4 666
735d3831 667 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
668
669 if (skb->len >= 128)
9e412ba7 670 tcp_grow_window(sk, skb);
1da177e4
LT
671}
672
1da177e4
LT
673/* Called to compute a smoothed rtt estimate. The data fed to this
674 * routine either comes from timestamps, or from segments that were
675 * known _not_ to have been retransmitted [see Karn/Partridge
676 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
677 * piece by Van Jacobson.
678 * NOTE: the next three routines used to be one big routine.
679 * To save cycles in the RFC 1323 implementation it was better to break
680 * it up into three procedures. -- erics
681 */
740b0f18 682static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 683{
6687e988 684 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
685 long m = mrtt_us; /* RTT */
686 u32 srtt = tp->srtt_us;
1da177e4 687
1da177e4
LT
688 /* The following amusing code comes from Jacobson's
689 * article in SIGCOMM '88. Note that rtt and mdev
690 * are scaled versions of rtt and mean deviation.
e905a9ed 691 * This is designed to be as fast as possible
1da177e4
LT
692 * m stands for "measurement".
693 *
694 * On a 1990 paper the rto value is changed to:
695 * RTO = rtt + 4 * mdev
696 *
697 * Funny. This algorithm seems to be very broken.
698 * These formulae increase RTO, when it should be decreased, increase
31f34269 699 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
700 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
701 * does not matter how to _calculate_ it. Seems, it was trap
702 * that VJ failed to avoid. 8)
703 */
4a5ab4e2
ED
704 if (srtt != 0) {
705 m -= (srtt >> 3); /* m is now error in rtt est */
706 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
707 if (m < 0) {
708 m = -m; /* m is now abs(error) */
740b0f18 709 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
710 /* This is similar to one of Eifel findings.
711 * Eifel blocks mdev updates when rtt decreases.
712 * This solution is a bit different: we use finer gain
713 * for mdev in this case (alpha*beta).
714 * Like Eifel it also prevents growth of rto,
715 * but also it limits too fast rto decreases,
716 * happening in pure Eifel.
717 */
718 if (m > 0)
719 m >>= 3;
720 } else {
740b0f18 721 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 722 }
740b0f18
ED
723 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
724 if (tp->mdev_us > tp->mdev_max_us) {
725 tp->mdev_max_us = tp->mdev_us;
726 if (tp->mdev_max_us > tp->rttvar_us)
727 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
728 }
729 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
730 if (tp->mdev_max_us < tp->rttvar_us)
731 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 732 tp->rtt_seq = tp->snd_nxt;
740b0f18 733 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
734 }
735 } else {
736 /* no previous measure. */
4a5ab4e2 737 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
738 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
739 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
740 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
741 tp->rtt_seq = tp->snd_nxt;
742 }
740b0f18 743 tp->srtt_us = max(1U, srtt);
1da177e4
LT
744}
745
95bd09eb
ED
746/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
747 * Note: TCP stack does not yet implement pacing.
748 * FQ packet scheduler can be used to implement cheap but effective
749 * TCP pacing, to smooth the burst on large writes when packets
750 * in flight is significantly lower than cwnd (or rwin)
751 */
752static void tcp_update_pacing_rate(struct sock *sk)
753{
754 const struct tcp_sock *tp = tcp_sk(sk);
755 u64 rate;
756
757 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
740b0f18 758 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
95bd09eb
ED
759
760 rate *= max(tp->snd_cwnd, tp->packets_out);
761
740b0f18
ED
762 if (likely(tp->srtt_us))
763 do_div(rate, tp->srtt_us);
95bd09eb 764
ba537427
ED
765 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
766 * without any lock. We want to make sure compiler wont store
767 * intermediate values in this location.
768 */
769 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
770 sk->sk_max_pacing_rate);
95bd09eb
ED
771}
772
1da177e4
LT
773/* Calculate rto without backoff. This is the second half of Van Jacobson's
774 * routine referred to above.
775 */
f7e56a76 776static void tcp_set_rto(struct sock *sk)
1da177e4 777{
463c84b9 778 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
779 /* Old crap is replaced with new one. 8)
780 *
781 * More seriously:
782 * 1. If rtt variance happened to be less 50msec, it is hallucination.
