]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - net/ipv4/tcp_input.c
Merge tag 'jfs-3.12' of git://github.com/kleikamp/linux-shaggy
[mirror_ubuntu-eoan-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
1da177e4 77
ab32ea5d
BH
78int sysctl_tcp_timestamps __read_mostly = 1;
79int sysctl_tcp_window_scaling __read_mostly = 1;
80int sysctl_tcp_sack __read_mostly = 1;
81int sysctl_tcp_fack __read_mostly = 1;
82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 86int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
282f23c6
ED
89/* rfc5961 challenge ack rate limiting */
90int sysctl_tcp_challenge_ack_limit = 100;
91
ab32ea5d
BH
92int sysctl_tcp_stdurg __read_mostly;
93int sysctl_tcp_rfc1337 __read_mostly;
94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 95int sysctl_tcp_frto __read_mostly = 2;
1da177e4 96
7e380175
AP
97int sysctl_tcp_thin_dupack __read_mostly;
98
ab32ea5d 99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 100int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 101
1da177e4
LT
102#define FLAG_DATA 0x01 /* Incoming frame contained data. */
103#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107#define FLAG_DATA_SACKED 0x20 /* New SACK. */
108#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 110#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 113#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 114#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
1da177e4 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 123
e905a9ed 124/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 125 * real world.
e905a9ed 126 */
056834d9 127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 128{
463c84b9 129 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 131 unsigned int len;
1da177e4 132
e905a9ed 133 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
056834d9 138 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
9c70220b 147 len += skb->data - skb_transport_header(skb);
bee7ca9e 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
463c84b9
ACM
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
1da177e4 162 if (len == lss) {
463c84b9 163 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
164 return;
165 }
166 }
1ef9696c
AK
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
170 }
171}
172
463c84b9 173static void tcp_incr_quickack(struct sock *sk)
1da177e4 174{
463c84b9 175 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 177
056834d9
IJ
178 if (quickacks == 0)
179 quickacks = 2;
463c84b9
ACM
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
182}
183
1b9f4092 184static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 185{
463c84b9
ACM
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
190}
191
192/* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
a2a385d6 196static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 197{
463c84b9 198 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 199
463c84b9 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
201}
202
bdf1ee5d
IJ
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
056834d9 205 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
cf533ea5 209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
7a269ffa 220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 221{
7a269ffa
ED
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
b82d1bb4 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 226 case INET_ECN_NOT_ECT:
bdf1ee5d 227 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 232 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
233 break;
234 case INET_ECN_CE:
aae06bf5
ED
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
7a269ffa
ED
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
bdf1ee5d
IJ
243 }
244}
245
cf533ea5 246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 247{
056834d9 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
249 tp->ecn_flags &= ~TCP_ECN_OK;
250}
251
cf533ea5 252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 253{
056834d9 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
255 tp->ecn_flags &= ~TCP_ECN_OK;
256}
257
a2a385d6 258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 259{
056834d9 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
261 return true;
262 return false;
bdf1ee5d
IJ
263}
264
1da177e4
LT
265/* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270static void tcp_fixup_sndbuf(struct sock *sk)
271{
87fb4b7b 272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
1da177e4 273
06a59ecb
ED
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
277}
278
279/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
caa20d9a 300 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304/* Slow part of check#2. */
9e412ba7 305static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 306{
9e412ba7 307 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 308 /* Optimize this! */
dfd4f0ae
ED
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
463c84b9 314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320}
321
cf533ea5 322static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 323{
9e412ba7
IJ
324 struct tcp_sock *tp = tcp_sk(sk);
325
1da177e4
LT
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 329 !sk_under_memory_pressure(sk)) {
1da177e4
LT
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 336 incr = 2 * tp->advmss;
1da177e4 337 else
9e412ba7 338 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
339
340 if (incr) {
4d846f02 341 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
463c84b9 344 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
345 }
346 }
347}
348
349/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
350static void tcp_fixup_rcvbuf(struct sock *sk)
351{
e9266a02 352 u32 mss = tcp_sk(sk)->advmss;
e9266a02 353 int rcvmem;
1da177e4 354
85f16525
YC
355 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 tcp_default_init_rwnd(mss);
e9266a02
ED
357
358 if (sk->sk_rcvbuf < rcvmem)
359 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
360}
361
caa20d9a 362/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
363 * established state.
364 */
10467163 365void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
366{
367 struct tcp_sock *tp = tcp_sk(sk);
368 int maxwin;
369
370 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 tcp_fixup_rcvbuf(sk);
372 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 tcp_fixup_sndbuf(sk);
374
375 tp->rcvq_space.space = tp->rcv_wnd;
376
377 maxwin = tcp_full_space(sk);
378
379 if (tp->window_clamp >= maxwin) {
380 tp->window_clamp = maxwin;
381
382 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 tp->window_clamp = max(maxwin -
384 (maxwin >> sysctl_tcp_app_win),
385 4 * tp->advmss);
386 }
387
388 /* Force reservation of one segment. */
389 if (sysctl_tcp_app_win &&
390 tp->window_clamp > 2 * tp->advmss &&
391 tp->window_clamp + tp->advmss > maxwin)
392 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
393
394 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 tp->snd_cwnd_stamp = tcp_time_stamp;
396}
397
1da177e4 398/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 399static void tcp_clamp_window(struct sock *sk)
1da177e4 400{
9e412ba7 401 struct tcp_sock *tp = tcp_sk(sk);
6687e988 402 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 403
6687e988 404 icsk->icsk_ack.quick = 0;
1da177e4 405
326f36e9
JH
406 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
408 !sk_under_memory_pressure(sk) &&
409 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
410 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 sysctl_tcp_rmem[2]);
1da177e4 412 }
326f36e9 413 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 414 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
415}
416
40efc6fa
SH
417/* Initialize RCV_MSS value.
