]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/ipv4/tcp_input.c
tcp: move TCP_ECN_create_request out of header
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
afd46503
JP
64#define pr_fmt(fmt) "TCP: " fmt
65
1da177e4 66#include <linux/mm.h>
5a0e3ad6 67#include <linux/slab.h>
1da177e4
LT
68#include <linux/module.h>
69#include <linux/sysctl.h>
a0bffffc 70#include <linux/kernel.h>
5ffc02a1 71#include <net/dst.h>
1da177e4
LT
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
1a2449a8 76#include <net/netdma.h>
e1c8a607 77#include <linux/errqueue.h>
1da177e4 78
ab32ea5d
BH
79int sysctl_tcp_timestamps __read_mostly = 1;
80int sysctl_tcp_window_scaling __read_mostly = 1;
81int sysctl_tcp_sack __read_mostly = 1;
82int sysctl_tcp_fack __read_mostly = 1;
83int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 84EXPORT_SYMBOL(sysctl_tcp_reordering);
ab32ea5d
BH
85int sysctl_tcp_dsack __read_mostly = 1;
86int sysctl_tcp_app_win __read_mostly = 31;
b49960a0 87int sysctl_tcp_adv_win_scale __read_mostly = 1;
4bc2f18b 88EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 89
282f23c6
ED
90/* rfc5961 challenge ack rate limiting */
91int sysctl_tcp_challenge_ack_limit = 100;
92
ab32ea5d
BH
93int sysctl_tcp_stdurg __read_mostly;
94int sysctl_tcp_rfc1337 __read_mostly;
95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 96int sysctl_tcp_frto __read_mostly = 2;
1da177e4 97
7e380175
AP
98int sysctl_tcp_thin_dupack __read_mostly;
99
ab32ea5d 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
6ba8a3b1 101int sysctl_tcp_early_retrans __read_mostly = 3;
1da177e4 102
1da177e4
LT
103#define FLAG_DATA 0x01 /* Incoming frame contained data. */
104#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108#define FLAG_DATA_SACKED 0x20 /* New SACK. */
109#define FLAG_ECE 0x40 /* ECE in this ACK */
1da177e4 110#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 111#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 112#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 113#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 115#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
1da177e4
LT
116
117#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e905a9ed 125/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 126 * real world.
e905a9ed 127 */
056834d9 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 129{
463c84b9 130 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 132 unsigned int len;
1da177e4 133
e905a9ed 134 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
056834d9 139 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
9c70220b 148 len += skb->data - skb_transport_header(skb);
bee7ca9e 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
463c84b9
ACM
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
1da177e4 163 if (len == lss) {
463c84b9 164 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
165 return;
166 }
167 }
1ef9696c
AK
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
171 }
172}
173
463c84b9 174static void tcp_incr_quickack(struct sock *sk)
1da177e4 175{
463c84b9 176 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 178
056834d9
IJ
179 if (quickacks == 0)
180 quickacks = 2;
463c84b9
ACM
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
183}
184
1b9f4092 185static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
a2a385d6 197static inline bool tcp_in_quickack_mode(const struct sock *sk)
1da177e4 198{
463c84b9 199 const struct inet_connection_sock *icsk = inet_csk(sk);
a2a385d6 200
463c84b9 201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
202}
203
bdf1ee5d
IJ
204static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205{
056834d9 206 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208}
209
cf533ea5 210static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
211{
212 if (tcp_hdr(skb)->cwr)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217{
218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219}
220
7a269ffa 221static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 222{
7a269ffa
ED
223 if (!(tp->ecn_flags & TCP_ECN_OK))
224 return;
225
b82d1bb4 226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 227 case INET_ECN_NOT_ECT:
bdf1ee5d 228 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
229 * and we already seen ECT on a previous segment,
230 * it is probably a retransmit.
231 */
232 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 233 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
234 break;
235 case INET_ECN_CE:
9890092e
FW
236 if (tcp_ca_needs_ecn((struct sock *)tp))
237 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
238
aae06bf5
ED
239 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
240 /* Better not delay acks, sender can have a very low cwnd */
241 tcp_enter_quickack_mode((struct sock *)tp);
242 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
243 }
9890092e
FW
244 tp->ecn_flags |= TCP_ECN_SEEN;
245 break;
7a269ffa 246 default:
9890092e
FW
247 if (tcp_ca_needs_ecn((struct sock *)tp))
248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 249 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 250 break;
bdf1ee5d
IJ
251 }
252}
253
cf533ea5 254static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 255{
056834d9 256 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
257 tp->ecn_flags &= ~TCP_ECN_OK;
258}
259
cf533ea5 260static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 261{
056834d9 262 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
263 tp->ecn_flags &= ~TCP_ECN_OK;
264}
265
a2a385d6 266static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 267{
056834d9 268 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
269 return true;
270 return false;
bdf1ee5d
IJ
271}
272
1da177e4
LT
273/* Buffer size and advertised window tuning.
274 *
275 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
276 */
277
6ae70532 278static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 279{
6ae70532
ED
280 const struct tcp_sock *tp = tcp_sk(sk);
281 int sndmem, per_mss;
282 u32 nr_segs;
283
284 /* Worst case is non GSO/TSO : each frame consumes one skb
285 * and skb->head is kmalloced using power of two area of memory
286 */
287 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
288 MAX_TCP_HEADER +
289 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
290
291 per_mss = roundup_pow_of_two(per_mss) +
292 SKB_DATA_ALIGN(sizeof(struct sk_buff));
293
294 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
295 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
296
297 /* Fast Recovery (RFC 5681 3.2) :
298 * Cubic needs 1.7 factor, rounded to 2 to include
299 * extra cushion (application might react slowly to POLLOUT)
300 */
301 sndmem = 2 * nr_segs * per_mss;
1da177e4 302
06a59ecb
ED
303 if (sk->sk_sndbuf < sndmem)
304 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
1da177e4
LT
305}
306
307/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
308 *
309 * All tcp_full_space() is split to two parts: "network" buffer, allocated
310 * forward and advertised in receiver window (tp->rcv_wnd) and
311 * "application buffer", required to isolate scheduling/application
312 * latencies from network.
313 * window_clamp is maximal advertised window. It can be less than
314 * tcp_full_space(), in this case tcp_full_space() - window_clamp
315 * is reserved for "application" buffer. The less window_clamp is
316 * the smoother our behaviour from viewpoint of network, but the lower
317 * throughput and the higher sensitivity of the connection to losses. 8)
318 *
319 * rcv_ssthresh is more strict window_clamp used at "slow start"
320 * phase to predict further behaviour of this connection.
