]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/sched/sch_cake.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-jammy-kernel.git] / net / sched / sch_cake.c
CommitLineData
046f6fd5
THJ
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3/* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53#include <linux/module.h>
54#include <linux/types.h>
55#include <linux/kernel.h>
56#include <linux/jiffies.h>
57#include <linux/string.h>
58#include <linux/in.h>
59#include <linux/errno.h>
60#include <linux/init.h>
61#include <linux/skbuff.h>
62#include <linux/jhash.h>
63#include <linux/slab.h>
64#include <linux/vmalloc.h>
65#include <linux/reciprocal_div.h>
66#include <net/netlink.h>
046f6fd5
THJ
67#include <linux/if_vlan.h>
68#include <net/pkt_sched.h>
69#include <net/pkt_cls.h>
70#include <net/tcp.h>
71#include <net/flow_dissector.h>
72
ea825115
THJ
73#if IS_ENABLED(CONFIG_NF_CONNTRACK)
74#include <net/netfilter/nf_conntrack_core.h>
75#endif
76
046f6fd5
THJ
77#define CAKE_SET_WAYS (8)
78#define CAKE_MAX_TINS (8)
79#define CAKE_QUEUES (1024)
80#define CAKE_FLOW_MASK 63
81#define CAKE_FLOW_NAT_FLAG 64
82
83/* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
89 */
90struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
96};
97
98/* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
106 */
107struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
115};
116
117enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
123};
124
125struct cake_flow {
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost; /* index into cake_host table */
134 u16 dsthost;
135 u8 set;
136}; /* please try to keep this structure <= 64 bytes */
137
138struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
71263992
GA
141 u16 srchost_bulk_flow_count;
142 u16 dsthost_bulk_flow_count;
046f6fd5
THJ
143};
144
145struct cake_heap_entry {
146 u16 t:3, b:10;
147};
148
149struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES]; /* for set association */
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 u16 flow_quantum;
156
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
163
164 u32 max_skblen;
165
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
169
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
175
cbd22f17 176 u16 tin_quantum;
046f6fd5
THJ
177 s32 tin_deficit;
178 u32 tin_backlog;
179 u32 tin_dropped;
180 u32 tin_ecn_mark;
181
182 u32 packets;
183 u64 bytes;
184
185 u32 ack_drops;
186
187 /* moving averages */
188 u64 avge_delay;
189 u64 peak_delay;
190 u64 base_delay;
191
192 /* hash function stats */
193 u32 way_directs;
194 u32 way_hits;
195 u32 way_misses;
196 u32 way_collisions;
197}; /* number of tins is small, so size of this struct doesn't matter much */
198
199struct cake_sched_data {
200 struct tcf_proto __rcu *filter_list; /* optional external classifier */
201 struct tcf_block *block;
202 struct cake_tin_data *tins;
203
204 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
205 u16 overflow_timeout;
206
207 u16 tin_cnt;
208 u8 tin_mode;
209 u8 flow_mode;
210 u8 ack_filter;
211 u8 atm_mode;
212
eab2fc82
THJ
213 u32 fwmark_mask;
214 u16 fwmark_shft;
215
046f6fd5
THJ
216 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
217 u16 rate_shft;
218 ktime_t time_next_packet;
219 ktime_t failsafe_next_packet;
220 u64 rate_ns;
221 u64 rate_bps;
222 u16 rate_flags;
223 s16 rate_overhead;
224 u16 rate_mpu;
225 u64 interval;
226 u64 target;
227
228 /* resource tracking */
229 u32 buffer_used;
230 u32 buffer_max_used;
231 u32 buffer_limit;
232 u32 buffer_config_limit;
233
234 /* indices for dequeue */
235 u16 cur_tin;
236 u16 cur_flow;
237
238 struct qdisc_watchdog watchdog;
239 const u8 *tin_index;
240 const u8 *tin_order;
241
242 /* bandwidth capacity estimate */
243 ktime_t last_packet_time;
244 ktime_t avg_window_begin;
245 u64 avg_packet_interval;
246 u64 avg_window_bytes;
247 u64 avg_peak_bandwidth;
248 ktime_t last_reconfig_time;
249
250 /* packet length stats */
251 u32 avg_netoff;
252 u16 max_netlen;
253 u16 max_adjlen;
254 u16 min_netlen;
255 u16 min_adjlen;
256};
257
258enum {
259 CAKE_FLAG_OVERHEAD = BIT(0),
260 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
261 CAKE_FLAG_INGRESS = BIT(2),
262 CAKE_FLAG_WASH = BIT(3),
eab2fc82 263 CAKE_FLAG_SPLIT_GSO = BIT(4)
046f6fd5
THJ
264};
265
266/* COBALT operates the Codel and BLUE algorithms in parallel, in order to
267 * obtain the best features of each. Codel is excellent on flows which
268 * respond to congestion signals in a TCP-like way. BLUE is more effective on
269 * unresponsive flows.
270 */
271
272struct cobalt_skb_cb {
273 ktime_t enqueue_time;
a729b7f0 274 u32 adjusted_len;
046f6fd5
THJ
275};
276
277static u64 us_to_ns(u64 us)
278{
279 return us * NSEC_PER_USEC;
280}
281
282static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
283{
284 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
285 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
286}
287
288static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
289{
290 return get_cobalt_cb(skb)->enqueue_time;
291}
292
293static void cobalt_set_enqueue_time(struct sk_buff *skb,
294 ktime_t now)
295{
296 get_cobalt_cb(skb)->enqueue_time = now;
297}
298
299static u16 quantum_div[CAKE_QUEUES + 1] = {0};
300
83f8fd69
THJ
301/* Diffserv lookup tables */
302
303static const u8 precedence[] = {
304 0, 0, 0, 0, 0, 0, 0, 0,
305 1, 1, 1, 1, 1, 1, 1, 1,
306 2, 2, 2, 2, 2, 2, 2, 2,
307 3, 3, 3, 3, 3, 3, 3, 3,
308 4, 4, 4, 4, 4, 4, 4, 4,
309 5, 5, 5, 5, 5, 5, 5, 5,
310 6, 6, 6, 6, 6, 6, 6, 6,
311 7, 7, 7, 7, 7, 7, 7, 7,
312};
313
314static const u8 diffserv8[] = {
315 2, 5, 1, 2, 4, 2, 2, 2,
316 0, 2, 1, 2, 1, 2, 1, 2,
317 5, 2, 4, 2, 4, 2, 4, 2,
318 3, 2, 3, 2, 3, 2, 3, 2,
319 6, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 2, 2, 6, 2, 6, 2,
321 7, 2, 2, 2, 2, 2, 2, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323};
324
325static const u8 diffserv4[] = {
326 0, 2, 0, 0, 2, 0, 0, 0,
327 1, 0, 0, 0, 0, 0, 0, 0,
328 2, 0, 2, 0, 2, 0, 2, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 3, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 0, 0, 3, 0, 3, 0,
332 3, 0, 0, 0, 0, 0, 0, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334};
335
336static const u8 diffserv3[] = {
337 0, 0, 0, 0, 2, 0, 0, 0,
338 1, 0, 0, 0, 0, 0, 0, 0,
339 0, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 2, 0, 2, 0,
343 2, 0, 0, 0, 0, 0, 0, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345};
346
347static const u8 besteffort[] = {
348 0, 0, 0, 0, 0, 0, 0, 0,
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356};
357
358/* tin priority order for stats dumping */
359
360static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
361static const u8 bulk_order[] = {1, 0, 2, 3};
362
046f6fd5
THJ
363#define REC_INV_SQRT_CACHE (16)
364static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
365
366/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
367 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
368 *
369 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
370 */
371
372static void cobalt_newton_step(struct cobalt_vars *vars)
373{
374 u32 invsqrt, invsqrt2;
375 u64 val;
376
377 invsqrt = vars->rec_inv_sqrt;
378 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
379 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
380
381 val >>= 2; /* avoid overflow in following multiply */
382 val = (val * invsqrt) >> (32 - 2 + 1);
383
384 vars->rec_inv_sqrt = val;
385}
386
387static void cobalt_invsqrt(struct cobalt_vars *vars)
388{
389 if (vars->count < REC_INV_SQRT_CACHE)
390 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
391 else
392 cobalt_newton_step(vars);
393}
394
395/* There is a big difference in timing between the accurate values placed in
396 * the cache and the approximations given by a single Newton step for small
397 * count values, particularly when stepping from count 1 to 2 or vice versa.
398 * Above 16, a single Newton step gives sufficient accuracy in either
399 * direction, given the precision stored.
400 *
401 * The magnitude of the error when stepping up to count 2 is such as to give
402 * the value that *should* have been produced at count 4.
403 */
404
405static void cobalt_cache_init(void)
406{
407 struct cobalt_vars v;
408
409 memset(&v, 0, sizeof(v));
410 v.rec_inv_sqrt = ~0U;
411 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
412
413 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
414 cobalt_newton_step(&v);
415 cobalt_newton_step(&v);
416 cobalt_newton_step(&v);
417 cobalt_newton_step(&v);
418
419 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
420 }
421}
422
423static void cobalt_vars_init(struct cobalt_vars *vars)
424{
425 memset(vars, 0, sizeof(*vars));
426
427 if (!cobalt_rec_inv_sqrt_cache[0]) {
428 cobalt_cache_init();
429 cobalt_rec_inv_sqrt_cache[0] = ~0;
430 }
431}
432
433/* CoDel control_law is t + interval/sqrt(count)
434 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
435 * both sqrt() and divide operation.
436 */
437static ktime_t cobalt_control(ktime_t t,
438 u64 interval,
439 u32 rec_inv_sqrt)
440{
441 return ktime_add_ns(t, reciprocal_scale(interval,
442 rec_inv_sqrt));
443}
444
445/* Call this when a packet had to be dropped due to queue overflow. Returns
446 * true if the BLUE state was quiescent before but active after this call.