783 * It cannot be less due to utterly erratic ACK generation made
784 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
785 * to do with delayed acks, because at cwnd>2 true delack timeout
786 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 787 * ACKs in some circumstances.
1da177e4 788 */
f1ecd5d9 789 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
790
791 /* 2. Fixups made earlier cannot be right.
792 * If we do not estimate RTO correctly without them,
793 * all the algo is pure shit and should be replaced
caa20d9a 794 * with correct one. It is exactly, which we pretend to do.
1da177e4 795 */
1da177e4 796
ee6aac59
IJ
797 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
798 * guarantees that rto is higher.
799 */
f1ecd5d9 800 tcp_bound_rto(sk);
1da177e4
LT
801}
802
cf533ea5 803__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
804{
805 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
806
22b71c8f 807 if (!cwnd)
442b9635 808 cwnd = TCP_INIT_CWND;
1da177e4
LT
809 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
810}
811
e60402d0
IJ
812/*
813 * Packet counting of FACK is based on in-order assumptions, therefore TCP
814 * disables it when reordering is detected
815 */
4aabd8ef 816void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 817{
85cc391c
IJ
818 /* RFC3517 uses different metric in lost marker => reset on change */
819 if (tcp_is_fack(tp))
820 tp->lost_skb_hint = NULL;
ab56222a 821 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
822}
823
564262c1 824/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
825static void tcp_dsack_seen(struct tcp_sock *tp)
826{
ab56222a 827 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
828}
829
6687e988
ACM
830static void tcp_update_reordering(struct sock *sk, const int metric,
831 const int ts)
1da177e4 832{
6687e988 833 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 834 if (metric > tp->reordering) {
40b215e5
PE
835 int mib_idx;
836
dca145ff 837 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4
LT
838
839 /* This exciting event is worth to be remembered. 8) */
840 if (ts)
40b215e5 841 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 842 else if (tcp_is_reno(tp))
40b215e5 843 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 844 else if (tcp_is_fack(tp))
40b215e5 845 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 846 else
40b215e5
PE
847 mib_idx = LINUX_MIB_TCPSACKREORDER;
848
de0744af 849 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 850#if FASTRETRANS_DEBUG > 1
91df42be
JP
851 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
852 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
853 tp->reordering,
854 tp->fackets_out,
855 tp->sacked_out,
856 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 857#endif
e60402d0 858 tcp_disable_fack(tp);
1da177e4 859 }
eed530b6
YC
860
861 if (metric > 0)
862 tcp_disable_early_retrans(tp);
1da177e4
LT
863}
864
006f582c 865/* This must be called before lost_out is incremented */
c8c213f2
IJ
866static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
867{
006f582c 868 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
869 before(TCP_SKB_CB(skb)->seq,
870 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
871 tp->retransmit_skb_hint = skb;
872
873 if (!tp->lost_out ||
874 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
875 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
876}
877
41ea36e3
IJ
878static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
879{
880 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
881 tcp_verify_retransmit_hint(tp, skb);
882
883 tp->lost_out += tcp_skb_pcount(skb);
884 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 }
886}
887
e1aa680f
IJ
888static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
889 struct sk_buff *skb)
006f582c
IJ
890{
891 tcp_verify_retransmit_hint(tp, skb);
892
893 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
894 tp->lost_out += tcp_skb_pcount(skb);
895 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
896 }
897}
898
1da177e4
LT
899/* This procedure tags the retransmission queue when SACKs arrive.
900 *
901 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
902 * Packets in queue with these bits set are counted in variables
903 * sacked_out, retrans_out and lost_out, correspondingly.
904 *
905 * Valid combinations are:
906 * Tag InFlight Description
907 * 0 1 - orig segment is in flight.
908 * S 0 - nothing flies, orig reached receiver.
909 * L 0 - nothing flies, orig lost by net.
910 * R 2 - both orig and retransmit are in flight.
911 * L|R 1 - orig is lost, retransmit is in flight.
912 * S|R 1 - orig reached receiver, retrans is still in flight.
913 * (L|S|R is logically valid, it could occur when L|R is sacked,
914 * but it is equivalent to plain S and code short-curcuits it to S.
