]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/ipv4/tcp_input.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
60e2a778 80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 83
1da177e4
LT
84#define FLAG_DATA 0x01 /* Incoming frame contained data. */
85#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89#define FLAG_DATA_SACKED 0x20 /* New SACK. */
90#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 91#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 92#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 93#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 94#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 95#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 96#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 97#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 98#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 99#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
100
101#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 103#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
104#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
105
1da177e4 106#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 107#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 108
e662ca40
YC
109#define REXMIT_NONE 0 /* no loss recovery to do */
110#define REXMIT_LOST 1 /* retransmit packets marked lost */
111#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
112
0b9aefea
MRL
113static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 unsigned int len)
dcb17d22
MRL
115{
116 static bool __once __read_mostly;
117
118 if (!__once) {
119 struct net_device *dev;
120
121 __once = true;
122
123 rcu_read_lock();
124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
125 if (!dev || len >= dev->mtu)
126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
128 rcu_read_unlock();
129 }
130}
131
e905a9ed 132/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 133 * real world.
e905a9ed 134 */
056834d9 135static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 136{
463c84b9 137 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 138 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 139 unsigned int len;
1da177e4 140
e905a9ed 141 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
142
143 /* skb->len may jitter because of SACKs, even if peer
144 * sends good full-sized frames.
145 */
056834d9 146 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 147 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 tcp_sk(sk)->advmss);
0b9aefea
MRL
150 /* Account for possibly-removed options */
151 if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 MAX_TCP_OPTION_SPACE))
153 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
154 } else {
155 /* Otherwise, we make more careful check taking into account,
156 * that SACKs block is variable.
157 *
158 * "len" is invariant segment length, including TCP header.
159 */
9c70220b 160 len += skb->data - skb_transport_header(skb);
bee7ca9e 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
162 /* If PSH is not set, packet should be
163 * full sized, provided peer TCP is not badly broken.
164 * This observation (if it is correct 8)) allows
165 * to handle super-low mtu links fairly.
166 */
167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
169 /* Subtract also invariant (if peer is RFC compliant),
170 * tcp header plus fixed timestamp option length.
171 * Resulting "len" is MSS free of SACK jitter.
172 */
463c84b9
ACM
173 len -= tcp_sk(sk)->tcp_header_len;
174 icsk->icsk_ack.last_seg_size = len;
1da177e4 175 if (len == lss) {
463c84b9 176 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
177 return;
178 }
179 }
1ef9696c
AK
180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
183 }
184}
185
caf34993 186static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
1da177e4 187{
463c84b9 188 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 190
056834d9
IJ
191 if (quickacks == 0)
192 quickacks = 2;
caf34993 193 quickacks = min(quickacks, max_quickacks);
463c84b9 194 if (quickacks > icsk->icsk_ack.quick)
caf34993 195 icsk->icsk_ack.quick = quickacks;
1da177e4
LT
196}
197
caf34993 198void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
1da177e4 199{
463c84b9 200 struct inet_connection_sock *icsk = inet_csk(sk);
caf34993
ED
201
202 tcp_incr_quickack(sk, max_quickacks);
463c84b9
ACM
203 icsk->icsk_ack.pingpong = 0;
204 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 205}
8a2ff6a5 206EXPORT_SYMBOL(tcp_enter_quickack_mode);
1da177e4
LT
207
208/* Send ACKs quickly, if "quick" count is not exhausted
209 * and the session is not interactive.
210 */
211
2251ae46 212static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 213{
463c84b9 214 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 215 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 216
2251ae46
JM
217 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
218 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
219}
220
735d3831 221static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 222{
056834d9 223 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
224 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
225}
226
735d3831 227static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 228{
a1860f00 229 if (tcp_hdr(skb)->cwr) {
bdf1ee5d 230 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
a1860f00
LB
231
232 /* If the sender is telling us it has entered CWR, then its
233 * cwnd may be very low (even just 1 packet), so we should ACK
234 * immediately.
235 */
236 tcp_enter_quickack_mode((struct sock *)tp, 2);
237 }
bdf1ee5d
IJ
238}
239
735d3831 240static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d 241{
63daadc5 242 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
bdf1ee5d
IJ
243}
244
0215eb4f 245static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 246{
0215eb4f
YS
247 struct tcp_sock *tp = tcp_sk(sk);
248
b82d1bb4 249 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 250 case INET_ECN_NOT_ECT:
bdf1ee5d 251 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
252 * and we already seen ECT on a previous segment,
253 * it is probably a retransmit.
254 */
255 if (tp->ecn_flags & TCP_ECN_SEEN)
9626410b 256 tcp_enter_quickack_mode(sk, 2);
7a269ffa
ED
257 break;
258 case INET_ECN_CE:
0215eb4f
YS
259 if (tcp_ca_needs_ecn(sk))
260 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
9890092e 261
aae06bf5
ED
262 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
263 /* Better not delay acks, sender can have a very low cwnd */
9626410b 264 tcp_enter_quickack_mode(sk, 2);
aae06bf5
ED
265 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
266 }
9890092e
FW
267 tp->ecn_flags |= TCP_ECN_SEEN;
268 break;
7a269ffa 269 default:
0215eb4f
YS
270 if (tcp_ca_needs_ecn(sk))
271 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
7a269ffa 272 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 273 break;
bdf1ee5d
IJ
274 }
275}
276
0215eb4f 277static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
735d3831 278{
0215eb4f
YS
279 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
280 __tcp_ecn_check_ce(sk, skb);
735d3831
FW
281}
282
283static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 284{
056834d9 285 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
286 tp->ecn_flags &= ~TCP_ECN_OK;
287}
288
735d3831 289static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 290{
056834d9 291 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
292 tp->ecn_flags &= ~TCP_ECN_OK;
293}
294
735d3831 295static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 296{
056834d9 297 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
298 return true;
299 return false;
bdf1ee5d
IJ
300}
301
1da177e4
LT
302/* Buffer size and advertised window tuning.