418 * RCV_MSS is an our guess about MSS used by the peer.
419 * We haven't any direct information about the MSS.
420 * It's better to underestimate the RCV_MSS rather than overestimate.
421 * Overestimations make us ACKing less frequently than needed.
422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
423 */
424void tcp_initialize_rcv_mss(struct sock *sk)
425{
cf533ea5 426 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
427 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
428
056834d9 429 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 430 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
431 hint = max(hint, TCP_MIN_MSS);
432
433 inet_csk(sk)->icsk_ack.rcv_mss = hint;
434}
4bc2f18b 435EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 436
1da177e4
LT
437/* Receiver "autotuning" code.
438 *
439 * The algorithm for RTT estimation w/o timestamps is based on
440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
442 *
443 * More detail on this code can be found at
631dd1a8 444 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
445 * though this reference is out of date. A new paper
446 * is pending.
447 */
448static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
449{
450 u32 new_sample = tp->rcv_rtt_est.rtt;
451 long m = sample;
452
453 if (m == 0)
454 m = 1;
455
456 if (new_sample != 0) {
457 /* If we sample in larger samples in the non-timestamp
458 * case, we could grossly overestimate the RTT especially
459 * with chatty applications or bulk transfer apps which
460 * are stalled on filesystem I/O.
461 *
462 * Also, since we are only going for a minimum in the
31f34269 463 * non-timestamp case, we do not smooth things out
caa20d9a 464 * else with timestamps disabled convergence takes too
1da177e4
LT
465 * long.
466 */
467 if (!win_dep) {
468 m -= (new_sample >> 3);
469 new_sample += m;
18a223e0
NC
470 } else {
471 m <<= 3;
472 if (m < new_sample)
473 new_sample = m;
474 }
1da177e4 475 } else {
caa20d9a 476 /* No previous measure. */
1da177e4
LT
477 new_sample = m << 3;
478 }
479
480 if (tp->rcv_rtt_est.rtt != new_sample)
481 tp->rcv_rtt_est.rtt = new_sample;
482}
483
484static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
485{
486 if (tp->rcv_rtt_est.time == 0)
487 goto new_measure;
488 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 return;
651913ce 490 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
491
492new_measure:
493 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 tp->rcv_rtt_est.time = tcp_time_stamp;
495}
496
056834d9
IJ
497static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 const struct sk_buff *skb)
1da177e4 499{
463c84b9 500 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
501 if (tp->rx_opt.rcv_tsecr &&
502 (TCP_SKB_CB(skb)->end_seq -
463c84b9 503 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
505}
506
507/*
508 * This function should be called every time data is copied to user space.
509 * It calculates the appropriate TCP receive buffer space.
510 */
511void tcp_rcv_space_adjust(struct sock *sk)
512{
513 struct tcp_sock *tp = tcp_sk(sk);
514 int time;
515 int space;
e905a9ed 516
1da177e4
LT
517 if (tp->rcvq_space.time == 0)
518 goto new_measure;
e905a9ed 519
1da177e4 520 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 521 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 522 return;
e905a9ed 523
1da177e4
LT
524 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
525
526 space = max(tp->rcvq_space.space, space);
527
528 if (tp->rcvq_space.space != space) {
529 int rcvmem;
530
531 tp->rcvq_space.space = space;
532
6fcf9412
JH
533 if (sysctl_tcp_moderate_rcvbuf &&
534 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
535 int new_clamp = space;
536
537 /* Receive space grows, normalize in order to
538 * take into account packet headers and sk_buff
539 * structure overhead.
540 */
541 space /= tp->advmss;
542 if (!space)
543 space = 1;
87fb4b7b 544 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
1da177e4
LT
545 while (tcp_win_from_space(rcvmem) < tp->advmss)
546 rcvmem += 128;
547 space *= rcvmem;
548 space = min(space, sysctl_tcp_rmem[2]);
549 if (space > sk->sk_rcvbuf) {
550 sk->sk_rcvbuf = space;
551
552 /* Make the window clamp follow along. */
553 tp->window_clamp = new_clamp;
554 }
555 }
556 }
e905a9ed 557
1da177e4
LT
558new_measure:
559 tp->rcvq_space.seq = tp->copied_seq;
560 tp->rcvq_space.time = tcp_time_stamp;
561}
562
563/* There is something which you must keep in mind when you analyze the
564 * behavior of the tp->ato delayed ack timeout interval. When a
565 * connection starts up, we want to ack as quickly as possible. The
566 * problem is that "good" TCP's do slow start at the beginning of data
567 * transmission. The means that until we send the first few ACK's the
568 * sender will sit on his end and only queue most of his data, because
569 * he can only send snd_cwnd unacked packets at any given time. For
570 * each ACK we send, he increments snd_cwnd and transmits more of his
571 * queue. -DaveM
572 */
9e412ba7 573static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 574{
9e412ba7 575 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 576 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
577 u32 now;
578
463c84b9 579 inet_csk_schedule_ack(sk);
1da177e4 580
463c84b9 581 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
582
583 tcp_rcv_rtt_measure(tp);
e905a9ed 584
1da177e4
LT
585 now = tcp_time_stamp;
586
463c84b9 587 if (!icsk->icsk_ack.ato) {
1da177e4
LT
588 /* The _first_ data packet received, initialize
589 * delayed ACK engine.