915 * L|S is logically invalid, it would mean -1 packet in flight 8))
916 *
917 * These 6 states form finite state machine, controlled by the following events:
918 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
919 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 920 * 3. Loss detection event of two flavors:
1da177e4
LT
921 * A. Scoreboard estimator decided the packet is lost.
922 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
923 * A''. Its FACK modification, head until snd.fack is lost.
924 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
925 * segment was retransmitted.
926 * 4. D-SACK added new rule: D-SACK changes any tag to S.
927 *
928 * It is pleasant to note, that state diagram turns out to be commutative,
929 * so that we are allowed not to be bothered by order of our actions,
930 * when multiple events arrive simultaneously. (see the function below).
931 *
932 * Reordering detection.
933 * --------------------
934 * Reordering metric is maximal distance, which a packet can be displaced
935 * in packet stream. With SACKs we can estimate it:
936 *
937 * 1. SACK fills old hole and the corresponding segment was not
938 * ever retransmitted -> reordering. Alas, we cannot use it
939 * when segment was retransmitted.
940 * 2. The last flaw is solved with D-SACK. D-SACK arrives
941 * for retransmitted and already SACKed segment -> reordering..
942 * Both of these heuristics are not used in Loss state, when we cannot
943 * account for retransmits accurately.
5b3c9882
IJ
944 *
945 * SACK block validation.
946 * ----------------------
947 *
948 * SACK block range validation checks that the received SACK block fits to
949 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
950 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
951 * it means that the receiver is rather inconsistent with itself reporting
952 * SACK reneging when it should advance SND.UNA. Such SACK block this is
953 * perfectly valid, however, in light of RFC2018 which explicitly states
954 * that "SACK block MUST reflect the newest segment. Even if the newest
955 * segment is going to be discarded ...", not that it looks very clever
956 * in case of head skb. Due to potentional receiver driven attacks, we
957 * choose to avoid immediate execution of a walk in write queue due to
958 * reneging and defer head skb's loss recovery to standard loss recovery
959 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
960 *
961 * Implements also blockage to start_seq wrap-around. Problem lies in the
962 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
963 * there's no guarantee that it will be before snd_nxt (n). The problem
964 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
965 * wrap (s_w):
966 *
967 * <- outs wnd -> <- wrapzone ->
968 * u e n u_w e_w s n_w
969 * | | | | | | |
970 * |<------------+------+----- TCP seqno space --------------+---------->|
971 * ...-- <2^31 ->| |<--------...
972 * ...---- >2^31 ------>| |<--------...
973 *
974 * Current code wouldn't be vulnerable but it's better still to discard such
975 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
976 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
977 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
978 * equal to the ideal case (infinite seqno space without wrap caused issues).
979 *
980 * With D-SACK the lower bound is extended to cover sequence space below
981 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 982 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
983 * for the normal SACK blocks, explained above). But there all simplicity
984 * ends, TCP might receive valid D-SACKs below that. As long as they reside
985 * fully below undo_marker they do not affect behavior in anyway and can
986 * therefore be safely ignored. In rare cases (which are more or less
987 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
988 * fragmentation and packet reordering past skb's retransmission. To consider
989 * them correctly, the acceptable range must be extended even more though
990 * the exact amount is rather hard to quantify. However, tp->max_window can
991 * be used as an exaggerated estimate.
1da177e4 992 */
a2a385d6
ED
993static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
994 u32 start_seq, u32 end_seq)
5b3c9882
IJ
995{
996 /* Too far in future, or reversed (interpretation is ambiguous) */
997 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 998 return false;
5b3c9882
IJ
999
1000 /* Nasty start_seq wrap-around check (see comments above) */
1001 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1002 return false;
5b3c9882 1003
564262c1 1004 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1005 * start_seq == snd_una is non-sensical (see comments above)
1006 */
1007 if (after(start_seq, tp->snd_una))
a2a385d6 1008 return true;
5b3c9882
IJ
1009
1010 if (!is_dsack || !tp->undo_marker)
a2a385d6 1011 return false;
5b3c9882
IJ
1012
1013 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1014 if (after(end_seq, tp->snd_una))
a2a385d6 1015 return false;
5b3c9882
IJ
1016
1017 if (!before(start_seq, tp->undo_marker))
a2a385d6 1018 return true;
5b3c9882
IJ
1019
1020 /* Too old */
1021 if (!after(end_seq, tp->undo_marker))
a2a385d6 1022 return false;
5b3c9882
IJ
1023
1024 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1025 * start_seq < undo_marker and end_seq >= undo_marker.
