]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/tcp_input.c
fsl/fman_port: mark expected switch fall-throughs
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
60e2a778 80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 83
1da177e4
LT
84#define FLAG_DATA 0x01 /* Incoming frame contained data. */
85#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89#define FLAG_DATA_SACKED 0x20 /* New SACK. */
90#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 91#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 92#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 93#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 94#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 95#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 96#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 97#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 98#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 99#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
100
101#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 103#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
104#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
105
1da177e4 106#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 107#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 108
e662ca40
YC
109#define REXMIT_NONE 0 /* no loss recovery to do */
110#define REXMIT_LOST 1 /* retransmit packets marked lost */
111#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
112
0b9aefea
MRL
113static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 unsigned int len)
dcb17d22
MRL
115{
116 static bool __once __read_mostly;
117
118 if (!__once) {
119 struct net_device *dev;
120
121 __once = true;
122
123 rcu_read_lock();
124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
125 if (!dev || len >= dev->mtu)
126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
128 rcu_read_unlock();
129 }
130}
131
e905a9ed 132/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 133 * real world.
e905a9ed 134 */
056834d9 135static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 136{
463c84b9 137 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 138 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 139 unsigned int len;
1da177e4 140
e905a9ed 141 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
142
143 /* skb->len may jitter because of SACKs, even if peer
144 * sends good full-sized frames.
145 */
056834d9 146 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 147 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 tcp_sk(sk)->advmss);
0b9aefea
MRL
150 /* Account for possibly-removed options */
151 if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 MAX_TCP_OPTION_SPACE))
153 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
154 } else {
155 /* Otherwise, we make more careful check taking into account,
156 * that SACKs block is variable.
157 *
158 * "len" is invariant segment length, including TCP header.
159 */
9c70220b 160 len += skb->data - skb_transport_header(skb);
bee7ca9e 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
162 /* If PSH is not set, packet should be
163 * full sized, provided peer TCP is not badly broken.
164 * This observation (if it is correct 8)) allows
165 * to handle super-low mtu links fairly.
166 */
167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
169 /* Subtract also invariant (if peer is RFC compliant),
170 * tcp header plus fixed timestamp option length.
171 * Resulting "len" is MSS free of SACK jitter.
172 */
463c84b9
ACM
173 len -= tcp_sk(sk)->tcp_header_len;
174 icsk->icsk_ack.last_seg_size = len;
1da177e4 175 if (len == lss) {
463c84b9 176 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
177 return;
178 }
179 }
1ef9696c
AK
180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
183 }
184}
185
463c84b9 186static void tcp_incr_quickack(struct sock *sk)
1da177e4 187{
463c84b9 188 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 190
056834d9
IJ
191 if (quickacks == 0)
192 quickacks = 2;
463c84b9
ACM
193 if (quickacks > icsk->icsk_ack.quick)
194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
195}
196
1b9f4092 197static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 struct inet_connection_sock *icsk = inet_csk(sk);
200 tcp_incr_quickack(sk);
201 icsk->icsk_ack.pingpong = 0;
202 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
203}
204
205/* Send ACKs quickly, if "quick" count is not exhausted
206 * and the session is not interactive.
207 */
208
2251ae46 209static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 210{
463c84b9 211 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 212 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 213
2251ae46
JM
214 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
216}
217
735d3831 218static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 219{
056834d9 220 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
221 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222}
223
735d3831 224static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
225{
226 if (tcp_hdr(skb)->cwr)
227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228}
229
735d3831 230static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
231{
232 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233}
234
735d3831 235static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 236{
b82d1bb4 237 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 238 case INET_ECN_NOT_ECT:
bdf1ee5d 239 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
240 * and we already seen ECT on a previous segment,
241 * it is probably a retransmit.
242 */
243 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 244 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
245 break;
246 case INET_ECN_CE:
9890092e
FW
247 if (tcp_ca_needs_ecn((struct sock *)tp))
248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249
aae06bf5
ED
250 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 /* Better not delay acks, sender can have a very low cwnd */
252 tcp_enter_quickack_mode((struct sock *)tp);
253 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 }
9890092e
FW
255 tp->ecn_flags |= TCP_ECN_SEEN;
256 break;
7a269ffa 257 default:
9890092e
FW
258 if (tcp_ca_needs_ecn((struct sock *)tp))
259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 260 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 261 break;
bdf1ee5d
IJ
262 }
263}
264
735d3831
FW
265static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266{
267 if (tp->ecn_flags & TCP_ECN_OK)
268 __tcp_ecn_check_ce(tp, skb);
269}
270
271static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 272{
056834d9 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
274 tp->ecn_flags &= ~TCP_ECN_OK;
275}
276
735d3831 277static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 278{
056834d9 279 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
280 tp->ecn_flags &= ~TCP_ECN_OK;
281}
282
735d3831 283static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 284{
056834d9 285 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
286 return true;
287 return false;
bdf1ee5d
IJ
288}
289
1da177e4
LT
290/* Buffer size and advertised window tuning.
291 *
292 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293 */
294
6ae70532 295static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 296{
6ae70532 297 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 298 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
299 int sndmem, per_mss;
300 u32 nr_segs;
301
302 /* Worst case is non GSO/TSO : each frame consumes one skb
303 * and skb->head is kmalloced using power of two area of memory
304 */
305 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 MAX_TCP_HEADER +
307 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308
309 per_mss = roundup_pow_of_two(per_mss) +
310 SKB_DATA_ALIGN(sizeof(struct sk_buff));
311
312 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314
315 /* Fast Recovery (RFC 5681 3.2) :
316 * Cubic needs 1.7 factor, rounded to 2 to include
317 * extra cushion (application might react slowly to POLLOUT)
318 */
77bfc174
YC
319 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 sndmem *= nr_segs * per_mss;
1da177e4 321
06a59ecb 322 if (sk->sk_sndbuf < sndmem)
356d1833 323 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
324}
325
326/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327 *
328 * All tcp_full_space() is split to two parts: "network" buffer, allocated
329 * forward and advertised in receiver window (tp->rcv_wnd) and
330 * "application buffer", required to isolate scheduling/application
331 * latencies from network.