321 * It is used for two goals:
322 * - to enforce header prediction at sender, even when application
323 * requires some significant "application buffer". It is check #1.
324 * - to prevent pruning of receive queue because of misprediction
325 * of receiver window. Check #2.
326 *
327 * The scheme does not work when sender sends good segments opening
caa20d9a 328 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
329 * in common situations. Otherwise, we have to rely on queue collapsing.
330 */
331
332/* Slow part of check#2. */
9e412ba7 333static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 334{
9e412ba7 335 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 336 /* Optimize this! */
dfd4f0ae
ED
337 int truesize = tcp_win_from_space(skb->truesize) >> 1;
338 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
339
340 while (tp->rcv_ssthresh <= window) {
341 if (truesize <= skb->len)
463c84b9 342 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
343
344 truesize >>= 1;
345 window >>= 1;
346 }
347 return 0;
348}
349
cf533ea5 350static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 351{
9e412ba7
IJ
352 struct tcp_sock *tp = tcp_sk(sk);
353
1da177e4
LT
354 /* Check #1 */
355 if (tp->rcv_ssthresh < tp->window_clamp &&
356 (int)tp->rcv_ssthresh < tcp_space(sk) &&
180d8cd9 357 !sk_under_memory_pressure(sk)) {
1da177e4
LT
358 int incr;
359
360 /* Check #2. Increase window, if skb with such overhead
361 * will fit to rcvbuf in future.
362 */
363 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 364 incr = 2 * tp->advmss;
1da177e4 365 else
9e412ba7 366 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
367
368 if (incr) {
4d846f02 369 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
370 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
371 tp->window_clamp);
463c84b9 372 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
373 }
374 }
375}
376
377/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
378static void tcp_fixup_rcvbuf(struct sock *sk)
379{
e9266a02 380 u32 mss = tcp_sk(sk)->advmss;
e9266a02 381 int rcvmem;
1da177e4 382
85f16525
YC
383 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
384 tcp_default_init_rwnd(mss);
e9266a02 385
b0983d3c
ED
386 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
387 * Allow enough cushion so that sender is not limited by our window
388 */
389 if (sysctl_tcp_moderate_rcvbuf)
390 rcvmem <<= 2;
391
e9266a02
ED
392 if (sk->sk_rcvbuf < rcvmem)
393 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
1da177e4
LT
394}
395
caa20d9a 396/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
397 * established state.
398 */
10467163 399void tcp_init_buffer_space(struct sock *sk)
1da177e4
LT
400{
401 struct tcp_sock *tp = tcp_sk(sk);
402 int maxwin;
403
404 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
405 tcp_fixup_rcvbuf(sk);
406 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 407 tcp_sndbuf_expand(sk);
1da177e4
LT
408
409 tp->rcvq_space.space = tp->rcv_wnd;
b0983d3c
ED
410 tp->rcvq_space.time = tcp_time_stamp;
411 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
412
413 maxwin = tcp_full_space(sk);
414
415 if (tp->window_clamp >= maxwin) {
416 tp->window_clamp = maxwin;
417
418 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
419 tp->window_clamp = max(maxwin -
420 (maxwin >> sysctl_tcp_app_win),
421 4 * tp->advmss);
422 }
423
424 /* Force reservation of one segment. */
425 if (sysctl_tcp_app_win &&
426 tp->window_clamp > 2 * tp->advmss &&
427 tp->window_clamp + tp->advmss > maxwin)
428 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
429
430 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
431 tp->snd_cwnd_stamp = tcp_time_stamp;
432}
433
1da177e4 434/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 435static void tcp_clamp_window(struct sock *sk)
1da177e4 436{
9e412ba7 437 struct tcp_sock *tp = tcp_sk(sk);
6687e988 438 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 439
6687e988 440 icsk->icsk_ack.quick = 0;
1da177e4 441
326f36e9
JH
442 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
443 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
180d8cd9
GC
444 !sk_under_memory_pressure(sk) &&
445 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9
JH
446 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
447 sysctl_tcp_rmem[2]);
1da177e4 448 }
326f36e9 449 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 450 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
451}
452
40efc6fa
SH
453/* Initialize RCV_MSS value.
454 * RCV_MSS is an our guess about MSS used by the peer.
455 * We haven't any direct information about the MSS.
456 * It's better to underestimate the RCV_MSS rather than overestimate.
457 * Overestimations make us ACKing less frequently than needed.
458 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
459 */
460void tcp_initialize_rcv_mss(struct sock *sk)
461{
cf533ea5 462 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
463 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
464
056834d9 465 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 466 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
467 hint = max(hint, TCP_MIN_MSS);
468
469 inet_csk(sk)->icsk_ack.rcv_mss = hint;
470}
4bc2f18b 471EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 472
1da177e4
LT
473/* Receiver "autotuning" code.
474 *
475 * The algorithm for RTT estimation w/o timestamps is based on
476 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 477 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
478 *
479 * More detail on this code can be found at
631dd1a8 480 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
481 * though this reference is out of date. A new paper
482 * is pending.
483 */
484static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
485{
486 u32 new_sample = tp->rcv_rtt_est.rtt;
487 long m = sample;
488
489 if (m == 0)
490 m = 1;
491
492 if (new_sample != 0) {
493 /* If we sample in larger samples in the non-timestamp
494 * case, we could grossly overestimate the RTT especially
495 * with chatty applications or bulk transfer apps which
496 * are stalled on filesystem I/O.
497 *
498 * Also, since we are only going for a minimum in the
31f34269 499 * non-timestamp case, we do not smooth things out
caa20d9a 500 * else with timestamps disabled convergence takes too
1da177e4
LT
501 * long.
502 */
503 if (!win_dep) {
504 m -= (new_sample >> 3);
505 new_sample += m;
18a223e0
NC
506 } else {
507 m <<= 3;
508 if (m < new_sample)
509 new_sample = m;
510 }
1da177e4 511 } else {
caa20d9a 512 /* No previous measure. */
1da177e4
LT
513 new_sample = m << 3;
514 }
515
516 if (tp->rcv_rtt_est.rtt != new_sample)
517 tp->rcv_rtt_est.rtt = new_sample;
518}
519
520static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
521{
522 if (tp->rcv_rtt_est.time == 0)
523 goto new_measure;
524 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
525 return;
651913ce 526 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
1da177e4
LT
527
528new_measure:
529 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
530 tp->rcv_rtt_est.time = tcp_time_stamp;
531}
532
056834d9
IJ
533static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
534 const struct sk_buff *skb)
1da177e4 535{
463c84b9 536 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
537 if (tp->rx_opt.rcv_tsecr &&
538 (TCP_SKB_CB(skb)->end_seq -
463c84b9 539 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
540 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
541}
542
543/*
544 * This function should be called every time data is copied to user space.