303 *
304 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
305 */
306
6ae70532 307static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 308{
6ae70532 309 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 310 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
311 int sndmem, per_mss;
312 u32 nr_segs;
313
314 /* Worst case is non GSO/TSO : each frame consumes one skb
315 * and skb->head is kmalloced using power of two area of memory
316 */
317 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
318 MAX_TCP_HEADER +
319 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
320
321 per_mss = roundup_pow_of_two(per_mss) +
322 SKB_DATA_ALIGN(sizeof(struct sk_buff));
323
324 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
325 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
326
327 /* Fast Recovery (RFC 5681 3.2) :
328 * Cubic needs 1.7 factor, rounded to 2 to include
329 * extra cushion (application might react slowly to POLLOUT)
330 */
77bfc174
YC
331 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
332 sndmem *= nr_segs * per_mss;
1da177e4 333
06a59ecb 334 if (sk->sk_sndbuf < sndmem)
356d1833 335 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
336}
337
338/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
339 *
340 * All tcp_full_space() is split to two parts: "network" buffer, allocated
341 * forward and advertised in receiver window (tp->rcv_wnd) and
342 * "application buffer", required to isolate scheduling/application
343 * latencies from network.
344 * window_clamp is maximal advertised window. It can be less than
345 * tcp_full_space(), in this case tcp_full_space() - window_clamp
346 * is reserved for "application" buffer. The less window_clamp is
347 * the smoother our behaviour from viewpoint of network, but the lower
348 * throughput and the higher sensitivity of the connection to losses. 8)
349 *
350 * rcv_ssthresh is more strict window_clamp used at "slow start"
351 * phase to predict further behaviour of this connection.
352 * It is used for two goals:
353 * - to enforce header prediction at sender, even when application
354 * requires some significant "application buffer". It is check #1.
355 * - to prevent pruning of receive queue because of misprediction
356 * of receiver window. Check #2.
357 *
358 * The scheme does not work when sender sends good segments opening
caa20d9a 359 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
360 * in common situations. Otherwise, we have to rely on queue collapsing.
361 */
362
363/* Slow part of check#2. */
9e412ba7 364static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 365{
9e412ba7 366 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 367 /* Optimize this! */
94f0893e 368 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 369 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
370
371 while (tp->rcv_ssthresh <= window) {
372 if (truesize <= skb->len)
463c84b9 373 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
374
375 truesize >>= 1;
376 window >>= 1;
377 }
378 return 0;
379}
380
cf533ea5 381static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 382{
9e412ba7 383 struct tcp_sock *tp = tcp_sk(sk);
a82fc1d3
ED
384 int room;
385
386 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
9e412ba7 387
1da177e4 388 /* Check #1 */
a82fc1d3 389 if (room > 0 && !tcp_under_memory_pressure(sk)) {
1da177e4
LT
390 int incr;
391
392 /* Check #2. Increase window, if skb with such overhead
393 * will fit to rcvbuf in future.
394 */
94f0893e 395 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 396 incr = 2 * tp->advmss;
1da177e4 397 else
9e412ba7 398 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
399
400 if (incr) {
4d846f02 401 incr = max_t(int, incr, 2 * skb->len);
a82fc1d3 402 tp->rcv_ssthresh += min(room, incr);
463c84b9 403 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
404 }
405 }
406}
407
3ed06b27 408/* 3. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
409 * established state.
410 */
10467163 411void tcp_init_buffer_space(struct sock *sk)
1da177e4 412{
0c12654a 413 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
414 struct tcp_sock *tp = tcp_sk(sk);
415 int maxwin;
416
1da177e4 417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 418 tcp_sndbuf_expand(sk);
1da177e4 419
65d5d097 420 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
9a568de4 421 tcp_mstamp_refresh(tp);
645f4c6f 422 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 423 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
424
425 maxwin = tcp_full_space(sk);
426
427 if (tp->window_clamp >= maxwin) {
428 tp->window_clamp = maxwin;
429
0c12654a 430 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 431 tp->window_clamp = max(maxwin -
0c12654a 432 (maxwin >> tcp_app_win),
1da177e4
LT
433 4 * tp->advmss);
434 }
435
436 /* Force reservation of one segment. */
0c12654a 437 if (tcp_app_win &&
1da177e4
LT
438 tp->window_clamp > 2 * tp->advmss &&
439 tp->window_clamp + tp->advmss > maxwin)
440 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
441
442 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 443 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
444}
445
3ed06b27 446/* 4. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 447static void tcp_clamp_window(struct sock *sk)
1da177e4 448{
9e412ba7 449 struct tcp_sock *tp = tcp_sk(sk);
6687e988 450 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 451 struct net *net = sock_net(sk);
1da177e4 452
6687e988 453 icsk->icsk_ack.quick = 0;
1da177e4 454
356d1833 455 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 456 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 457 !tcp_under_memory_pressure(sk) &&
180d8cd9 458 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 459 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 460 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 461 }
326f36e9 462 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 463 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
464}
465
40efc6fa
SH
466/* Initialize RCV_MSS value.
467 * RCV_MSS is an our guess about MSS used by the peer.
468 * We haven't any direct information about the MSS.
469 * It's better to underestimate the RCV_MSS rather than overestimate.
470 * Overestimations make us ACKing less frequently than needed.
471 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
472 */
473void tcp_initialize_rcv_mss(struct sock *sk)
474{
cf533ea5 475 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
476 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
477
056834d9 478 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 479 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
480 hint = max(hint, TCP_MIN_MSS);
481
482 inet_csk(sk)->icsk_ack.rcv_mss = hint;
483}
4bc2f18b 484EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 485
1da177e4
LT
486/* Receiver "autotuning" code.
487 *
488 * The algorithm for RTT estimation w/o timestamps is based on
489 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 490 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
491 *
492 * More detail on this code can be found at
631dd1a8 493 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
494 * though this reference is out of date. A new paper
495 * is pending.
496 */
497static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
498{
645f4c6f 499 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
500 long m = sample;
501
1da177e4
LT
502 if (new_sample != 0) {
503 /* If we sample in larger samples in the non-timestamp
504 * case, we could grossly overestimate the RTT especially
505 * with chatty applications or bulk transfer apps which
506 * are stalled on filesystem I/O.