1026 */
1027 return !before(start_seq, end_seq - tp->max_window);
1028}
1029
1c1e87ed 1030/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1031 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1032 * for reordering! Ugly, but should help.
f785a8e2
IJ
1033 *
1034 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1035 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1036 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1037 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1038 */
407ef1de 1039static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1040{
9f58f3b7 1041 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1042 struct tcp_sock *tp = tcp_sk(sk);
1043 struct sk_buff *skb;
f785a8e2 1044 int cnt = 0;
df2e014b 1045 u32 new_low_seq = tp->snd_nxt;
6859d494 1046 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1047
1048 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1049 !after(received_upto, tp->lost_retrans_low) ||
1050 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1051 return;
1c1e87ed
IJ
1052
1053 tcp_for_write_queue(skb, sk) {
1054 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1055
1056 if (skb == tcp_send_head(sk))
1057 break;
f785a8e2 1058 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1059 break;
1060 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1061 continue;
1062
f785a8e2
IJ
1063 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1064 continue;
1065
d0af4160
IJ
1066 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1067 * constraint here (see above) but figuring out that at
1068 * least tp->reordering SACK blocks reside between ack_seq
1069 * and received_upto is not easy task to do cheaply with
1070 * the available datastructures.
1071 *
1072 * Whether FACK should check here for tp->reordering segs
1073 * in-between one could argue for either way (it would be
1074 * rather simple to implement as we could count fack_count
1075 * during the walk and do tp->fackets_out - fack_count).
1076 */
1077 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1078 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1079 tp->retrans_out -= tcp_skb_pcount(skb);
1080
006f582c 1081 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1082 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1083 } else {
df2e014b 1084 if (before(ack_seq, new_low_seq))
b08d6cb2 1085 new_low_seq = ack_seq;
f785a8e2 1086 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1087 }
1088 }
b08d6cb2
IJ
1089
1090 if (tp->retrans_out)
1091 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1092}
5b3c9882 1093
a2a385d6
ED
1094static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 struct tcp_sack_block_wire *sp, int num_sacks,
1096 u32 prior_snd_una)
d06e021d 1097{
1ed83465 1098 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1101 bool dup_sack = false;
d06e021d
DM
1102
1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1104 dup_sack = true;
e60402d0 1105 tcp_dsack_seen(tp);
de0744af 1106 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1107 } else if (num_sacks > 1) {
d3e2ce3b
HH
1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1110
1111 if (!after(end_seq_0, end_seq_1) &&
1112 !before(start_seq_0, start_seq_1)) {
a2a385d6 1113 dup_sack = true;
e60402d0 1114 tcp_dsack_seen(tp);
de0744af
PE
1115 NET_INC_STATS_BH(sock_net(sk),
1116 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1117 }
1118 }
1119
1120 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1122 !after(end_seq_0, prior_snd_una) &&
1123 after(end_seq_0, tp->undo_marker))
1124 tp->undo_retrans--;
1125
1126 return dup_sack;
1127}
1128
a1197f5a 1129struct tcp_sacktag_state {
740b0f18
ED
1130 int reord;
1131 int fack_count;
1132 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1133 int flag;
a1197f5a
IJ
1134};
1135
d1935942
IJ
1136/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1137 * the incoming SACK may not exactly match but we can find smaller MSS
1138 * aligned portion of it that matches. Therefore we might need to fragment
1139 * which may fail and creates some hassle (caller must handle error case
1140 * returns).