332 * window_clamp is maximal advertised window. It can be less than
333 * tcp_full_space(), in this case tcp_full_space() - window_clamp
334 * is reserved for "application" buffer. The less window_clamp is
335 * the smoother our behaviour from viewpoint of network, but the lower
336 * throughput and the higher sensitivity of the connection to losses. 8)
337 *
338 * rcv_ssthresh is more strict window_clamp used at "slow start"
339 * phase to predict further behaviour of this connection.
340 * It is used for two goals:
341 * - to enforce header prediction at sender, even when application
342 * requires some significant "application buffer". It is check #1.
343 * - to prevent pruning of receive queue because of misprediction
344 * of receiver window. Check #2.
345 *
346 * The scheme does not work when sender sends good segments opening
caa20d9a 347 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
348 * in common situations. Otherwise, we have to rely on queue collapsing.
349 */
350
351/* Slow part of check#2. */
9e412ba7 352static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 353{
9e412ba7 354 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 355 /* Optimize this! */
94f0893e 356 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 357 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
358
359 while (tp->rcv_ssthresh <= window) {
360 if (truesize <= skb->len)
463c84b9 361 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
362
363 truesize >>= 1;
364 window >>= 1;
365 }
366 return 0;
367}
368
cf533ea5 369static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 370{
9e412ba7
IJ
371 struct tcp_sock *tp = tcp_sk(sk);
372
1da177e4
LT
373 /* Check #1 */
374 if (tp->rcv_ssthresh < tp->window_clamp &&
375 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 376 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
377 int incr;
378
379 /* Check #2. Increase window, if skb with such overhead
380 * will fit to rcvbuf in future.
381 */
94f0893e 382 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 383 incr = 2 * tp->advmss;
1da177e4 384 else
9e412ba7 385 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
386
387 if (incr) {
4d846f02 388 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
389 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 tp->window_clamp);
463c84b9 391 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
392 }
393 }
394}
395
396/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
397static void tcp_fixup_rcvbuf(struct sock *sk)
398{
e9266a02 399 u32 mss = tcp_sk(sk)->advmss;
e9266a02 400 int rcvmem;
1da177e4 401
85f16525
YC
402 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 tcp_default_init_rwnd(mss);
e9266a02 404
b0983d3c
ED
405 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 * Allow enough cushion so that sender is not limited by our window
407 */
4540c0cf 408 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
b0983d3c
ED
409 rcvmem <<= 2;
410
e9266a02 411 if (sk->sk_rcvbuf < rcvmem)
356d1833 412 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1da177e4
LT
413}
414
caa20d9a 415/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
416 * established state.
417 */
10467163 418void tcp_init_buffer_space(struct sock *sk)
1da177e4 419{
0c12654a 420 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
421 struct tcp_sock *tp = tcp_sk(sk);
422 int maxwin;
423
424 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 tcp_fixup_rcvbuf(sk);
426 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 427 tcp_sndbuf_expand(sk);
1da177e4
LT
428
429 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 430 tcp_mstamp_refresh(tp);
645f4c6f 431 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 432 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
433
434 maxwin = tcp_full_space(sk);
435
436 if (tp->window_clamp >= maxwin) {
437 tp->window_clamp = maxwin;
438
0c12654a 439 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 440 tp->window_clamp = max(maxwin -
0c12654a 441 (maxwin >> tcp_app_win),
1da177e4
LT
442 4 * tp->advmss);
443 }
444
445 /* Force reservation of one segment. */
0c12654a 446 if (tcp_app_win &&
1da177e4
LT
447 tp->window_clamp > 2 * tp->advmss &&
448 tp->window_clamp + tp->advmss > maxwin)
449 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450
451 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 452 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
453}
454
1da177e4 455/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 456static void tcp_clamp_window(struct sock *sk)
1da177e4 457{
9e412ba7 458 struct tcp_sock *tp = tcp_sk(sk);
6687e988 459 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 460 struct net *net = sock_net(sk);
1da177e4 461
6687e988 462 icsk->icsk_ack.quick = 0;
1da177e4 463
356d1833 464 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 465 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 466 !tcp_under_memory_pressure(sk) &&
180d8cd9 467 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 468 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 469 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 470 }
326f36e9 471 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 472 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
473}
474
40efc6fa
SH
475/* Initialize RCV_MSS value.
476 * RCV_MSS is an our guess about MSS used by the peer.
477 * We haven't any direct information about the MSS.
478 * It's better to underestimate the RCV_MSS rather than overestimate.
479 * Overestimations make us ACKing less frequently than needed.
480 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
481 */
482void tcp_initialize_rcv_mss(struct sock *sk)
483{
cf533ea5 484 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
485 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
486
056834d9 487 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 488 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
489 hint = max(hint, TCP_MIN_MSS);
490
491 inet_csk(sk)->icsk_ack.rcv_mss = hint;
492}
4bc2f18b 493EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 494
1da177e4
LT
495/* Receiver "autotuning" code.
496 *
497 * The algorithm for RTT estimation w/o timestamps is based on
498 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 499 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
500 *
501 * More detail on this code can be found at
631dd1a8 502 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
503 * though this reference is out of date. A new paper
504 * is pending.
505 */
506static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
507{
645f4c6f 508 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
509 long m = sample;
510
511 if (m == 0)
512 m = 1;
513
514 if (new_sample != 0) {
515 /* If we sample in larger samples in the non-timestamp
516 * case, we could grossly overestimate the RTT especially
517 * with chatty applications or bulk transfer apps which
518 * are stalled on filesystem I/O.
519 *
520 * Also, since we are only going for a minimum in the
31f34269 521 * non-timestamp case, we do not smooth things out
caa20d9a 522 * else with timestamps disabled convergence takes too
1da177e4
LT
523 * long.
524 */
525 if (!win_dep) {
526 m -= (new_sample >> 3);
527 new_sample += m;
18a223e0
NC
528 } else {
529 m <<= 3;
530 if (m < new_sample)
531 new_sample = m;
532 }
1da177e4 533 } else {
caa20d9a 534 /* No previous measure. */
1da177e4
LT
535 new_sample = m << 3;
536 }
537
645f4c6f 538 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
539}
540
541static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
542{
645f4c6f
ED
543 u32 delta_us;
544
9a568de4 545 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
546 goto new_measure;
547 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
548 return;
9a568de4 549 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
645f4c6f 550 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
551
552new_measure:
553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 554 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
555}
556
056834d9
IJ
557static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 const struct sk_buff *skb)
1da177e4 559{
463c84b9 560 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 561
1da177e4
LT
562 if (tp->rx_opt.rcv_tsecr &&
563 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
567
568 tcp_rcv_rtt_update(tp, delta_us, 0);
569 }
1da177e4
LT
570}
571
572/*
573 * This function should be called every time data is copied to user space.