590 */
463c84b9
ACM
591 tcp_incr_quickack(sk);
592 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 593 } else {
463c84b9 594 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 595
056834d9 596 if (m <= TCP_ATO_MIN / 2) {
1da177e4 597 /* The fastest case is the first. */
463c84b9
ACM
598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 } else if (m < icsk->icsk_ack.ato) {
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 icsk->icsk_ack.ato = icsk->icsk_rto;
603 } else if (m > icsk->icsk_rto) {
caa20d9a 604 /* Too long gap. Apparently sender failed to
1da177e4
LT
605 * restart window, so that we send ACKs quickly.
606 */
463c84b9 607 tcp_incr_quickack(sk);
3ab224be 608 sk_mem_reclaim(sk);
1da177e4
LT
609 }
610 }
463c84b9 611 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
612
613 TCP_ECN_check_ce(tp, skb);
614
615 if (skb->len >= 128)
9e412ba7 616 tcp_grow_window(sk, skb);
1da177e4
LT
617}
618
1da177e4
LT
619/* Called to compute a smoothed rtt estimate. The data fed to this
620 * routine either comes from timestamps, or from segments that were
621 * known _not_ to have been retransmitted [see Karn/Partridge
622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623 * piece by Van Jacobson.
624 * NOTE: the next three routines used to be one big routine.
625 * To save cycles in the RFC 1323 implementation it was better to break
626 * it up into three procedures. -- erics
627 */
2d2abbab 628static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 629{
6687e988 630 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
631 long m = mrtt; /* RTT */
632
1da177e4
LT
633 /* The following amusing code comes from Jacobson's
634 * article in SIGCOMM '88. Note that rtt and mdev
635 * are scaled versions of rtt and mean deviation.
e905a9ed 636 * This is designed to be as fast as possible
1da177e4
LT
637 * m stands for "measurement".
638 *
639 * On a 1990 paper the rto value is changed to:
640 * RTO = rtt + 4 * mdev
641 *
642 * Funny. This algorithm seems to be very broken.
643 * These formulae increase RTO, when it should be decreased, increase
31f34269 644 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 * does not matter how to _calculate_ it. Seems, it was trap
647 * that VJ failed to avoid. 8)
648 */
2de979bd 649 if (m == 0)
1da177e4
LT
650 m = 1;
651 if (tp->srtt != 0) {
652 m -= (tp->srtt >> 3); /* m is now error in rtt est */
653 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
654 if (m < 0) {
655 m = -m; /* m is now abs(error) */
656 m -= (tp->mdev >> 2); /* similar update on mdev */
657 /* This is similar to one of Eifel findings.
658 * Eifel blocks mdev updates when rtt decreases.
659 * This solution is a bit different: we use finer gain
660 * for mdev in this case (alpha*beta).
661 * Like Eifel it also prevents growth of rto,
662 * but also it limits too fast rto decreases,
663 * happening in pure Eifel.
664 */
665 if (m > 0)
666 m >>= 3;
667 } else {
668 m -= (tp->mdev >> 2); /* similar update on mdev */
669 }
670 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
671 if (tp->mdev > tp->mdev_max) {
672 tp->mdev_max = tp->mdev;
673 if (tp->mdev_max > tp->rttvar)
674 tp->rttvar = tp->mdev_max;
675 }
676 if (after(tp->snd_una, tp->rtt_seq)) {
677 if (tp->mdev_max < tp->rttvar)
056834d9 678 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 679 tp->rtt_seq = tp->snd_nxt;
05bb1fad 680 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
681 }
682 } else {
683 /* no previous measure. */
056834d9
IJ
684 tp->srtt = m << 3; /* take the measured time to be rtt */
685 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 686 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
687 tp->rtt_seq = tp->snd_nxt;
688 }
1da177e4
LT
689}
690
95bd09eb
ED
691/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
692 * Note: TCP stack does not yet implement pacing.
693 * FQ packet scheduler can be used to implement cheap but effective
694 * TCP pacing, to smooth the burst on large writes when packets
695 * in flight is significantly lower than cwnd (or rwin)
696 */
697static void tcp_update_pacing_rate(struct sock *sk)
698{
699 const struct tcp_sock *tp = tcp_sk(sk);
700 u64 rate;
701
702 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
703 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
704
705 rate *= max(tp->snd_cwnd, tp->packets_out);
706
707 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
708 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
709 * We probably need usec resolution in the future.
710 * Note: This also takes care of possible srtt=0 case,
711 * when tcp_rtt_estimator() was not yet called.
712 */
713 if (tp->srtt > 8 + 2)
714 do_div(rate, tp->srtt);
715
716 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
717}
718
1da177e4
LT
719/* Calculate rto without backoff. This is the second half of Van Jacobson's
720 * routine referred to above.
721 */
4aabd8ef 722void tcp_set_rto(struct sock *sk)
1da177e4 723{
463c84b9 724 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
725 /* Old crap is replaced with new one. 8)
726 *
727 * More seriously:
728 * 1. If rtt variance happened to be less 50msec, it is hallucination.
729 * It cannot be less due to utterly erratic ACK generation made
730 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
731 * to do with delayed acks, because at cwnd>2 true delack timeout
732 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 733 * ACKs in some circumstances.
1da177e4 734 */
f1ecd5d9 735 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
736
737 /* 2. Fixups made earlier cannot be right.
738 * If we do not estimate RTO correctly without them,
739 * all the algo is pure shit and should be replaced
caa20d9a 740 * with correct one. It is exactly, which we pretend to do.
1da177e4 741 */
1da177e4 742
ee6aac59
IJ
743 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
744 * guarantees that rto is higher.