545 * It calculates the appropriate TCP receive buffer space.
546 */
547void tcp_rcv_space_adjust(struct sock *sk)
548{
549 struct tcp_sock *tp = tcp_sk(sk);
550 int time;
b0983d3c 551 int copied;
e905a9ed 552
1da177e4 553 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 554 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 555 return;
e905a9ed 556
b0983d3c
ED
557 /* Number of bytes copied to user in last RTT */
558 copied = tp->copied_seq - tp->rcvq_space.seq;
559 if (copied <= tp->rcvq_space.space)
560 goto new_measure;
561
562 /* A bit of theory :
563 * copied = bytes received in previous RTT, our base window
564 * To cope with packet losses, we need a 2x factor
565 * To cope with slow start, and sender growing its cwin by 100 %
566 * every RTT, we need a 4x factor, because the ACK we are sending
567 * now is for the next RTT, not the current one :
568 * <prev RTT . ><current RTT .. ><next RTT .... >
569 */
570
571 if (sysctl_tcp_moderate_rcvbuf &&
572 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
573 int rcvwin, rcvmem, rcvbuf;
1da177e4 574
b0983d3c
ED
575 /* minimal window to cope with packet losses, assuming
576 * steady state. Add some cushion because of small variations.
577 */
578 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 579
b0983d3c
ED
580 /* If rate increased by 25%,
581 * assume slow start, rcvwin = 3 * copied
582 * If rate increased by 50%,
583 * assume sender can use 2x growth, rcvwin = 4 * copied
584 */
585 if (copied >=
586 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
587 if (copied >=
588 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
589 rcvwin <<= 1;
590 else
591 rcvwin += (rcvwin >> 1);
592 }
1da177e4 593
b0983d3c
ED
594 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
595 while (tcp_win_from_space(rcvmem) < tp->advmss)
596 rcvmem += 128;
1da177e4 597
b0983d3c
ED
598 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
599 if (rcvbuf > sk->sk_rcvbuf) {
600 sk->sk_rcvbuf = rcvbuf;
1da177e4 601
b0983d3c
ED
602 /* Make the window clamp follow along. */
603 tp->window_clamp = rcvwin;
1da177e4
LT
604 }
605 }
b0983d3c 606 tp->rcvq_space.space = copied;
e905a9ed 607
1da177e4
LT
608new_measure:
609 tp->rcvq_space.seq = tp->copied_seq;
610 tp->rcvq_space.time = tcp_time_stamp;
611}
612
613/* There is something which you must keep in mind when you analyze the
614 * behavior of the tp->ato delayed ack timeout interval. When a
615 * connection starts up, we want to ack as quickly as possible. The
616 * problem is that "good" TCP's do slow start at the beginning of data
617 * transmission. The means that until we send the first few ACK's the
618 * sender will sit on his end and only queue most of his data, because
619 * he can only send snd_cwnd unacked packets at any given time. For
620 * each ACK we send, he increments snd_cwnd and transmits more of his
621 * queue. -DaveM
622 */
9e412ba7 623static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 624{
9e412ba7 625 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 626 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
627 u32 now;
628
463c84b9 629 inet_csk_schedule_ack(sk);
1da177e4 630
463c84b9 631 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
632
633 tcp_rcv_rtt_measure(tp);
e905a9ed 634
1da177e4
LT
635 now = tcp_time_stamp;
636
463c84b9 637 if (!icsk->icsk_ack.ato) {
1da177e4
LT
638 /* The _first_ data packet received, initialize
639 * delayed ACK engine.
640 */
463c84b9
ACM
641 tcp_incr_quickack(sk);
642 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 643 } else {
463c84b9 644 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 645
056834d9 646 if (m <= TCP_ATO_MIN / 2) {
1da177e4 647 /* The fastest case is the first. */
463c84b9
ACM
648 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
649 } else if (m < icsk->icsk_ack.ato) {
650 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
651 if (icsk->icsk_ack.ato > icsk->icsk_rto)
652 icsk->icsk_ack.ato = icsk->icsk_rto;
653 } else if (m > icsk->icsk_rto) {
caa20d9a 654 /* Too long gap. Apparently sender failed to
1da177e4
LT
655 * restart window, so that we send ACKs quickly.
656 */
463c84b9 657 tcp_incr_quickack(sk);
3ab224be 658 sk_mem_reclaim(sk);
1da177e4
LT
659 }
660 }
463c84b9 661 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
662
663 TCP_ECN_check_ce(tp, skb);
664
665 if (skb->len >= 128)
9e412ba7 666 tcp_grow_window(sk, skb);
1da177e4
LT
667}
668
1da177e4
LT
669/* Called to compute a smoothed rtt estimate. The data fed to this
670 * routine either comes from timestamps, or from segments that were
671 * known _not_ to have been retransmitted [see Karn/Partridge
672 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
673 * piece by Van Jacobson.
674 * NOTE: the next three routines used to be one big routine.
675 * To save cycles in the RFC 1323 implementation it was better to break
676 * it up into three procedures. -- erics
677 */
740b0f18 678static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 679{
6687e988 680 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
681 long m = mrtt_us; /* RTT */
682 u32 srtt = tp->srtt_us;
1da177e4 683
1da177e4
LT
684 /* The following amusing code comes from Jacobson's
685 * article in SIGCOMM '88. Note that rtt and mdev
686 * are scaled versions of rtt and mean deviation.
e905a9ed 687 * This is designed to be as fast as possible
1da177e4
LT
688 * m stands for "measurement".
689 *
690 * On a 1990 paper the rto value is changed to:
691 * RTO = rtt + 4 * mdev
692 *
693 * Funny. This algorithm seems to be very broken.
694 * These formulae increase RTO, when it should be decreased, increase
31f34269 695 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
696 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
697 * does not matter how to _calculate_ it. Seems, it was trap
698 * that VJ failed to avoid. 8)
699 */
4a5ab4e2
ED
700 if (srtt != 0) {
701 m -= (srtt >> 3); /* m is now error in rtt est */
702 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
703 if (m < 0) {
704 m = -m; /* m is now abs(error) */
740b0f18 705 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
706 /* This is similar to one of Eifel findings.
