]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/tcp_input.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
ad971f61 71#include <linux/prefetch.h>
5ffc02a1 72#include <net/dst.h>
1da177e4
LT
73#include <net/tcp.h>
74#include <net/inet_common.h>
75#include <linux/ipsec.h>
76#include <asm/unaligned.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
94bdc978 79int sysctl_tcp_fack __read_mostly;
dca145ff 80int sysctl_tcp_max_reordering __read_mostly = 300;
ab32ea5d
BH
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 83int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 84EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 85
282f23c6 86/* rfc5961 challenge ack rate limiting */
75ff39cc 87int sysctl_tcp_challenge_ack_limit = 1000;
282f23c6 88
ab32ea5d
BH
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 92int sysctl_tcp_frto __read_mostly = 2;
f6722583 93int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
ab32ea5d 94int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 95int sysctl_tcp_early_retrans __read_mostly = 3;
032ee423 96int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
1da177e4 97
1da177e4
LT
98#define FLAG_DATA 0x01 /* Incoming frame contained data. */
99#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
100#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
101#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
102#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
103#define FLAG_DATA_SACKED 0x20 /* New SACK. */
104#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 105#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
1da177e4 106#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 107#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 108#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 109#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 110#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 111#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 112#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 113#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
114
115#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119
1da177e4 120#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 121#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 122
e662ca40
YC
123#define REXMIT_NONE 0 /* no loss recovery to do */
124#define REXMIT_LOST 1 /* retransmit packets marked lost */
125#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
126
0b9aefea
MRL
127static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
128 unsigned int len)
dcb17d22
MRL
129{
130 static bool __once __read_mostly;
131
132 if (!__once) {
133 struct net_device *dev;
134
135 __once = true;
136
137 rcu_read_lock();
138 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
139 if (!dev || len >= dev->mtu)
140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
142 rcu_read_unlock();
143 }
144}
145
e905a9ed 146/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 147 * real world.
e905a9ed 148 */
056834d9 149static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 150{
463c84b9 151 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 152 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 153 unsigned int len;
1da177e4 154
e905a9ed 155 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
156
157 /* skb->len may jitter because of SACKs, even if peer
158 * sends good full-sized frames.
159 */
056834d9 160 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 161 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
163 tcp_sk(sk)->advmss);
0b9aefea
MRL
164 /* Account for possibly-removed options */
165 if (unlikely(len > icsk->icsk_ack.rcv_mss +
166 MAX_TCP_OPTION_SPACE))
167 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
168 } else {
169 /* Otherwise, we make more careful check taking into account,
170 * that SACKs block is variable.
171 *
172 * "len" is invariant segment length, including TCP header.
173 */
9c70220b 174 len += skb->data - skb_transport_header(skb);
bee7ca9e 175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
176 /* If PSH is not set, packet should be
177 * full sized, provided peer TCP is not badly broken.
178 * This observation (if it is correct 8)) allows
179 * to handle super-low mtu links fairly.
180 */
181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
183 /* Subtract also invariant (if peer is RFC compliant),
184 * tcp header plus fixed timestamp option length.
185 * Resulting "len" is MSS free of SACK jitter.
186 */
463c84b9
ACM
187 len -= tcp_sk(sk)->tcp_header_len;
188 icsk->icsk_ack.last_seg_size = len;
1da177e4 189 if (len == lss) {
463c84b9 190 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
191 return;
192 }
193 }
1ef9696c
AK
194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
197 }
198}
199
463c84b9 200static void tcp_incr_quickack(struct sock *sk)
1da177e4 201{
463c84b9 202 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 204
056834d9
IJ
205 if (quickacks == 0)
206 quickacks = 2;
463c84b9
ACM
207 if (quickacks > icsk->icsk_ack.quick)
208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
209}
210
1b9f4092 211static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 212{
463c84b9
ACM
213 struct inet_connection_sock *icsk = inet_csk(sk);
214 tcp_incr_quickack(sk);
215 icsk->icsk_ack.pingpong = 0;
216 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
217}
218
219/* Send ACKs quickly, if "quick" count is not exhausted
220 * and the session is not interactive.
221 */
222
2251ae46 223static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 224{
463c84b9 225 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 226 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 227
2251ae46
JM
228 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
230}
231
735d3831 232static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 233{
056834d9 234 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
236}
237
735d3831 238static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
239{
240 if (tcp_hdr(skb)->cwr)
241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
242}
243
735d3831 244static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
245{
246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
247}
248
735d3831 249static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 250{
b82d1bb4 251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 252 case INET_ECN_NOT_ECT:
bdf1ee5d 253 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
254 * and we already seen ECT on a previous segment,
255 * it is probably a retransmit.
256 */
257 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 258 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
259 break;
260 case INET_ECN_CE:
9890092e
FW
261 if (tcp_ca_needs_ecn((struct sock *)tp))
262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
263
aae06bf5
ED
264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
265 /* Better not delay acks, sender can have a very low cwnd */
266 tcp_enter_quickack_mode((struct sock *)tp);
267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
268 }
9890092e
FW
269 tp->ecn_flags |= TCP_ECN_SEEN;
270 break;
7a269ffa 271 default:
9890092e
FW
272 if (tcp_ca_needs_ecn((struct sock *)tp))
273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 274 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 275 break;
bdf1ee5d
IJ
276 }
277}
278
735d3831
FW
279static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
280{
281 if (tp->ecn_flags & TCP_ECN_OK)
282 __tcp_ecn_check_ce(tp, skb);
283}
284
285static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 286{
056834d9 287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
288 tp->ecn_flags &= ~TCP_ECN_OK;
289}
290
735d3831 291static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 292{
056834d9 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
294 tp->ecn_flags &= ~TCP_ECN_OK;
295}
296
735d3831 297static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 298{
056834d9 299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
300 return true;
301 return false;
bdf1ee5d
IJ
302}
303
1da177e4
LT
304/* Buffer size and advertised window tuning.