574 * It calculates the appropriate TCP receive buffer space.
575 */
576void tcp_rcv_space_adjust(struct sock *sk)
577{
578 struct tcp_sock *tp = tcp_sk(sk);
579 int time;
b0983d3c 580 int copied;
e905a9ed 581
9a568de4 582 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 583 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 584 return;
e905a9ed 585
b0983d3c
ED
586 /* Number of bytes copied to user in last RTT */
587 copied = tp->copied_seq - tp->rcvq_space.seq;
588 if (copied <= tp->rcvq_space.space)
589 goto new_measure;
590
591 /* A bit of theory :
592 * copied = bytes received in previous RTT, our base window
593 * To cope with packet losses, we need a 2x factor
594 * To cope with slow start, and sender growing its cwin by 100 %
595 * every RTT, we need a 4x factor, because the ACK we are sending
596 * now is for the next RTT, not the current one :
597 * <prev RTT . ><current RTT .. ><next RTT .... >
598 */
599
4540c0cf 600 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c
ED
601 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
602 int rcvwin, rcvmem, rcvbuf;
1da177e4 603
b0983d3c
ED
604 /* minimal window to cope with packet losses, assuming
605 * steady state. Add some cushion because of small variations.
606 */
607 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 608
b0983d3c
ED
609 /* If rate increased by 25%,
610 * assume slow start, rcvwin = 3 * copied
611 * If rate increased by 50%,
612 * assume sender can use 2x growth, rcvwin = 4 * copied
613 */
614 if (copied >=
615 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
616 if (copied >=
617 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
618 rcvwin <<= 1;
619 else
620 rcvwin += (rcvwin >> 1);
621 }
1da177e4 622
b0983d3c 623 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 624 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 625 rcvmem += 128;
1da177e4 626
356d1833
ED
627 rcvbuf = min(rcvwin / tp->advmss * rcvmem,
628 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
629 if (rcvbuf > sk->sk_rcvbuf) {
630 sk->sk_rcvbuf = rcvbuf;
1da177e4 631
b0983d3c
ED
632 /* Make the window clamp follow along. */
633 tp->window_clamp = rcvwin;
1da177e4
LT
634 }
635 }
b0983d3c 636 tp->rcvq_space.space = copied;
e905a9ed 637
1da177e4
LT
638new_measure:
639 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 640 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
641}
642
643/* There is something which you must keep in mind when you analyze the
644 * behavior of the tp->ato delayed ack timeout interval. When a
645 * connection starts up, we want to ack as quickly as possible. The
646 * problem is that "good" TCP's do slow start at the beginning of data
647 * transmission. The means that until we send the first few ACK's the
648 * sender will sit on his end and only queue most of his data, because
649 * he can only send snd_cwnd unacked packets at any given time. For
650 * each ACK we send, he increments snd_cwnd and transmits more of his
651 * queue. -DaveM
652 */
9e412ba7 653static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 654{
9e412ba7 655 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 656 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
657 u32 now;
658
463c84b9 659 inet_csk_schedule_ack(sk);
1da177e4 660
463c84b9 661 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
662
663 tcp_rcv_rtt_measure(tp);
e905a9ed 664
70eabf0e 665 now = tcp_jiffies32;
1da177e4 666
463c84b9 667 if (!icsk->icsk_ack.ato) {
1da177e4
LT
668 /* The _first_ data packet received, initialize
669 * delayed ACK engine.
670 */
463c84b9
ACM
671 tcp_incr_quickack(sk);
672 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 673 } else {
463c84b9 674 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 675
056834d9 676 if (m <= TCP_ATO_MIN / 2) {
1da177e4 677 /* The fastest case is the first. */
463c84b9
ACM
678 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
679 } else if (m < icsk->icsk_ack.ato) {
680 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
681 if (icsk->icsk_ack.ato > icsk->icsk_rto)
682 icsk->icsk_ack.ato = icsk->icsk_rto;
683 } else if (m > icsk->icsk_rto) {
caa20d9a 684 /* Too long gap. Apparently sender failed to
1da177e4
LT
685 * restart window, so that we send ACKs quickly.
686 */
463c84b9 687 tcp_incr_quickack(sk);
3ab224be 688 sk_mem_reclaim(sk);
1da177e4
LT
689 }
690 }
463c84b9 691 icsk->icsk_ack.lrcvtime = now;
1da177e4 692
735d3831 693 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
694
695 if (skb->len >= 128)
9e412ba7 696 tcp_grow_window(sk, skb);
1da177e4
LT
697}
698
1da177e4
LT
699/* Called to compute a smoothed rtt estimate. The data fed to this
700 * routine either comes from timestamps, or from segments that were
701 * known _not_ to have been retransmitted [see Karn/Partridge
702 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
703 * piece by Van Jacobson.
704 * NOTE: the next three routines used to be one big routine.
705 * To save cycles in the RFC 1323 implementation it was better to break
706 * it up into three procedures. -- erics
707 */
740b0f18 708static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 709{
6687e988 710 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
711 long m = mrtt_us; /* RTT */
712 u32 srtt = tp->srtt_us;
1da177e4 713
1da177e4
LT
714 /* The following amusing code comes from Jacobson's
715 * article in SIGCOMM '88. Note that rtt and mdev
716 * are scaled versions of rtt and mean deviation.
e905a9ed 717 * This is designed to be as fast as possible
1da177e4
LT
718 * m stands for "measurement".
719 *
720 * On a 1990 paper the rto value is changed to:
721 * RTO = rtt + 4 * mdev
722 *
723 * Funny. This algorithm seems to be very broken.
724 * These formulae increase RTO, when it should be decreased, increase
31f34269 725 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
726 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
727 * does not matter how to _calculate_ it. Seems, it was trap
728 * that VJ failed to avoid. 8)
729 */
4a5ab4e2
ED
730 if (srtt != 0) {
731 m -= (srtt >> 3); /* m is now error in rtt est */
732 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
733 if (m < 0) {
734 m = -m; /* m is now abs(error) */
740b0f18 735 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
736 /* This is similar to one of Eifel findings.