707 * Eifel blocks mdev updates when rtt decreases.
708 * This solution is a bit different: we use finer gain
709 * for mdev in this case (alpha*beta).
710 * Like Eifel it also prevents growth of rto,
711 * but also it limits too fast rto decreases,
712 * happening in pure Eifel.
713 */
714 if (m > 0)
715 m >>= 3;
716 } else {
740b0f18 717 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 718 }
740b0f18
ED
719 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
720 if (tp->mdev_us > tp->mdev_max_us) {
721 tp->mdev_max_us = tp->mdev_us;
722 if (tp->mdev_max_us > tp->rttvar_us)
723 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
724 }
725 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
726 if (tp->mdev_max_us < tp->rttvar_us)
727 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 728 tp->rtt_seq = tp->snd_nxt;
740b0f18 729 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
730 }
731 } else {
732 /* no previous measure. */
4a5ab4e2 733 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
734 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
735 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
736 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
737 tp->rtt_seq = tp->snd_nxt;
738 }
740b0f18 739 tp->srtt_us = max(1U, srtt);
1da177e4
LT
740}
741
95bd09eb
ED
742/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
743 * Note: TCP stack does not yet implement pacing.
744 * FQ packet scheduler can be used to implement cheap but effective
745 * TCP pacing, to smooth the burst on large writes when packets
746 * in flight is significantly lower than cwnd (or rwin)
747 */
748static void tcp_update_pacing_rate(struct sock *sk)
749{
750 const struct tcp_sock *tp = tcp_sk(sk);
751 u64 rate;
752
753 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
740b0f18 754 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
95bd09eb
ED
755
756 rate *= max(tp->snd_cwnd, tp->packets_out);
757
740b0f18
ED
758 if (likely(tp->srtt_us))
759 do_div(rate, tp->srtt_us);
95bd09eb 760
ba537427
ED
761 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
762 * without any lock. We want to make sure compiler wont store
763 * intermediate values in this location.
764 */
765 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
766 sk->sk_max_pacing_rate);
95bd09eb
ED
767}
768
1da177e4
LT
769/* Calculate rto without backoff. This is the second half of Van Jacobson's
770 * routine referred to above.
771 */
f7e56a76 772static void tcp_set_rto(struct sock *sk)
1da177e4 773{
463c84b9 774 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
775 /* Old crap is replaced with new one. 8)
776 *
777 * More seriously:
778 * 1. If rtt variance happened to be less 50msec, it is hallucination.
779 * It cannot be less due to utterly erratic ACK generation made
780 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
781 * to do with delayed acks, because at cwnd>2 true delack timeout
782 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 783 * ACKs in some circumstances.
1da177e4 784 */
f1ecd5d9 785 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
786
787 /* 2. Fixups made earlier cannot be right.
788 * If we do not estimate RTO correctly without them,
789 * all the algo is pure shit and should be replaced
caa20d9a 790 * with correct one. It is exactly, which we pretend to do.
1da177e4 791 */
1da177e4 792
ee6aac59
IJ
793 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
794 * guarantees that rto is higher.
795 */
f1ecd5d9 796 tcp_bound_rto(sk);
1da177e4
LT
797}
798
cf533ea5 799__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
800{
801 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
802
22b71c8f 803 if (!cwnd)
442b9635 804 cwnd = TCP_INIT_CWND;
1da177e4
LT
805 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
806}
807
e60402d0
IJ
808/*
809 * Packet counting of FACK is based on in-order assumptions, therefore TCP
810 * disables it when reordering is detected
811 */
4aabd8ef 812void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 813{
85cc391c
IJ
814 /* RFC3517 uses different metric in lost marker => reset on change */
815 if (tcp_is_fack(tp))
816 tp->lost_skb_hint = NULL;
ab56222a 817 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
818}
819
564262c1 820/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
821static void tcp_dsack_seen(struct tcp_sock *tp)
822{
ab56222a 823 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
e60402d0
IJ
824}
825
6687e988
ACM
826static void tcp_update_reordering(struct sock *sk, const int metric,
827 const int ts)
1da177e4 828{
6687e988 829 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 830 if (metric > tp->reordering) {
40b215e5
PE
831 int mib_idx;
832
1da177e4
LT
833 tp->reordering = min(TCP_MAX_REORDERING, metric);
834
835 /* This exciting event is worth to be remembered. 8) */
836 if (ts)
40b215e5 837 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 838 else if (tcp_is_reno(tp))
40b215e5 839 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 840 else if (tcp_is_fack(tp))
40b215e5 841 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 842 else
40b215e5
PE
843 mib_idx = LINUX_MIB_TCPSACKREORDER;
844
de0744af 845 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4 846#if FASTRETRANS_DEBUG > 1
91df42be
JP
847 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
848 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
849 tp->reordering,
850 tp->fackets_out,
851 tp->sacked_out,
852 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 853#endif
e60402d0 854 tcp_disable_fack(tp);
1da177e4 855 }
eed530b6
YC
856
857 if (metric > 0)
858 tcp_disable_early_retrans(tp);
1da177e4
LT
859}
860
006f582c 861/* This must be called before lost_out is incremented */
c8c213f2
IJ
862static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
863{
006f582c 864 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
865 before(TCP_SKB_CB(skb)->seq,
866 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
867 tp->retransmit_skb_hint = skb;
868
869 if (!tp->lost_out ||
870 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
871 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
872}
873
41ea36e3
IJ
874static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
875{
876 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
877 tcp_verify_retransmit_hint(tp, skb);
878
879 tp->lost_out += tcp_skb_pcount(skb);
880 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
881 }
882}
883
e1aa680f
IJ
884static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
885 struct sk_buff *skb)
006f582c
IJ
886{
887 tcp_verify_retransmit_hint(tp, skb);
888
889 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
890 tp->lost_out += tcp_skb_pcount(skb);
891 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
892 }
893}
894
1da177e4
LT
895/* This procedure tags the retransmission queue when SACKs arrive.
896 *
897 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
898 * Packets in queue with these bits set are counted in variables
899 * sacked_out, retrans_out and lost_out, correspondingly.
900 *
901 * Valid combinations are:
902 * Tag InFlight Description
903 * 0 1 - orig segment is in flight.
904 * S 0 - nothing flies, orig reached receiver.