507 *
508 * Also, since we are only going for a minimum in the
31f34269 509 * non-timestamp case, we do not smooth things out
caa20d9a 510 * else with timestamps disabled convergence takes too
1da177e4
LT
511 * long.
512 */
513 if (!win_dep) {
514 m -= (new_sample >> 3);
515 new_sample += m;
18a223e0
NC
516 } else {
517 m <<= 3;
518 if (m < new_sample)
519 new_sample = m;
520 }
1da177e4 521 } else {
caa20d9a 522 /* No previous measure. */
1da177e4
LT
523 new_sample = m << 3;
524 }
525
645f4c6f 526 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
527}
528
529static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
530{
645f4c6f
ED
531 u32 delta_us;
532
9a568de4 533 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
534 goto new_measure;
535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 return;
9a568de4 537 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
538 if (!delta_us)
539 delta_us = 1;
645f4c6f 540 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
541
542new_measure:
543 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 544 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
545}
546
056834d9
IJ
547static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
548 const struct sk_buff *skb)
1da177e4 549{
463c84b9 550 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 551
1da177e4
LT
552 if (tp->rx_opt.rcv_tsecr &&
553 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
554 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
555 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 556 u32 delta_us;
9a568de4 557
9ee11bd0
WW
558 if (!delta)
559 delta = 1;
560 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
9a568de4
ED
561 tcp_rcv_rtt_update(tp, delta_us, 0);
562 }
1da177e4
LT
563}
564
565/*
566 * This function should be called every time data is copied to user space.
567 * It calculates the appropriate TCP receive buffer space.
568 */
569void tcp_rcv_space_adjust(struct sock *sk)
570{
571 struct tcp_sock *tp = tcp_sk(sk);
ee07c64f 572 u32 copied;
1da177e4 573 int time;
e905a9ed 574
86323850 575 tcp_mstamp_refresh(tp);
9a568de4 576 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 577 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 578 return;
e905a9ed 579
b0983d3c
ED
580 /* Number of bytes copied to user in last RTT */
581 copied = tp->copied_seq - tp->rcvq_space.seq;
582 if (copied <= tp->rcvq_space.space)
583 goto new_measure;
584
585 /* A bit of theory :
586 * copied = bytes received in previous RTT, our base window
587 * To cope with packet losses, we need a 2x factor
588 * To cope with slow start, and sender growing its cwin by 100 %
589 * every RTT, we need a 4x factor, because the ACK we are sending
590 * now is for the next RTT, not the current one :
591 * <prev RTT . ><current RTT .. ><next RTT .... >
592 */
593
4540c0cf 594 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c 595 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
ee07c64f
ED
596 int rcvmem, rcvbuf;
597 u64 rcvwin;
1da177e4 598
b0983d3c
ED
599 /* minimal window to cope with packet losses, assuming
600 * steady state. Add some cushion because of small variations.
601 */
ee07c64f 602 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 603
b0983d3c
ED
604 /* If rate increased by 25%,
605 * assume slow start, rcvwin = 3 * copied
606 * If rate increased by 50%,
607 * assume sender can use 2x growth, rcvwin = 4 * copied
608 */
609 if (copied >=
610 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
611 if (copied >=
612 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
613 rcvwin <<= 1;
614 else
615 rcvwin += (rcvwin >> 1);
616 }
1da177e4 617
b0983d3c 618 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 619 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 620 rcvmem += 128;
1da177e4 621
ee07c64f
ED
622 do_div(rcvwin, tp->advmss);
623 rcvbuf = min_t(u64, rcvwin * rcvmem,
356d1833 624 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
625 if (rcvbuf > sk->sk_rcvbuf) {
626 sk->sk_rcvbuf = rcvbuf;
1da177e4 627
b0983d3c 628 /* Make the window clamp follow along. */
82d42ab7 629 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
630 }
631 }
b0983d3c 632 tp->rcvq_space.space = copied;
e905a9ed 633
1da177e4
LT
634new_measure:
635 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 636 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
637}
638
639/* There is something which you must keep in mind when you analyze the
640 * behavior of the tp->ato delayed ack timeout interval. When a
641 * connection starts up, we want to ack as quickly as possible. The
642 * problem is that "good" TCP's do slow start at the beginning of data
643 * transmission. The means that until we send the first few ACK's the
644 * sender will sit on his end and only queue most of his data, because
645 * he can only send snd_cwnd unacked packets at any given time. For
646 * each ACK we send, he increments snd_cwnd and transmits more of his
647 * queue. -DaveM
648 */
9e412ba7 649static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 650{
9e412ba7 651 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 652 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
653 u32 now;
654
463c84b9 655 inet_csk_schedule_ack(sk);
1da177e4 656
463c84b9 657 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
658
659 tcp_rcv_rtt_measure(tp);
e905a9ed 660
70eabf0e 661 now = tcp_jiffies32;
1da177e4 662
463c84b9 663 if (!icsk->icsk_ack.ato) {
1da177e4
LT
664 /* The _first_ data packet received, initialize
665 * delayed ACK engine.
666 */
caf34993 667 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
463c84b9 668 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 669 } else {
463c84b9 670 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 671
056834d9 672 if (m <= TCP_ATO_MIN / 2) {
1da177e4 673 /* The fastest case is the first. */
463c84b9
ACM
674 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
675 } else if (m < icsk->icsk_ack.ato) {
676 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
677 if (icsk->icsk_ack.ato > icsk->icsk_rto)
678 icsk->icsk_ack.ato = icsk->icsk_rto;
679 } else if (m > icsk->icsk_rto) {
caa20d9a 680 /* Too long gap. Apparently sender failed to
1da177e4
LT
681 * restart window, so that we send ACKs quickly.
682 */
caf34993 683 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
3ab224be 684 sk_mem_reclaim(sk);
1da177e4
LT
685 }
686 }
463c84b9 687 icsk->icsk_ack.lrcvtime = now;
1da177e4 688
0215eb4f 689 tcp_ecn_check_ce(sk, skb);
1da177e4
LT
690
691 if (skb->len >= 128)
9e412ba7 692 tcp_grow_window(sk, skb);
1da177e4
LT
693}
694
1da177e4
LT
695/* Called to compute a smoothed rtt estimate. The data fed to this
696 * routine either comes from timestamps, or from segments that were
697 * known _not_ to have been retransmitted [see Karn/Partridge
698 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
699 * piece by Van Jacobson.