745 */
f1ecd5d9 746 tcp_bound_rto(sk);
1da177e4
LT
747}
748
cf533ea5 749__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
750{
751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
752
22b71c8f 753 if (!cwnd)
442b9635 754 cwnd = TCP_INIT_CWND;
1da177e4
LT
755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756}
757
e60402d0
IJ
758/*
759 * Packet counting of FACK is based on in-order assumptions, therefore TCP
760 * disables it when reordering is detected
761 */
4aabd8ef 762void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 763{
85cc391c
IJ
764 /* RFC3517 uses different metric in lost marker => reset on change */
765 if (tcp_is_fack(tp))
766 tp->lost_skb_hint = NULL;
ab56222a 767 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
768}
769
564262c1 770/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
771static void tcp_dsack_seen(struct tcp_sock *tp)
772{
ab56222a 773 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
774}
775
6687e988
ACM
776static void tcp_update_reordering(struct sock *sk, const int metric,
777 const int ts)
1da177e4 778{
6687e988 779 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 780 if (metric > tp->reordering) {
40b215e5
PE
781 int mib_idx;
782
1da177e4
LT
783 tp->reordering = min(TCP_MAX_REORDERING, metric);
784
785 /* This exciting event is worth to be remembered. 8) */
786 if (ts)
40b215e5 787 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 788 else if (tcp_is_reno(tp))
40b215e5 789 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 790 else if (tcp_is_fack(tp))
40b215e5 791 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 792 else
40b215e5
PE
793 mib_idx = LINUX_MIB_TCPSACKREORDER;
794
de0744af 795 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 796#if FASTRETRANS_DEBUG > 1
91df42be
JP
797 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
798 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
799 tp->reordering,
800 tp->fackets_out,
801 tp->sacked_out,
802 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 803#endif
e60402d0 804 tcp_disable_fack(tp);
1da177e4 805 }
eed530b6
YC
806
807 if (metric > 0)
808 tcp_disable_early_retrans(tp);
1da177e4
LT
809}
810
006f582c 811/* This must be called before lost_out is incremented */
c8c213f2
IJ
812static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
813{
006f582c 814 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
815 before(TCP_SKB_CB(skb)->seq,
816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
817 tp->retransmit_skb_hint = skb;
818
819 if (!tp->lost_out ||
820 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
821 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
822}
823
41ea36e3
IJ
824static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
825{
826 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
827 tcp_verify_retransmit_hint(tp, skb);
828
829 tp->lost_out += tcp_skb_pcount(skb);
830 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
831 }
832}
833
e1aa680f
IJ
834static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
835 struct sk_buff *skb)
006f582c
IJ
836{
837 tcp_verify_retransmit_hint(tp, skb);
838
839 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
840 tp->lost_out += tcp_skb_pcount(skb);
841 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
842 }
843}
844
1da177e4
LT
845/* This procedure tags the retransmission queue when SACKs arrive.
846 *
847 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
848 * Packets in queue with these bits set are counted in variables
849 * sacked_out, retrans_out and lost_out, correspondingly.
850 *
851 * Valid combinations are:
852 * Tag InFlight Description
853 * 0 1 - orig segment is in flight.
854 * S 0 - nothing flies, orig reached receiver.
855 * L 0 - nothing flies, orig lost by net.
856 * R 2 - both orig and retransmit are in flight.
857 * L|R 1 - orig is lost, retransmit is in flight.
858 * S|R 1 - orig reached receiver, retrans is still in flight.
859 * (L|S|R is logically valid, it could occur when L|R is sacked,
860 * but it is equivalent to plain S and code short-curcuits it to S.
861 * L|S is logically invalid, it would mean -1 packet in flight 8))
862 *
863 * These 6 states form finite state machine, controlled by the following events:
864 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
865 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 866 * 3. Loss detection event of two flavors:
1da177e4
LT
867 * A. Scoreboard estimator decided the packet is lost.
868 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
869 * A''. Its FACK modification, head until snd.fack is lost.
870 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
871 * segment was retransmitted.
872 * 4. D-SACK added new rule: D-SACK changes any tag to S.
873 *
874 * It is pleasant to note, that state diagram turns out to be commutative,
875 * so that we are allowed not to be bothered by order of our actions,
876 * when multiple events arrive simultaneously. (see the function below).
877 *
878 * Reordering detection.
879 * --------------------
880 * Reordering metric is maximal distance, which a packet can be displaced
881 * in packet stream. With SACKs we can estimate it:
882 *
883 * 1. SACK fills old hole and the corresponding segment was not
884 * ever retransmitted -> reordering. Alas, we cannot use it
885 * when segment was retransmitted.
886 * 2. The last flaw is solved with D-SACK. D-SACK arrives
887 * for retransmitted and already SACKed segment -> reordering..
888 * Both of these heuristics are not used in Loss state, when we cannot
889 * account for retransmits accurately.
5b3c9882
IJ
890 *
891 * SACK block validation.
892 * ----------------------
893 *
894 * SACK block range validation checks that the received SACK block fits to
895 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
896 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
897 * it means that the receiver is rather inconsistent with itself reporting
898 * SACK reneging when it should advance SND.UNA. Such SACK block this is
899 * perfectly valid, however, in light of RFC2018 which explicitly states
900 * that "SACK block MUST reflect the newest segment. Even if the newest
901 * segment is going to be discarded ...", not that it looks very clever
902 * in case of head skb. Due to potentional receiver driven attacks, we
903 * choose to avoid immediate execution of a walk in write queue due to
904 * reneging and defer head skb's loss recovery to standard loss recovery
905 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
906 *
907 * Implements also blockage to start_seq wrap-around. Problem lies in the
908 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
909 * there's no guarantee that it will be before snd_nxt (n). The problem
910 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
911 * wrap (s_w):
912 *
913 * <- outs wnd -> <- wrapzone ->
914 * u e n u_w e_w s n_w
915 * | | | | | | |
916 * |<------------+------+----- TCP seqno space --------------+---------->|
917 * ...-- <2^31 ->| |<--------...