832d11c5
IJ
1141 *
1142 * FIXME: this could be merged to shift decision code
d1935942 1143 */
0f79efdc 1144static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1145 u32 start_seq, u32 end_seq)
d1935942 1146{
a2a385d6
ED
1147 int err;
1148 bool in_sack;
d1935942 1149 unsigned int pkt_len;
adb92db8 1150 unsigned int mss;
d1935942
IJ
1151
1152 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1153 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1154
1155 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1156 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1157 mss = tcp_skb_mss(skb);
d1935942
IJ
1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1159
adb92db8 1160 if (!in_sack) {
d1935942 1161 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1162 if (pkt_len < mss)
1163 pkt_len = mss;
1164 } else {
d1935942 1165 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1166 if (pkt_len < mss)
1167 return -EINVAL;
1168 }
1169
1170 /* Round if necessary so that SACKs cover only full MSSes
1171 * and/or the remaining small portion (if present)
1172 */
1173 if (pkt_len > mss) {
1174 unsigned int new_len = (pkt_len / mss) * mss;
1175 if (!in_sack && new_len < pkt_len) {
1176 new_len += mss;
2cd0d743 1177 if (new_len >= skb->len)
adb92db8
IJ
1178 return 0;
1179 }
1180 pkt_len = new_len;
1181 }
6cc55e09 1182 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1183 if (err < 0)
1184 return err;
1185 }
1186
1187 return in_sack;
1188}
1189
cc9a672e
NC
1190/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191static u8 tcp_sacktag_one(struct sock *sk,
1192 struct tcp_sacktag_state *state, u8 sacked,
1193 u32 start_seq, u32 end_seq,
740b0f18
ED
1194 int dup_sack, int pcount,
1195 const struct skb_mstamp *xmit_time)
9e10c47c 1196{
6859d494 1197 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1198 int fack_count = state->fack_count;
9e10c47c
IJ
1199
1200 /* Account D-SACK for retransmitted packet. */
1201 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1202 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1203 after(end_seq, tp->undo_marker))
9e10c47c 1204 tp->undo_retrans--;
ede9f3b1 1205 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1206 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1207 }
1208
1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1210 if (!after(end_seq, tp->snd_una))
a1197f5a 1211 return sacked;
9e10c47c
IJ
1212
1213 if (!(sacked & TCPCB_SACKED_ACKED)) {
1214 if (sacked & TCPCB_SACKED_RETRANS) {
1215 /* If the segment is not tagged as lost,
1216 * we do not clear RETRANS, believing
1217 * that retransmission is still in flight.
1218 */
1219 if (sacked & TCPCB_LOST) {
a1197f5a 1220 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1221 tp->lost_out -= pcount;
1222 tp->retrans_out -= pcount;
9e10c47c
IJ
1223 }
1224 } else {
1225 if (!(sacked & TCPCB_RETRANS)) {
1226 /* New sack for not retransmitted frame,
1227 * which was in hole. It is reordering.
1228 */
cc9a672e 1229 if (before(start_seq,
9e10c47c 1230 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1231 state->reord = min(fack_count,
1232 state->reord);
e33099f9
YC
1233 if (!after(end_seq, tp->high_seq))
1234 state->flag |= FLAG_ORIG_SACK_ACKED;
59c9af42 1235 /* Pick the earliest sequence sacked for RTT */
740b0f18
ED
1236 if (state->rtt_us < 0) {
1237 struct skb_mstamp now;
1238
1239 skb_mstamp_get(&now);
1240 state->rtt_us = skb_mstamp_us_delta(&now,
1241 xmit_time);
1242 }
9e10c47c
IJ
1243 }
1244
1245 if (sacked & TCPCB_LOST) {
a1197f5a 1246 sacked &= ~TCPCB_LOST;
f58b22fd 1247 tp->lost_out -= pcount;
9e10c47c
IJ
1248 }
1249 }
1250
a1197f5a
IJ
1251 sacked |= TCPCB_SACKED_ACKED;
1252 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1253 tp->sacked_out += pcount;
9e10c47c 1254
f58b22fd 1255 fack_count += pcount;
9e10c47c
IJ
1256
1257 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1258 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1259 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1260 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1261
1262 if (fack_count > tp->fackets_out)
1263 tp->fackets_out = fack_count;
9e10c47c
IJ
1264 }
1265
1266 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1267 * frames and clear it. undo_retrans is decreased above, L|R frames
1268 * are accounted above as well.