700 * NOTE: the next three routines used to be one big routine.
701 * To save cycles in the RFC 1323 implementation it was better to break
702 * it up into three procedures. -- erics
703 */
740b0f18 704static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 705{
6687e988 706 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
707 long m = mrtt_us; /* RTT */
708 u32 srtt = tp->srtt_us;
1da177e4 709
1da177e4
LT
710 /* The following amusing code comes from Jacobson's
711 * article in SIGCOMM '88. Note that rtt and mdev
712 * are scaled versions of rtt and mean deviation.
e905a9ed 713 * This is designed to be as fast as possible
1da177e4
LT
714 * m stands for "measurement".
715 *
716 * On a 1990 paper the rto value is changed to:
717 * RTO = rtt + 4 * mdev
718 *
719 * Funny. This algorithm seems to be very broken.
720 * These formulae increase RTO, when it should be decreased, increase
31f34269 721 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
722 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
723 * does not matter how to _calculate_ it. Seems, it was trap
724 * that VJ failed to avoid. 8)
725 */
4a5ab4e2
ED
726 if (srtt != 0) {
727 m -= (srtt >> 3); /* m is now error in rtt est */
728 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
729 if (m < 0) {
730 m = -m; /* m is now abs(error) */
740b0f18 731 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
732 /* This is similar to one of Eifel findings.
733 * Eifel blocks mdev updates when rtt decreases.
734 * This solution is a bit different: we use finer gain
735 * for mdev in this case (alpha*beta).
736 * Like Eifel it also prevents growth of rto,
737 * but also it limits too fast rto decreases,
738 * happening in pure Eifel.
739 */
740 if (m > 0)
741 m >>= 3;
742 } else {
740b0f18 743 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 744 }
740b0f18
ED
745 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
746 if (tp->mdev_us > tp->mdev_max_us) {
747 tp->mdev_max_us = tp->mdev_us;
748 if (tp->mdev_max_us > tp->rttvar_us)
749 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
750 }
751 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
752 if (tp->mdev_max_us < tp->rttvar_us)
753 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 754 tp->rtt_seq = tp->snd_nxt;
740b0f18 755 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
756 }
757 } else {
758 /* no previous measure. */
4a5ab4e2 759 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
760 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
761 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
762 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
763 tp->rtt_seq = tp->snd_nxt;
764 }
740b0f18 765 tp->srtt_us = max(1U, srtt);
1da177e4
LT
766}
767
95bd09eb
ED
768static void tcp_update_pacing_rate(struct sock *sk)
769{
770 const struct tcp_sock *tp = tcp_sk(sk);
771 u64 rate;
772
773 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
774 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
775
776 /* current rate is (cwnd * mss) / srtt
777 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
778 * In Congestion Avoidance phase, set it to 120 % the current rate.
779 *
780 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
781 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
782 * end of slow start and should slow down.
783 */
784 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 785 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 786 else
c26e91f8 787 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
788
789 rate *= max(tp->snd_cwnd, tp->packets_out);
790
740b0f18
ED
791 if (likely(tp->srtt_us))
792 do_div(rate, tp->srtt_us);
95bd09eb 793
a9da6f29 794 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
795 * without any lock. We want to make sure compiler wont store
796 * intermediate values in this location.
797 */
a9da6f29
MR
798 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
799 sk->sk_max_pacing_rate));
95bd09eb
ED
800}
801
1da177e4
LT
802/* Calculate rto without backoff. This is the second half of Van Jacobson's
803 * routine referred to above.
804 */
f7e56a76 805static void tcp_set_rto(struct sock *sk)
1da177e4 806{
463c84b9 807 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
808 /* Old crap is replaced with new one. 8)
809 *
810 * More seriously:
811 * 1. If rtt variance happened to be less 50msec, it is hallucination.
812 * It cannot be less due to utterly erratic ACK generation made
813 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
814 * to do with delayed acks, because at cwnd>2 true delack timeout
815 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 816 * ACKs in some circumstances.
1da177e4 817 */
f1ecd5d9 818 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
819
820 /* 2. Fixups made earlier cannot be right.
821 * If we do not estimate RTO correctly without them,
822 * all the algo is pure shit and should be replaced
caa20d9a 823 * with correct one. It is exactly, which we pretend to do.
1da177e4 824 */
1da177e4 825
ee6aac59
IJ
826 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
827 * guarantees that rto is higher.
828 */
f1ecd5d9 829 tcp_bound_rto(sk);
1da177e4
LT
830}
831
cf533ea5 832__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
833{
834 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835
22b71c8f 836 if (!cwnd)
442b9635 837 cwnd = TCP_INIT_CWND;
1da177e4
LT
838 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839}
840
564262c1 841/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
842static void tcp_dsack_seen(struct tcp_sock *tp)
843{
ab56222a 844 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 845 tp->rack.dsack_seen = 1;
e60402d0
IJ
846}
847
737ff314
YC
848/* It's reordering when higher sequence was delivered (i.e. sacked) before
849 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
850 * distance is approximated in full-mss packet distance ("reordering").
851 */
852static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
853 const int ts)
1da177e4 854{
6687e988 855 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
856 const u32 mss = tp->mss_cache;
857 u32 fack, metric;
40b215e5 858
737ff314
YC
859 fack = tcp_highest_sack_seq(tp);
860 if (!before(low_seq, fack))
6f5b24ee
SHY
861 return;
862
737ff314
YC
863 metric = fack - low_seq;
864 if ((metric > tp->reordering * mss) && mss) {
1da177e4 865#if FASTRETRANS_DEBUG > 1
91df42be
JP
866 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
867 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
868 tp->reordering,
737ff314 869 0,
91df42be
JP
870 tp->sacked_out,
871 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 872#endif
737ff314
YC
873 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
874 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 875 }
eed530b6 876
4f41b1c5 877 tp->rack.reord = 1;
2d2517ee 878 /* This exciting event is worth to be remembered. 8) */
737ff314
YC
879 NET_INC_STATS(sock_net(sk),
880 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
881}
882
006f582c 883/* This must be called before lost_out is incremented */
c8c213f2
IJ
884static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
885{
e76a6a15
PY
886 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
887 (tp->retransmit_skb_hint &&
888 before(TCP_SKB_CB(skb)->seq,
889 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
006f582c 890 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
891}
892
0682e690
NC
893/* Sum the number of packets on the wire we have marked as lost.