918 * ...---- >2^31 ------>| |<--------...
919 *
920 * Current code wouldn't be vulnerable but it's better still to discard such
921 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
922 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
923 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
924 * equal to the ideal case (infinite seqno space without wrap caused issues).
925 *
926 * With D-SACK the lower bound is extended to cover sequence space below
927 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 928 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
929 * for the normal SACK blocks, explained above). But there all simplicity
930 * ends, TCP might receive valid D-SACKs below that. As long as they reside
931 * fully below undo_marker they do not affect behavior in anyway and can
932 * therefore be safely ignored. In rare cases (which are more or less
933 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
934 * fragmentation and packet reordering past skb's retransmission. To consider
935 * them correctly, the acceptable range must be extended even more though
936 * the exact amount is rather hard to quantify. However, tp->max_window can
937 * be used as an exaggerated estimate.
1da177e4 938 */
a2a385d6
ED
939static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
940 u32 start_seq, u32 end_seq)
5b3c9882
IJ
941{
942 /* Too far in future, or reversed (interpretation is ambiguous) */
943 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 944 return false;
5b3c9882
IJ
945
946 /* Nasty start_seq wrap-around check (see comments above) */
947 if (!before(start_seq, tp->snd_nxt))
a2a385d6 948 return false;
5b3c9882 949
564262c1 950 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
951 * start_seq == snd_una is non-sensical (see comments above)
952 */
953 if (after(start_seq, tp->snd_una))
a2a385d6 954 return true;
5b3c9882
IJ
955
956 if (!is_dsack || !tp->undo_marker)
a2a385d6 957 return false;
5b3c9882
IJ
958
959 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 960 if (after(end_seq, tp->snd_una))
a2a385d6 961 return false;
5b3c9882
IJ
962
963 if (!before(start_seq, tp->undo_marker))
a2a385d6 964 return true;
5b3c9882
IJ
965
966 /* Too old */
967 if (!after(end_seq, tp->undo_marker))
a2a385d6 968 return false;
5b3c9882
IJ
969
970 /* Undo_marker boundary crossing (overestimates a lot). Known already:
971 * start_seq < undo_marker and end_seq >= undo_marker.
972 */
973 return !before(start_seq, end_seq - tp->max_window);
974}
975
1c1e87ed 976/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 977 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 978 * for reordering! Ugly, but should help.
f785a8e2
IJ
979 *
980 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
981 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
982 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
983 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 984 */
407ef1de 985static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 986{
9f58f3b7 987 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct sk_buff *skb;
f785a8e2 990 int cnt = 0;
df2e014b 991 u32 new_low_seq = tp->snd_nxt;
6859d494 992 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
993
994 if (!tcp_is_fack(tp) || !tp->retrans_out ||
995 !after(received_upto, tp->lost_retrans_low) ||
996 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 997 return;
1c1e87ed
IJ
998
999 tcp_for_write_queue(skb, sk) {
1000 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1001
1002 if (skb == tcp_send_head(sk))
1003 break;
f785a8e2 1004 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1005 break;
1006 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1007 continue;
1008
f785a8e2
IJ
1009 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1010 continue;
1011
d0af4160
IJ
1012 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1013 * constraint here (see above) but figuring out that at
1014 * least tp->reordering SACK blocks reside between ack_seq
1015 * and received_upto is not easy task to do cheaply with
1016 * the available datastructures.
1017 *
1018 * Whether FACK should check here for tp->reordering segs
1019 * in-between one could argue for either way (it would be
1020 * rather simple to implement as we could count fack_count
1021 * during the walk and do tp->fackets_out - fack_count).
1022 */
1023 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1024 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1025 tp->retrans_out -= tcp_skb_pcount(skb);
1026
006f582c 1027 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1028 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1029 } else {
df2e014b 1030 if (before(ack_seq, new_low_seq))
b08d6cb2 1031 new_low_seq = ack_seq;
f785a8e2 1032 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1033 }
1034 }
b08d6cb2
IJ
1035
1036 if (tp->retrans_out)
1037 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1038}
5b3c9882 1039
a2a385d6
ED
1040static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1041 struct tcp_sack_block_wire *sp, int num_sacks,
1042 u32 prior_snd_una)
d06e021d 1043{
1ed83465 1044 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1045 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1046 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1047 bool dup_sack = false;
d06e021d
DM
1048
1049 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1050 dup_sack = true;
e60402d0 1051 tcp_dsack_seen(tp);
de0744af 1052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1053 } else if (num_sacks > 1) {
d3e2ce3b
HH
1054 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1055 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1056
1057 if (!after(end_seq_0, end_seq_1) &&
1058 !before(start_seq_0, start_seq_1)) {
a2a385d6 1059 dup_sack = true;
e60402d0 1060 tcp_dsack_seen(tp);
de0744af
PE
1061 NET_INC_STATS_BH(sock_net(sk),
1062 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1063 }
1064 }
1065
1066 /* D-SACK for already forgotten data... Do dumb counting. */
c24f691b 1067 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
d06e021d
DM
1068 !after(end_seq_0, prior_snd_una) &&
1069 after(end_seq_0, tp->undo_marker))
1070 tp->undo_retrans--;
1071
1072 return dup_sack;
1073}
1074
a1197f5a
IJ
1075struct tcp_sacktag_state {
1076 int reord;
1077 int fack_count;
1078 int flag;
59c9af42 1079 s32 rtt; /* RTT measured by SACKing never-retransmitted data */
a1197f5a
IJ
1080};
1081
d1935942
IJ
1082/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1083 * the incoming SACK may not exactly match but we can find smaller MSS
1084 * aligned portion of it that matches. Therefore we might need to fragment
1085 * which may fail and creates some hassle (caller must handle error case
1086 * returns).