305 *
306 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
307 */
308
6ae70532 309static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 310{
6ae70532 311 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
313 int sndmem, per_mss;
314 u32 nr_segs;
315
316 /* Worst case is non GSO/TSO : each frame consumes one skb
317 * and skb->head is kmalloced using power of two area of memory
318 */
319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
320 MAX_TCP_HEADER +
321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
322
323 per_mss = roundup_pow_of_two(per_mss) +
324 SKB_DATA_ALIGN(sizeof(struct sk_buff));
325
326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
328
329 /* Fast Recovery (RFC 5681 3.2) :
330 * Cubic needs 1.7 factor, rounded to 2 to include
331 * extra cushion (application might react slowly to POLLOUT)
332 */
77bfc174
YC
333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
334 sndmem *= nr_segs * per_mss;
1da177e4 335
06a59ecb
ED
336 if (sk->sk_sndbuf < sndmem)
337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
338}
339
340/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
341 *
342 * All tcp_full_space() is split to two parts: "network" buffer, allocated
343 * forward and advertised in receiver window (tp->rcv_wnd) and
344 * "application buffer", required to isolate scheduling/application
345 * latencies from network.
346 * window_clamp is maximal advertised window. It can be less than
347 * tcp_full_space(), in this case tcp_full_space() - window_clamp
348 * is reserved for "application" buffer. The less window_clamp is
349 * the smoother our behaviour from viewpoint of network, but the lower
350 * throughput and the higher sensitivity of the connection to losses. 8)
351 *
352 * rcv_ssthresh is more strict window_clamp used at "slow start"
353 * phase to predict further behaviour of this connection.
354 * It is used for two goals:
355 * - to enforce header prediction at sender, even when application
356 * requires some significant "application buffer". It is check #1.
357 * - to prevent pruning of receive queue because of misprediction
358 * of receiver window. Check #2.
359 *
360 * The scheme does not work when sender sends good segments opening
caa20d9a 361 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
362 * in common situations. Otherwise, we have to rely on queue collapsing.
363 */
364
365/* Slow part of check#2. */
9e412ba7 366static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 367{
9e412ba7 368 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 369 /* Optimize this! */
dfd4f0ae
ED
370 int truesize = tcp_win_from_space(skb->truesize) >> 1;
371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
372
373 while (tp->rcv_ssthresh <= window) {
374 if (truesize <= skb->len)
463c84b9 375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
376
377 truesize >>= 1;
378 window >>= 1;
379 }
380 return 0;
381}
382
cf533ea5 383static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 384{
9e412ba7
IJ
385 struct tcp_sock *tp = tcp_sk(sk);
386
1da177e4
LT
387 /* Check #1 */
388 if (tp->rcv_ssthresh < tp->window_clamp &&
389 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 390 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
391 int incr;
392
393 /* Check #2. Increase window, if skb with such overhead
394 * will fit to rcvbuf in future.
395 */
396 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 397 incr = 2 * tp->advmss;
1da177e4 398 else
9e412ba7 399 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
400
401 if (incr) {
4d846f02 402 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
404 tp->window_clamp);
463c84b9 405 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
406 }
407 }
408}
409
410/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
411static void tcp_fixup_rcvbuf(struct sock *sk)
412{
e9266a02 413 u32 mss = tcp_sk(sk)->advmss;
e9266a02 414 int rcvmem;
1da177e4 415
85f16525
YC
416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
417 tcp_default_init_rwnd(mss);
e9266a02 418
b0983d3c
ED
419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
420 * Allow enough cushion so that sender is not limited by our window
421 */
422 if (sysctl_tcp_moderate_rcvbuf)
423 rcvmem <<= 2;
424
e9266a02
ED
425 if (sk->sk_rcvbuf < rcvmem)
426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
427}
428
caa20d9a 429/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
430 * established state.
431 */
10467163 432void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
433{
434 struct tcp_sock *tp = tcp_sk(sk);
435 int maxwin;
436
437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
438 tcp_fixup_rcvbuf(sk);
439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 440 tcp_sndbuf_expand(sk);
1da177e4
LT
441
442 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 443 tcp_mstamp_refresh(tp);
645f4c6f 444 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 445 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
446
447 maxwin = tcp_full_space(sk);
448
449 if (tp->window_clamp >= maxwin) {
450 tp->window_clamp = maxwin;
451
452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
453 tp->window_clamp = max(maxwin -
454 (maxwin >> sysctl_tcp_app_win),
455 4 * tp->advmss);
456 }
457
458 /* Force reservation of one segment. */
459 if (sysctl_tcp_app_win &&
460 tp->window_clamp > 2 * tp->advmss &&
461 tp->window_clamp + tp->advmss > maxwin)
462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463
464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 465 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
466}
467
1da177e4 468/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 469static void tcp_clamp_window(struct sock *sk)
1da177e4 470{
9e412ba7 471 struct tcp_sock *tp = tcp_sk(sk);
6687e988 472 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 473
6687e988 474 icsk->icsk_ack.quick = 0;
1da177e4 475
326f36e9
JH
476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 478 !tcp_under_memory_pressure(sk) &&
180d8cd9 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 sysctl_tcp_rmem[2]);
1da177e4 482 }
326f36e9 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
485}
486
40efc6fa
SH
487/* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 */
494void tcp_initialize_rcv_mss(struct sock *sk)
495{
cf533ea5 496 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498
056834d9 499 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 500 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
501 hint = max(hint, TCP_MIN_MSS);
502
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
504}
4bc2f18b 505EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 506
1da177e4
LT
507/* Receiver "autotuning" code.
508 *
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
512 *
513 * More detail on this code can be found at
631dd1a8 514 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
515 * though this reference is out of date. A new paper
516 * is pending.
517 */
518static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519{
645f4c6f 520 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
521 long m = sample;
522
523 if (m == 0)
524 m = 1;
525
526 if (new_sample != 0) {
527 /* If we sample in larger samples in the non-timestamp
528 * case, we could grossly overestimate the RTT especially
529 * with chatty applications or bulk transfer apps which
530 * are stalled on filesystem I/O.
531 *
532 * Also, since we are only going for a minimum in the
31f34269 533 * non-timestamp case, we do not smooth things out
caa20d9a 534 * else with timestamps disabled convergence takes too
1da177e4
LT
535 * long.