447 */
448static bool cobalt_queue_full(struct cobalt_vars *vars,
449 struct cobalt_params *p,
450 ktime_t now)
451{
452 bool up = false;
453
454 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
455 up = !vars->p_drop;
456 vars->p_drop += p->p_inc;
457 if (vars->p_drop < p->p_inc)
458 vars->p_drop = ~0;
459 vars->blue_timer = now;
460 }
461 vars->dropping = true;
462 vars->drop_next = now;
463 if (!vars->count)
464 vars->count = 1;
465
466 return up;
467}
468
469/* Call this when the queue was serviced but turned out to be empty. Returns
470 * true if the BLUE state was active before but quiescent after this call.
471 */
472static bool cobalt_queue_empty(struct cobalt_vars *vars,
473 struct cobalt_params *p,
474 ktime_t now)
475{
476 bool down = false;
477
478 if (vars->p_drop &&
479 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
480 if (vars->p_drop < p->p_dec)
481 vars->p_drop = 0;
482 else
483 vars->p_drop -= p->p_dec;
484 vars->blue_timer = now;
485 down = !vars->p_drop;
486 }
487 vars->dropping = false;
488
489 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
490 vars->count--;
491 cobalt_invsqrt(vars);
492 vars->drop_next = cobalt_control(vars->drop_next,
493 p->interval,
494 vars->rec_inv_sqrt);
495 }
496
497 return down;
498}
499
500/* Call this with a freshly dequeued packet for possible congestion marking.
501 * Returns true as an instruction to drop the packet, false for delivery.
502 */
503static bool cobalt_should_drop(struct cobalt_vars *vars,
504 struct cobalt_params *p,
505 ktime_t now,
7298de9c
THJ
506 struct sk_buff *skb,
507 u32 bulk_flows)
046f6fd5
THJ
508{
509 bool next_due, over_target, drop = false;
510 ktime_t schedule;
511 u64 sojourn;
512
513/* The 'schedule' variable records, in its sign, whether 'now' is before or
514 * after 'drop_next'. This allows 'drop_next' to be updated before the next
515 * scheduling decision is actually branched, without destroying that
516 * information. Similarly, the first 'schedule' value calculated is preserved
517 * in the boolean 'next_due'.
518 *
519 * As for 'drop_next', we take advantage of the fact that 'interval' is both
520 * the delay between first exceeding 'target' and the first signalling event,
521 * *and* the scaling factor for the signalling frequency. It's therefore very
522 * natural to use a single mechanism for both purposes, and eliminates a
523 * significant amount of reference Codel's spaghetti code. To help with this,
524 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
525 * as possible to 1.0 in fixed-point.
526 */
527
528 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
529 schedule = ktime_sub(now, vars->drop_next);
530 over_target = sojourn > p->target &&
7298de9c 531 sojourn > p->mtu_time * bulk_flows * 2 &&
046f6fd5
THJ
532 sojourn > p->mtu_time * 4;
533 next_due = vars->count && ktime_to_ns(schedule) >= 0;
534
535 vars->ecn_marked = false;
536
537 if (over_target) {
538 if (!vars->dropping) {
539 vars->dropping = true;
540 vars->drop_next = cobalt_control(now,
541 p->interval,
542 vars->rec_inv_sqrt);
543 }
544 if (!vars->count)
545 vars->count = 1;
546 } else if (vars->dropping) {
547 vars->dropping = false;
548 }
549
550 if (next_due && vars->dropping) {
551 /* Use ECN mark if possible, otherwise drop */
552 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
553
554 vars->count++;
555 if (!vars->count)
556 vars->count--;
557 cobalt_invsqrt(vars);
558 vars->drop_next = cobalt_control(vars->drop_next,
559 p->interval,
560 vars->rec_inv_sqrt);
561 schedule = ktime_sub(now, vars->drop_next);
562 } else {
563 while (next_due) {
564 vars->count--;
565 cobalt_invsqrt(vars);
566 vars->drop_next = cobalt_control(vars->drop_next,
567 p->interval,
568 vars->rec_inv_sqrt);
569 schedule = ktime_sub(now, vars->drop_next);
570 next_due = vars->count && ktime_to_ns(schedule) >= 0;
571 }
572 }
573
574 /* Simple BLUE implementation. Lack of ECN is deliberate. */
575 if (vars->p_drop)
576 drop |= (prandom_u32() < vars->p_drop);
577
578 /* Overload the drop_next field as an activity timeout */
579 if (!vars->count)
580 vars->drop_next = ktime_add_ns(now, p->interval);
581 else if (ktime_to_ns(schedule) > 0 && !drop)
582 vars->drop_next = now;
583
584 return drop;
585}
586
ea825115
THJ
587static void cake_update_flowkeys(struct flow_keys *keys,
588 const struct sk_buff *skb)
589{
590#if IS_ENABLED(CONFIG_NF_CONNTRACK)
591 struct nf_conntrack_tuple tuple = {};
592 bool rev = !skb->_nfct;
593
594 if (tc_skb_protocol(skb) != htons(ETH_P_IP))
595 return;
596
597 if (!nf_ct_get_tuple_skb(&tuple, skb))
598 return;
599
600 keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
601 keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
602
603 if (keys->ports.ports) {
604 keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
605 keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
606 }
607#endif
608}
609
046f6fd5
THJ
610/* Cake has several subtle multiple bit settings. In these cases you
611 * would be matching triple isolate mode as well.
612 */
613
614static bool cake_dsrc(int flow_mode)
615{
616 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
617}
618
619static bool cake_ddst(int flow_mode)
620{
621 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
622}
623
624static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
93cfb6c1 625 int flow_mode, u16 flow_override, u16 host_override)
046f6fd5 626{
93cfb6c1 627 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
046f6fd5
THJ
628 u16 reduced_hash, srchost_idx, dsthost_idx;
629 struct flow_keys keys, host_keys;
630
631 if (unlikely(flow_mode == CAKE_FLOW_NONE))
632 return 0;
633
93cfb6c1
THJ
634 /* If both overrides are set we can skip packet dissection entirely */
635 if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
636 (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
637 goto skip_hash;
638
046f6fd5
THJ
639 skb_flow_dissect_flow_keys(skb, &keys,
640 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
641
ea825115
THJ
642 if (flow_mode & CAKE_FLOW_NAT_FLAG)
643 cake_update_flowkeys(&keys, skb);
644
046f6fd5
THJ
645 /* flow_hash_from_keys() sorts the addresses by value, so we have
646 * to preserve their order in a separate data structure to treat
647 * src and dst host addresses as independently selectable.
648 */
649 host_keys = keys;
650 host_keys.ports.ports = 0;
651 host_keys.basic.ip_proto = 0;
652 host_keys.keyid.keyid = 0;
653 host_keys.tags.flow_label = 0;
654
655 switch (host_keys.control.addr_type) {
656 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
657 host_keys.addrs.v4addrs.src = 0;
658 dsthost_hash = flow_hash_from_keys(&host_keys);
659 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
660 host_keys.addrs.v4addrs.dst = 0;
661 srchost_hash = flow_hash_from_keys(&host_keys);
662 break;
663
664 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
665 memset(&host_keys.addrs.v6addrs.src, 0,
666 sizeof(host_keys.addrs.v6addrs.src));
667 dsthost_hash = flow_hash_from_keys(&host_keys);
668 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
669 memset(&host_keys.addrs.v6addrs.dst, 0,
670 sizeof(host_keys.addrs.v6addrs.dst));
671 srchost_hash = flow_hash_from_keys(&host_keys);
672 break;
673
674 default:
675 dsthost_hash = 0;
676 srchost_hash = 0;
677 }
678
679 /* This *must* be after the above switch, since as a
680 * side-effect it sorts the src and dst addresses.
681 */
682 if (flow_mode & CAKE_FLOW_FLOWS)
683 flow_hash = flow_hash_from_keys(&keys);
684
93cfb6c1
THJ
685skip_hash:
686 if (flow_override)
687 flow_hash = flow_override - 1;
688 if (host_override) {
689 dsthost_hash = host_override - 1;
690 srchost_hash = host_override - 1;
691 }
692
046f6fd5
THJ
693 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
694 if (flow_mode & CAKE_FLOW_SRC_IP)
695 flow_hash ^= srchost_hash;
696
697 if (flow_mode & CAKE_FLOW_DST_IP)
698 flow_hash ^= dsthost_hash;
699 }
700
701 reduced_hash = flow_hash % CAKE_QUEUES;
702
703 /* set-associative hashing */
704 /* fast path if no hash collision (direct lookup succeeds) */
705 if (likely(q->tags[reduced_hash] == flow_hash &&
706 q->flows[reduced_hash].set)) {
707 q->way_directs++;
708 } else {
709 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
710 u32 outer_hash = reduced_hash - inner_hash;
711 bool allocate_src = false;
712 bool allocate_dst = false;
713 u32 i, k;
714
715 /* check if any active queue in the set is reserved for
716 * this flow.
717 */
718 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
719 i++, k = (k + 1) % CAKE_SET_WAYS) {
720 if (q->tags[outer_hash + k] == flow_hash) {
721 if (i)
722 q->way_hits++;
723
724 if (!q->flows[outer_hash + k].set) {
725 /* need to increment host refcnts */
726 allocate_src = cake_dsrc(flow_mode);
727 allocate_dst = cake_ddst(flow_mode);
728 }
729
730 goto found;
731 }
732 }
733
734 /* no queue is reserved for this flow, look for an
735 * empty one.
736 */
737 for (i = 0; i < CAKE_SET_WAYS;
738 i++, k = (k + 1) % CAKE_SET_WAYS) {
739 if (!q->flows[outer_hash + k].set) {
740 q->way_misses++;
741 allocate_src = cake_dsrc(flow_mode);
742 allocate_dst = cake_ddst(flow_mode);
743 goto found;
744 }
745 }
746
747 /* With no empty queues, default to the original
748 * queue, accept the collision, update the host tags.