737 * Eifel blocks mdev updates when rtt decreases.
738 * This solution is a bit different: we use finer gain
739 * for mdev in this case (alpha*beta).
740 * Like Eifel it also prevents growth of rto,
741 * but also it limits too fast rto decreases,
742 * happening in pure Eifel.
743 */
744 if (m > 0)
745 m >>= 3;
746 } else {
740b0f18 747 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 748 }
740b0f18
ED
749 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
750 if (tp->mdev_us > tp->mdev_max_us) {
751 tp->mdev_max_us = tp->mdev_us;
752 if (tp->mdev_max_us > tp->rttvar_us)
753 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
754 }
755 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
756 if (tp->mdev_max_us < tp->rttvar_us)
757 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 758 tp->rtt_seq = tp->snd_nxt;
740b0f18 759 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
760 }
761 } else {
762 /* no previous measure. */
4a5ab4e2 763 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
764 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
765 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
766 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
767 tp->rtt_seq = tp->snd_nxt;
768 }
740b0f18 769 tp->srtt_us = max(1U, srtt);
1da177e4
LT
770}
771
95bd09eb
ED
772static void tcp_update_pacing_rate(struct sock *sk)
773{
774 const struct tcp_sock *tp = tcp_sk(sk);
775 u64 rate;
776
777 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
778 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
779
780 /* current rate is (cwnd * mss) / srtt
781 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
782 * In Congestion Avoidance phase, set it to 120 % the current rate.
783 *
784 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
785 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
786 * end of slow start and should slow down.
787 */
788 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 789 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 790 else
c26e91f8 791 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
792
793 rate *= max(tp->snd_cwnd, tp->packets_out);
794
740b0f18
ED
795 if (likely(tp->srtt_us))
796 do_div(rate, tp->srtt_us);
95bd09eb 797
ba537427
ED
798 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
799 * without any lock. We want to make sure compiler wont store
800 * intermediate values in this location.
801 */
802 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
803 sk->sk_max_pacing_rate);
95bd09eb
ED
804}
805
1da177e4
LT
806/* Calculate rto without backoff. This is the second half of Van Jacobson's
807 * routine referred to above.
808 */
f7e56a76 809static void tcp_set_rto(struct sock *sk)
1da177e4 810{
463c84b9 811 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
812 /* Old crap is replaced with new one. 8)
813 *
814 * More seriously:
815 * 1. If rtt variance happened to be less 50msec, it is hallucination.
816 * It cannot be less due to utterly erratic ACK generation made
817 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
818 * to do with delayed acks, because at cwnd>2 true delack timeout
819 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 820 * ACKs in some circumstances.
1da177e4 821 */
f1ecd5d9 822 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
823
824 /* 2. Fixups made earlier cannot be right.
825 * If we do not estimate RTO correctly without them,
826 * all the algo is pure shit and should be replaced
caa20d9a 827 * with correct one. It is exactly, which we pretend to do.
1da177e4 828 */
1da177e4 829
ee6aac59
IJ
830 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
831 * guarantees that rto is higher.
832 */
f1ecd5d9 833 tcp_bound_rto(sk);
1da177e4
LT
834}
835
cf533ea5 836__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
837{
838 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
839
22b71c8f 840 if (!cwnd)
442b9635 841 cwnd = TCP_INIT_CWND;
1da177e4
LT
842 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
843}
844
e60402d0
IJ
845/*
846 * Packet counting of FACK is based on in-order assumptions, therefore TCP
847 * disables it when reordering is detected
848 */
4aabd8ef 849void tcp_disable_fack(struct tcp_sock *tp)
e60402d0 850{
85cc391c
IJ
851 /* RFC3517 uses different metric in lost marker => reset on change */
852 if (tcp_is_fack(tp))
853 tp->lost_skb_hint = NULL;
ab56222a 854 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
e60402d0
IJ
855}
856
564262c1 857/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
858static void tcp_dsack_seen(struct tcp_sock *tp)
859{
ab56222a 860 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 861 tp->rack.dsack_seen = 1;
e60402d0
IJ
862}
863
6687e988
ACM
864static void tcp_update_reordering(struct sock *sk, const int metric,
865 const int ts)
1da177e4 866{
6687e988 867 struct tcp_sock *tp = tcp_sk(sk);
2d2517ee 868 int mib_idx;
40b215e5 869
6f5b24ee
SHY
870 if (WARN_ON_ONCE(metric < 0))
871 return;
872
2d2517ee 873 if (metric > tp->reordering) {
c6e21803 874 tp->reordering = min(sock_net(sk)->ipv4.sysctl_tcp_max_reordering, metric);
1da177e4 875
1da177e4 876#if FASTRETRANS_DEBUG > 1
91df42be
JP
877 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
878 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
879 tp->reordering,
880 tp->fackets_out,
881 tp->sacked_out,
882 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 883#endif
e60402d0 884 tcp_disable_fack(tp);
1da177e4 885 }
eed530b6 886
4f41b1c5 887 tp->rack.reord = 1;
2d2517ee
YC
888
889 /* This exciting event is worth to be remembered. 8) */
890 if (ts)
891 mib_idx = LINUX_MIB_TCPTSREORDER;
892 else if (tcp_is_reno(tp))
893 mib_idx = LINUX_MIB_TCPRENOREORDER;
894 else if (tcp_is_fack(tp))
895 mib_idx = LINUX_MIB_TCPFACKREORDER;
896 else
897 mib_idx = LINUX_MIB_TCPSACKREORDER;
898
899 NET_INC_STATS(sock_net(sk), mib_idx);
1da177e4
LT
900}
901
006f582c 902/* This must be called before lost_out is incremented */
c8c213f2
IJ
903static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
904{
51456b29 905 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
906 before(TCP_SKB_CB(skb)->seq,
907 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 908 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
909}
910
0682e690
NC
911/* Sum the number of packets on the wire we have marked as lost.
912 * There are two cases we care about here:
913 * a) Packet hasn't been marked lost (nor retransmitted),
914 * and this is the first loss.
915 * b) Packet has been marked both lost and retransmitted,
916 * and this means we think it was lost again.