536 */
537 if (!win_dep) {
538 m -= (new_sample >> 3);
539 new_sample += m;
18a223e0
NC
540 } else {
541 m <<= 3;
542 if (m < new_sample)
543 new_sample = m;
544 }
1da177e4 545 } else {
caa20d9a 546 /* No previous measure. */
1da177e4
LT
547 new_sample = m << 3;
548 }
549
645f4c6f 550 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
551}
552
553static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
554{
645f4c6f
ED
555 u32 delta_us;
556
9a568de4 557 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
558 goto new_measure;
559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 return;
9a568de4 561 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
645f4c6f 562 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
563
564new_measure:
565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 566 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
567}
568
056834d9
IJ
569static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
570 const struct sk_buff *skb)
1da177e4 571{
463c84b9 572 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 573
1da177e4
LT
574 if (tp->rx_opt.rcv_tsecr &&
575 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
577 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
578 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
579
580 tcp_rcv_rtt_update(tp, delta_us, 0);
581 }
1da177e4
LT
582}
583
584/*
585 * This function should be called every time data is copied to user space.
586 * It calculates the appropriate TCP receive buffer space.
587 */
588void tcp_rcv_space_adjust(struct sock *sk)
589{
590 struct tcp_sock *tp = tcp_sk(sk);
591 int time;
b0983d3c 592 int copied;
e905a9ed 593
9a568de4 594 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 595 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 596 return;
e905a9ed 597
b0983d3c
ED
598 /* Number of bytes copied to user in last RTT */
599 copied = tp->copied_seq - tp->rcvq_space.seq;
600 if (copied <= tp->rcvq_space.space)
601 goto new_measure;
602
603 /* A bit of theory :
604 * copied = bytes received in previous RTT, our base window
605 * To cope with packet losses, we need a 2x factor
606 * To cope with slow start, and sender growing its cwin by 100 %
607 * every RTT, we need a 4x factor, because the ACK we are sending
608 * now is for the next RTT, not the current one :
609 * <prev RTT . ><current RTT .. ><next RTT .... >
610 */
611
612 if (sysctl_tcp_moderate_rcvbuf &&
613 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
614 int rcvwin, rcvmem, rcvbuf;
1da177e4 615
b0983d3c
ED
616 /* minimal window to cope with packet losses, assuming
617 * steady state. Add some cushion because of small variations.
618 */
619 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 620
b0983d3c
ED
621 /* If rate increased by 25%,
622 * assume slow start, rcvwin = 3 * copied
623 * If rate increased by 50%,
624 * assume sender can use 2x growth, rcvwin = 4 * copied
625 */
626 if (copied >=
627 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
628 if (copied >=
629 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
630 rcvwin <<= 1;
631 else
632 rcvwin += (rcvwin >> 1);
633 }
1da177e4 634
b0983d3c
ED
635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
636 while (tcp_win_from_space(rcvmem) < tp->advmss)
637 rcvmem += 128;
1da177e4 638
b0983d3c
ED
639 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
640 if (rcvbuf > sk->sk_rcvbuf) {
641 sk->sk_rcvbuf = rcvbuf;
1da177e4 642
b0983d3c
ED
643 /* Make the window clamp follow along. */
644 tp->window_clamp = rcvwin;
1da177e4
LT
645 }
646 }
b0983d3c 647 tp->rcvq_space.space = copied;
e905a9ed 648
1da177e4
LT
649new_measure:
650 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 651 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
652}
653
654/* There is something which you must keep in mind when you analyze the
655 * behavior of the tp->ato delayed ack timeout interval. When a
656 * connection starts up, we want to ack as quickly as possible. The
657 * problem is that "good" TCP's do slow start at the beginning of data
658 * transmission. The means that until we send the first few ACK's the
659 * sender will sit on his end and only queue most of his data, because
660 * he can only send snd_cwnd unacked packets at any given time. For
661 * each ACK we send, he increments snd_cwnd and transmits more of his
662 * queue. -DaveM
663 */
9e412ba7 664static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 665{
9e412ba7 666 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 667 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
668 u32 now;
669
463c84b9 670 inet_csk_schedule_ack(sk);
1da177e4 671
463c84b9 672 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
673
674 tcp_rcv_rtt_measure(tp);
e905a9ed 675
70eabf0e 676 now = tcp_jiffies32;
1da177e4 677
463c84b9 678 if (!icsk->icsk_ack.ato) {
1da177e4
LT
679 /* The _first_ data packet received, initialize
680 * delayed ACK engine.
681 */
463c84b9
ACM
682 tcp_incr_quickack(sk);
683 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 684 } else {
463c84b9 685 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 686
056834d9 687 if (m <= TCP_ATO_MIN / 2) {
1da177e4 688 /* The fastest case is the first. */
463c84b9
ACM
689 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
690 } else if (m < icsk->icsk_ack.ato) {
691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
692 if (icsk->icsk_ack.ato > icsk->icsk_rto)
693 icsk->icsk_ack.ato = icsk->icsk_rto;
694 } else if (m > icsk->icsk_rto) {
caa20d9a 695 /* Too long gap. Apparently sender failed to
1da177e4
LT
696 * restart window, so that we send ACKs quickly.
697 */
463c84b9 698 tcp_incr_quickack(sk);
3ab224be 699 sk_mem_reclaim(sk);
1da177e4
LT
700 }
701 }
463c84b9 702 icsk->icsk_ack.lrcvtime = now;
1da177e4 703
735d3831 704 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
705
706 if (skb->len >= 128)
9e412ba7 707 tcp_grow_window(sk, skb);
1da177e4
LT
708}
709
1da177e4
LT
710/* Called to compute a smoothed rtt estimate. The data fed to this
711 * routine either comes from timestamps, or from segments that were
712 * known _not_ to have been retransmitted [see Karn/Partridge
713 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
714 * piece by Van Jacobson.
715 * NOTE: the next three routines used to be one big routine.
716 * To save cycles in the RFC 1323 implementation it was better to break
717 * it up into three procedures. -- erics
718 */
740b0f18 719static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 720{
6687e988 721 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
722 long m = mrtt_us; /* RTT */
723 u32 srtt = tp->srtt_us;
1da177e4 724
1da177e4
LT
725 /* The following amusing code comes from Jacobson's
726 * article in SIGCOMM '88. Note that rtt and mdev
727 * are scaled versions of rtt and mean deviation.
e905a9ed 728 * This is designed to be as fast as possible
1da177e4
LT
729 * m stands for "measurement".