749 */
750 q->way_collisions++;
71263992
GA
751 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
752 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
753 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
754 }
046f6fd5
THJ
755 allocate_src = cake_dsrc(flow_mode);
756 allocate_dst = cake_ddst(flow_mode);
757found:
758 /* reserve queue for future packets in same flow */
759 reduced_hash = outer_hash + k;
760 q->tags[reduced_hash] = flow_hash;
761
762 if (allocate_src) {
763 srchost_idx = srchost_hash % CAKE_QUEUES;
764 inner_hash = srchost_idx % CAKE_SET_WAYS;
765 outer_hash = srchost_idx - inner_hash;
766 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
767 i++, k = (k + 1) % CAKE_SET_WAYS) {
768 if (q->hosts[outer_hash + k].srchost_tag ==
769 srchost_hash)
770 goto found_src;
771 }
772 for (i = 0; i < CAKE_SET_WAYS;
773 i++, k = (k + 1) % CAKE_SET_WAYS) {
71263992 774 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
046f6fd5
THJ
775 break;
776 }
777 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
778found_src:
779 srchost_idx = outer_hash + k;
71263992
GA
780 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
781 q->hosts[srchost_idx].srchost_bulk_flow_count++;
046f6fd5
THJ
782 q->flows[reduced_hash].srchost = srchost_idx;
783 }
784
785 if (allocate_dst) {
786 dsthost_idx = dsthost_hash % CAKE_QUEUES;
787 inner_hash = dsthost_idx % CAKE_SET_WAYS;
788 outer_hash = dsthost_idx - inner_hash;
789 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
790 i++, k = (k + 1) % CAKE_SET_WAYS) {
791 if (q->hosts[outer_hash + k].dsthost_tag ==
792 dsthost_hash)
793 goto found_dst;
794 }
795 for (i = 0; i < CAKE_SET_WAYS;
796 i++, k = (k + 1) % CAKE_SET_WAYS) {
71263992 797 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
046f6fd5
THJ
798 break;
799 }
800 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
801found_dst:
802 dsthost_idx = outer_hash + k;
71263992
GA
803 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
804 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
046f6fd5
THJ
805 q->flows[reduced_hash].dsthost = dsthost_idx;
806 }
807 }
808
809 return reduced_hash;
810}
811
812/* helper functions : might be changed when/if skb use a standard list_head */
813/* remove one skb from head of slot queue */
814
815static struct sk_buff *dequeue_head(struct cake_flow *flow)
816{
817 struct sk_buff *skb = flow->head;
818
819 if (skb) {
820 flow->head = skb->next;
a8305bff 821 skb_mark_not_on_list(skb);
046f6fd5
THJ
822 }
823
824 return skb;
825}
826
827/* add skb to flow queue (tail add) */
828
829static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
830{
831 if (!flow->head)
832 flow->head = skb;
833 else
834 flow->tail->next = skb;
835 flow->tail = skb;
836 skb->next = NULL;
837}
838
8b713881
THJ
839static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
840 struct ipv6hdr *buf)
841{
842 unsigned int offset = skb_network_offset(skb);
843 struct iphdr *iph;
844
845 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
846
847 if (!iph)
848 return NULL;
849
850 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
851 return skb_header_pointer(skb, offset + iph->ihl * 4,
852 sizeof(struct ipv6hdr), buf);
853
854 else if (iph->version == 4)
855 return iph;
856
857 else if (iph->version == 6)
858 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
859 buf);
860
861 return NULL;
862}
863
864static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
865 void *buf, unsigned int bufsize)
866{
867 unsigned int offset = skb_network_offset(skb);
868 const struct ipv6hdr *ipv6h;
869 const struct tcphdr *tcph;
870 const struct iphdr *iph;
871 struct ipv6hdr _ipv6h;
872 struct tcphdr _tcph;
873
874 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
875
876 if (!ipv6h)
877 return NULL;
878
879 if (ipv6h->version == 4) {
880 iph = (struct iphdr *)ipv6h;
881 offset += iph->ihl * 4;
882
883 /* special-case 6in4 tunnelling, as that is a common way to get
884 * v6 connectivity in the home
885 */
886 if (iph->protocol == IPPROTO_IPV6) {
887 ipv6h = skb_header_pointer(skb, offset,
888 sizeof(_ipv6h), &_ipv6h);
889
890 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
891 return NULL;
892
893 offset += sizeof(struct ipv6hdr);
894
895 } else if (iph->protocol != IPPROTO_TCP) {
896 return NULL;
897 }
898
899 } else if (ipv6h->version == 6) {
900 if (ipv6h->nexthdr != IPPROTO_TCP)
901 return NULL;
902
903 offset += sizeof(struct ipv6hdr);
904 } else {
905 return NULL;
906 }
907
908 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
909 if (!tcph)
910 return NULL;
911
912 return skb_header_pointer(skb, offset,
913 min(__tcp_hdrlen(tcph), bufsize), buf);
914}
915
916static const void *cake_get_tcpopt(const struct tcphdr *tcph,
917 int code, int *oplen)
918{
919 /* inspired by tcp_parse_options in tcp_input.c */
920 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
921 const u8 *ptr = (const u8 *)(tcph + 1);
922
923 while (length > 0) {
924 int opcode = *ptr++;
925 int opsize;
926
927 if (opcode == TCPOPT_EOL)
928 break;
929 if (opcode == TCPOPT_NOP) {
930 length--;
931 continue;
932 }
933 opsize = *ptr++;
934 if (opsize < 2 || opsize > length)
935 break;
936
937 if (opcode == code) {
938 *oplen = opsize;
939 return ptr;
940 }
941
942 ptr += opsize - 2;
943 length -= opsize;
944 }
945
946 return NULL;
947}
948
949/* Compare two SACK sequences. A sequence is considered greater if it SACKs more
950 * bytes than the other. In the case where both sequences ACKs bytes that the
951 * other doesn't, A is considered greater. DSACKs in A also makes A be
952 * considered greater.
953 *
954 * @return -1, 0 or 1 as normal compare functions
955 */
956static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
957 const struct tcphdr *tcph_b)
958{
959 const struct tcp_sack_block_wire *sack_a, *sack_b;
960 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
961 u32 bytes_a = 0, bytes_b = 0;
962 int oplen_a, oplen_b;
963 bool first = true;
964
965 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
966 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
967
968 /* pointers point to option contents */
969 oplen_a -= TCPOLEN_SACK_BASE;
970 oplen_b -= TCPOLEN_SACK_BASE;
971
972 if (sack_a && oplen_a >= sizeof(*sack_a) &&
973 (!sack_b || oplen_b < sizeof(*sack_b)))
974 return -1;
975 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
976 (!sack_a || oplen_a < sizeof(*sack_a)))
977 return 1;
978 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
979 (!sack_b || oplen_b < sizeof(*sack_b)))
980 return 0;
981
982 while (oplen_a >= sizeof(*sack_a)) {
983 const struct tcp_sack_block_wire *sack_tmp = sack_b;
984 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
985 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
986 int oplen_tmp = oplen_b;
987 bool found = false;
988
989 /* DSACK; always considered greater to prevent dropping */
990 if (before(start_a, ack_seq_a))
991 return -1;
992
993 bytes_a += end_a - start_a;
994
995 while (oplen_tmp >= sizeof(*sack_tmp)) {
996 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
997 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
998
999 /* first time through we count the total size */
1000 if (first)
1001 bytes_b += end_b - start_b;
1002
1003 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1004 found = true;
1005 if (!first)
1006 break;
1007 }
1008 oplen_tmp -= sizeof(*sack_tmp);
1009 sack_tmp++;
1010 }
1011
1012 if (!found)
1013 return -1;
1014
1015 oplen_a -= sizeof(*sack_a);
1016 sack_a++;
1017 first = false;
1018 }
1019
1020 /* If we made it this far, all ranges SACKed by A are covered by B, so
1021 * either the SACKs are equal, or B SACKs more bytes.
1022 */
1023 return bytes_b > bytes_a ? 1 : 0;
1024}
1025
1026static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1027 u32 *tsval, u32 *tsecr)
1028{
1029 const u8 *ptr;
1030 int opsize;
1031
1032 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1033
1034 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1035 *tsval = get_unaligned_be32(ptr);
1036 *tsecr = get_unaligned_be32(ptr + 4);
1037 }
1038}
1039
1040static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1041 u32 tstamp_new, u32 tsecr_new)
1042{
1043 /* inspired by tcp_parse_options in tcp_input.c */
1044 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1045 const u8 *ptr = (const u8 *)(tcph + 1);
1046 u32 tstamp, tsecr;
1047
1048 /* 3 reserved flags must be unset to avoid future breakage
1049 * ACK must be set
1050 * ECE/CWR are handled separately
1051 * All other flags URG/PSH/RST/SYN/FIN must be unset
1052 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1053 * 0x00C00000 = CWR/ECE (handled separately)
1054 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1055 */
1056 if (((tcp_flag_word(tcph) &
1057 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1058 return false;
1059
1060 while (length > 0) {
1061 int opcode = *ptr++;
1062 int opsize;
1063
1064 if (opcode == TCPOPT_EOL)
1065 break;
1066 if (opcode == TCPOPT_NOP) {
1067 length--;
1068 continue;
1069 }
1070 opsize = *ptr++;
1071 if (opsize < 2 || opsize > length)
1072 break;
1073
1074 switch (opcode) {
1075 case TCPOPT_MD5SIG: /* doesn't influence state */
1076 break;
1077
1078 case TCPOPT_SACK: /* stricter checking performed later */
1079 if (opsize % 8 != 2)
1080 return false;
1081 break;
1082
1083 case TCPOPT_TIMESTAMP:
1084 /* only drop timestamps lower than new */
1085 if (opsize != TCPOLEN_TIMESTAMP)
1086 return false;
1087 tstamp = get_unaligned_be32(ptr);
1088 tsecr = get_unaligned_be32(ptr + 4);
1089 if (after(tstamp, tstamp_new) ||
1090 after(tsecr, tsecr_new))
1091 return false;
1092 break;
1093
1094 case TCPOPT_MSS: /* these should only be set on SYN */
1095 case TCPOPT_WINDOW:
1096 case TCPOPT_SACK_PERM:
1097 case TCPOPT_FASTOPEN:
1098 case TCPOPT_EXP:
1099 default: /* don't drop if any unknown options are present */
1100 return false;
1101 }
1102
1103 ptr += opsize - 2;
1104 length -= opsize;
1105 }
1106
1107 return true;
1108}
1109
1110static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1111 struct cake_flow *flow)
1112{
1113 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1114 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1115 struct sk_buff *skb_check, *skb_prev = NULL;
1116 const struct ipv6hdr *ipv6h, *ipv6h_check;
1117 unsigned char _tcph[64], _tcph_check[64];
1118 const struct tcphdr *tcph, *tcph_check;
1119 const struct iphdr *iph, *iph_check;
1120 struct ipv6hdr _iph, _iph_check;
1121 const struct sk_buff *skb;
1122 int seglen, num_found = 0;
1123 u32 tstamp = 0, tsecr = 0;
1124 __be32 elig_flags = 0;
1125 int sack_comp;
1126
1127 /* no other possible ACKs to filter */
1128 if (flow->head == flow->tail)
1129 return NULL;
1130
1131 skb = flow->tail;
1132 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1133 iph = cake_get_iphdr(skb, &_iph);
1134 if (!tcph)
1135 return NULL;
1136
1137 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1138
1139 /* the 'triggering' packet need only have the ACK flag set.