832d11c5
IJ
1087 *
1088 * FIXME: this could be merged to shift decision code
d1935942 1089 */
0f79efdc 1090static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1091 u32 start_seq, u32 end_seq)
d1935942 1092{
a2a385d6
ED
1093 int err;
1094 bool in_sack;
d1935942 1095 unsigned int pkt_len;
adb92db8 1096 unsigned int mss;
d1935942
IJ
1097
1098 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1099 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1100
1101 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1102 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1103 mss = tcp_skb_mss(skb);
d1935942
IJ
1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1105
adb92db8 1106 if (!in_sack) {
d1935942 1107 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1108 if (pkt_len < mss)
1109 pkt_len = mss;
1110 } else {
d1935942 1111 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1112 if (pkt_len < mss)
1113 return -EINVAL;
1114 }
1115
1116 /* Round if necessary so that SACKs cover only full MSSes
1117 * and/or the remaining small portion (if present)
1118 */
1119 if (pkt_len > mss) {
1120 unsigned int new_len = (pkt_len / mss) * mss;
1121 if (!in_sack && new_len < pkt_len) {
1122 new_len += mss;
1123 if (new_len > skb->len)
1124 return 0;
1125 }
1126 pkt_len = new_len;
1127 }
1128 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1129 if (err < 0)
1130 return err;
1131 }
1132
1133 return in_sack;
1134}
1135
cc9a672e
NC
1136/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1137static u8 tcp_sacktag_one(struct sock *sk,
1138 struct tcp_sacktag_state *state, u8 sacked,
1139 u32 start_seq, u32 end_seq,
59c9af42 1140 int dup_sack, int pcount, u32 xmit_time)
9e10c47c 1141{
6859d494 1142 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1143 int fack_count = state->fack_count;
9e10c47c
IJ
1144
1145 /* Account D-SACK for retransmitted packet. */
1146 if (dup_sack && (sacked & TCPCB_RETRANS)) {
c24f691b 1147 if (tp->undo_marker && tp->undo_retrans &&
cc9a672e 1148 after(end_seq, tp->undo_marker))
9e10c47c 1149 tp->undo_retrans--;
ede9f3b1 1150 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1151 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1152 }
1153
1154 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1155 if (!after(end_seq, tp->snd_una))
a1197f5a 1156 return sacked;
9e10c47c
IJ
1157
1158 if (!(sacked & TCPCB_SACKED_ACKED)) {
1159 if (sacked & TCPCB_SACKED_RETRANS) {
1160 /* If the segment is not tagged as lost,
1161 * we do not clear RETRANS, believing
1162 * that retransmission is still in flight.
1163 */
1164 if (sacked & TCPCB_LOST) {
a1197f5a 1165 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1166 tp->lost_out -= pcount;
1167 tp->retrans_out -= pcount;
9e10c47c
IJ
1168 }
1169 } else {
1170 if (!(sacked & TCPCB_RETRANS)) {
1171 /* New sack for not retransmitted frame,
1172 * which was in hole. It is reordering.
1173 */
cc9a672e 1174 if (before(start_seq,
9e10c47c 1175 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1176 state->reord = min(fack_count,
1177 state->reord);
e33099f9
YC
1178 if (!after(end_seq, tp->high_seq))
1179 state->flag |= FLAG_ORIG_SACK_ACKED;
59c9af42
YC
1180 /* Pick the earliest sequence sacked for RTT */
1181 if (state->rtt < 0)
1182 state->rtt = tcp_time_stamp - xmit_time;
9e10c47c
IJ
1183 }
1184
1185 if (sacked & TCPCB_LOST) {
a1197f5a 1186 sacked &= ~TCPCB_LOST;
f58b22fd 1187 tp->lost_out -= pcount;
9e10c47c
IJ
1188 }
1189 }
1190
a1197f5a
IJ
1191 sacked |= TCPCB_SACKED_ACKED;
1192 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1193 tp->sacked_out += pcount;
9e10c47c 1194
f58b22fd 1195 fack_count += pcount;
9e10c47c
IJ
1196
1197 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1198 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1199 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1200 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1201
1202 if (fack_count > tp->fackets_out)
1203 tp->fackets_out = fack_count;
9e10c47c
IJ
1204 }
1205
1206 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1207 * frames and clear it. undo_retrans is decreased above, L|R frames
1208 * are accounted above as well.
1209 */
a1197f5a
IJ
1210 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1211 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1212 tp->retrans_out -= pcount;
9e10c47c
IJ
1213 }
1214
a1197f5a 1215 return sacked;
9e10c47c
IJ
1216}
1217
daef52ba
NC
1218/* Shift newly-SACKed bytes from this skb to the immediately previous
1219 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1220 */
a2a385d6
ED
1221static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1222 struct tcp_sacktag_state *state,
1223 unsigned int pcount, int shifted, int mss,
1224 bool dup_sack)
832d11c5
IJ
1225{
1226 struct tcp_sock *tp = tcp_sk(sk);
50133161 1227 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1228 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1229 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1230
1231 BUG_ON(!pcount);
1232
4c90d3b3
NC
1233 /* Adjust counters and hints for the newly sacked sequence
1234 * range but discard the return value since prev is already
1235 * marked. We must tag the range first because the seq
1236 * advancement below implicitly advances
1237 * tcp_highest_sack_seq() when skb is highest_sack.