905 * L 0 - nothing flies, orig lost by net.
906 * R 2 - both orig and retransmit are in flight.
907 * L|R 1 - orig is lost, retransmit is in flight.
908 * S|R 1 - orig reached receiver, retrans is still in flight.
909 * (L|S|R is logically valid, it could occur when L|R is sacked,
910 * but it is equivalent to plain S and code short-curcuits it to S.
911 * L|S is logically invalid, it would mean -1 packet in flight 8))
912 *
913 * These 6 states form finite state machine, controlled by the following events:
914 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
915 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 916 * 3. Loss detection event of two flavors:
1da177e4
LT
917 * A. Scoreboard estimator decided the packet is lost.
918 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
919 * A''. Its FACK modification, head until snd.fack is lost.
920 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
921 * segment was retransmitted.
922 * 4. D-SACK added new rule: D-SACK changes any tag to S.
923 *
924 * It is pleasant to note, that state diagram turns out to be commutative,
925 * so that we are allowed not to be bothered by order of our actions,
926 * when multiple events arrive simultaneously. (see the function below).
927 *
928 * Reordering detection.
929 * --------------------
930 * Reordering metric is maximal distance, which a packet can be displaced
931 * in packet stream. With SACKs we can estimate it:
932 *
933 * 1. SACK fills old hole and the corresponding segment was not
934 * ever retransmitted -> reordering. Alas, we cannot use it
935 * when segment was retransmitted.
936 * 2. The last flaw is solved with D-SACK. D-SACK arrives
937 * for retransmitted and already SACKed segment -> reordering..
938 * Both of these heuristics are not used in Loss state, when we cannot
939 * account for retransmits accurately.
5b3c9882
IJ
940 *
941 * SACK block validation.
942 * ----------------------
943 *
944 * SACK block range validation checks that the received SACK block fits to
945 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
946 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
947 * it means that the receiver is rather inconsistent with itself reporting
948 * SACK reneging when it should advance SND.UNA. Such SACK block this is
949 * perfectly valid, however, in light of RFC2018 which explicitly states
950 * that "SACK block MUST reflect the newest segment. Even if the newest
951 * segment is going to be discarded ...", not that it looks very clever
952 * in case of head skb. Due to potentional receiver driven attacks, we
953 * choose to avoid immediate execution of a walk in write queue due to
954 * reneging and defer head skb's loss recovery to standard loss recovery
955 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
956 *
957 * Implements also blockage to start_seq wrap-around. Problem lies in the
958 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
959 * there's no guarantee that it will be before snd_nxt (n). The problem
960 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
961 * wrap (s_w):
962 *
963 * <- outs wnd -> <- wrapzone ->
964 * u e n u_w e_w s n_w
965 * | | | | | | |
966 * |<------------+------+----- TCP seqno space --------------+---------->|
967 * ...-- <2^31 ->| |<--------...
968 * ...---- >2^31 ------>| |<--------...
969 *
970 * Current code wouldn't be vulnerable but it's better still to discard such
971 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
972 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
973 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
974 * equal to the ideal case (infinite seqno space without wrap caused issues).
975 *
976 * With D-SACK the lower bound is extended to cover sequence space below
977 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 978 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
979 * for the normal SACK blocks, explained above). But there all simplicity
980 * ends, TCP might receive valid D-SACKs below that. As long as they reside
981 * fully below undo_marker they do not affect behavior in anyway and can
982 * therefore be safely ignored. In rare cases (which are more or less
983 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
984 * fragmentation and packet reordering past skb's retransmission. To consider
985 * them correctly, the acceptable range must be extended even more though
986 * the exact amount is rather hard to quantify. However, tp->max_window can
987 * be used as an exaggerated estimate.
1da177e4 988 */
a2a385d6
ED
989static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
990 u32 start_seq, u32 end_seq)
5b3c9882
IJ
991{
992 /* Too far in future, or reversed (interpretation is ambiguous) */
993 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 994 return false;
5b3c9882
IJ
995
996 /* Nasty start_seq wrap-around check (see comments above) */
997 if (!before(start_seq, tp->snd_nxt))
a2a385d6 998 return false;
5b3c9882 999
564262c1 1000 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1001 * start_seq == snd_una is non-sensical (see comments above)
1002 */
1003 if (after(start_seq, tp->snd_una))
a2a385d6 1004 return true;
5b3c9882
IJ
1005
1006 if (!is_dsack || !tp->undo_marker)
a2a385d6 1007 return false;
5b3c9882
IJ
1008
1009 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1010 if (after(end_seq, tp->snd_una))
a2a385d6 1011 return false;
5b3c9882
IJ
1012
1013 if (!before(start_seq, tp->undo_marker))
a2a385d6 1014 return true;
5b3c9882
IJ
1015
1016 /* Too old */
1017 if (!after(end_seq, tp->undo_marker))
a2a385d6 1018 return false;
5b3c9882
IJ
1019
1020 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1021 * start_seq < undo_marker and end_seq >= undo_marker.
1022 */
1023 return !before(start_seq, end_seq - tp->max_window);
1024}
1025
1c1e87ed 1026/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
974c1236 1027 * Event "B". Later note: FACK people cheated me again 8), we have to account
1c1e87ed 1028 * for reordering! Ugly, but should help.
f785a8e2
IJ
1029 *
1030 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1031 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1032 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1033 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1034 */
407ef1de 1035static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1036{
9f58f3b7 1037 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1038 struct tcp_sock *tp = tcp_sk(sk);
1039 struct sk_buff *skb;
f785a8e2 1040 int cnt = 0;
df2e014b 1041 u32 new_low_seq = tp->snd_nxt;
6859d494 1042 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1043
1044 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1045 !after(received_upto, tp->lost_retrans_low) ||
1046 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1047 return;
1c1e87ed
IJ
1048
1049 tcp_for_write_queue(skb, sk) {
1050 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1051
1052 if (skb == tcp_send_head(sk))
1053 break;
f785a8e2 1054 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1055 break;
1056 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1057 continue;
1058
f785a8e2
IJ
1059 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1060 continue;
1061
d0af4160
IJ
1062 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1063 * constraint here (see above) but figuring out that at
1064 * least tp->reordering SACK blocks reside between ack_seq
1065 * and received_upto is not easy task to do cheaply with
1066 * the available datastructures.
1067 *
1068 * Whether FACK should check here for tp->reordering segs
1069 * in-between one could argue for either way (it would be
1070 * rather simple to implement as we could count fack_count
1071 * during the walk and do tp->fackets_out - fack_count).