917 */
918static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
919{
920 __u8 sacked = TCP_SKB_CB(skb)->sacked;
921
922 if (!(sacked & TCPCB_LOST) ||
923 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
924 tp->lost += tcp_skb_pcount(skb);
925}
926
41ea36e3
IJ
927static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
928{
929 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
930 tcp_verify_retransmit_hint(tp, skb);
931
932 tp->lost_out += tcp_skb_pcount(skb);
0682e690 933 tcp_sum_lost(tp, skb);
41ea36e3
IJ
934 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
935 }
936}
937
4f41b1c5 938void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
939{
940 tcp_verify_retransmit_hint(tp, skb);
941
0682e690 942 tcp_sum_lost(tp, skb);
006f582c
IJ
943 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
944 tp->lost_out += tcp_skb_pcount(skb);
945 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
946 }
947}
948
1da177e4
LT
949/* This procedure tags the retransmission queue when SACKs arrive.
950 *
951 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
952 * Packets in queue with these bits set are counted in variables
953 * sacked_out, retrans_out and lost_out, correspondingly.
954 *
955 * Valid combinations are:
956 * Tag InFlight Description
957 * 0 1 - orig segment is in flight.
958 * S 0 - nothing flies, orig reached receiver.
959 * L 0 - nothing flies, orig lost by net.
960 * R 2 - both orig and retransmit are in flight.
961 * L|R 1 - orig is lost, retransmit is in flight.
962 * S|R 1 - orig reached receiver, retrans is still in flight.
963 * (L|S|R is logically valid, it could occur when L|R is sacked,
964 * but it is equivalent to plain S and code short-curcuits it to S.
965 * L|S is logically invalid, it would mean -1 packet in flight 8))
966 *
967 * These 6 states form finite state machine, controlled by the following events:
968 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
969 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 970 * 3. Loss detection event of two flavors:
1da177e4
LT
971 * A. Scoreboard estimator decided the packet is lost.
972 * A'. Reno "three dupacks" marks head of queue lost.
974c1236
YC
973 * A''. Its FACK modification, head until snd.fack is lost.
974 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
975 * segment was retransmitted.
976 * 4. D-SACK added new rule: D-SACK changes any tag to S.
977 *
978 * It is pleasant to note, that state diagram turns out to be commutative,
979 * so that we are allowed not to be bothered by order of our actions,
980 * when multiple events arrive simultaneously. (see the function below).
981 *
982 * Reordering detection.
983 * --------------------
984 * Reordering metric is maximal distance, which a packet can be displaced
985 * in packet stream. With SACKs we can estimate it:
986 *
987 * 1. SACK fills old hole and the corresponding segment was not
988 * ever retransmitted -> reordering. Alas, we cannot use it
989 * when segment was retransmitted.
990 * 2. The last flaw is solved with D-SACK. D-SACK arrives
991 * for retransmitted and already SACKed segment -> reordering..
992 * Both of these heuristics are not used in Loss state, when we cannot
993 * account for retransmits accurately.
5b3c9882
IJ
994 *
995 * SACK block validation.
996 * ----------------------
997 *
998 * SACK block range validation checks that the received SACK block fits to
999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1000 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1001 * it means that the receiver is rather inconsistent with itself reporting
1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1003 * perfectly valid, however, in light of RFC2018 which explicitly states
1004 * that "SACK block MUST reflect the newest segment. Even if the newest
1005 * segment is going to be discarded ...", not that it looks very clever
1006 * in case of head skb. Due to potentional receiver driven attacks, we
1007 * choose to avoid immediate execution of a walk in write queue due to
1008 * reneging and defer head skb's loss recovery to standard loss recovery
1009 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1010 *
1011 * Implements also blockage to start_seq wrap-around. Problem lies in the
1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1013 * there's no guarantee that it will be before snd_nxt (n). The problem
1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1015 * wrap (s_w):
1016 *
1017 * <- outs wnd -> <- wrapzone ->
1018 * u e n u_w e_w s n_w
1019 * | | | | | | |
1020 * |<------------+------+----- TCP seqno space --------------+---------->|
1021 * ...-- <2^31 ->| |<--------...
1022 * ...---- >2^31 ------>| |<--------...
1023 *
1024 * Current code wouldn't be vulnerable but it's better still to discard such
1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1028 * equal to the ideal case (infinite seqno space without wrap caused issues).
1029 *
1030 * With D-SACK the lower bound is extended to cover sequence space below
1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1032 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1033 * for the normal SACK blocks, explained above). But there all simplicity
1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1035 * fully below undo_marker they do not affect behavior in anyway and can
1036 * therefore be safely ignored. In rare cases (which are more or less
1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1038 * fragmentation and packet reordering past skb's retransmission. To consider
1039 * them correctly, the acceptable range must be extended even more though
1040 * the exact amount is rather hard to quantify. However, tp->max_window can
1041 * be used as an exaggerated estimate.
1da177e4 1042 */
a2a385d6
ED
1043static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1044 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1045{
1046 /* Too far in future, or reversed (interpretation is ambiguous) */
1047 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1048 return false;
5b3c9882
IJ
1049
1050 /* Nasty start_seq wrap-around check (see comments above) */
1051 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1052 return false;
5b3c9882 1053
564262c1 1054 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1055 * start_seq == snd_una is non-sensical (see comments above)
1056 */
1057 if (after(start_seq, tp->snd_una))
a2a385d6 1058 return true;
5b3c9882
IJ
1059
1060 if (!is_dsack || !tp->undo_marker)
a2a385d6 1061 return false;
5b3c9882
IJ
1062
1063 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1064 if (after(end_seq, tp->snd_una))
a2a385d6 1065 return false;
5b3c9882
IJ
1066
1067 if (!before(start_seq, tp->undo_marker))
a2a385d6 1068 return true;
5b3c9882
IJ
1069
1070 /* Too old */
1071 if (!after(end_seq, tp->undo_marker))
a2a385d6 1072 return false;
5b3c9882
IJ
1073
1074 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1075 * start_seq < undo_marker and end_seq >= undo_marker.