1269 */
a1197f5a
IJ
1270 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1272 tp->retrans_out -= pcount;
9e10c47c
IJ
1273 }
1274
a1197f5a 1275 return sacked;
9e10c47c
IJ
1276}
1277
daef52ba
NC
1278/* Shift newly-SACKed bytes from this skb to the immediately previous
1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280 */
a2a385d6
ED
1281static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1282 struct tcp_sacktag_state *state,
1283 unsigned int pcount, int shifted, int mss,
1284 bool dup_sack)
832d11c5
IJ
1285{
1286 struct tcp_sock *tp = tcp_sk(sk);
50133161 1287 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1288 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1289 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1290
1291 BUG_ON(!pcount);
1292
4c90d3b3
NC
1293 /* Adjust counters and hints for the newly sacked sequence
1294 * range but discard the return value since prev is already
1295 * marked. We must tag the range first because the seq
1296 * advancement below implicitly advances
1297 * tcp_highest_sack_seq() when skb is highest_sack.
1298 */
1299 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1300 start_seq, end_seq, dup_sack, pcount,
740b0f18 1301 &skb->skb_mstamp);
4c90d3b3
NC
1302
1303 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1304 tp->lost_cnt_hint += pcount;
1305
832d11c5
IJ
1306 TCP_SKB_CB(prev)->end_seq += shifted;
1307 TCP_SKB_CB(skb)->seq += shifted;
1308
cd7d8498
ED
1309 tcp_skb_pcount_add(prev, pcount);
1310 BUG_ON(tcp_skb_pcount(skb) < pcount);
1311 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1312
1313 /* When we're adding to gso_segs == 1, gso_size will be zero,
1314 * in theory this shouldn't be necessary but as long as DSACK
1315 * code can come after this skb later on it's better to keep
1316 * setting gso_size to something.
1317 */
1318 if (!skb_shinfo(prev)->gso_size) {
1319 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1320 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1321 }
1322
1323 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
cd7d8498 1324 if (tcp_skb_pcount(skb) <= 1) {
832d11c5 1325 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1326 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1327 }
1328
832d11c5
IJ
1329 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1330 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1331
832d11c5
IJ
1332 if (skb->len > 0) {
1333 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1334 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1335 return false;
832d11c5
IJ
1336 }
1337
1338 /* Whole SKB was eaten :-) */
1339
92ee76b6
IJ
1340 if (skb == tp->retransmit_skb_hint)
1341 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1342 if (skb == tp->lost_skb_hint) {
1343 tp->lost_skb_hint = prev;
1344 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1345 }
1346
5e8a402f
ED
1347 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 TCP_SKB_CB(prev)->end_seq++;
1350
832d11c5
IJ
1351 if (skb == tcp_highest_sack(sk))
1352 tcp_advance_highest_sack(sk, skb);
1353
1354 tcp_unlink_write_queue(skb, sk);
1355 sk_wmem_free_skb(sk, skb);
1356
111cc8b9
IJ
1357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1358
a2a385d6 1359 return true;
832d11c5
IJ
1360}
1361
1362/* I wish gso_size would have a bit more sane initialization than
1363 * something-or-zero which complicates things
1364 */
cf533ea5 1365static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1366{
775ffabf 1367 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1368}
1369
1370/* Shifting pages past head area doesn't work */
cf533ea5 1371static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1372{
1373 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1374}
1375
1376/* Try collapsing SACK blocks spanning across multiple skbs to a single
1377 * skb.