894 * There are two cases we care about here:
895 * a) Packet hasn't been marked lost (nor retransmitted),
896 * and this is the first loss.
897 * b) Packet has been marked both lost and retransmitted,
898 * and this means we think it was lost again.
899 */
900static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
901{
902 __u8 sacked = TCP_SKB_CB(skb)->sacked;
903
904 if (!(sacked & TCPCB_LOST) ||
905 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
906 tp->lost += tcp_skb_pcount(skb);
907}
908
41ea36e3
IJ
909static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
910{
911 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
912 tcp_verify_retransmit_hint(tp, skb);
913
914 tp->lost_out += tcp_skb_pcount(skb);
0682e690 915 tcp_sum_lost(tp, skb);
41ea36e3
IJ
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 }
918}
919
4f41b1c5 920void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
921{
922 tcp_verify_retransmit_hint(tp, skb);
923
0682e690 924 tcp_sum_lost(tp, skb);
006f582c
IJ
925 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
926 tp->lost_out += tcp_skb_pcount(skb);
927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 }
929}
930
1da177e4
LT
931/* This procedure tags the retransmission queue when SACKs arrive.
932 *
933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
934 * Packets in queue with these bits set are counted in variables
935 * sacked_out, retrans_out and lost_out, correspondingly.
936 *
937 * Valid combinations are:
938 * Tag InFlight Description
939 * 0 1 - orig segment is in flight.
940 * S 0 - nothing flies, orig reached receiver.
941 * L 0 - nothing flies, orig lost by net.
942 * R 2 - both orig and retransmit are in flight.
943 * L|R 1 - orig is lost, retransmit is in flight.
944 * S|R 1 - orig reached receiver, retrans is still in flight.
945 * (L|S|R is logically valid, it could occur when L|R is sacked,
946 * but it is equivalent to plain S and code short-curcuits it to S.
947 * L|S is logically invalid, it would mean -1 packet in flight 8))
948 *
949 * These 6 states form finite state machine, controlled by the following events:
950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 952 * 3. Loss detection event of two flavors:
1da177e4
LT
953 * A. Scoreboard estimator decided the packet is lost.
954 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 955 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
956 * segment was retransmitted.
957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
958 *
959 * It is pleasant to note, that state diagram turns out to be commutative,
960 * so that we are allowed not to be bothered by order of our actions,
961 * when multiple events arrive simultaneously. (see the function below).
962 *
963 * Reordering detection.
964 * --------------------
965 * Reordering metric is maximal distance, which a packet can be displaced
966 * in packet stream. With SACKs we can estimate it:
967 *
968 * 1. SACK fills old hole and the corresponding segment was not
969 * ever retransmitted -> reordering. Alas, we cannot use it
970 * when segment was retransmitted.
971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
972 * for retransmitted and already SACKed segment -> reordering..
973 * Both of these heuristics are not used in Loss state, when we cannot
974 * account for retransmits accurately.
5b3c9882
IJ
975 *
976 * SACK block validation.
977 * ----------------------
978 *
979 * SACK block range validation checks that the received SACK block fits to
980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
982 * it means that the receiver is rather inconsistent with itself reporting
983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
984 * perfectly valid, however, in light of RFC2018 which explicitly states
985 * that "SACK block MUST reflect the newest segment. Even if the newest
986 * segment is going to be discarded ...", not that it looks very clever
987 * in case of head skb. Due to potentional receiver driven attacks, we
988 * choose to avoid immediate execution of a walk in write queue due to
989 * reneging and defer head skb's loss recovery to standard loss recovery
990 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
991 *
992 * Implements also blockage to start_seq wrap-around. Problem lies in the
993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994 * there's no guarantee that it will be before snd_nxt (n). The problem
995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
996 * wrap (s_w):
997 *
998 * <- outs wnd -> <- wrapzone ->
999 * u e n u_w e_w s n_w
1000 * | | | | | | |
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->| |<--------...
1003 * ...---- >2^31 ------>| |<--------...
1004 *
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1010 *
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1013 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1da177e4 1023 */
a2a385d6
ED
1024static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1026{
1027 /* Too far in future, or reversed (interpretation is ambiguous) */
1028 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1029 return false;
5b3c9882
IJ
1030
1031 /* Nasty start_seq wrap-around check (see comments above) */
1032 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1033 return false;
5b3c9882 1034
564262c1 1035 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1036 * start_seq == snd_una is non-sensical (see comments above)
1037 */
1038 if (after(start_seq, tp->snd_una))
a2a385d6 1039 return true;
5b3c9882
IJ
1040
1041 if (!is_dsack || !tp->undo_marker)
a2a385d6 1042 return false;
5b3c9882
IJ
1043
1044 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1045 if (after(end_seq, tp->snd_una))
a2a385d6 1046 return false;
5b3c9882
IJ
1047
1048 if (!before(start_seq, tp->undo_marker))
a2a385d6 1049 return true;
5b3c9882
IJ
1050
1051 /* Too old */
1052 if (!after(end_seq, tp->undo_marker))
a2a385d6 1053 return false;
5b3c9882
IJ
1054
1055 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 * start_seq < undo_marker and end_seq >= undo_marker.