730 *
731 * On a 1990 paper the rto value is changed to:
732 * RTO = rtt + 4 * mdev
733 *
734 * Funny. This algorithm seems to be very broken.
735 * These formulae increase RTO, when it should be decreased, increase
31f34269 736 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
737 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
738 * does not matter how to _calculate_ it. Seems, it was trap
739 * that VJ failed to avoid. 8)
740 */
4a5ab4e2
ED
741 if (srtt != 0) {
742 m -= (srtt >> 3); /* m is now error in rtt est */
743 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
744 if (m < 0) {
745 m = -m; /* m is now abs(error) */
740b0f18 746 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
747 /* This is similar to one of Eifel findings.
748 * Eifel blocks mdev updates when rtt decreases.
749 * This solution is a bit different: we use finer gain
750 * for mdev in this case (alpha*beta).
751 * Like Eifel it also prevents growth of rto,
752 * but also it limits too fast rto decreases,
753 * happening in pure Eifel.
754 */
755 if (m > 0)
756 m >>= 3;
757 } else {
740b0f18 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 759 }
740b0f18
ED
760 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
761 if (tp->mdev_us > tp->mdev_max_us) {
762 tp->mdev_max_us = tp->mdev_us;
763 if (tp->mdev_max_us > tp->rttvar_us)
764 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
765 }
766 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
767 if (tp->mdev_max_us < tp->rttvar_us)
768 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 769 tp->rtt_seq = tp->snd_nxt;
740b0f18 770 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
771 }
772 } else {
773 /* no previous measure. */
4a5ab4e2 774 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
775 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
776 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
777 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
778 tp->rtt_seq = tp->snd_nxt;
779 }
740b0f18 780 tp->srtt_us = max(1U, srtt);
1da177e4
LT
781}
782
95bd09eb
ED
783/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
784 * Note: TCP stack does not yet implement pacing.
785 * FQ packet scheduler can be used to implement cheap but effective
786 * TCP pacing, to smooth the burst on large writes when packets
787 * in flight is significantly lower than cwnd (or rwin)
788 */
43e122b0
ED
789int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
790int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
791
95bd09eb
ED
792static void tcp_update_pacing_rate(struct sock *sk)
793{
794 const struct tcp_sock *tp = tcp_sk(sk);
795 u64 rate;
796
797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
799
800 /* current rate is (cwnd * mss) / srtt
801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
802 * In Congestion Avoidance phase, set it to 120 % the current rate.
803 *
804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
806 * end of slow start and should slow down.
807 */
808 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
809 rate *= sysctl_tcp_pacing_ss_ratio;
810 else
811 rate *= sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
812
813 rate *= max(tp->snd_cwnd, tp->packets_out);
814
740b0f18
ED
815 if (likely(tp->srtt_us))
816 do_div(rate, tp->srtt_us);
95bd09eb 817
ba537427
ED
818 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
819 * without any lock. We want to make sure compiler wont store
820 * intermediate values in this location.
821 */
822 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
823 sk->sk_max_pacing_rate);
95bd09eb
ED
824}
825
1da177e4
LT
826/* Calculate rto without backoff. This is the second half of Van Jacobson's
827 * routine referred to above.
828 */
f7e56a76 829static void tcp_set_rto(struct sock *sk)
1da177e4 830{
463c84b9 831 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
832 /* Old crap is replaced with new one. 8)
833 *
834 * More seriously:
835 * 1. If rtt variance happened to be less 50msec, it is hallucination.
836 * It cannot be less due to utterly erratic ACK generation made
837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
838 * to do with delayed acks, because at cwnd>2 true delack timeout
839 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 840 * ACKs in some circumstances.
1da177e4 841 */
f1ecd5d9 842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
843
844 /* 2. Fixups made earlier cannot be right.
845 * If we do not estimate RTO correctly without them,
846 * all the algo is pure shit and should be replaced
caa20d9a 847 * with correct one. It is exactly, which we pretend to do.
1da177e4 848 */
1da177e4 849
ee6aac59
IJ
850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
851 * guarantees that rto is higher.
852 */
f1ecd5d9 853 tcp_bound_rto(sk);
1da177e4
LT
854}
855
cf533ea5 856__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
857{
858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
859
22b71c8f 860 if (!cwnd)
442b9635 861 cwnd = TCP_INIT_CWND;
1da177e4
LT
862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
863}
864
e60402d0
IJ
865/*
866 * Packet counting of FACK is based on in-order assumptions, therefore TCP
867 * disables it when reordering is detected
868 */
4aabd8ef 869void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 870{
85cc391c
IJ
871 /* RFC3517 uses different metric in lost marker => reset on change */
872 if (tcp_is_fack(tp))
873 tp->lost_skb_hint = NULL;
ab56222a 874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
875}
876
564262c1 877/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
878static void tcp_dsack_seen(struct tcp_sock *tp)
879{
ab56222a 880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
881}
882
6687e988
ACM
883static void tcp_update_reordering(struct sock *sk, const int metric,
884 const int ts)
1da177e4 885{
6687e988 886 struct tcp_sock *tp = tcp_sk(sk);
2d2517ee 887 int mib_idx;
40b215e5 888
6f5b24ee
SHY
889 if (WARN_ON_ONCE(metric < 0))
890 return;
891
2d2517ee 892 if (metric > tp->reordering) {
dca145ff 893 tp->reordering = min(sysctl_tcp_max_reordering, metric);
1da177e4 894
1da177e4 895#if FASTRETRANS_DEBUG > 1
91df42be
JP
896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
898 tp->reordering,
899 tp->fackets_out,
900 tp->sacked_out,
901 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 902#endif
e60402d0 903 tcp_disable_fack(tp);
1da177e4 904 }
eed530b6 905
4f41b1c5 906 tp->rack.reord = 1;
2d2517ee
YC
907
908 /* This exciting event is worth to be remembered. 8) */
909 if (ts)
910 mib_idx = LINUX_MIB_TCPTSREORDER;
911 else if (tcp_is_reno(tp))
912 mib_idx = LINUX_MIB_TCPRENOREORDER;
913 else if (tcp_is_fack(tp))
914 mib_idx = LINUX_MIB_TCPFACKREORDER;
915 else
916 mib_idx = LINUX_MIB_TCPSACKREORDER;
917
918 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4
LT
919}
920
006f582c 921/* This must be called before lost_out is incremented */
c8c213f2
IJ
922static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
923{
51456b29 924 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
925 before(TCP_SKB_CB(skb)->seq,
926 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 927 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
928}
929
0682e690
NC
930/* Sum the number of packets on the wire we have marked as lost.