1072 */
1073 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1074 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1075 tp->retrans_out -= tcp_skb_pcount(skb);
1076
006f582c 1077 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1078 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1079 } else {
df2e014b 1080 if (before(ack_seq, new_low_seq))
b08d6cb2 1081 new_low_seq = ack_seq;
f785a8e2 1082 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1083 }
1084 }
b08d6cb2
IJ
1085
1086 if (tp->retrans_out)
1087 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1088}
5b3c9882 1089
a2a385d6
ED
1090static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 struct tcp_sack_block_wire *sp, int num_sacks,
1092 u32 prior_snd_una)
d06e021d 1093{
1ed83465 1094 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1097 bool dup_sack = false;
d06e021d
DM
1098
1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1100 dup_sack = true;
e60402d0 1101 tcp_dsack_seen(tp);
de0744af 1102 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1103 } else if (num_sacks > 1) {
d3e2ce3b
HH
1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1106
1107 if (!after(end_seq_0, end_seq_1) &&
1108 !before(start_seq_0, start_seq_1)) {
a2a385d6 1109 dup_sack = true;
e60402d0 1110 tcp_dsack_seen(tp);
de0744af
PE
1111 NET_INC_STATS_BH(sock_net(sk),
1112 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1113 }
1114 }
1115
1116 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1118 !after(end_seq_0, prior_snd_una) &&
1119 after(end_seq_0, tp->undo_marker))
1120 tp->undo_retrans--;
1121
1122 return dup_sack;
1123}
1124
a1197f5a 1125struct tcp_sacktag_state {
740b0f18
ED
1126 int reord;
1127 int fack_count;
1128 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1129 int flag;
a1197f5a
IJ
1130};
1131
d1935942
IJ
1132/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1133 * the incoming SACK may not exactly match but we can find smaller MSS
1134 * aligned portion of it that matches. Therefore we might need to fragment
1135 * which may fail and creates some hassle (caller must handle error case
1136 * returns).
832d11c5
IJ
1137 *
1138 * FIXME: this could be merged to shift decision code
d1935942 1139 */
0f79efdc 1140static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1141 u32 start_seq, u32 end_seq)
d1935942 1142{
a2a385d6
ED
1143 int err;
1144 bool in_sack;
d1935942 1145 unsigned int pkt_len;
adb92db8 1146 unsigned int mss;
d1935942
IJ
1147
1148 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1149 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1150
1151 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1152 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1153 mss = tcp_skb_mss(skb);
d1935942
IJ
1154 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1155
adb92db8 1156 if (!in_sack) {
d1935942 1157 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1158 if (pkt_len < mss)
1159 pkt_len = mss;
1160 } else {
d1935942 1161 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1162 if (pkt_len < mss)
1163 return -EINVAL;
1164 }
1165
1166 /* Round if necessary so that SACKs cover only full MSSes
1167 * and/or the remaining small portion (if present)
1168 */
1169 if (pkt_len > mss) {
1170 unsigned int new_len = (pkt_len / mss) * mss;
1171 if (!in_sack && new_len < pkt_len) {
1172 new_len += mss;
2cd0d743 1173 if (new_len >= skb->len)
adb92db8
IJ
1174 return 0;
1175 }
1176 pkt_len = new_len;
1177 }
6cc55e09 1178 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1179 if (err < 0)
1180 return err;
1181 }
1182
1183 return in_sack;
1184}
1185
cc9a672e
NC
1186/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1187static u8 tcp_sacktag_one(struct sock *sk,
1188 struct tcp_sacktag_state *state, u8 sacked,
1189 u32 start_seq, u32 end_seq,
740b0f18
ED
1190 int dup_sack, int pcount,
1191 const struct skb_mstamp *xmit_time)
9e10c47c 1192{
6859d494 1193 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1194 int fack_count = state->fack_count;
9e10c47c
IJ
1195
1196 /* Account D-SACK for retransmitted packet. */
1197 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1198 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1199 after(end_seq, tp->undo_marker))
9e10c47c 1200 tp->undo_retrans--;
ede9f3b1 1201 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1202 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1203 }
1204
1205 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1206 if (!after(end_seq, tp->snd_una))
a1197f5a 1207 return sacked;
9e10c47c
IJ
1208
1209 if (!(sacked & TCPCB_SACKED_ACKED)) {
1210 if (sacked & TCPCB_SACKED_RETRANS) {
1211 /* If the segment is not tagged as lost,
1212 * we do not clear RETRANS, believing
1213 * that retransmission is still in flight.
1214 */
1215 if (sacked & TCPCB_LOST) {
a1197f5a 1216 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1217 tp->lost_out -= pcount;
1218 tp->retrans_out -= pcount;
9e10c47c
IJ
1219 }
1220 } else {
1221 if (!(sacked & TCPCB_RETRANS)) {
1222 /* New sack for not retransmitted frame,
1223 * which was in hole. It is reordering.
1224 */
cc9a672e 1225 if (before(start_seq,
9e10c47c 1226 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1227 state->reord = min(fack_count,
1228 state->reord);
e33099f9
YC
1229 if (!after(end_seq, tp->high_seq))
1230 state->flag |= FLAG_ORIG_SACK_ACKED;
59c9af42 1231 /* Pick the earliest sequence sacked for RTT */
740b0f18
ED
1232 if (state->rtt_us < 0) {
1233 struct skb_mstamp now;
1234
1235 skb_mstamp_get(&now);
1236 state->rtt_us = skb_mstamp_us_delta(&now,
1237 xmit_time);
1238 }
9e10c47c
IJ
1239 }
1240
1241 if (sacked & TCPCB_LOST) {
a1197f5a 1242 sacked &= ~TCPCB_LOST;
f58b22fd 1243 tp->lost_out -= pcount;
9e10c47c
IJ
1244 }
1245 }
1246
a1197f5a
IJ
1247 sacked |= TCPCB_SACKED_ACKED;
1248 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1249 tp->sacked_out += pcount;
9e10c47c 1250
f58b22fd 1251 fack_count += pcount;
9e10c47c
IJ
1252
1253 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1254 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
cc9a672e 1255 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1256 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1257
1258 if (fack_count > tp->fackets_out)
1259 tp->fackets_out = fack_count;
9e10c47c
IJ
1260 }
1261
1262 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1263 * frames and clear it. undo_retrans is decreased above, L|R frames
1264 * are accounted above as well.