1238 */
1239 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42
YC
1240 start_seq, end_seq, dup_sack, pcount,
1241 TCP_SKB_CB(skb)->when);
4c90d3b3
NC
1242
1243 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1244 tp->lost_cnt_hint += pcount;
1245
832d11c5
IJ
1246 TCP_SKB_CB(prev)->end_seq += shifted;
1247 TCP_SKB_CB(skb)->seq += shifted;
1248
1249 skb_shinfo(prev)->gso_segs += pcount;
1250 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1251 skb_shinfo(skb)->gso_segs -= pcount;
1252
1253 /* When we're adding to gso_segs == 1, gso_size will be zero,
1254 * in theory this shouldn't be necessary but as long as DSACK
1255 * code can come after this skb later on it's better to keep
1256 * setting gso_size to something.
1257 */
1258 if (!skb_shinfo(prev)->gso_size) {
1259 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1260 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1261 }
1262
1263 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1264 if (skb_shinfo(skb)->gso_segs <= 1) {
1265 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1266 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1267 }
1268
832d11c5
IJ
1269 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1270 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1271
832d11c5
IJ
1272 if (skb->len > 0) {
1273 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1275 return false;
832d11c5
IJ
1276 }
1277
1278 /* Whole SKB was eaten :-) */
1279
92ee76b6
IJ
1280 if (skb == tp->retransmit_skb_hint)
1281 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1282 if (skb == tp->lost_skb_hint) {
1283 tp->lost_skb_hint = prev;
1284 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1285 }
1286
4de075e0 1287 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
832d11c5
IJ
1288 if (skb == tcp_highest_sack(sk))
1289 tcp_advance_highest_sack(sk, skb);
1290
1291 tcp_unlink_write_queue(skb, sk);
1292 sk_wmem_free_skb(sk, skb);
1293
111cc8b9
IJ
1294 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1295
a2a385d6 1296 return true;
832d11c5
IJ
1297}
1298
1299/* I wish gso_size would have a bit more sane initialization than
1300 * something-or-zero which complicates things
1301 */
cf533ea5 1302static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1303{
775ffabf 1304 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1305}
1306
1307/* Shifting pages past head area doesn't work */
cf533ea5 1308static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1309{
1310 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1311}
1312
1313/* Try collapsing SACK blocks spanning across multiple skbs to a single
1314 * skb.
1315 */
1316static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1317 struct tcp_sacktag_state *state,
832d11c5 1318 u32 start_seq, u32 end_seq,
a2a385d6 1319 bool dup_sack)
832d11c5
IJ
1320{
1321 struct tcp_sock *tp = tcp_sk(sk);
1322 struct sk_buff *prev;
1323 int mss;
1324 int pcount = 0;
1325 int len;
1326 int in_sack;
1327
1328 if (!sk_can_gso(sk))
1329 goto fallback;
1330
1331 /* Normally R but no L won't result in plain S */
1332 if (!dup_sack &&
9969ca5f 1333 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1334 goto fallback;
1335 if (!skb_can_shift(skb))
1336 goto fallback;
1337 /* This frame is about to be dropped (was ACKed). */
1338 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1339 goto fallback;
1340
1341 /* Can only happen with delayed DSACK + discard craziness */
1342 if (unlikely(skb == tcp_write_queue_head(sk)))
1343 goto fallback;
1344 prev = tcp_write_queue_prev(sk, skb);
1345
1346 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1347 goto fallback;
1348
1349 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1350 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1351
1352 if (in_sack) {
1353 len = skb->len;
1354 pcount = tcp_skb_pcount(skb);
775ffabf 1355 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1356
1357 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1358 * drop this restriction as unnecessary
1359 */
775ffabf 1360 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1361 goto fallback;
1362 } else {
1363 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1364 goto noop;
1365 /* CHECKME: This is non-MSS split case only?, this will
1366 * cause skipped skbs due to advancing loop btw, original
1367 * has that feature too
1368 */
1369 if (tcp_skb_pcount(skb) <= 1)
1370 goto noop;
1371
1372 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1373 if (!in_sack) {
1374 /* TODO: head merge to next could be attempted here
1375 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1376 * though it might not be worth of the additional hassle
1377 *
1378 * ...we can probably just fallback to what was done
1379 * previously. We could try merging non-SACKed ones
1380 * as well but it probably isn't going to buy off
1381 * because later SACKs might again split them, and
1382 * it would make skb timestamp tracking considerably
1383 * harder problem.
1384 */
1385 goto fallback;
1386 }
1387
1388 len = end_seq - TCP_SKB_CB(skb)->seq;
1389 BUG_ON(len < 0);
1390 BUG_ON(len > skb->len);
1391
1392 /* MSS boundaries should be honoured or else pcount will
1393 * severely break even though it makes things bit trickier.