931 * There are two cases we care about here:
932 * a) Packet hasn't been marked lost (nor retransmitted),
933 * and this is the first loss.
934 * b) Packet has been marked both lost and retransmitted,
935 * and this means we think it was lost again.
936 */
937static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
938{
939 __u8 sacked = TCP_SKB_CB(skb)->sacked;
940
941 if (!(sacked & TCPCB_LOST) ||
942 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
943 tp->lost += tcp_skb_pcount(skb);
944}
945
41ea36e3
IJ
946static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
947{
948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 tcp_verify_retransmit_hint(tp, skb);
950
951 tp->lost_out += tcp_skb_pcount(skb);
0682e690 952 tcp_sum_lost(tp, skb);
41ea36e3
IJ
953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
954 }
955}
956
4f41b1c5 957void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
958{
959 tcp_verify_retransmit_hint(tp, skb);
960
0682e690 961 tcp_sum_lost(tp, skb);
006f582c
IJ
962 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
963 tp->lost_out += tcp_skb_pcount(skb);
964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
965 }
966}
967
1da177e4
LT
968/* This procedure tags the retransmission queue when SACKs arrive.
969 *
970 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
971 * Packets in queue with these bits set are counted in variables
972 * sacked_out, retrans_out and lost_out, correspondingly.
973 *
974 * Valid combinations are:
975 * Tag InFlight Description
976 * 0 1 - orig segment is in flight.
977 * S 0 - nothing flies, orig reached receiver.
978 * L 0 - nothing flies, orig lost by net.
979 * R 2 - both orig and retransmit are in flight.
980 * L|R 1 - orig is lost, retransmit is in flight.
981 * S|R 1 - orig reached receiver, retrans is still in flight.
982 * (L|S|R is logically valid, it could occur when L|R is sacked,
983 * but it is equivalent to plain S and code short-curcuits it to S.
984 * L|S is logically invalid, it would mean -1 packet in flight 8))
985 *
986 * These 6 states form finite state machine, controlled by the following events:
987 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
988 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 989 * 3. Loss detection event of two flavors:
1da177e4
LT
990 * A. Scoreboard estimator decided the packet is lost.
991 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
992 * A''. Its FACK modification, head until snd.fack is lost.
993 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
994 * segment was retransmitted.
995 * 4. D-SACK added new rule: D-SACK changes any tag to S.
996 *
997 * It is pleasant to note, that state diagram turns out to be commutative,
998 * so that we are allowed not to be bothered by order of our actions,
999 * when multiple events arrive simultaneously. (see the function below).
1000 *
1001 * Reordering detection.
1002 * --------------------
1003 * Reordering metric is maximal distance, which a packet can be displaced
1004 * in packet stream. With SACKs we can estimate it:
1005 *
1006 * 1. SACK fills old hole and the corresponding segment was not
1007 * ever retransmitted -> reordering. Alas, we cannot use it
1008 * when segment was retransmitted.
1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1010 * for retransmitted and already SACKed segment -> reordering..
1011 * Both of these heuristics are not used in Loss state, when we cannot
1012 * account for retransmits accurately.
5b3c9882
IJ
1013 *
1014 * SACK block validation.
1015 * ----------------------
1016 *
1017 * SACK block range validation checks that the received SACK block fits to
1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1019 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1020 * it means that the receiver is rather inconsistent with itself reporting
1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1022 * perfectly valid, however, in light of RFC2018 which explicitly states
1023 * that "SACK block MUST reflect the newest segment. Even if the newest
1024 * segment is going to be discarded ...", not that it looks very clever
1025 * in case of head skb. Due to potentional receiver driven attacks, we
1026 * choose to avoid immediate execution of a walk in write queue due to
1027 * reneging and defer head skb's loss recovery to standard loss recovery
1028 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1029 *
1030 * Implements also blockage to start_seq wrap-around. Problem lies in the
1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1032 * there's no guarantee that it will be before snd_nxt (n). The problem
1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1034 * wrap (s_w):
1035 *
1036 * <- outs wnd -> <- wrapzone ->
1037 * u e n u_w e_w s n_w
1038 * | | | | | | |
1039 * |<------------+------+----- TCP seqno space --------------+---------->|
1040 * ...-- <2^31 ->| |<--------...
1041 * ...---- >2^31 ------>| |<--------...
1042 *
1043 * Current code wouldn't be vulnerable but it's better still to discard such
1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1047 * equal to the ideal case (infinite seqno space without wrap caused issues).
1048 *
1049 * With D-SACK the lower bound is extended to cover sequence space below
1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1051 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1052 * for the normal SACK blocks, explained above). But there all simplicity
1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1054 * fully below undo_marker they do not affect behavior in anyway and can
1055 * therefore be safely ignored. In rare cases (which are more or less
1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1057 * fragmentation and packet reordering past skb's retransmission. To consider
1058 * them correctly, the acceptable range must be extended even more though
1059 * the exact amount is rather hard to quantify. However, tp->max_window can
1060 * be used as an exaggerated estimate.
1da177e4 1061 */
a2a385d6
ED
1062static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1063 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1064{
1065 /* Too far in future, or reversed (interpretation is ambiguous) */
1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1067 return false;
5b3c9882
IJ
1068
1069 /* Nasty start_seq wrap-around check (see comments above) */
1070 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1071 return false;
5b3c9882 1072
564262c1 1073 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1074 * start_seq == snd_una is non-sensical (see comments above)
1075 */
1076 if (after(start_seq, tp->snd_una))
a2a385d6 1077 return true;
5b3c9882
IJ
1078
1079 if (!is_dsack || !tp->undo_marker)
a2a385d6 1080 return false;
5b3c9882
IJ
1081
1082 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1083 if (after(end_seq, tp->snd_una))
a2a385d6 1084 return false;
5b3c9882
IJ
1085
1086 if (!before(start_seq, tp->undo_marker))
a2a385d6 1087 return true;
5b3c9882
IJ
1088
1089 /* Too old */
1090 if (!after(end_seq, tp->undo_marker))
a2a385d6 1091 return false;
5b3c9882
IJ
1092
1093 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1094 * start_seq < undo_marker and end_seq >= undo_marker.