1057 */
1058 return !before(start_seq, end_seq - tp->max_window);
1059}
1060
a2a385d6
ED
1061static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062 struct tcp_sack_block_wire *sp, int num_sacks,
1063 u32 prior_snd_una)
d06e021d 1064{
1ed83465 1065 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1066 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1068 bool dup_sack = false;
d06e021d
DM
1069
1070 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1071 dup_sack = true;
e60402d0 1072 tcp_dsack_seen(tp);
c10d9310 1073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1074 } else if (num_sacks > 1) {
d3e2ce3b
HH
1075 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1077
1078 if (!after(end_seq_0, end_seq_1) &&
1079 !before(start_seq_0, start_seq_1)) {
a2a385d6 1080 dup_sack = true;
e60402d0 1081 tcp_dsack_seen(tp);
c10d9310 1082 NET_INC_STATS(sock_net(sk),
de0744af 1083 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1084 }
1085 }
1086
1087 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1088 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1089 !after(end_seq_0, prior_snd_una) &&
1090 after(end_seq_0, tp->undo_marker))
1091 tp->undo_retrans--;
1092
1093 return dup_sack;
1094}
1095
a1197f5a 1096struct tcp_sacktag_state {
737ff314 1097 u32 reord;
31231a8a
KKJ
1098 /* Timestamps for earliest and latest never-retransmitted segment
1099 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100 * but congestion control should still get an accurate delay signal.
1101 */
9a568de4
ED
1102 u64 first_sackt;
1103 u64 last_sackt;
b9f64820 1104 struct rate_sample *rate;
740b0f18 1105 int flag;
75c119af 1106 unsigned int mss_now;
a1197f5a
IJ
1107};
1108
d1935942
IJ
1109/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110 * the incoming SACK may not exactly match but we can find smaller MSS
1111 * aligned portion of it that matches. Therefore we might need to fragment
1112 * which may fail and creates some hassle (caller must handle error case
1113 * returns).
832d11c5
IJ
1114 *
1115 * FIXME: this could be merged to shift decision code
d1935942 1116 */
0f79efdc 1117static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1118 u32 start_seq, u32 end_seq)
d1935942 1119{
a2a385d6
ED
1120 int err;
1121 bool in_sack;
d1935942 1122 unsigned int pkt_len;
adb92db8 1123 unsigned int mss;
d1935942
IJ
1124
1125 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1126 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1127
1128 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1129 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1130 mss = tcp_skb_mss(skb);
d1935942
IJ
1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1132
adb92db8 1133 if (!in_sack) {
d1935942 1134 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1135 if (pkt_len < mss)
1136 pkt_len = mss;
1137 } else {
d1935942 1138 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1139 if (pkt_len < mss)
1140 return -EINVAL;
1141 }
1142
1143 /* Round if necessary so that SACKs cover only full MSSes
1144 * and/or the remaining small portion (if present)
1145 */
1146 if (pkt_len > mss) {
1147 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1148 if (!in_sack && new_len < pkt_len)
adb92db8 1149 new_len += mss;
adb92db8
IJ
1150 pkt_len = new_len;
1151 }
b451e5d2
YC
1152
1153 if (pkt_len >= skb->len && !in_sack)
1154 return 0;
1155
75c119af
ED
1156 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1157 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1158 if (err < 0)
1159 return err;
1160 }
1161
1162 return in_sack;
1163}
1164
cc9a672e
NC
1165/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166static u8 tcp_sacktag_one(struct sock *sk,
1167 struct tcp_sacktag_state *state, u8 sacked,
1168 u32 start_seq, u32 end_seq,
740b0f18 1169 int dup_sack, int pcount,
9a568de4 1170 u64 xmit_time)
9e10c47c 1171{
6859d494 1172 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1173
1174 /* Account D-SACK for retransmitted packet. */
1175 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1176 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1177 after(end_seq, tp->undo_marker))
9e10c47c 1178 tp->undo_retrans--;
737ff314
YC
1179 if ((sacked & TCPCB_SACKED_ACKED) &&
1180 before(start_seq, state->reord))
1181 state->reord = start_seq;
9e10c47c
IJ
1182 }
1183
1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1185 if (!after(end_seq, tp->snd_una))
a1197f5a 1186 return sacked;
9e10c47c
IJ
1187
1188 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1189 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1190
9e10c47c
IJ
1191 if (sacked & TCPCB_SACKED_RETRANS) {
1192 /* If the segment is not tagged as lost,
1193 * we do not clear RETRANS, believing
1194 * that retransmission is still in flight.
1195 */
1196 if (sacked & TCPCB_LOST) {
a1197f5a 1197 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1198 tp->lost_out -= pcount;
1199 tp->retrans_out -= pcount;
9e10c47c
IJ
1200 }
1201 } else {
1202 if (!(sacked & TCPCB_RETRANS)) {
1203 /* New sack for not retransmitted frame,
1204 * which was in hole. It is reordering.
1205 */
cc9a672e 1206 if (before(start_seq,
737ff314
YC
1207 tcp_highest_sack_seq(tp)) &&
1208 before(start_seq, state->reord))
1209 state->reord = start_seq;
1210
e33099f9
YC
1211 if (!after(end_seq, tp->high_seq))
1212 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1213 if (state->first_sackt == 0)
1214 state->first_sackt = xmit_time;
1215 state->last_sackt = xmit_time;
9e10c47c
IJ
1216 }
1217
1218 if (sacked & TCPCB_LOST) {
a1197f5a 1219 sacked &= ~TCPCB_LOST;
f58b22fd 1220 tp->lost_out -= pcount;
9e10c47c
IJ
1221 }
1222 }
1223
a1197f5a
IJ
1224 sacked |= TCPCB_SACKED_ACKED;
1225 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1226 tp->sacked_out += pcount;
ddf1af6f 1227 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1228
9e10c47c 1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1230 if (tp->lost_skb_hint &&
cc9a672e 1231 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1232 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1233 }
1234
1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1236 * frames and clear it. undo_retrans is decreased above, L|R frames
1237 * are accounted above as well.
1238 */
a1197f5a
IJ
1239 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1240 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1241 tp->retrans_out -= pcount;
9e10c47c
IJ
1242 }
1243
a1197f5a 1244 return sacked;
9e10c47c
IJ
1245}
1246
daef52ba
NC
1247/* Shift newly-SACKed bytes from this skb to the immediately previous
1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249 */
f3319816
ED
1250static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1251 struct sk_buff *skb,
a2a385d6
ED
1252 struct tcp_sacktag_state *state,
1253 unsigned int pcount, int shifted, int mss,
1254 bool dup_sack)
832d11c5
IJ
1255{
1256 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1257 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1258 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1259
1260 BUG_ON(!pcount);
1261
4c90d3b3
NC
1262 /* Adjust counters and hints for the newly sacked sequence
1263 * range but discard the return value since prev is already
1264 * marked. We must tag the range first because the seq
1265 * advancement below implicitly advances
1266 * tcp_highest_sack_seq() when skb is highest_sack.