1265 */
a1197f5a
IJ
1266 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1267 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1268 tp->retrans_out -= pcount;
9e10c47c
IJ
1269 }
1270
a1197f5a 1271 return sacked;
9e10c47c
IJ
1272}
1273
daef52ba
NC
1274/* Shift newly-SACKed bytes from this skb to the immediately previous
1275 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1276 */
a2a385d6
ED
1277static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1278 struct tcp_sacktag_state *state,
1279 unsigned int pcount, int shifted, int mss,
1280 bool dup_sack)
832d11c5
IJ
1281{
1282 struct tcp_sock *tp = tcp_sk(sk);
50133161 1283 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
daef52ba
NC
1284 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1285 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1286
1287 BUG_ON(!pcount);
1288
4c90d3b3
NC
1289 /* Adjust counters and hints for the newly sacked sequence
1290 * range but discard the return value since prev is already
1291 * marked. We must tag the range first because the seq
1292 * advancement below implicitly advances
1293 * tcp_highest_sack_seq() when skb is highest_sack.
1294 */
1295 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1296 start_seq, end_seq, dup_sack, pcount,
740b0f18 1297 &skb->skb_mstamp);
4c90d3b3
NC
1298
1299 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1300 tp->lost_cnt_hint += pcount;
1301
832d11c5
IJ
1302 TCP_SKB_CB(prev)->end_seq += shifted;
1303 TCP_SKB_CB(skb)->seq += shifted;
1304
cd7d8498
ED
1305 tcp_skb_pcount_add(prev, pcount);
1306 BUG_ON(tcp_skb_pcount(skb) < pcount);
1307 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1308
1309 /* When we're adding to gso_segs == 1, gso_size will be zero,
1310 * in theory this shouldn't be necessary but as long as DSACK
1311 * code can come after this skb later on it's better to keep
1312 * setting gso_size to something.
1313 */
1314 if (!skb_shinfo(prev)->gso_size) {
1315 skb_shinfo(prev)->gso_size = mss;
c9af6db4 1316 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
832d11c5
IJ
1317 }
1318
1319 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
cd7d8498 1320 if (tcp_skb_pcount(skb) <= 1) {
832d11c5 1321 skb_shinfo(skb)->gso_size = 0;
c9af6db4 1322 skb_shinfo(skb)->gso_type = 0;
832d11c5
IJ
1323 }
1324
832d11c5
IJ
1325 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1326 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1327
832d11c5
IJ
1328 if (skb->len > 0) {
1329 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1330 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1331 return false;
832d11c5
IJ
1332 }
1333
1334 /* Whole SKB was eaten :-) */
1335
92ee76b6
IJ
1336 if (skb == tp->retransmit_skb_hint)
1337 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1338 if (skb == tp->lost_skb_hint) {
1339 tp->lost_skb_hint = prev;
1340 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1341 }
1342
5e8a402f
ED
1343 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1344 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1345 TCP_SKB_CB(prev)->end_seq++;
1346
832d11c5
IJ
1347 if (skb == tcp_highest_sack(sk))
1348 tcp_advance_highest_sack(sk, skb);
1349
1350 tcp_unlink_write_queue(skb, sk);
1351 sk_wmem_free_skb(sk, skb);
1352
111cc8b9
IJ
1353 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1354
a2a385d6 1355 return true;
832d11c5
IJ
1356}
1357
1358/* I wish gso_size would have a bit more sane initialization than
1359 * something-or-zero which complicates things
1360 */
cf533ea5 1361static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1362{
775ffabf 1363 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1364}
1365
1366/* Shifting pages past head area doesn't work */
cf533ea5 1367static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1368{
1369 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1370}
1371
1372/* Try collapsing SACK blocks spanning across multiple skbs to a single
1373 * skb.
1374 */
1375static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1376 struct tcp_sacktag_state *state,
832d11c5 1377 u32 start_seq, u32 end_seq,
a2a385d6 1378 bool dup_sack)
832d11c5
IJ
1379{
1380 struct tcp_sock *tp = tcp_sk(sk);
1381 struct sk_buff *prev;
1382 int mss;
1383 int pcount = 0;
1384 int len;
1385 int in_sack;
1386
1387 if (!sk_can_gso(sk))
1388 goto fallback;
1389
1390 /* Normally R but no L won't result in plain S */
1391 if (!dup_sack &&
9969ca5f 1392 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1393 goto fallback;
1394 if (!skb_can_shift(skb))
1395 goto fallback;
1396 /* This frame is about to be dropped (was ACKed). */
1397 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1398 goto fallback;
1399
1400 /* Can only happen with delayed DSACK + discard craziness */
1401 if (unlikely(skb == tcp_write_queue_head(sk)))
1402 goto fallback;
1403 prev = tcp_write_queue_prev(sk, skb);
1404
1405 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1406 goto fallback;
1407
1408 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1409 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1410
1411 if (in_sack) {
1412 len = skb->len;
1413 pcount = tcp_skb_pcount(skb);
775ffabf 1414 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1415
1416 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1417 * drop this restriction as unnecessary
1418 */
775ffabf 1419 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1420 goto fallback;
1421 } else {
1422 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1423 goto noop;
1424 /* CHECKME: This is non-MSS split case only?, this will
1425 * cause skipped skbs due to advancing loop btw, original
1426 * has that feature too
1427 */
1428 if (tcp_skb_pcount(skb) <= 1)
1429 goto noop;
1430
1431 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1432 if (!in_sack) {
1433 /* TODO: head merge to next could be attempted here
1434 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1435 * though it might not be worth of the additional hassle
1436 *
1437 * ...we can probably just fallback to what was done
1438 * previously. We could try merging non-SACKed ones
1439 * as well but it probably isn't going to buy off
1440 * because later SACKs might again split them, and
1441 * it would make skb timestamp tracking considerably
1442 * harder problem.
1443 */
1444 goto fallback;
1445 }
1446
1447 len = end_seq - TCP_SKB_CB(skb)->seq;
1448 BUG_ON(len < 0);
1449 BUG_ON(len > skb->len);
1450
1451 /* MSS boundaries should be honoured or else pcount will
1452 * severely break even though it makes things bit trickier.