1095 */
1096 return !before(start_seq, end_seq - tp->max_window);
1097}
1098
a2a385d6
ED
1099static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1100 struct tcp_sack_block_wire *sp, int num_sacks,
1101 u32 prior_snd_una)
d06e021d 1102{
1ed83465 1103 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1106 bool dup_sack = false;
d06e021d
DM
1107
1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1109 dup_sack = true;
e60402d0 1110 tcp_dsack_seen(tp);
c10d9310 1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1112 } else if (num_sacks > 1) {
d3e2ce3b
HH
1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1115
1116 if (!after(end_seq_0, end_seq_1) &&
1117 !before(start_seq_0, start_seq_1)) {
a2a385d6 1118 dup_sack = true;
e60402d0 1119 tcp_dsack_seen(tp);
c10d9310 1120 NET_INC_STATS(sock_net(sk),
de0744af 1121 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1122 }
1123 }
1124
1125 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1127 !after(end_seq_0, prior_snd_una) &&
1128 after(end_seq_0, tp->undo_marker))
1129 tp->undo_retrans--;
1130
1131 return dup_sack;
1132}
1133
a1197f5a 1134struct tcp_sacktag_state {
740b0f18
ED
1135 int reord;
1136 int fack_count;
31231a8a
KKJ
1137 /* Timestamps for earliest and latest never-retransmitted segment
1138 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1139 * but congestion control should still get an accurate delay signal.
1140 */
9a568de4
ED
1141 u64 first_sackt;
1142 u64 last_sackt;
b9f64820 1143 struct rate_sample *rate;
740b0f18 1144 int flag;
a1197f5a
IJ
1145};
1146
d1935942
IJ
1147/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1148 * the incoming SACK may not exactly match but we can find smaller MSS
1149 * aligned portion of it that matches. Therefore we might need to fragment
1150 * which may fail and creates some hassle (caller must handle error case
1151 * returns).
832d11c5
IJ
1152 *
1153 * FIXME: this could be merged to shift decision code
d1935942 1154 */
0f79efdc 1155static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1156 u32 start_seq, u32 end_seq)
d1935942 1157{
a2a385d6
ED
1158 int err;
1159 bool in_sack;
d1935942 1160 unsigned int pkt_len;
adb92db8 1161 unsigned int mss;
d1935942
IJ
1162
1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1164 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1165
1166 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1167 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1168 mss = tcp_skb_mss(skb);
d1935942
IJ
1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1170
adb92db8 1171 if (!in_sack) {
d1935942 1172 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1173 if (pkt_len < mss)
1174 pkt_len = mss;
1175 } else {
d1935942 1176 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1177 if (pkt_len < mss)
1178 return -EINVAL;
1179 }
1180
1181 /* Round if necessary so that SACKs cover only full MSSes
1182 * and/or the remaining small portion (if present)
1183 */
1184 if (pkt_len > mss) {
1185 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1186 if (!in_sack && new_len < pkt_len)
adb92db8 1187 new_len += mss;
adb92db8
IJ
1188 pkt_len = new_len;
1189 }
b451e5d2
YC
1190
1191 if (pkt_len >= skb->len && !in_sack)
1192 return 0;
1193
6cc55e09 1194 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1195 if (err < 0)
1196 return err;
1197 }
1198
1199 return in_sack;
1200}
1201
cc9a672e
NC
1202/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1203static u8 tcp_sacktag_one(struct sock *sk,
1204 struct tcp_sacktag_state *state, u8 sacked,
1205 u32 start_seq, u32 end_seq,
740b0f18 1206 int dup_sack, int pcount,
9a568de4 1207 u64 xmit_time)
9e10c47c 1208{
6859d494 1209 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1210 int fack_count = state->fack_count;
9e10c47c
IJ
1211
1212 /* Account D-SACK for retransmitted packet. */
1213 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1214 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1215 after(end_seq, tp->undo_marker))
9e10c47c 1216 tp->undo_retrans--;
ede9f3b1 1217 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1218 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1219 }
1220
1221 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1222 if (!after(end_seq, tp->snd_una))
a1197f5a 1223 return sacked;
9e10c47c
IJ
1224
1225 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1226 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1227
9e10c47c
IJ
1228 if (sacked & TCPCB_SACKED_RETRANS) {
1229 /* If the segment is not tagged as lost,
1230 * we do not clear RETRANS, believing
1231 * that retransmission is still in flight.
1232 */
1233 if (sacked & TCPCB_LOST) {
a1197f5a 1234 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1235 tp->lost_out -= pcount;
1236 tp->retrans_out -= pcount;
9e10c47c
IJ
1237 }
1238 } else {
1239 if (!(sacked & TCPCB_RETRANS)) {
1240 /* New sack for not retransmitted frame,
1241 * which was in hole. It is reordering.
1242 */
cc9a672e 1243 if (before(start_seq,
9e10c47c 1244 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1245 state->reord = min(fack_count,
1246 state->reord);
e33099f9
YC
1247 if (!after(end_seq, tp->high_seq))
1248 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1249 if (state->first_sackt == 0)
1250 state->first_sackt = xmit_time;
1251 state->last_sackt = xmit_time;
9e10c47c
IJ
1252 }
1253
1254 if (sacked & TCPCB_LOST) {
a1197f5a 1255 sacked &= ~TCPCB_LOST;
f58b22fd 1256 tp->lost_out -= pcount;
9e10c47c
IJ
1257 }
1258 }
1259
a1197f5a
IJ
1260 sacked |= TCPCB_SACKED_ACKED;
1261 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1262 tp->sacked_out += pcount;
ddf1af6f 1263 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1264
f58b22fd 1265 fack_count += pcount;
9e10c47c
IJ
1266
1267 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1268 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1269 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1270 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1271
1272 if (fack_count > tp->fackets_out)
1273 tp->fackets_out = fack_count;
9e10c47c
IJ
1274 }
1275
1276 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1277 * frames and clear it. undo_retrans is decreased above, L|R frames
1278 * are accounted above as well.