1378 */
1379static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1380 struct tcp_sacktag_state *state,
832d11c5 1381 u32 start_seq, u32 end_seq,
a2a385d6 1382 bool dup_sack)
832d11c5
IJ
1383{
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 struct sk_buff *prev;
1386 int mss;
1387 int pcount = 0;
1388 int len;
1389 int in_sack;
1390
1391 if (!sk_can_gso(sk))
1392 goto fallback;
1393
1394 /* Normally R but no L won't result in plain S */
1395 if (!dup_sack &&
9969ca5f 1396 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1397 goto fallback;
1398 if (!skb_can_shift(skb))
1399 goto fallback;
1400 /* This frame is about to be dropped (was ACKed). */
1401 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1402 goto fallback;
1403
1404 /* Can only happen with delayed DSACK + discard craziness */
1405 if (unlikely(skb == tcp_write_queue_head(sk)))
1406 goto fallback;
1407 prev = tcp_write_queue_prev(sk, skb);
1408
1409 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1410 goto fallback;
1411
1412 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1413 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1414
1415 if (in_sack) {
1416 len = skb->len;
1417 pcount = tcp_skb_pcount(skb);
775ffabf 1418 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1419
1420 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1421 * drop this restriction as unnecessary
1422 */
775ffabf 1423 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1424 goto fallback;
1425 } else {
1426 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1427 goto noop;
1428 /* CHECKME: This is non-MSS split case only?, this will
1429 * cause skipped skbs due to advancing loop btw, original
1430 * has that feature too
1431 */
1432 if (tcp_skb_pcount(skb) <= 1)
1433 goto noop;
1434
1435 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1436 if (!in_sack) {
1437 /* TODO: head merge to next could be attempted here
1438 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1439 * though it might not be worth of the additional hassle
1440 *
1441 * ...we can probably just fallback to what was done
1442 * previously. We could try merging non-SACKed ones
1443 * as well but it probably isn't going to buy off
1444 * because later SACKs might again split them, and
1445 * it would make skb timestamp tracking considerably
1446 * harder problem.
1447 */
1448 goto fallback;
1449 }
1450
1451 len = end_seq - TCP_SKB_CB(skb)->seq;
1452 BUG_ON(len < 0);
1453 BUG_ON(len > skb->len);
1454
1455 /* MSS boundaries should be honoured or else pcount will
1456 * severely break even though it makes things bit trickier.
1457 * Optimize common case to avoid most of the divides
1458 */
1459 mss = tcp_skb_mss(skb);
1460
1461 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1462 * drop this restriction as unnecessary
1463 */
775ffabf 1464 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1465 goto fallback;
1466
1467 if (len == mss) {
1468 pcount = 1;
1469 } else if (len < mss) {
1470 goto noop;
1471 } else {
1472 pcount = len / mss;
1473 len = pcount * mss;
1474 }
1475 }
1476
4648dc97
NC
1477 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1478 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1479 goto fallback;
1480
832d11c5
IJ
1481 if (!skb_shift(prev, skb, len))
1482 goto fallback;
9ec06ff5 1483 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1484 goto out;
1485
1486 /* Hole filled allows collapsing with the next as well, this is very
1487 * useful when hole on every nth skb pattern happens
1488 */
1489 if (prev == tcp_write_queue_tail(sk))
1490 goto out;
1491 skb = tcp_write_queue_next(sk, prev);
1492
f0bc52f3
IJ
1493 if (!skb_can_shift(skb) ||
1494 (skb == tcp_send_head(sk)) ||
1495 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1496 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1497 goto out;
1498
1499 len = skb->len;
1500 if (skb_shift(prev, skb, len)) {
1501 pcount += tcp_skb_pcount(skb);
9ec06ff5 1502 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1503 }
1504
1505out:
a1197f5a 1506 state->fack_count += pcount;
832d11c5
IJ
1507 return prev;
1508
1509noop:
1510 return skb;
1511
1512fallback:
111cc8b9 1513 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1514 return NULL;
1515}
1516
68f8353b
IJ
1517static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1518 struct tcp_sack_block *next_dup,
a1197f5a 1519 struct tcp_sacktag_state *state,
68f8353b 1520 u32 start_seq, u32 end_seq,
a2a385d6 1521 bool dup_sack_in)
68f8353b 1522{
832d11c5
IJ
1523 struct tcp_sock *tp = tcp_sk(sk);
1524 struct sk_buff *tmp;
1525
68f8353b
IJ
1526 tcp_for_write_queue_from(skb, sk) {
1527 int in_sack = 0;
a2a385d6 1528 bool dup_sack = dup_sack_in;
68f8353b
IJ
1529
1530 if (skb == tcp_send_head(sk))
1531 break;
1532
1533 /* queue is in-order => we can short-circuit the walk early */
1534 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1535 break;
1536
1537 if ((next_dup != NULL) &&
1538 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1539 in_sack = tcp_match_skb_to_sack(sk, skb,
1540 next_dup->start_seq,
1541 next_dup->end_seq);
1542 if (in_sack > 0)
a2a385d6 1543 dup_sack = true;
68f8353b
IJ
1544 }
1545
832d11c5
IJ
1546 /* skb reference here is a bit tricky to get right, since
1547 * shifting can eat and free both this skb and the next,
1548 * so not even _safe variant of the loop is enough.