1140 * also check that SYN is not set, as there won't be any previous ACKs.
1141 */
1142 if ((tcp_flag_word(tcph) &
1143 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1144 return NULL;
1145
1146 /* the 'triggering' ACK is at the tail of the queue, we have already
1147 * returned if it is the only packet in the flow. loop through the rest
1148 * of the queue looking for pure ACKs with the same 5-tuple as the
1149 * triggering one.
1150 */
1151 for (skb_check = flow->head;
1152 skb_check && skb_check != skb;
1153 skb_prev = skb_check, skb_check = skb_check->next) {
1154 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1155 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1156 sizeof(_tcph_check));
1157
1158 /* only TCP packets with matching 5-tuple are eligible, and only
1159 * drop safe headers
1160 */
1161 if (!tcph_check || iph->version != iph_check->version ||
1162 tcph_check->source != tcph->source ||
1163 tcph_check->dest != tcph->dest)
1164 continue;
1165
1166 if (iph_check->version == 4) {
1167 if (iph_check->saddr != iph->saddr ||
1168 iph_check->daddr != iph->daddr)
1169 continue;
1170
1171 seglen = ntohs(iph_check->tot_len) -
1172 (4 * iph_check->ihl);
1173 } else if (iph_check->version == 6) {
1174 ipv6h = (struct ipv6hdr *)iph;
1175 ipv6h_check = (struct ipv6hdr *)iph_check;
1176
1177 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1178 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1179 continue;
1180
1181 seglen = ntohs(ipv6h_check->payload_len);
1182 } else {
1183 WARN_ON(1); /* shouldn't happen */
1184 continue;
1185 }
1186
1187 /* If the ECE/CWR flags changed from the previous eligible
1188 * packet in the same flow, we should no longer be dropping that
1189 * previous packet as this would lose information.
1190 */
1191 if (elig_ack && (tcp_flag_word(tcph_check) &
1192 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1193 elig_ack = NULL;
1194 elig_ack_prev = NULL;
1195 num_found--;
1196 }
1197
1198 /* Check TCP options and flags, don't drop ACKs with segment
1199 * data, and don't drop ACKs with a higher cumulative ACK
1200 * counter than the triggering packet. Check ACK seqno here to
1201 * avoid parsing SACK options of packets we are going to exclude
1202 * anyway.
1203 */
1204 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1205 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1206 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1207 continue;
1208
1209 /* Check SACK options. The triggering packet must SACK more data
1210 * than the ACK under consideration, or SACK the same range but
1211 * have a larger cumulative ACK counter. The latter is a
1212 * pathological case, but is contained in the following check
1213 * anyway, just to be safe.
1214 */
1215 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1216
1217 if (sack_comp < 0 ||
1218 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1219 sack_comp == 0))
1220 continue;
1221
1222 /* At this point we have found an eligible pure ACK to drop; if
1223 * we are in aggressive mode, we are done. Otherwise, keep
1224 * searching unless this is the second eligible ACK we
1225 * found.
1226 *
1227 * Since we want to drop ACK closest to the head of the queue,
1228 * save the first eligible ACK we find, even if we need to loop
1229 * again.
1230 */
1231 if (!elig_ack) {
1232 elig_ack = skb_check;
1233 elig_ack_prev = skb_prev;
1234 elig_flags = (tcp_flag_word(tcph_check)
1235 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1236 }
1237
1238 if (num_found++ > 0)
1239 goto found;
1240 }
1241
1242 /* We made it through the queue without finding two eligible ACKs . If
1243 * we found a single eligible ACK we can drop it in aggressive mode if
1244 * we can guarantee that this does not interfere with ECN flag
1245 * information. We ensure this by dropping it only if the enqueued
1246 * packet is consecutive with the eligible ACK, and their flags match.
1247 */
1248 if (elig_ack && aggressive && elig_ack->next == skb &&
1249 (elig_flags == (tcp_flag_word(tcph) &
1250 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1251 goto found;
1252
1253 return NULL;
1254
1255found:
1256 if (elig_ack_prev)
1257 elig_ack_prev->next = elig_ack->next;
1258 else
1259 flow->head = elig_ack->next;
1260
a8305bff 1261 skb_mark_not_on_list(elig_ack);
8b713881
THJ
1262
1263 return elig_ack;
1264}
1265
046f6fd5
THJ
1266static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1267{
1268 avg -= avg >> shift;
1269 avg += sample >> shift;
1270 return avg;
1271}
1272
a729b7f0
THJ
1273static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1274{
1275 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1276 len -= off;
1277
1278 if (q->max_netlen < len)
1279 q->max_netlen = len;
1280 if (q->min_netlen > len)
1281 q->min_netlen = len;
1282
1283 len += q->rate_overhead;
1284
1285 if (len < q->rate_mpu)
1286 len = q->rate_mpu;
1287
1288 if (q->atm_mode == CAKE_ATM_ATM) {
1289 len += 47;
1290 len /= 48;
1291 len *= 53;
1292 } else if (q->atm_mode == CAKE_ATM_PTM) {
1293 /* Add one byte per 64 bytes or part thereof.
1294 * This is conservative and easier to calculate than the
1295 * precise value.
1296 */
1297 len += (len + 63) / 64;
1298 }
1299
1300 if (q->max_adjlen < len)
1301 q->max_adjlen = len;
1302 if (q->min_adjlen > len)
1303 q->min_adjlen = len;
1304
1305 return len;
1306}
1307
1308static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1309{
1310 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1311 unsigned int hdr_len, last_len = 0;
1312 u32 off = skb_network_offset(skb);
1313 u32 len = qdisc_pkt_len(skb);
1314 u16 segs = 1;
1315
1316 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1317
1318 if (!shinfo->gso_size)
1319 return cake_calc_overhead(q, len, off);
1320
1321 /* borrowed from qdisc_pkt_len_init() */
1322 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1323
1324 /* + transport layer */
1325 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1326 SKB_GSO_TCPV6))) {
1327 const struct tcphdr *th;
1328 struct tcphdr _tcphdr;
1329
1330 th = skb_header_pointer(skb, skb_transport_offset(skb),
1331 sizeof(_tcphdr), &_tcphdr);
1332 if (likely(th))
1333 hdr_len += __tcp_hdrlen(th);
1334 } else {
1335 struct udphdr _udphdr;
1336
1337 if (skb_header_pointer(skb, skb_transport_offset(skb),
1338 sizeof(_udphdr), &_udphdr))
1339 hdr_len += sizeof(struct udphdr);
1340 }
1341
1342 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1343 segs = DIV_ROUND_UP(skb->len - hdr_len,
1344 shinfo->gso_size);
1345 else
1346 segs = shinfo->gso_segs;
1347
1348 len = shinfo->gso_size + hdr_len;
1349 last_len = skb->len - shinfo->gso_size * (segs - 1);
1350
1351 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1352 cake_calc_overhead(q, last_len, off));
1353}
1354
046f6fd5
THJ
1355static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1356{
1357 struct cake_heap_entry ii = q->overflow_heap[i];
1358 struct cake_heap_entry jj = q->overflow_heap[j];
1359
1360 q->overflow_heap[i] = jj;
1361 q->overflow_heap[j] = ii;
1362
1363 q->tins[ii.t].overflow_idx[ii.b] = j;
1364 q->tins[jj.t].overflow_idx[jj.b] = i;
1365}
1366
1367static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1368{
1369 struct cake_heap_entry ii = q->overflow_heap[i];
1370
1371 return q->tins[ii.t].backlogs[ii.b];
1372}
1373
1374static void cake_heapify(struct cake_sched_data *q, u16 i)
1375{
1376 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1377 u32 mb = cake_heap_get_backlog(q, i);
1378 u32 m = i;
1379
1380 while (m < a) {
1381 u32 l = m + m + 1;
1382 u32 r = l + 1;
1383
1384 if (l < a) {
1385 u32 lb = cake_heap_get_backlog(q, l);
1386
1387 if (lb > mb) {
1388 m = l;
1389 mb = lb;
1390 }
1391 }
1392
1393 if (r < a) {
1394 u32 rb = cake_heap_get_backlog(q, r);
1395
1396 if (rb > mb) {
1397 m = r;
1398 mb = rb;
1399 }
1400 }
1401
1402 if (m != i) {
1403 cake_heap_swap(q, i, m);
1404 i = m;
1405 } else {
1406 break;
1407 }
1408 }
1409}
1410
1411static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1412{
1413 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1414 u16 p = (i - 1) >> 1;
1415 u32 ib = cake_heap_get_backlog(q, i);
1416 u32 pb = cake_heap_get_backlog(q, p);
1417
1418 if (ib > pb) {
1419 cake_heap_swap(q, i, p);
1420 i = p;
1421 } else {
1422 break;
1423 }
1424 }
1425}
1426
1427static int cake_advance_shaper(struct cake_sched_data *q,
1428 struct cake_tin_data *b,
1429 struct sk_buff *skb,
1430 ktime_t now, bool drop)
1431{
a729b7f0 1432 u32 len = get_cobalt_cb(skb)->adjusted_len;
046f6fd5
THJ
1433
1434 /* charge packet bandwidth to this tin
1435 * and to the global shaper.