1279 */
a1197f5a
IJ
1280 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1281 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1282 tp->retrans_out -= pcount;
9e10c47c
IJ
1283 }
1284
a1197f5a 1285 return sacked;
9e10c47c
IJ
1286}
1287
daef52ba
NC
1288/* Shift newly-SACKed bytes from this skb to the immediately previous
1289 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1290 */
a2a385d6
ED
1291static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1292 struct tcp_sacktag_state *state,
1293 unsigned int pcount, int shifted, int mss,
1294 bool dup_sack)
832d11c5
IJ
1295{
1296 struct tcp_sock *tp = tcp_sk(sk);
50133161 1297 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1298 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1299 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1300
1301 BUG_ON(!pcount);
1302
4c90d3b3
NC
1303 /* Adjust counters and hints for the newly sacked sequence
1304 * range but discard the return value since prev is already
1305 * marked. We must tag the range first because the seq
1306 * advancement below implicitly advances
1307 * tcp_highest_sack_seq() when skb is highest_sack.
1308 */
1309 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1310 start_seq, end_seq, dup_sack, pcount,
9a568de4 1311 skb->skb_mstamp);
b9f64820 1312 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1313
1314 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1315 tp->lost_cnt_hint += pcount;
1316
832d11c5
IJ
1317 TCP_SKB_CB(prev)->end_seq += shifted;
1318 TCP_SKB_CB(skb)->seq += shifted;
1319
cd7d8498
ED
1320 tcp_skb_pcount_add(prev, pcount);
1321 BUG_ON(tcp_skb_pcount(skb) < pcount);
1322 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1323
1324 /* When we're adding to gso_segs == 1, gso_size will be zero,
1325 * in theory this shouldn't be necessary but as long as DSACK
1326 * code can come after this skb later on it's better to keep
1327 * setting gso_size to something.
1328 */
f69ad292
ED
1329 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1330 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1331
1332 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1333 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1334 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1335
832d11c5
IJ
1336 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1337 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1338
832d11c5
IJ
1339 if (skb->len > 0) {
1340 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1341 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1342 return false;
832d11c5
IJ
1343 }
1344
1345 /* Whole SKB was eaten :-) */
1346
92ee76b6
IJ
1347 if (skb == tp->retransmit_skb_hint)
1348 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1349 if (skb == tp->lost_skb_hint) {
1350 tp->lost_skb_hint = prev;
1351 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1352 }
1353
5e8a402f 1354 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1355 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1356 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1357 TCP_SKB_CB(prev)->end_seq++;
1358
832d11c5
IJ
1359 if (skb == tcp_highest_sack(sk))
1360 tcp_advance_highest_sack(sk, skb);
1361
cfea5a68 1362 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1363 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1364 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1365
832d11c5
IJ
1366 tcp_unlink_write_queue(skb, sk);
1367 sk_wmem_free_skb(sk, skb);
1368
c10d9310 1369 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1370
a2a385d6 1371 return true;
832d11c5
IJ
1372}
1373
1374/* I wish gso_size would have a bit more sane initialization than
1375 * something-or-zero which complicates things
1376 */
cf533ea5 1377static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1378{
775ffabf 1379 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1380}
1381
1382/* Shifting pages past head area doesn't work */
cf533ea5 1383static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1384{
1385 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1386}
1387
1388/* Try collapsing SACK blocks spanning across multiple skbs to a single
1389 * skb.
1390 */
1391static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1392 struct tcp_sacktag_state *state,
832d11c5 1393 u32 start_seq, u32 end_seq,
a2a385d6 1394 bool dup_sack)
832d11c5
IJ
1395{
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 struct sk_buff *prev;
1398 int mss;
1399 int pcount = 0;
1400 int len;
1401 int in_sack;
1402
1403 if (!sk_can_gso(sk))
1404 goto fallback;
1405
1406 /* Normally R but no L won't result in plain S */
1407 if (!dup_sack &&
9969ca5f 1408 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1409 goto fallback;
1410 if (!skb_can_shift(skb))
1411 goto fallback;
1412 /* This frame is about to be dropped (was ACKed). */
1413 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1414 goto fallback;
1415
1416 /* Can only happen with delayed DSACK + discard craziness */
1417 if (unlikely(skb == tcp_write_queue_head(sk)))
1418 goto fallback;
1419 prev = tcp_write_queue_prev(sk, skb);
1420
1421 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1422 goto fallback;
1423
a643b5d4
MKL
1424 if (!tcp_skb_can_collapse_to(prev))
1425 goto fallback;
1426
832d11c5
IJ
1427 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1428 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1429
1430 if (in_sack) {
1431 len = skb->len;
1432 pcount = tcp_skb_pcount(skb);
775ffabf 1433 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1434
1435 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1436 * drop this restriction as unnecessary
1437 */
775ffabf 1438 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1439 goto fallback;
1440 } else {
1441 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1442 goto noop;
1443 /* CHECKME: This is non-MSS split case only?, this will
1444 * cause skipped skbs due to advancing loop btw, original
1445 * has that feature too
1446 */
1447 if (tcp_skb_pcount(skb) <= 1)
1448 goto noop;
1449
1450 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1451 if (!in_sack) {
1452 /* TODO: head merge to next could be attempted here
1453 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1454 * though it might not be worth of the additional hassle
1455 *
1456 * ...we can probably just fallback to what was done
1457 * previously. We could try merging non-SACKed ones
1458 * as well but it probably isn't going to buy off
1459 * because later SACKs might again split them, and
1460 * it would make skb timestamp tracking considerably
1461 * harder problem.
1462 */
1463 goto fallback;
1464 }
1465
1466 len = end_seq - TCP_SKB_CB(skb)->seq;
1467 BUG_ON(len < 0);
1468 BUG_ON(len > skb->len);
1469
1470 /* MSS boundaries should be honoured or else pcount will
1471 * severely break even though it makes things bit trickier.