1076 */
1077 return !before(start_seq, end_seq - tp->max_window);
1078}
1079
a2a385d6
ED
1080static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1081 struct tcp_sack_block_wire *sp, int num_sacks,
1082 u32 prior_snd_una)
d06e021d 1083{
1ed83465 1084 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1085 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1086 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1087 bool dup_sack = false;
d06e021d
DM
1088
1089 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1090 dup_sack = true;
e60402d0 1091 tcp_dsack_seen(tp);
c10d9310 1092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1093 } else if (num_sacks > 1) {
d3e2ce3b
HH
1094 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1095 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1096
1097 if (!after(end_seq_0, end_seq_1) &&
1098 !before(start_seq_0, start_seq_1)) {
a2a385d6 1099 dup_sack = true;
e60402d0 1100 tcp_dsack_seen(tp);
c10d9310 1101 NET_INC_STATS(sock_net(sk),
de0744af 1102 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1103 }
1104 }
1105
1106 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1107 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1108 !after(end_seq_0, prior_snd_una) &&
1109 after(end_seq_0, tp->undo_marker))
1110 tp->undo_retrans--;
1111
1112 return dup_sack;
1113}
1114
a1197f5a 1115struct tcp_sacktag_state {
740b0f18
ED
1116 int reord;
1117 int fack_count;
31231a8a
KKJ
1118 /* Timestamps for earliest and latest never-retransmitted segment
1119 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1120 * but congestion control should still get an accurate delay signal.
1121 */
9a568de4
ED
1122 u64 first_sackt;
1123 u64 last_sackt;
b9f64820 1124 struct rate_sample *rate;
740b0f18 1125 int flag;
75c119af 1126 unsigned int mss_now;
a1197f5a
IJ
1127};
1128
d1935942
IJ
1129/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1130 * the incoming SACK may not exactly match but we can find smaller MSS
1131 * aligned portion of it that matches. Therefore we might need to fragment
1132 * which may fail and creates some hassle (caller must handle error case
1133 * returns).
832d11c5
IJ
1134 *
1135 * FIXME: this could be merged to shift decision code
d1935942 1136 */
0f79efdc 1137static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1138 u32 start_seq, u32 end_seq)
d1935942 1139{
a2a385d6
ED
1140 int err;
1141 bool in_sack;
d1935942 1142 unsigned int pkt_len;
adb92db8 1143 unsigned int mss;
d1935942
IJ
1144
1145 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1146 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1147
1148 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1149 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1150 mss = tcp_skb_mss(skb);
d1935942
IJ
1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1152
adb92db8 1153 if (!in_sack) {
d1935942 1154 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1155 if (pkt_len < mss)
1156 pkt_len = mss;
1157 } else {
d1935942 1158 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1159 if (pkt_len < mss)
1160 return -EINVAL;
1161 }
1162
1163 /* Round if necessary so that SACKs cover only full MSSes
1164 * and/or the remaining small portion (if present)
1165 */
1166 if (pkt_len > mss) {
1167 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1168 if (!in_sack && new_len < pkt_len)
adb92db8 1169 new_len += mss;
adb92db8
IJ
1170 pkt_len = new_len;
1171 }
b451e5d2
YC
1172
1173 if (pkt_len >= skb->len && !in_sack)
1174 return 0;
1175
75c119af
ED
1176 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1177 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1178 if (err < 0)
1179 return err;
1180 }
1181
1182 return in_sack;
1183}
1184
cc9a672e
NC
1185/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1186static u8 tcp_sacktag_one(struct sock *sk,
1187 struct tcp_sacktag_state *state, u8 sacked,
1188 u32 start_seq, u32 end_seq,
740b0f18 1189 int dup_sack, int pcount,
9a568de4 1190 u64 xmit_time)
9e10c47c 1191{
6859d494 1192 struct tcp_sock *tp = tcp_sk(sk);
a1197f5a 1193 int fack_count = state->fack_count;
9e10c47c
IJ
1194
1195 /* Account D-SACK for retransmitted packet. */
1196 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1197 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1198 after(end_seq, tp->undo_marker))
9e10c47c 1199 tp->undo_retrans--;
ede9f3b1 1200 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1201 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1202 }
1203
1204 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1205 if (!after(end_seq, tp->snd_una))
a1197f5a 1206 return sacked;
9e10c47c
IJ
1207
1208 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1209 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1210
9e10c47c
IJ
1211 if (sacked & TCPCB_SACKED_RETRANS) {
1212 /* If the segment is not tagged as lost,
1213 * we do not clear RETRANS, believing
1214 * that retransmission is still in flight.
1215 */
1216 if (sacked & TCPCB_LOST) {
a1197f5a 1217 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1218 tp->lost_out -= pcount;
1219 tp->retrans_out -= pcount;
9e10c47c
IJ
1220 }
1221 } else {
1222 if (!(sacked & TCPCB_RETRANS)) {
1223 /* New sack for not retransmitted frame,
1224 * which was in hole. It is reordering.
1225 */
cc9a672e 1226 if (before(start_seq,
9e10c47c 1227 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1228 state->reord = min(fack_count,
1229 state->reord);
e33099f9
YC
1230 if (!after(end_seq, tp->high_seq))
1231 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1232 if (state->first_sackt == 0)
1233 state->first_sackt = xmit_time;
1234 state->last_sackt = xmit_time;
9e10c47c
IJ
1235 }
1236
1237 if (sacked & TCPCB_LOST) {
a1197f5a 1238 sacked &= ~TCPCB_LOST;
f58b22fd 1239 tp->lost_out -= pcount;
9e10c47c
IJ
1240 }
1241 }
1242
a1197f5a
IJ
1243 sacked |= TCPCB_SACKED_ACKED;
1244 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1245 tp->sacked_out += pcount;
ddf1af6f 1246 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1247
f58b22fd 1248 fack_count += pcount;
9e10c47c
IJ
1249
1250 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
00db4124 1251 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
cc9a672e 1252 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1253 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1254
1255 if (fack_count > tp->fackets_out)
1256 tp->fackets_out = fack_count;
9e10c47c
IJ
1257 }
1258
1259 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1260 * frames and clear it. undo_retrans is decreased above, L|R frames
1261 * are accounted above as well.