1436 */
1437 if (q->rate_ns) {
1438 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1439 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1440 u64 failsafe_dur = global_dur + (global_dur >> 1);
1441
1442 if (ktime_before(b->time_next_packet, now))
1443 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1444 tin_dur);
1445
1446 else if (ktime_before(b->time_next_packet,
1447 ktime_add_ns(now, tin_dur)))
1448 b->time_next_packet = ktime_add_ns(now, tin_dur);
1449
1450 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1451 global_dur);
1452 if (!drop)
1453 q->failsafe_next_packet = \
1454 ktime_add_ns(q->failsafe_next_packet,
1455 failsafe_dur);
1456 }
1457 return len;
1458}
1459
1460static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1461{
1462 struct cake_sched_data *q = qdisc_priv(sch);
1463 ktime_t now = ktime_get();
1464 u32 idx = 0, tin = 0, len;
1465 struct cake_heap_entry qq;
1466 struct cake_tin_data *b;
1467 struct cake_flow *flow;
1468 struct sk_buff *skb;
1469
1470 if (!q->overflow_timeout) {
1471 int i;
1472 /* Build fresh max-heap */
1473 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1474 cake_heapify(q, i);
1475 }
1476 q->overflow_timeout = 65535;
1477
1478 /* select longest queue for pruning */
1479 qq = q->overflow_heap[0];
1480 tin = qq.t;
1481 idx = qq.b;
1482
1483 b = &q->tins[tin];
1484 flow = &b->flows[idx];
1485 skb = dequeue_head(flow);
1486 if (unlikely(!skb)) {
1487 /* heap has gone wrong, rebuild it next time */
1488 q->overflow_timeout = 0;
1489 return idx + (tin << 16);
1490 }
1491
1492 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1493 b->unresponsive_flow_count++;
1494
1495 len = qdisc_pkt_len(skb);
1496 q->buffer_used -= skb->truesize;
1497 b->backlogs[idx] -= len;
1498 b->tin_backlog -= len;
1499 sch->qstats.backlog -= len;
1500 qdisc_tree_reduce_backlog(sch, 1, len);
1501
1502 flow->dropped++;
1503 b->tin_dropped++;
1504 sch->qstats.drops++;
1505
7298de9c
THJ
1506 if (q->rate_flags & CAKE_FLAG_INGRESS)
1507 cake_advance_shaper(q, b, skb, now, true);
1508
046f6fd5
THJ
1509 __qdisc_drop(skb, to_free);
1510 sch->q.qlen--;
1511
1512 cake_heapify(q, 0);
1513
1514 return idx + (tin << 16);
1515}
1516
83f8fd69
THJ
1517static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
1518{
c87b4ecd 1519 int wlen = skb_network_offset(skb);
83f8fd69
THJ
1520 u8 dscp;
1521
b2100cc5 1522 switch (tc_skb_protocol(skb)) {
83f8fd69 1523 case htons(ETH_P_IP):
c87b4ecd
THJ
1524 wlen += sizeof(struct iphdr);
1525 if (!pskb_may_pull(skb, wlen) ||
1526 skb_try_make_writable(skb, wlen))
1527 return 0;
1528
83f8fd69
THJ
1529 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
1530 if (wash && dscp)
1531 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1532 return dscp;
1533
1534 case htons(ETH_P_IPV6):
c87b4ecd
THJ
1535 wlen += sizeof(struct ipv6hdr);
1536 if (!pskb_may_pull(skb, wlen) ||
1537 skb_try_make_writable(skb, wlen))
1538 return 0;
1539
83f8fd69
THJ
1540 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
1541 if (wash && dscp)
1542 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1543 return dscp;
1544
1545 case htons(ETH_P_ARP):
1546 return 0x38; /* CS7 - Net Control */
1547
1548 default:
1549 /* If there is no Diffserv field, treat as best-effort */
1550 return 0;
1551 }
1552}
1553
1554static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1555 struct sk_buff *skb)
1556{
1557 struct cake_sched_data *q = qdisc_priv(sch);
eab2fc82 1558 u32 tin, mark;
4976e3c6 1559 u8 dscp;
83f8fd69 1560
4976e3c6
THJ
1561 /* Tin selection: Default to diffserv-based selection, allow overriding
1562 * using firewall marks or skb->priority.
1563 */
1564 dscp = cake_handle_diffserv(skb,
1565 q->rate_flags & CAKE_FLAG_WASH);
eab2fc82 1566 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
83f8fd69 1567
4976e3c6 1568 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
83f8fd69 1569 tin = 0;
4976e3c6 1570
eab2fc82
THJ
1571 else if (mark && mark <= q->tin_cnt)
1572 tin = q->tin_order[mark - 1];
4976e3c6
THJ
1573
1574 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1575 TC_H_MIN(skb->priority) > 0 &&
1576 TC_H_MIN(skb->priority) <= q->tin_cnt)
1577 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1578
1579 else {
1580 tin = q->tin_index[dscp];
1581
1582 if (unlikely(tin >= q->tin_cnt))
1583 tin = 0;
83f8fd69
THJ
1584 }
1585
1586 return &q->tins[tin];
1587}
1588
1589static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
046f6fd5
THJ
1590 struct sk_buff *skb, int flow_mode, int *qerr)
1591{
1592 struct cake_sched_data *q = qdisc_priv(sch);
1593 struct tcf_proto *filter;
1594 struct tcf_result res;
93cfb6c1 1595 u16 flow = 0, host = 0;
046f6fd5
THJ
1596 int result;
1597
1598 filter = rcu_dereference_bh(q->filter_list);
1599 if (!filter)
83f8fd69 1600 goto hash;
046f6fd5
THJ
1601
1602 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1603 result = tcf_classify(skb, filter, &res, false);
83f8fd69 1604
046f6fd5
THJ
1605 if (result >= 0) {
1606#ifdef CONFIG_NET_CLS_ACT
1607 switch (result) {
1608 case TC_ACT_STOLEN:
1609 case TC_ACT_QUEUED:
1610 case TC_ACT_TRAP:
1611 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1612 /* fall through */
1613 case TC_ACT_SHOT:
1614 return 0;
1615 }
1616#endif
1617 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
83f8fd69 1618 flow = TC_H_MIN(res.classid);
93cfb6c1
THJ
1619 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1620 host = TC_H_MAJ(res.classid) >> 16;
046f6fd5 1621 }
83f8fd69
THJ
1622hash:
1623 *t = cake_select_tin(sch, skb);
93cfb6c1 1624 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
046f6fd5
THJ
1625}
1626
7298de9c
THJ
1627static void cake_reconfigure(struct Qdisc *sch);
1628
046f6fd5
THJ
1629static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1630 struct sk_buff **to_free)
1631{
1632 struct cake_sched_data *q = qdisc_priv(sch);
1633 int len = qdisc_pkt_len(skb);
1634 int uninitialized_var(ret);
8b713881 1635 struct sk_buff *ack = NULL;
046f6fd5
THJ
1636 ktime_t now = ktime_get();
1637 struct cake_tin_data *b;
1638 struct cake_flow *flow;
83f8fd69 1639 u32 idx;
046f6fd5
THJ
1640
1641 /* choose flow to insert into */
83f8fd69 1642 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
046f6fd5
THJ
1643 if (idx == 0) {
1644 if (ret & __NET_XMIT_BYPASS)
1645 qdisc_qstats_drop(sch);
1646 __qdisc_drop(skb, to_free);
1647 return ret;
1648 }
1649 idx--;
1650 flow = &b->flows[idx];
1651
1652 /* ensure shaper state isn't stale */
1653 if (!b->tin_backlog) {
1654 if (ktime_before(b->time_next_packet, now))
1655 b->time_next_packet = now;
1656
1657 if (!sch->q.qlen) {
1658 if (ktime_before(q->time_next_packet, now)) {
1659 q->failsafe_next_packet = now;
1660 q->time_next_packet = now;
1661 } else if (ktime_after(q->time_next_packet, now) &&
1662 ktime_after(q->failsafe_next_packet, now)) {
1663 u64 next = \
1664 min(ktime_to_ns(q->time_next_packet),
1665 ktime_to_ns(
1666 q->failsafe_next_packet));
1667 sch->qstats.overlimits++;
1668 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1669 }
1670 }
1671 }
1672
1673 if (unlikely(len > b->max_skblen))
1674 b->max_skblen = len;
1675
0c850344
THJ
1676 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1677 struct sk_buff *segs, *nskb;
1678 netdev_features_t features = netif_skb_features(skb);
8c6c37fd 1679 unsigned int slen = 0, numsegs = 0;
0c850344
THJ
1680
1681 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1682 if (IS_ERR_OR_NULL(segs))
1683 return qdisc_drop(skb, sch, to_free);
1684
b950d8a5 1685 skb_list_walk_safe(segs, segs, nskb) {
a8305bff 1686 skb_mark_not_on_list(segs);
0c850344
THJ
1687 qdisc_skb_cb(segs)->pkt_len = segs->len;
1688 cobalt_set_enqueue_time(segs, now);
1689 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1690 segs);
1691 flow_queue_add(flow, segs);
1692
1693 sch->q.qlen++;
8c6c37fd 1694 numsegs++;
0c850344
THJ
1695 slen += segs->len;
1696 q->buffer_used += segs->truesize;
1697 b->packets++;
0c850344 1698 }
8b713881 1699
0c850344
THJ
1700 /* stats */
1701 b->bytes += slen;
1702 b->backlogs[idx] += slen;
1703 b->tin_backlog += slen;
1704 sch->qstats.backlog += slen;
1705 q->avg_window_bytes += slen;
8b713881 1706
8c6c37fd 1707 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
0c850344 1708 consume_skb(skb);
8b713881 1709 } else {
0c850344
THJ
1710 /* not splitting */
1711 cobalt_set_enqueue_time(skb, now);
1712 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1713 flow_queue_add(flow, skb);
1714
1715 if (q->ack_filter)
1716 ack = cake_ack_filter(q, flow);
1717
1718 if (ack) {
1719 b->ack_drops++;
1720 sch->qstats.drops++;
1721 b->bytes += qdisc_pkt_len(ack);
1722 len -= qdisc_pkt_len(ack);
1723 q->buffer_used += skb->truesize - ack->truesize;
1724 if (q->rate_flags & CAKE_FLAG_INGRESS)
1725 cake_advance_shaper(q, b, ack, now, true);
1726
1727 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1728 consume_skb(ack);
1729 } else {
1730 sch->q.qlen++;
1731 q->buffer_used += skb->truesize;
1732 }
046f6fd5 1733
0c850344
THJ
1734 /* stats */
1735 b->packets++;
1736 b->bytes += len;
1737 b->backlogs[idx] += len;
1738 b->tin_backlog += len;
1739 sch->qstats.backlog += len;
1740 q->avg_window_bytes += len;
1741 }
046f6fd5
THJ
1742
1743 if (q->overflow_timeout)
1744 cake_heapify_up(q, b->overflow_idx[idx]);
1745
1746 /* incoming bandwidth capacity estimate */
7298de9c
THJ
1747 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1748 u64 packet_interval = \
1749 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1750
1751 if (packet_interval > NSEC_PER_SEC)
1752 packet_interval = NSEC_PER_SEC;
1753
1754 /* filter out short-term bursts, eg. wifi aggregation */
1755 q->avg_packet_interval = \
1756 cake_ewma(q->avg_packet_interval,
1757 packet_interval,
1758 (packet_interval > q->avg_packet_interval ?