1472 * Optimize common case to avoid most of the divides
1473 */
1474 mss = tcp_skb_mss(skb);
1475
1476 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1477 * drop this restriction as unnecessary
1478 */
775ffabf 1479 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1480 goto fallback;
1481
1482 if (len == mss) {
1483 pcount = 1;
1484 } else if (len < mss) {
1485 goto noop;
1486 } else {
1487 pcount = len / mss;
1488 len = pcount * mss;
1489 }
1490 }
1491
4648dc97
NC
1492 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1493 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1494 goto fallback;
1495
832d11c5
IJ
1496 if (!skb_shift(prev, skb, len))
1497 goto fallback;
9ec06ff5 1498 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1499 goto out;
1500
1501 /* Hole filled allows collapsing with the next as well, this is very
1502 * useful when hole on every nth skb pattern happens
1503 */
1504 if (prev == tcp_write_queue_tail(sk))
1505 goto out;
1506 skb = tcp_write_queue_next(sk, prev);
1507
f0bc52f3
IJ
1508 if (!skb_can_shift(skb) ||
1509 (skb == tcp_send_head(sk)) ||
1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1511 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1512 goto out;
1513
1514 len = skb->len;
1515 if (skb_shift(prev, skb, len)) {
1516 pcount += tcp_skb_pcount(skb);
9ec06ff5 1517 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1518 }
1519
1520out:
a1197f5a 1521 state->fack_count += pcount;
832d11c5
IJ
1522 return prev;
1523
1524noop:
1525 return skb;
1526
1527fallback:
c10d9310 1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1529 return NULL;
1530}
1531
68f8353b
IJ
1532static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1533 struct tcp_sack_block *next_dup,
a1197f5a 1534 struct tcp_sacktag_state *state,
68f8353b 1535 u32 start_seq, u32 end_seq,
a2a385d6 1536 bool dup_sack_in)
68f8353b 1537{
832d11c5
IJ
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 struct sk_buff *tmp;
1540
68f8353b
IJ
1541 tcp_for_write_queue_from(skb, sk) {
1542 int in_sack = 0;
a2a385d6 1543 bool dup_sack = dup_sack_in;
68f8353b
IJ
1544
1545 if (skb == tcp_send_head(sk))
1546 break;
1547
1548 /* queue is in-order => we can short-circuit the walk early */
1549 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1550 break;
1551
00db4124 1552 if (next_dup &&
68f8353b
IJ
1553 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1554 in_sack = tcp_match_skb_to_sack(sk, skb,
1555 next_dup->start_seq,
1556 next_dup->end_seq);
1557 if (in_sack > 0)
a2a385d6 1558 dup_sack = true;
68f8353b
IJ
1559 }
1560
832d11c5
IJ
1561 /* skb reference here is a bit tricky to get right, since
1562 * shifting can eat and free both this skb and the next,
1563 * so not even _safe variant of the loop is enough.
1564 */
1565 if (in_sack <= 0) {
a1197f5a
IJ
1566 tmp = tcp_shift_skb_data(sk, skb, state,
1567 start_seq, end_seq, dup_sack);
00db4124 1568 if (tmp) {
832d11c5
IJ
1569 if (tmp != skb) {
1570 skb = tmp;
1571 continue;
1572 }
1573
1574 in_sack = 0;
1575 } else {
1576 in_sack = tcp_match_skb_to_sack(sk, skb,
1577 start_seq,
1578 end_seq);
1579 }
1580 }
1581
68f8353b
IJ
1582 if (unlikely(in_sack < 0))
1583 break;
1584
832d11c5 1585 if (in_sack) {
cc9a672e
NC
1586 TCP_SKB_CB(skb)->sacked =
1587 tcp_sacktag_one(sk,
1588 state,
1589 TCP_SKB_CB(skb)->sacked,
1590 TCP_SKB_CB(skb)->seq,
1591 TCP_SKB_CB(skb)->end_seq,
1592 dup_sack,
59c9af42 1593 tcp_skb_pcount(skb),
9a568de4 1594 skb->skb_mstamp);
b9f64820 1595 tcp_rate_skb_delivered(sk, skb, state->rate);
68f8353b 1596
832d11c5
IJ
1597 if (!before(TCP_SKB_CB(skb)->seq,
1598 tcp_highest_sack_seq(tp)))
1599 tcp_advance_highest_sack(sk, skb);
1600 }
1601
a1197f5a 1602 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1603 }
1604 return skb;
1605}
1606
1607/* Avoid all extra work that is being done by sacktag while walking in
1608 * a normal way
1609 */
1610static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1611 struct tcp_sacktag_state *state,
1612 u32 skip_to_seq)
68f8353b
IJ
1613{
1614 tcp_for_write_queue_from(skb, sk) {
1615 if (skb == tcp_send_head(sk))
1616 break;
1617
e8bae275 1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1619 break;
d152a7d8 1620
a1197f5a 1621 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1622 }
1623 return skb;
1624}
1625
1626static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1627 struct sock *sk,
1628 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1629 struct tcp_sacktag_state *state,
1630 u32 skip_to_seq)
68f8353b 1631{
51456b29 1632 if (!next_dup)
68f8353b
IJ
1633 return skb;
1634
1635 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1637 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1638 next_dup->start_seq, next_dup->end_seq,
1639 1);
68f8353b
IJ
1640 }
1641
1642 return skb;
1643}
1644
cf533ea5 1645static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1646{
1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1648}
1649
1da177e4 1650static int
cf533ea5 1651tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1652 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1653{
1654 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1655 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1656 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1658 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1659 struct tcp_sack_block *cache;
1660 struct sk_buff *skb;
4389dded 1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1662 int used_sacks;
a2a385d6 1663 bool found_dup_sack = false;
68f8353b 1664 int i, j;
fda03fbb 1665 int first_sack_index;
1da177e4 1666
196da974
KKJ
1667 state->flag = 0;
1668 state->reord = tp->packets_out;
a1197f5a 1669
d738cd8f 1670 if (!tp->sacked_out) {
de83c058
IJ
1671 if (WARN_ON(tp->fackets_out))
1672 tp->fackets_out = 0;
6859d494 1673 tcp_highest_sack_reset(sk);
d738cd8f 1674 }
1da177e4 1675
1ed83465 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1677 num_sacks, prior_snd_una);
b9f64820 1678 if (found_dup_sack) {
196da974 1679 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1680 tp->delivered++; /* A spurious retransmission is delivered */
1681 }
6f74651a
BE
1682
1683 /* Eliminate too old ACKs, but take into
1684 * account more or less fresh ones, they can
1685 * contain valid SACK info.
1686 */
1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1688 return 0;
1689