1549 */
1550 if (in_sack <= 0) {
a1197f5a
IJ
1551 tmp = tcp_shift_skb_data(sk, skb, state,
1552 start_seq, end_seq, dup_sack);
832d11c5
IJ
1553 if (tmp != NULL) {
1554 if (tmp != skb) {
1555 skb = tmp;
1556 continue;
1557 }
1558
1559 in_sack = 0;
1560 } else {
1561 in_sack = tcp_match_skb_to_sack(sk, skb,
1562 start_seq,
1563 end_seq);
1564 }
1565 }
1566
68f8353b
IJ
1567 if (unlikely(in_sack < 0))
1568 break;
1569
832d11c5 1570 if (in_sack) {
cc9a672e
NC
1571 TCP_SKB_CB(skb)->sacked =
1572 tcp_sacktag_one(sk,
1573 state,
1574 TCP_SKB_CB(skb)->sacked,
1575 TCP_SKB_CB(skb)->seq,
1576 TCP_SKB_CB(skb)->end_seq,
1577 dup_sack,
59c9af42 1578 tcp_skb_pcount(skb),
740b0f18 1579 &skb->skb_mstamp);
68f8353b 1580
832d11c5
IJ
1581 if (!before(TCP_SKB_CB(skb)->seq,
1582 tcp_highest_sack_seq(tp)))
1583 tcp_advance_highest_sack(sk, skb);
1584 }
1585
a1197f5a 1586 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1587 }
1588 return skb;
1589}
1590
1591/* Avoid all extra work that is being done by sacktag while walking in
1592 * a normal way
1593 */
1594static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1595 struct tcp_sacktag_state *state,
1596 u32 skip_to_seq)
68f8353b
IJ
1597{
1598 tcp_for_write_queue_from(skb, sk) {
1599 if (skb == tcp_send_head(sk))
1600 break;
1601
e8bae275 1602 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1603 break;
d152a7d8 1604
a1197f5a 1605 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1606 }
1607 return skb;
1608}
1609
1610static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1611 struct sock *sk,
1612 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1613 struct tcp_sacktag_state *state,
1614 u32 skip_to_seq)
68f8353b
IJ
1615{
1616 if (next_dup == NULL)
1617 return skb;
1618
1619 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1620 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1621 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1622 next_dup->start_seq, next_dup->end_seq,
1623 1);
68f8353b
IJ
1624 }
1625
1626 return skb;
1627}
1628
cf533ea5 1629static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1630{
1631 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1632}
1633
1da177e4 1634static int
cf533ea5 1635tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
740b0f18 1636 u32 prior_snd_una, long *sack_rtt_us)
1da177e4
LT
1637{
1638 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1639 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1640 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1641 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1642 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1643 struct tcp_sack_block *cache;
a1197f5a 1644 struct tcp_sacktag_state state;
68f8353b 1645 struct sk_buff *skb;
4389dded 1646 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1647 int used_sacks;
a2a385d6 1648 bool found_dup_sack = false;
68f8353b 1649 int i, j;
fda03fbb 1650 int first_sack_index;
1da177e4 1651
a1197f5a
IJ
1652 state.flag = 0;
1653 state.reord = tp->packets_out;
740b0f18 1654 state.rtt_us = -1L;
a1197f5a 1655
d738cd8f 1656 if (!tp->sacked_out) {
de83c058
IJ
1657 if (WARN_ON(tp->fackets_out))
1658 tp->fackets_out = 0;
6859d494 1659 tcp_highest_sack_reset(sk);
d738cd8f 1660 }
1da177e4 1661
1ed83465 1662 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1663 num_sacks, prior_snd_una);
1664 if (found_dup_sack)
a1197f5a 1665 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1666
1667 /* Eliminate too old ACKs, but take into
1668 * account more or less fresh ones, they can
1669 * contain valid SACK info.
1670 */
1671 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1672 return 0;
1673