1759 2 : 8));
1760
1761 q->last_packet_time = now;
1762
1763 if (packet_interval > q->avg_packet_interval) {
1764 u64 window_interval = \
1765 ktime_to_ns(ktime_sub(now,
1766 q->avg_window_begin));
1767 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1768
68aab823 1769 b = div64_u64(b, window_interval);
7298de9c
THJ
1770 q->avg_peak_bandwidth =
1771 cake_ewma(q->avg_peak_bandwidth, b,
1772 b > q->avg_peak_bandwidth ? 2 : 8);
1773 q->avg_window_bytes = 0;
1774 q->avg_window_begin = now;
1775
1776 if (ktime_after(now,
1777 ktime_add_ms(q->last_reconfig_time,
1778 250))) {
1779 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1780 cake_reconfigure(sch);
1781 }
1782 }
1783 } else {
1784 q->avg_window_bytes = 0;
1785 q->last_packet_time = now;
1786 }
046f6fd5
THJ
1787
1788 /* flowchain */
1789 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1790 struct cake_host *srchost = &b->hosts[flow->srchost];
1791 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1792 u16 host_load = 1;
1793
1794 if (!flow->set) {
1795 list_add_tail(&flow->flowchain, &b->new_flows);
1796 } else {
1797 b->decaying_flow_count--;
1798 list_move_tail(&flow->flowchain, &b->new_flows);
1799 }
1800 flow->set = CAKE_SET_SPARSE;
1801 b->sparse_flow_count++;
1802
1803 if (cake_dsrc(q->flow_mode))
71263992 1804 host_load = max(host_load, srchost->srchost_bulk_flow_count);
046f6fd5
THJ
1805
1806 if (cake_ddst(q->flow_mode))
71263992 1807 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
046f6fd5
THJ
1808
1809 flow->deficit = (b->flow_quantum *
1810 quantum_div[host_load]) >> 16;
1811 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
71263992
GA
1812 struct cake_host *srchost = &b->hosts[flow->srchost];
1813 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1814
046f6fd5
THJ
1815 /* this flow was empty, accounted as a sparse flow, but actually
1816 * in the bulk rotation.
1817 */
1818 flow->set = CAKE_SET_BULK;
1819 b->sparse_flow_count--;
1820 b->bulk_flow_count++;
71263992
GA
1821
1822 if (cake_dsrc(q->flow_mode))
1823 srchost->srchost_bulk_flow_count++;
1824
1825 if (cake_ddst(q->flow_mode))
1826 dsthost->dsthost_bulk_flow_count++;
1827
046f6fd5
THJ
1828 }
1829
1830 if (q->buffer_used > q->buffer_max_used)
1831 q->buffer_max_used = q->buffer_used;
1832
1833 if (q->buffer_used > q->buffer_limit) {
1834 u32 dropped = 0;
1835
1836 while (q->buffer_used > q->buffer_limit) {
1837 dropped++;
1838 cake_drop(sch, to_free);
1839 }
1840 b->drop_overlimit += dropped;
1841 }
1842 return NET_XMIT_SUCCESS;
1843}
1844
1845static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1846{
1847 struct cake_sched_data *q = qdisc_priv(sch);
1848 struct cake_tin_data *b = &q->tins[q->cur_tin];
1849 struct cake_flow *flow = &b->flows[q->cur_flow];
1850 struct sk_buff *skb = NULL;
1851 u32 len;
1852
1853 if (flow->head) {
1854 skb = dequeue_head(flow);
1855 len = qdisc_pkt_len(skb);
1856 b->backlogs[q->cur_flow] -= len;
1857 b->tin_backlog -= len;
1858 sch->qstats.backlog -= len;
1859 q->buffer_used -= skb->truesize;
1860 sch->q.qlen--;
1861
1862 if (q->overflow_timeout)
1863 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1864 }
1865 return skb;
1866}
1867
1868/* Discard leftover packets from a tin no longer in use. */
1869static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1870{
1871 struct cake_sched_data *q = qdisc_priv(sch);
1872 struct sk_buff *skb;
1873
1874 q->cur_tin = tin;
1875 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1876 while (!!(skb = cake_dequeue_one(sch)))
1877 kfree_skb(skb);
1878}
1879
1880static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1881{
1882 struct cake_sched_data *q = qdisc_priv(sch);
1883 struct cake_tin_data *b = &q->tins[q->cur_tin];
1884 struct cake_host *srchost, *dsthost;
1885 ktime_t now = ktime_get();
1886 struct cake_flow *flow;
1887 struct list_head *head;
1888 bool first_flow = true;
1889 struct sk_buff *skb;
1890 u16 host_load;
1891 u64 delay;
1892 u32 len;
1893
1894begin:
1895 if (!sch->q.qlen)
1896 return NULL;
1897
1898 /* global hard shaper */
1899 if (ktime_after(q->time_next_packet, now) &&
1900 ktime_after(q->failsafe_next_packet, now)) {
1901 u64 next = min(ktime_to_ns(q->time_next_packet),
1902 ktime_to_ns(q->failsafe_next_packet));
1903
1904 sch->qstats.overlimits++;
1905 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1906 return NULL;
1907 }
1908
1909 /* Choose a class to work on. */
1910 if (!q->rate_ns) {
1911 /* In unlimited mode, can't rely on shaper timings, just balance
1912 * with DRR
1913 */
1914 bool wrapped = false, empty = true;
1915
1916 while (b->tin_deficit < 0 ||
1917 !(b->sparse_flow_count + b->bulk_flow_count)) {
1918 if (b->tin_deficit <= 0)
cbd22f17 1919 b->tin_deficit += b->tin_quantum;
046f6fd5
THJ
1920 if (b->sparse_flow_count + b->bulk_flow_count)
1921 empty = false;
1922
1923 q->cur_tin++;
1924 b++;
1925 if (q->cur_tin >= q->tin_cnt) {
1926 q->cur_tin = 0;
1927 b = q->tins;
1928
1929 if (wrapped) {
1930 /* It's possible for q->qlen to be
1931 * nonzero when we actually have no
1932 * packets anywhere.
1933 */
1934 if (empty)
1935 return NULL;
1936 } else {
1937 wrapped = true;
1938 }
1939 }
1940 }
1941 } else {
1942 /* In shaped mode, choose:
1943 * - Highest-priority tin with queue and meeting schedule, or
1944 * - The earliest-scheduled tin with queue.