1267 */
1268 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1269 start_seq, end_seq, dup_sack, pcount,
9a568de4 1270 skb->skb_mstamp);
b9f64820 1271 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1272
1273 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1274 tp->lost_cnt_hint += pcount;
1275
832d11c5
IJ
1276 TCP_SKB_CB(prev)->end_seq += shifted;
1277 TCP_SKB_CB(skb)->seq += shifted;
1278
cd7d8498 1279 tcp_skb_pcount_add(prev, pcount);
196379e6 1280 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
cd7d8498 1281 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1282
1283 /* When we're adding to gso_segs == 1, gso_size will be zero,
1284 * in theory this shouldn't be necessary but as long as DSACK
1285 * code can come after this skb later on it's better to keep
1286 * setting gso_size to something.
1287 */
f69ad292
ED
1288 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1290
1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1292 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1293 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1294
832d11c5
IJ
1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1297
832d11c5
IJ
1298 if (skb->len > 0) {
1299 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1301 return false;
832d11c5
IJ
1302 }
1303
1304 /* Whole SKB was eaten :-) */
1305
92ee76b6
IJ
1306 if (skb == tp->retransmit_skb_hint)
1307 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1308 if (skb == tp->lost_skb_hint) {
1309 tp->lost_skb_hint = prev;
1310 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311 }
1312
5e8a402f 1313 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1314 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1315 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1316 TCP_SKB_CB(prev)->end_seq++;
1317
832d11c5
IJ
1318 if (skb == tcp_highest_sack(sk))
1319 tcp_advance_highest_sack(sk, skb);
1320
cfea5a68 1321 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1322 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1323 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1324
75c119af 1325 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1326
c10d9310 1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1328
a2a385d6 1329 return true;
832d11c5
IJ
1330}
1331
1332/* I wish gso_size would have a bit more sane initialization than
1333 * something-or-zero which complicates things
1334 */
cf533ea5 1335static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1336{
775ffabf 1337 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1338}
1339
1340/* Shifting pages past head area doesn't work */
cf533ea5 1341static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1342{
1343 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1344}
1345
196379e6
ED
1346int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1347 int pcount, int shiftlen)
1348{
1349 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1350 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1351 * to make sure not storing more than 65535 * 8 bytes per skb,
1352 * even if current MSS is bigger.
1353 */
1354 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1355 return 0;
1356 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1357 return 0;
1358 return skb_shift(to, from, shiftlen);
1359}
1360
832d11c5
IJ
1361/* Try collapsing SACK blocks spanning across multiple skbs to a single
1362 * skb.
1363 */
1364static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1365 struct tcp_sacktag_state *state,
832d11c5 1366 u32 start_seq, u32 end_seq,
a2a385d6 1367 bool dup_sack)
832d11c5
IJ
1368{
1369 struct tcp_sock *tp = tcp_sk(sk);
1370 struct sk_buff *prev;
1371 int mss;
1372 int pcount = 0;
1373 int len;
1374 int in_sack;
1375
1376 if (!sk_can_gso(sk))
1377 goto fallback;
1378
1379 /* Normally R but no L won't result in plain S */
1380 if (!dup_sack &&
9969ca5f 1381 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1382 goto fallback;
1383 if (!skb_can_shift(skb))
1384 goto fallback;
1385 /* This frame is about to be dropped (was ACKed). */
1386 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1387 goto fallback;
1388
1389 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1390 prev = skb_rb_prev(skb);
1391 if (!prev)
832d11c5 1392 goto fallback;
832d11c5
IJ
1393
1394 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1395 goto fallback;
1396
a643b5d4
MKL
1397 if (!tcp_skb_can_collapse_to(prev))
1398 goto fallback;
1399
832d11c5
IJ
1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402
1403 if (in_sack) {
1404 len = skb->len;
1405 pcount = tcp_skb_pcount(skb);
775ffabf 1406 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1407
1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 * drop this restriction as unnecessary
1410 */
775ffabf 1411 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1412 goto fallback;
1413 } else {
1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 goto noop;
1416 /* CHECKME: This is non-MSS split case only?, this will
1417 * cause skipped skbs due to advancing loop btw, original
1418 * has that feature too
1419 */
1420 if (tcp_skb_pcount(skb) <= 1)
1421 goto noop;
1422
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 if (!in_sack) {
1425 /* TODO: head merge to next could be attempted here
1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 * though it might not be worth of the additional hassle
1428 *
1429 * ...we can probably just fallback to what was done
1430 * previously. We could try merging non-SACKed ones
1431 * as well but it probably isn't going to buy off
1432 * because later SACKs might again split them, and
1433 * it would make skb timestamp tracking considerably
1434 * harder problem.
1435 */
1436 goto fallback;
1437 }
1438
1439 len = end_seq - TCP_SKB_CB(skb)->seq;
1440 BUG_ON(len < 0);
1441 BUG_ON(len > skb->len);
1442
1443 /* MSS boundaries should be honoured or else pcount will
1444 * severely break even though it makes things bit trickier.