1453 * Optimize common case to avoid most of the divides
1454 */
1455 mss = tcp_skb_mss(skb);
1456
1457 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1458 * drop this restriction as unnecessary
1459 */
775ffabf 1460 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1461 goto fallback;
1462
1463 if (len == mss) {
1464 pcount = 1;
1465 } else if (len < mss) {
1466 goto noop;
1467 } else {
1468 pcount = len / mss;
1469 len = pcount * mss;
1470 }
1471 }
1472
4648dc97
NC
1473 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1474 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1475 goto fallback;
1476
832d11c5
IJ
1477 if (!skb_shift(prev, skb, len))
1478 goto fallback;
9ec06ff5 1479 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1480 goto out;
1481
1482 /* Hole filled allows collapsing with the next as well, this is very
1483 * useful when hole on every nth skb pattern happens
1484 */
1485 if (prev == tcp_write_queue_tail(sk))
1486 goto out;
1487 skb = tcp_write_queue_next(sk, prev);
1488
f0bc52f3
IJ
1489 if (!skb_can_shift(skb) ||
1490 (skb == tcp_send_head(sk)) ||
1491 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1492 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1493 goto out;
1494
1495 len = skb->len;
1496 if (skb_shift(prev, skb, len)) {
1497 pcount += tcp_skb_pcount(skb);
9ec06ff5 1498 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1499 }
1500
1501out:
a1197f5a 1502 state->fack_count += pcount;
832d11c5
IJ
1503 return prev;
1504
1505noop:
1506 return skb;
1507
1508fallback:
111cc8b9 1509 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1510 return NULL;
1511}
1512
68f8353b
IJ
1513static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1514 struct tcp_sack_block *next_dup,
a1197f5a 1515 struct tcp_sacktag_state *state,
68f8353b 1516 u32 start_seq, u32 end_seq,
a2a385d6 1517 bool dup_sack_in)
68f8353b 1518{
832d11c5
IJ
1519 struct tcp_sock *tp = tcp_sk(sk);
1520 struct sk_buff *tmp;
1521
68f8353b
IJ
1522 tcp_for_write_queue_from(skb, sk) {
1523 int in_sack = 0;
a2a385d6 1524 bool dup_sack = dup_sack_in;
68f8353b
IJ
1525
1526 if (skb == tcp_send_head(sk))
1527 break;
1528
1529 /* queue is in-order => we can short-circuit the walk early */
1530 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1531 break;
1532
1533 if ((next_dup != NULL) &&
1534 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1535 in_sack = tcp_match_skb_to_sack(sk, skb,
1536 next_dup->start_seq,
1537 next_dup->end_seq);
1538 if (in_sack > 0)
a2a385d6 1539 dup_sack = true;
68f8353b
IJ
1540 }
1541
832d11c5
IJ
1542 /* skb reference here is a bit tricky to get right, since
1543 * shifting can eat and free both this skb and the next,
1544 * so not even _safe variant of the loop is enough.
1545 */
1546 if (in_sack <= 0) {
a1197f5a
IJ
1547 tmp = tcp_shift_skb_data(sk, skb, state,
1548 start_seq, end_seq, dup_sack);
832d11c5
IJ
1549 if (tmp != NULL) {
1550 if (tmp != skb) {
1551 skb = tmp;
1552 continue;
1553 }
1554
1555 in_sack = 0;
1556 } else {
1557 in_sack = tcp_match_skb_to_sack(sk, skb,
1558 start_seq,
1559 end_seq);
1560 }
1561 }
1562
68f8353b
IJ
1563 if (unlikely(in_sack < 0))
1564 break;
1565
832d11c5 1566 if (in_sack) {
cc9a672e
NC
1567 TCP_SKB_CB(skb)->sacked =
1568 tcp_sacktag_one(sk,
1569 state,
1570 TCP_SKB_CB(skb)->sacked,
1571 TCP_SKB_CB(skb)->seq,
1572 TCP_SKB_CB(skb)->end_seq,
1573 dup_sack,
59c9af42 1574 tcp_skb_pcount(skb),
740b0f18 1575 &skb->skb_mstamp);
68f8353b 1576
832d11c5
IJ
1577 if (!before(TCP_SKB_CB(skb)->seq,
1578 tcp_highest_sack_seq(tp)))
1579 tcp_advance_highest_sack(sk, skb);
1580 }
1581
a1197f5a 1582 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1583 }
1584 return skb;
1585}
1586
1587/* Avoid all extra work that is being done by sacktag while walking in
1588 * a normal way
1589 */
1590static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1591 struct tcp_sacktag_state *state,
1592 u32 skip_to_seq)
68f8353b
IJ
1593{
1594 tcp_for_write_queue_from(skb, sk) {
1595 if (skb == tcp_send_head(sk))
1596 break;
1597
e8bae275 1598 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1599 break;
d152a7d8 1600
a1197f5a 1601 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1602 }
1603 return skb;
1604}
1605
1606static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1607 struct sock *sk,
1608 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1609 struct tcp_sacktag_state *state,
1610 u32 skip_to_seq)
68f8353b
IJ
1611{
1612 if (next_dup == NULL)
1613 return skb;
1614
1615 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1616 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1617 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1618 next_dup->start_seq, next_dup->end_seq,
1619 1);
68f8353b
IJ
1620 }
1621
1622 return skb;
1623}
1624
cf533ea5 1625static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1626{
1627 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1628}
1629
1da177e4 1630static int
cf533ea5 1631tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
740b0f18 1632 u32 prior_snd_una, long *sack_rtt_us)
1da177e4
LT
1633{
1634 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1635 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1636 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1637 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1638 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1639 struct tcp_sack_block *cache;
a1197f5a 1640 struct tcp_sacktag_state state;
68f8353b 1641 struct sk_buff *skb;
4389dded 1642 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1643 int used_sacks;
a2a385d6 1644 bool found_dup_sack = false;
68f8353b 1645 int i, j;
fda03fbb 1646 int first_sack_index;
1da177e4 1647
a1197f5a
IJ
1648 state.flag = 0;
1649 state.reord = tp->packets_out;
740b0f18 1650 state.rtt_us = -1L;
a1197f5a 1651
d738cd8f 1652 if (!tp->sacked_out) {
de83c058
IJ
1653 if (WARN_ON(tp->fackets_out))
1654 tp->fackets_out = 0;
6859d494 1655 tcp_highest_sack_reset(sk);
d738cd8f 1656 }
1da177e4 1657
1ed83465 1658 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1659 num_sacks, prior_snd_una);
1660 if (found_dup_sack)
a1197f5a 1661 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1662
1663 /* Eliminate too old ACKs, but take into
1664 * account more or less fresh ones, they can
1665 * contain valid SACK info.
1666 */
1667 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1668 return 0;
1669