1945 */
1946 ktime_t best_time = KTIME_MAX;
1947 int tin, best_tin = 0;
1948
1949 for (tin = 0; tin < q->tin_cnt; tin++) {
1950 b = q->tins + tin;
1951 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
1952 ktime_t time_to_pkt = \
1953 ktime_sub(b->time_next_packet, now);
1954
1955 if (ktime_to_ns(time_to_pkt) <= 0 ||
1956 ktime_compare(time_to_pkt,
1957 best_time) <= 0) {
1958 best_time = time_to_pkt;
1959 best_tin = tin;
1960 }
1961 }
1962 }
1963
1964 q->cur_tin = best_tin;
1965 b = q->tins + best_tin;
1966
1967 /* No point in going further if no packets to deliver. */
1968 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
1969 return NULL;
1970 }
1971
1972retry:
1973 /* service this class */
1974 head = &b->decaying_flows;
1975 if (!first_flow || list_empty(head)) {
1976 head = &b->new_flows;
1977 if (list_empty(head)) {
1978 head = &b->old_flows;
1979 if (unlikely(list_empty(head))) {
1980 head = &b->decaying_flows;
1981 if (unlikely(list_empty(head)))
1982 goto begin;
1983 }
1984 }
1985 }
1986 flow = list_first_entry(head, struct cake_flow, flowchain);
1987 q->cur_flow = flow - b->flows;
1988 first_flow = false;
1989
1990 /* triple isolation (modified DRR++) */
1991 srchost = &b->hosts[flow->srchost];
1992 dsthost = &b->hosts[flow->dsthost];
1993 host_load = 1;
1994
046f6fd5
THJ
1995 /* flow isolation (DRR++) */
1996 if (flow->deficit <= 0) {
046f6fd5
THJ
1997 /* Keep all flows with deficits out of the sparse and decaying
1998 * rotations. No non-empty flow can go into the decaying
1999 * rotation, so they can't get deficits
2000 */
2001 if (flow->set == CAKE_SET_SPARSE) {
2002 if (flow->head) {
2003 b->sparse_flow_count--;
2004 b->bulk_flow_count++;
71263992
GA
2005
2006 if (cake_dsrc(q->flow_mode))
2007 srchost->srchost_bulk_flow_count++;
2008
2009 if (cake_ddst(q->flow_mode))
2010 dsthost->dsthost_bulk_flow_count++;
2011
046f6fd5
THJ
2012 flow->set = CAKE_SET_BULK;
2013 } else {
2014 /* we've moved it to the bulk rotation for
2015 * correct deficit accounting but we still want
2016 * to count it as a sparse flow, not a bulk one.
2017 */
2018 flow->set = CAKE_SET_SPARSE_WAIT;
2019 }
2020 }
71263992
GA
2021
2022 if (cake_dsrc(q->flow_mode))
2023 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2024
2025 if (cake_ddst(q->flow_mode))
2026 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2027
2028 WARN_ON(host_load > CAKE_QUEUES);
2029
2030 /* The shifted prandom_u32() is a way to apply dithering to
2031 * avoid accumulating roundoff errors
2032 */
2033 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2034 (prandom_u32() >> 16)) >> 16;
2035 list_move_tail(&flow->flowchain, &b->old_flows);
2036
046f6fd5
THJ
2037 goto retry;
2038 }
2039
2040 /* Retrieve a packet via the AQM */
2041 while (1) {
2042 skb = cake_dequeue_one(sch);
2043 if (!skb) {
2044 /* this queue was actually empty */
2045 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2046 b->unresponsive_flow_count--;
2047
2048 if (flow->cvars.p_drop || flow->cvars.count ||
2049 ktime_before(now, flow->cvars.drop_next)) {
2050 /* keep in the flowchain until the state has
2051 * decayed to rest
2052 */
2053 list_move_tail(&flow->flowchain,
2054 &b->decaying_flows);
2055 if (flow->set == CAKE_SET_BULK) {
2056 b->bulk_flow_count--;
71263992
GA
2057
2058 if (cake_dsrc(q->flow_mode))
2059 srchost->srchost_bulk_flow_count--;
2060
2061 if (cake_ddst(q->flow_mode))
2062 dsthost->dsthost_bulk_flow_count--;
2063
046f6fd5
THJ
2064 b->decaying_flow_count++;
2065 } else if (flow->set == CAKE_SET_SPARSE ||
2066 flow->set == CAKE_SET_SPARSE_WAIT) {
2067 b->sparse_flow_count--;
2068 b->decaying_flow_count++;
2069 }
2070 flow->set = CAKE_SET_DECAYING;
2071 } else {
2072 /* remove empty queue from the flowchain */
2073 list_del_init(&flow->flowchain);
2074 if (flow->set == CAKE_SET_SPARSE ||
2075 flow->set == CAKE_SET_SPARSE_WAIT)
2076 b->sparse_flow_count--;
71263992 2077 else if (flow->set == CAKE_SET_BULK) {
046f6fd5 2078 b->bulk_flow_count--;
71263992
GA
2079
2080 if (cake_dsrc(q->flow_mode))
2081 srchost->srchost_bulk_flow_count--;
2082
2083 if (cake_ddst(q->flow_mode))
2084 dsthost->dsthost_bulk_flow_count--;
2085
2086 } else
046f6fd5
THJ
2087 b->decaying_flow_count--;
2088
2089 flow->set = CAKE_SET_NONE;
046f6fd5
THJ
2090 }
2091 goto begin;
2092 }
2093
2094 /* Last packet in queue may be marked, shouldn't be dropped */
7298de9c
THJ
2095 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2096 (b->bulk_flow_count *
2097 !!(q->rate_flags &
2098 CAKE_FLAG_INGRESS))) ||
046f6fd5
THJ
2099 !flow->head)
2100 break;
2101
7298de9c
THJ
2102 /* drop this packet, get another one */
2103 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2104 len = cake_advance_shaper(q, b, skb,
2105 now, true);
2106 flow->deficit -= len;
2107 b->tin_deficit -= len;
2108 }
046f6fd5
THJ
2109 flow->dropped++;
2110 b->tin_dropped++;
2111 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2112 qdisc_qstats_drop(sch);
2113 kfree_skb(skb);
7298de9c
THJ
2114 if (q->rate_flags & CAKE_FLAG_INGRESS)
2115 goto retry;
046f6fd5
THJ
2116 }
2117
2118 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2119 qdisc_bstats_update(sch, skb);
2120
2121 /* collect delay stats */
2122 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2123 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2124 b->peak_delay = cake_ewma(b->peak_delay, delay,
2125 delay > b->peak_delay ? 2 : 8);
2126 b->base_delay = cake_ewma(b->base_delay, delay,
2127 delay < b->base_delay ? 2 : 8);
2128
2129 len = cake_advance_shaper(q, b, skb, now, false);
2130 flow->deficit -= len;
2131 b->tin_deficit -= len;
2132
2133 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2134 u64 next = min(ktime_to_ns(q->time_next_packet),
2135 ktime_to_ns(q->failsafe_next_packet));
2136
2137 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2138 } else if (!sch->q.qlen) {
2139 int i;
2140
2141 for (i = 0; i < q->tin_cnt; i++) {
2142 if (q->tins[i].decaying_flow_count) {
2143 ktime_t next = \
2144 ktime_add_ns(now,
2145 q->tins[i].cparams.target);
2146
2147 qdisc_watchdog_schedule_ns(&q->watchdog,
2148 ktime_to_ns(next));
2149 break;
2150 }
2151 }
2152 }
2153
2154 if (q->overflow_timeout)
2155 q->overflow_timeout--;
2156
2157 return skb;
2158}
2159
2160static void cake_reset(struct Qdisc *sch)
2161{
2162 u32 c;
2163
2164 for (c = 0; c < CAKE_MAX_TINS; c++)
2165 cake_clear_tin(sch, c);
2166}
2167
2168static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2169 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2170 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2171 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2172 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2173 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2174 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2175 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2176 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2177 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2178 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2179 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2180 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2181 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2182 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2183 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
b3c424eb 2184 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
eab2fc82 2185 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
046f6fd5
THJ
2186};
2187
2188static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2189 u64 target_ns, u64 rtt_est_ns)
2190{
2191 /* convert byte-rate into time-per-byte
2192 * so it will always unwedge in reasonable time.
2193 */
2194 static const u64 MIN_RATE = 64;
2195 u32 byte_target = mtu;
2196 u64 byte_target_ns;
2197 u8 rate_shft = 0;
2198 u64 rate_ns = 0;
2199
2200 b->flow_quantum = 1514;
2201 if (rate) {
2202 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2203 rate_shft = 34;
2204 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2205 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2206 while (!!(rate_ns >> 34)) {
2207 rate_ns >>= 1;
2208 rate_shft--;
2209 }
2210 } /* else unlimited, ie. zero delay */
2211
2212 b->tin_rate_bps = rate;
2213 b->tin_rate_ns = rate_ns;
2214 b->tin_rate_shft = rate_shft;
2215
2216 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2217
2218 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2219 b->cparams.interval = max(rtt_est_ns +
2220 b->cparams.target - target_ns,
2221 b->cparams.target * 2);
2222 b->cparams.mtu_time = byte_target_ns;
2223 b->cparams.p_inc = 1 << 24; /* 1/256 */
2224 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2225}
2226
83f8fd69 2227static int cake_config_besteffort(struct Qdisc *sch)
046f6fd5
THJ
2228{
2229 struct cake_sched_data *q = qdisc_priv(sch);
2230 struct cake_tin_data *b = &q->tins[0];
83f8fd69
THJ
2231 u32 mtu = psched_mtu(qdisc_dev(sch));
2232 u64 rate = q->rate_bps;
046f6fd5
THJ
2233
2234 q->tin_cnt = 1;
83f8fd69
THJ
2235
2236 q->tin_index = besteffort;
2237 q->tin_order = normal_order;
2238
2239 cake_set_rate(b, rate, mtu,
046f6fd5 2240 us_to_ns(q->target), us_to_ns(q->interval));
cbd22f17 2241 b->tin_quantum = 65535;
046f6fd5 2242
83f8fd69
THJ
2243 return 0;
2244}
2245
2246static int cake_config_precedence(struct Qdisc *sch)
2247{
2248 /* convert high-level (user visible) parameters into internal format */
2249 struct cake_sched_data *q = qdisc_priv(sch);
2250 u32 mtu = psched_mtu(qdisc_dev(sch));
2251 u64 rate = q->rate_bps;
cbd22f17 2252 u32 quantum = 256;
83f8fd69
THJ
2253 u32 i;
2254
2255 q->tin_cnt = 8;
2256 q->tin_index = precedence;
2257 q->tin_order = normal_order;
2258
2259 for (i = 0; i < q->tin_cnt; i++) {
2260 struct cake_tin_data *b = &q->tins[i];
2261
2262 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2263 us_to_ns(q->interval));
2264
cbd22f17 2265 b->tin_quantum = max_t(u16, 1U, quantum);
83f8fd69
THJ
2266
2267 /* calculate next class's parameters */
2268 rate *= 7;
2269 rate >>= 3;
2270
cbd22f17
KDB
2271 quantum *= 7;
2272 quantum >>= 3;
83f8fd69
THJ
2273 }
2274
2275 return 0;
2276}
2277
2278/* List of known Diffserv codepoints:
2279 *
2280 * Least Effort (CS1)
2281 * Best Effort (CS0)
2282 * Max Reliability & LLT "Lo" (TOS1)
2283 * Max Throughput (TOS2)
2284 * Min Delay (TOS4)
2285 * LLT "La" (TOS5)
2286 * Assured Forwarding 1 (AF1x) - x3
2287 * Assured Forwarding 2 (AF2x) - x3
2288 * Assured Forwarding 3 (AF3x) - x3
2289 * Assured Forwarding 4 (AF4x) - x3
2290 * Precedence Class 2 (CS2)
2291 * Precedence Class 3 (CS3)
2292 * Precedence Class 4 (CS4)
2293 * Precedence Class 5 (CS5)
2294 * Precedence Class 6 (CS6)
2295 * Precedence Class 7 (CS7)
2296 * Voice Admit (VA)
2297 * Expedited Forwarding (EF)
2298
2299 * Total 25 codepoints.