1445 * Optimize common case to avoid most of the divides
1446 */
1447 mss = tcp_skb_mss(skb);
1448
1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 * drop this restriction as unnecessary
1451 */
775ffabf 1452 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1453 goto fallback;
1454
1455 if (len == mss) {
1456 pcount = 1;
1457 } else if (len < mss) {
1458 goto noop;
1459 } else {
1460 pcount = len / mss;
1461 len = pcount * mss;
1462 }
1463 }
1464
4648dc97
NC
1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 goto fallback;
1468
196379e6 1469 if (!tcp_skb_shift(prev, skb, pcount, len))
832d11c5 1470 goto fallback;
f3319816 1471 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1472 goto out;
1473
1474 /* Hole filled allows collapsing with the next as well, this is very
1475 * useful when hole on every nth skb pattern happens
1476 */
75c119af
ED
1477 skb = skb_rb_next(prev);
1478 if (!skb)
832d11c5 1479 goto out;
832d11c5 1480
f0bc52f3 1481 if (!skb_can_shift(skb) ||
f0bc52f3 1482 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1483 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1484 goto out;
1485
1486 len = skb->len;
196379e6
ED
1487 pcount = tcp_skb_pcount(skb);
1488 if (tcp_skb_shift(prev, skb, pcount, len))
1489 tcp_shifted_skb(sk, prev, skb, state, pcount,
f3319816 1490 len, mss, 0);
832d11c5
IJ
1491
1492out:
832d11c5
IJ
1493 return prev;
1494
1495noop:
1496 return skb;
1497
1498fallback:
c10d9310 1499 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1500 return NULL;
1501}
1502
68f8353b
IJ
1503static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1504 struct tcp_sack_block *next_dup,
a1197f5a 1505 struct tcp_sacktag_state *state,
68f8353b 1506 u32 start_seq, u32 end_seq,
a2a385d6 1507 bool dup_sack_in)
68f8353b 1508{
832d11c5
IJ
1509 struct tcp_sock *tp = tcp_sk(sk);
1510 struct sk_buff *tmp;
1511
75c119af 1512 skb_rbtree_walk_from(skb) {
68f8353b 1513 int in_sack = 0;
a2a385d6 1514 bool dup_sack = dup_sack_in;
68f8353b 1515
68f8353b
IJ
1516 /* queue is in-order => we can short-circuit the walk early */
1517 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1518 break;
1519
00db4124 1520 if (next_dup &&
68f8353b
IJ
1521 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1522 in_sack = tcp_match_skb_to_sack(sk, skb,
1523 next_dup->start_seq,
1524 next_dup->end_seq);
1525 if (in_sack > 0)
a2a385d6 1526 dup_sack = true;
68f8353b
IJ
1527 }
1528
832d11c5
IJ
1529 /* skb reference here is a bit tricky to get right, since
1530 * shifting can eat and free both this skb and the next,
1531 * so not even _safe variant of the loop is enough.
1532 */
1533 if (in_sack <= 0) {
a1197f5a
IJ
1534 tmp = tcp_shift_skb_data(sk, skb, state,
1535 start_seq, end_seq, dup_sack);
00db4124 1536 if (tmp) {
832d11c5
IJ
1537 if (tmp != skb) {
1538 skb = tmp;
1539 continue;
1540 }
1541
1542 in_sack = 0;
1543 } else {
1544 in_sack = tcp_match_skb_to_sack(sk, skb,
1545 start_seq,
1546 end_seq);
1547 }
1548 }
1549
68f8353b
IJ
1550 if (unlikely(in_sack < 0))
1551 break;
1552
832d11c5 1553 if (in_sack) {
cc9a672e
NC
1554 TCP_SKB_CB(skb)->sacked =
1555 tcp_sacktag_one(sk,
1556 state,
1557 TCP_SKB_CB(skb)->sacked,
1558 TCP_SKB_CB(skb)->seq,
1559 TCP_SKB_CB(skb)->end_seq,
1560 dup_sack,
59c9af42 1561 tcp_skb_pcount(skb),
9a568de4 1562 skb->skb_mstamp);
b9f64820 1563 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1564 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1565 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1566
832d11c5
IJ
1567 if (!before(TCP_SKB_CB(skb)->seq,
1568 tcp_highest_sack_seq(tp)))
1569 tcp_advance_highest_sack(sk, skb);
1570 }
68f8353b
IJ
1571 }
1572 return skb;
1573}
1574
75c119af
ED
1575static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1576 struct tcp_sacktag_state *state,
1577 u32 seq)
1578{
1579 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1580 struct sk_buff *skb;
75c119af
ED
1581
1582 while (*p) {
1583 parent = *p;
1584 skb = rb_to_skb(parent);
1585 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1586 p = &parent->rb_left;
1587 continue;
1588 }
1589 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1590 p = &parent->rb_right;
1591 continue;
1592 }
75c119af
ED
1593 return skb;
1594 }
1595 return NULL;
1596}
1597
68f8353b 1598static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1599 struct tcp_sacktag_state *state,
1600 u32 skip_to_seq)
68f8353b 1601{
75c119af
ED
1602 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1603 return skb;
d152a7d8 1604
75c119af 1605 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1606}
1607
1608static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1609 struct sock *sk,
1610 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1611 struct tcp_sacktag_state *state,
1612 u32 skip_to_seq)
68f8353b 1613{
51456b29 1614 if (!next_dup)
68f8353b
IJ
1615 return skb;
1616
1617 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1618 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1619 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1620 next_dup->start_seq, next_dup->end_seq,
1621 1);
68f8353b
IJ
1622 }
1623
1624 return skb;
1625}
1626
cf533ea5 1627static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1628{
1629 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1630}
1631
1da177e4 1632static int
cf533ea5 1633tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1634 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1635{
1636 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1637 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1638 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1639 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1640 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1641 struct tcp_sack_block *cache;
1642 struct sk_buff *skb;
4389dded 1643 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1644 int used_sacks;
a2a385d6 1645 bool found_dup_sack = false;
68f8353b 1646 int i, j;
fda03fbb 1647 int first_sack_index;
1da177e4 1648
196da974 1649 state->flag = 0;
737ff314 1650 state->reord = tp->snd_nxt;
a1197f5a 1651
737ff314 1652 if (!tp->sacked_out)
6859d494 1653 tcp_highest_sack_reset(sk);
1da177e4 1654
1ed83465 1655 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1656 num_sacks, prior_snd_una);
b9f64820 1657 if (found_dup_sack) {
196da974 1658 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1659 tp->delivered++; /* A spurious retransmission is delivered */
1660 }
6f74651a
BE
1661
1662 /* Eliminate too old ACKs, but take into
1663 * account more or less fresh ones, they can
1664 * contain valid SACK info.
1665 */
1666 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1667 return 0;
1668