1394 * Optimize common case to avoid most of the divides
1395 */
1396 mss = tcp_skb_mss(skb);
1397
1398 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1399 * drop this restriction as unnecessary
1400 */
775ffabf 1401 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1402 goto fallback;
1403
1404 if (len == mss) {
1405 pcount = 1;
1406 } else if (len < mss) {
1407 goto noop;
1408 } else {
1409 pcount = len / mss;
1410 len = pcount * mss;
1411 }
1412 }
1413
4648dc97
NC
1414 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1415 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1416 goto fallback;
1417
832d11c5
IJ
1418 if (!skb_shift(prev, skb, len))
1419 goto fallback;
9ec06ff5 1420 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1421 goto out;
1422
1423 /* Hole filled allows collapsing with the next as well, this is very
1424 * useful when hole on every nth skb pattern happens
1425 */
1426 if (prev == tcp_write_queue_tail(sk))
1427 goto out;
1428 skb = tcp_write_queue_next(sk, prev);
1429
f0bc52f3
IJ
1430 if (!skb_can_shift(skb) ||
1431 (skb == tcp_send_head(sk)) ||
1432 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1433 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1434 goto out;
1435
1436 len = skb->len;
1437 if (skb_shift(prev, skb, len)) {
1438 pcount += tcp_skb_pcount(skb);
9ec06ff5 1439 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1440 }
1441
1442out:
a1197f5a 1443 state->fack_count += pcount;
832d11c5
IJ
1444 return prev;
1445
1446noop:
1447 return skb;
1448
1449fallback:
111cc8b9 1450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1451 return NULL;
1452}
1453
68f8353b
IJ
1454static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1455 struct tcp_sack_block *next_dup,
a1197f5a 1456 struct tcp_sacktag_state *state,
68f8353b 1457 u32 start_seq, u32 end_seq,
a2a385d6 1458 bool dup_sack_in)
68f8353b 1459{
832d11c5
IJ
1460 struct tcp_sock *tp = tcp_sk(sk);
1461 struct sk_buff *tmp;
1462
68f8353b
IJ
1463 tcp_for_write_queue_from(skb, sk) {
1464 int in_sack = 0;
a2a385d6 1465 bool dup_sack = dup_sack_in;
68f8353b
IJ
1466
1467 if (skb == tcp_send_head(sk))
1468 break;
1469
1470 /* queue is in-order => we can short-circuit the walk early */
1471 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1472 break;
1473
1474 if ((next_dup != NULL) &&
1475 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1476 in_sack = tcp_match_skb_to_sack(sk, skb,
1477 next_dup->start_seq,
1478 next_dup->end_seq);
1479 if (in_sack > 0)
a2a385d6 1480 dup_sack = true;
68f8353b
IJ
1481 }
1482
832d11c5
IJ
1483 /* skb reference here is a bit tricky to get right, since
1484 * shifting can eat and free both this skb and the next,
1485 * so not even _safe variant of the loop is enough.
1486 */
1487 if (in_sack <= 0) {
a1197f5a
IJ
1488 tmp = tcp_shift_skb_data(sk, skb, state,
1489 start_seq, end_seq, dup_sack);
832d11c5
IJ
1490 if (tmp != NULL) {
1491 if (tmp != skb) {
1492 skb = tmp;
1493 continue;
1494 }
1495
1496 in_sack = 0;
1497 } else {
1498 in_sack = tcp_match_skb_to_sack(sk, skb,
1499 start_seq,
1500 end_seq);
1501 }
1502 }
1503
68f8353b
IJ
1504 if (unlikely(in_sack < 0))
1505 break;
1506
832d11c5 1507 if (in_sack) {
cc9a672e
NC
1508 TCP_SKB_CB(skb)->sacked =
1509 tcp_sacktag_one(sk,
1510 state,
1511 TCP_SKB_CB(skb)->sacked,
1512 TCP_SKB_CB(skb)->seq,
1513 TCP_SKB_CB(skb)->end_seq,
1514 dup_sack,
59c9af42
YC
1515 tcp_skb_pcount(skb),
1516 TCP_SKB_CB(skb)->when);
68f8353b 1517
832d11c5
IJ
1518 if (!before(TCP_SKB_CB(skb)->seq,
1519 tcp_highest_sack_seq(tp)))
1520 tcp_advance_highest_sack(sk, skb);
1521 }
1522
a1197f5a 1523 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1524 }
1525 return skb;
1526}
1527
1528/* Avoid all extra work that is being done by sacktag while walking in
1529 * a normal way
1530 */
1531static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1532 struct tcp_sacktag_state *state,
1533 u32 skip_to_seq)
68f8353b
IJ
1534{
1535 tcp_for_write_queue_from(skb, sk) {
1536 if (skb == tcp_send_head(sk))
1537 break;
1538
e8bae275 1539 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1540 break;
d152a7d8 1541
a1197f5a 1542 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1543 }
1544 return skb;
1545}
1546
1547static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1548 struct sock *sk,
1549 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1550 struct tcp_sacktag_state *state,
1551 u32 skip_to_seq)
68f8353b
IJ
1552{
1553 if (next_dup == NULL)
1554 return skb;
1555
1556 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1557 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1558 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1559 next_dup->start_seq, next_dup->end_seq,
1560 1);
68f8353b
IJ
1561 }
1562
1563 return skb;
1564}
1565
cf533ea5 1566static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1567{
1568 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1569}
1570
1da177e4 1571static int
cf533ea5 1572tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
59c9af42 1573 u32 prior_snd_una, s32 *sack_rtt)
1da177e4
LT
1574{
1575 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1576 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1577 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1578 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1579 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1580 struct tcp_sack_block *cache;
a1197f5a 1581 struct tcp_sacktag_state state;
68f8353b 1582 struct sk_buff *skb;
4389dded 1583 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1584 int used_sacks;
a2a385d6 1585 bool found_dup_sack = false;
68f8353b 1586 int i, j;
fda03fbb 1587 int first_sack_index;
1da177e4 1588
a1197f5a
IJ
1589 state.flag = 0;
1590 state.reord = tp->packets_out;
59c9af42 1591 state.rtt = -1;
a1197f5a 1592
d738cd8f 1593 if (!tp->sacked_out) {
de83c058
IJ
1594 if (WARN_ON(tp->fackets_out))
1595 tp->fackets_out = 0;
6859d494 1596 tcp_highest_sack_reset(sk);
d738cd8f 1597 }
1da177e4 1598
1ed83465 1599 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1600 num_sacks, prior_snd_una);
1601 if (found_dup_sack)
a1197f5a 1602 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1603
1604 /* Eliminate too old ACKs, but take into
1605 * account more or less fresh ones, they can
1606 * contain valid SACK info.
1607 */
1608 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1609 return 0;
1610