1262 */
a1197f5a
IJ
1263 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1264 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1265 tp->retrans_out -= pcount;
9e10c47c
IJ
1266 }
1267
a1197f5a 1268 return sacked;
9e10c47c
IJ
1269}
1270
daef52ba
NC
1271/* Shift newly-SACKed bytes from this skb to the immediately previous
1272 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1273 */
f3319816
ED
1274static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1275 struct sk_buff *skb,
a2a385d6
ED
1276 struct tcp_sacktag_state *state,
1277 unsigned int pcount, int shifted, int mss,
1278 bool dup_sack)
832d11c5
IJ
1279{
1280 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1281 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1282 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1283
1284 BUG_ON(!pcount);
1285
4c90d3b3
NC
1286 /* Adjust counters and hints for the newly sacked sequence
1287 * range but discard the return value since prev is already
1288 * marked. We must tag the range first because the seq
1289 * advancement below implicitly advances
1290 * tcp_highest_sack_seq() when skb is highest_sack.
1291 */
1292 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1293 start_seq, end_seq, dup_sack, pcount,
9a568de4 1294 skb->skb_mstamp);
b9f64820 1295 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1296
1297 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1298 tp->lost_cnt_hint += pcount;
1299
832d11c5
IJ
1300 TCP_SKB_CB(prev)->end_seq += shifted;
1301 TCP_SKB_CB(skb)->seq += shifted;
1302
cd7d8498
ED
1303 tcp_skb_pcount_add(prev, pcount);
1304 BUG_ON(tcp_skb_pcount(skb) < pcount);
1305 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1306
1307 /* When we're adding to gso_segs == 1, gso_size will be zero,
1308 * in theory this shouldn't be necessary but as long as DSACK
1309 * code can come after this skb later on it's better to keep
1310 * setting gso_size to something.
1311 */
f69ad292
ED
1312 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1313 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1314
1315 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1316 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1317 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1318
832d11c5
IJ
1319 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1320 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1321
832d11c5
IJ
1322 if (skb->len > 0) {
1323 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1324 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1325 return false;
832d11c5
IJ
1326 }
1327
1328 /* Whole SKB was eaten :-) */
1329
92ee76b6
IJ
1330 if (skb == tp->retransmit_skb_hint)
1331 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1332 if (skb == tp->lost_skb_hint) {
1333 tp->lost_skb_hint = prev;
1334 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1335 }
1336
5e8a402f 1337 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1338 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1339 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1340 TCP_SKB_CB(prev)->end_seq++;
1341
832d11c5
IJ
1342 if (skb == tcp_highest_sack(sk))
1343 tcp_advance_highest_sack(sk, skb);
1344
cfea5a68 1345 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1346 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1347 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1348
75c119af 1349 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1350
c10d9310 1351 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1352
a2a385d6 1353 return true;
832d11c5
IJ
1354}
1355
1356/* I wish gso_size would have a bit more sane initialization than
1357 * something-or-zero which complicates things
1358 */
cf533ea5 1359static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1360{
775ffabf 1361 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1362}
1363
1364/* Shifting pages past head area doesn't work */
cf533ea5 1365static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1366{
1367 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1368}
1369
1370/* Try collapsing SACK blocks spanning across multiple skbs to a single
1371 * skb.
1372 */
1373static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1374 struct tcp_sacktag_state *state,
832d11c5 1375 u32 start_seq, u32 end_seq,
a2a385d6 1376 bool dup_sack)
832d11c5
IJ
1377{
1378 struct tcp_sock *tp = tcp_sk(sk);
1379 struct sk_buff *prev;
1380 int mss;
1381 int pcount = 0;
1382 int len;
1383 int in_sack;
1384
1385 if (!sk_can_gso(sk))
1386 goto fallback;
1387
1388 /* Normally R but no L won't result in plain S */
1389 if (!dup_sack &&
9969ca5f 1390 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1391 goto fallback;
1392 if (!skb_can_shift(skb))
1393 goto fallback;
1394 /* This frame is about to be dropped (was ACKed). */
1395 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1396 goto fallback;
1397
1398 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1399 prev = skb_rb_prev(skb);
1400 if (!prev)
832d11c5 1401 goto fallback;
832d11c5
IJ
1402
1403 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1404 goto fallback;
1405
a643b5d4
MKL
1406 if (!tcp_skb_can_collapse_to(prev))
1407 goto fallback;
1408
832d11c5
IJ
1409 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1410 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1411
1412 if (in_sack) {
1413 len = skb->len;
1414 pcount = tcp_skb_pcount(skb);
775ffabf 1415 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1416
1417 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1418 * drop this restriction as unnecessary
1419 */
775ffabf 1420 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1421 goto fallback;
1422 } else {
1423 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1424 goto noop;
1425 /* CHECKME: This is non-MSS split case only?, this will
1426 * cause skipped skbs due to advancing loop btw, original
1427 * has that feature too
1428 */
1429 if (tcp_skb_pcount(skb) <= 1)
1430 goto noop;
1431
1432 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1433 if (!in_sack) {
1434 /* TODO: head merge to next could be attempted here
1435 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1436 * though it might not be worth of the additional hassle
1437 *
1438 * ...we can probably just fallback to what was done
1439 * previously. We could try merging non-SACKed ones
1440 * as well but it probably isn't going to buy off
1441 * because later SACKs might again split them, and
1442 * it would make skb timestamp tracking considerably
1443 * harder problem.
1444 */
1445 goto fallback;
1446 }
1447
1448 len = end_seq - TCP_SKB_CB(skb)->seq;
1449 BUG_ON(len < 0);
1450 BUG_ON(len > skb->len);
1451
1452 /* MSS boundaries should be honoured or else pcount will
1453 * severely break even though it makes things bit trickier.
1454 * Optimize common case to avoid most of the divides
1455 */
1456 mss = tcp_skb_mss(skb);
1457
1458 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1459 * drop this restriction as unnecessary
1460 */
775ffabf 1461 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1462 goto fallback;
1463
1464 if (len == mss) {
1465 pcount = 1;
1466 } else if (len < mss) {
1467 goto noop;
1468 } else {
1469 pcount = len / mss;
1470 len = pcount * mss;
1471 }
1472 }
1473
4648dc97
NC
1474 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1475 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1476 goto fallback;
1477
832d11c5
IJ
1478 if (!skb_shift(prev, skb, len))
1479 goto fallback;
f3319816 1480 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1481 goto out;
1482
1483 /* Hole filled allows collapsing with the next as well, this is very
1484 * useful when hole on every nth skb pattern happens
1485 */
75c119af
ED
1486 skb = skb_rb_next(prev);
1487 if (!skb)
832d11c5 1488 goto out;
832d11c5 1489
f0bc52f3 1490 if (!skb_can_shift(skb) ||
f0bc52f3 1491 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1492 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1493 goto out;
1494
1495 len = skb->len;
1496 if (skb_shift(prev, skb, len)) {
1497 pcount += tcp_skb_pcount(skb);
f3319816
ED
1498 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1499 len, mss, 0);
832d11c5
IJ
1500 }
1501
1502out:
a1197f5a 1503 state->fack_count += pcount;
832d11c5
IJ
1504 return prev;
1505
1506noop:
1507 return skb;
1508
1509fallback:
c10d9310 1510 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1511 return NULL;
1512}
1513
68f8353b
IJ
1514static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1515 struct tcp_sack_block *next_dup,
a1197f5a 1516 struct tcp_sacktag_state *state,
68f8353b 1517 u32 start_seq, u32 end_seq,
a2a385d6 1518 bool dup_sack_in)
68f8353b 1519{
832d11c5
IJ
1520 struct tcp_sock *tp = tcp_sk(sk);
1521 struct sk_buff *tmp;
1522
75c119af 1523 skb_rbtree_walk_from(skb) {
68f8353b 1524 int in_sack = 0;
a2a385d6 1525 bool dup_sack = dup_sack_in;
68f8353b 1526
68f8353b
IJ
1527 /* queue is in-order => we can short-circuit the walk early */
1528 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1529 break;
1530
00db4124 1531 if (next_dup &&
68f8353b
IJ
1532 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1533 in_sack = tcp_match_skb_to_sack(sk, skb,
1534 next_dup->start_seq,
1535 next_dup->end_seq);
1536 if (in_sack > 0)
a2a385d6 1537 dup_sack = true;
68f8353b
IJ
1538 }
1539
832d11c5
IJ
1540 /* skb reference here is a bit tricky to get right, since
1541 * shifting can eat and free both this skb and the next,
1542 * so not even _safe variant of the loop is enough.
1543 */
1544 if (in_sack <= 0) {
a1197f5a
IJ
1545 tmp = tcp_shift_skb_data(sk, skb, state,
1546 start_seq, end_seq, dup_sack);
00db4124 1547 if (tmp) {
832d11c5
IJ
1548 if (tmp != skb) {
1549 skb = tmp;
1550 continue;
1551 }
1552
1553 in_sack = 0;
1554 } else {
1555 in_sack = tcp_match_skb_to_sack(sk, skb,
1556 start_seq,
1557 end_seq);
1558 }
1559 }
1560
68f8353b
IJ
1561 if (unlikely(in_sack < 0))
1562 break;
1563
832d11c5 1564 if (in_sack) {
cc9a672e
NC
1565 TCP_SKB_CB(skb)->sacked =
1566 tcp_sacktag_one(sk,
1567 state,
1568 TCP_SKB_CB(skb)->sacked,
1569 TCP_SKB_CB(skb)->seq,
1570 TCP_SKB_CB(skb)->end_seq,
1571 dup_sack,
59c9af42 1572 tcp_skb_pcount(skb),
9a568de4 1573 skb->skb_mstamp);
b9f64820 1574 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1575 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1576 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1577
832d11c5
IJ
1578 if (!before(TCP_SKB_CB(skb)->seq,
1579 tcp_highest_sack_seq(tp)))
1580 tcp_advance_highest_sack(sk, skb);
1581 }
1582
a1197f5a 1583 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1584 }
1585 return skb;
1586}
1587
75c119af
ED
1588static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1589 struct tcp_sacktag_state *state,
1590 u32 seq)
1591{
1592 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1593 struct sk_buff *skb;
1594 int unack_bytes;
1595
1596 while (*p) {
1597 parent = *p;
1598 skb = rb_to_skb(parent);
1599 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1600 p = &parent->rb_left;
1601 continue;
1602 }
1603 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1604 p = &parent->rb_right;
1605 continue;
1606 }
1607
1608 state->fack_count = 0;
1609 unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una;
1610 if (state->mss_now && unack_bytes > 0)
1611 state->fack_count = unack_bytes / state->mss_now;
1612
1613 return skb;
1614 }
1615 return NULL;
1616}
1617
68f8353b 1618static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1619 struct tcp_sacktag_state *state,
1620 u32 skip_to_seq)
68f8353b 1621{
75c119af
ED
1622 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1623 return skb;
d152a7d8 1624
75c119af 1625 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1626}
1627
1628static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1629 struct sock *sk,
1630 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1631 struct tcp_sacktag_state *state,
1632 u32 skip_to_seq)
68f8353b 1633{
51456b29 1634 if (!next_dup)
68f8353b
IJ
1635 return skb;
1636
1637 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1638 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1639 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1640 next_dup->start_seq, next_dup->end_seq,
1641 1);
68f8353b
IJ
1642 }
1643
1644 return skb;
1645}
1646
cf533ea5 1647static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1648{
1649 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1650}
1651
1da177e4 1652static int
cf533ea5 1653tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1654 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1655{
1656 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1657 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1658 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1659 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1660 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1661 struct tcp_sack_block *cache;
1662 struct sk_buff *skb;
4389dded 1663 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1664 int used_sacks;
a2a385d6 1665 bool found_dup_sack = false;
68f8353b 1666 int i, j;
fda03fbb 1667 int first_sack_index;
1da177e4 1668
196da974
KKJ
1669 state->flag = 0;
1670 state->reord = tp->packets_out;
a1197f5a 1671
d738cd8f 1672 if (!tp->sacked_out) {
de83c058
IJ
1673 if (WARN_ON(tp->fackets_out))
1674 tp->fackets_out = 0;
6859d494 1675 tcp_highest_sack_reset(sk);
d738cd8f 1676 }
1da177e4 1677
1ed83465 1678 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1679 num_sacks, prior_snd_una);
b9f64820 1680 if (found_dup_sack) {
196da974 1681 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1682 tp->delivered++; /* A spurious retransmission is delivered */
1683 }
6f74651a
BE
1684
1685 /* Eliminate too old ACKs, but take into
1686 * account more or less fresh ones, they can
1687 * contain valid SACK info.
1688 */
1689 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1690 return 0;
1691