2300 */
2301
2302/* List of traffic classes in RFC 4594:
2303 * (roughly descending order of contended priority)
2304 * (roughly ascending order of uncontended throughput)
2305 *
2306 * Network Control (CS6,CS7) - routing traffic
2307 * Telephony (EF,VA) - aka. VoIP streams
2308 * Signalling (CS5) - VoIP setup
2309 * Multimedia Conferencing (AF4x) - aka. video calls
2310 * Realtime Interactive (CS4) - eg. games
2311 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2312 * Broadcast Video (CS3)
2313 * Low Latency Data (AF2x,TOS4) - eg. database
2314 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2315 * Standard Service (CS0 & unrecognised codepoints)
2316 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2317 * Low Priority Data (CS1) - eg. BitTorrent
2318
2319 * Total 12 traffic classes.
2320 */
2321
2322static int cake_config_diffserv8(struct Qdisc *sch)
2323{
2324/* Pruned list of traffic classes for typical applications:
2325 *
2326 * Network Control (CS6, CS7)
2327 * Minimum Latency (EF, VA, CS5, CS4)
2328 * Interactive Shell (CS2, TOS1)
2329 * Low Latency Transactions (AF2x, TOS4)
2330 * Video Streaming (AF4x, AF3x, CS3)
2331 * Bog Standard (CS0 etc.)
2332 * High Throughput (AF1x, TOS2)
2333 * Background Traffic (CS1)
2334 *
2335 * Total 8 traffic classes.
2336 */
2337
2338 struct cake_sched_data *q = qdisc_priv(sch);
2339 u32 mtu = psched_mtu(qdisc_dev(sch));
2340 u64 rate = q->rate_bps;
cbd22f17 2341 u32 quantum = 256;
83f8fd69
THJ
2342 u32 i;
2343
2344 q->tin_cnt = 8;
2345
2346 /* codepoint to class mapping */
2347 q->tin_index = diffserv8;
2348 q->tin_order = normal_order;
2349
2350 /* class characteristics */
2351 for (i = 0; i < q->tin_cnt; i++) {
2352 struct cake_tin_data *b = &q->tins[i];
2353
2354 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2355 us_to_ns(q->interval));
2356
cbd22f17 2357 b->tin_quantum = max_t(u16, 1U, quantum);
83f8fd69
THJ
2358
2359 /* calculate next class's parameters */
2360 rate *= 7;
2361 rate >>= 3;
2362
cbd22f17
KDB
2363 quantum *= 7;
2364 quantum >>= 3;
83f8fd69
THJ
2365 }
2366
2367 return 0;
2368}
2369
2370static int cake_config_diffserv4(struct Qdisc *sch)
2371{
2372/* Further pruned list of traffic classes for four-class system:
2373 *
2374 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2375 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2376 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2377 * Background Traffic (CS1)
2378 *
2379 * Total 4 traffic classes.
2380 */
2381
2382 struct cake_sched_data *q = qdisc_priv(sch);
2383 u32 mtu = psched_mtu(qdisc_dev(sch));
2384 u64 rate = q->rate_bps;
2385 u32 quantum = 1024;
2386
2387 q->tin_cnt = 4;
2388
2389 /* codepoint to class mapping */
2390 q->tin_index = diffserv4;
2391 q->tin_order = bulk_order;
2392
2393 /* class characteristics */
2394 cake_set_rate(&q->tins[0], rate, mtu,
2395 us_to_ns(q->target), us_to_ns(q->interval));
2396 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2397 us_to_ns(q->target), us_to_ns(q->interval));
2398 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2399 us_to_ns(q->target), us_to_ns(q->interval));
2400 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2401 us_to_ns(q->target), us_to_ns(q->interval));
2402
83f8fd69 2403 /* bandwidth-sharing weights */
cbd22f17
KDB
2404 q->tins[0].tin_quantum = quantum;
2405 q->tins[1].tin_quantum = quantum >> 4;
2406 q->tins[2].tin_quantum = quantum >> 1;
2407 q->tins[3].tin_quantum = quantum >> 2;
83f8fd69
THJ
2408
2409 return 0;
2410}
2411
2412static int cake_config_diffserv3(struct Qdisc *sch)
2413{
2414/* Simplified Diffserv structure with 3 tins.
2415 * Low Priority (CS1)
2416 * Best Effort
2417 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2418 */
2419 struct cake_sched_data *q = qdisc_priv(sch);
2420 u32 mtu = psched_mtu(qdisc_dev(sch));
2421 u64 rate = q->rate_bps;
2422 u32 quantum = 1024;
2423
2424 q->tin_cnt = 3;
2425
2426 /* codepoint to class mapping */
2427 q->tin_index = diffserv3;
2428 q->tin_order = bulk_order;
2429
2430 /* class characteristics */
2431 cake_set_rate(&q->tins[0], rate, mtu,
2432 us_to_ns(q->target), us_to_ns(q->interval));
2433 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2434 us_to_ns(q->target), us_to_ns(q->interval));
2435 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2436 us_to_ns(q->target), us_to_ns(q->interval));
2437
83f8fd69 2438 /* bandwidth-sharing weights */
cbd22f17
KDB
2439 q->tins[0].tin_quantum = quantum;
2440 q->tins[1].tin_quantum = quantum >> 4;
2441 q->tins[2].tin_quantum = quantum >> 2;
83f8fd69
THJ
2442
2443 return 0;
2444}
2445
2446static void cake_reconfigure(struct Qdisc *sch)
2447{
2448 struct cake_sched_data *q = qdisc_priv(sch);
2449 int c, ft;
2450
2451 switch (q->tin_mode) {
2452 case CAKE_DIFFSERV_BESTEFFORT:
2453 ft = cake_config_besteffort(sch);
2454 break;
2455
2456 case CAKE_DIFFSERV_PRECEDENCE:
2457 ft = cake_config_precedence(sch);
2458 break;
2459
2460 case CAKE_DIFFSERV_DIFFSERV8:
2461 ft = cake_config_diffserv8(sch);
2462 break;
2463
2464 case CAKE_DIFFSERV_DIFFSERV4:
2465 ft = cake_config_diffserv4(sch);
2466 break;
2467
2468 case CAKE_DIFFSERV_DIFFSERV3:
2469 default:
2470 ft = cake_config_diffserv3(sch);
2471 break;
2472 }
2473
046f6fd5
THJ
2474 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2475 cake_clear_tin(sch, c);
2476 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2477 }
2478
2479 q->rate_ns = q->tins[ft].tin_rate_ns;
2480 q->rate_shft = q->tins[ft].tin_rate_shft;
2481
2482 if (q->buffer_config_limit) {
2483 q->buffer_limit = q->buffer_config_limit;
2484 } else if (q->rate_bps) {
2485 u64 t = q->rate_bps * q->interval;
2486
2487 do_div(t, USEC_PER_SEC / 4);
2488 q->buffer_limit = max_t(u32, t, 4U << 20);
2489 } else {
2490 q->buffer_limit = ~0;
2491 }
2492
2493 sch->flags &= ~TCQ_F_CAN_BYPASS;
2494
2495 q->buffer_limit = min(q->buffer_limit,
2496 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2497 q->buffer_config_limit));
2498}
2499
2500static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2501 struct netlink_ext_ack *extack)
2502{
2503 struct cake_sched_data *q = qdisc_priv(sch);
2504 struct nlattr *tb[TCA_CAKE_MAX + 1];
2505 int err;
2506
2507 if (!opt)
2508 return -EINVAL;
2509
8cb08174
JB
2510 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2511 extack);
046f6fd5
THJ
2512 if (err < 0)
2513 return err;
2514
ea825115
THJ
2515 if (tb[TCA_CAKE_NAT]) {
2516#if IS_ENABLED(CONFIG_NF_CONNTRACK)
2517 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2518 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2519 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2520#else
2521 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2522 "No conntrack support in kernel");
2523 return -EOPNOTSUPP;
2524#endif
2525 }
2526
046f6fd5
THJ
2527 if (tb[TCA_CAKE_BASE_RATE64])
2528 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2529
83f8fd69
THJ
2530 if (tb[TCA_CAKE_DIFFSERV_MODE])
2531 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2532
2533 if (tb[TCA_CAKE_WASH]) {
2534 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2535 q->rate_flags |= CAKE_FLAG_WASH;
2536 else
2537 q->rate_flags &= ~CAKE_FLAG_WASH;
2538 }
2539
046f6fd5 2540 if (tb[TCA_CAKE_FLOW_MODE])
ea825115
THJ
2541 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2542 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2543 CAKE_FLOW_MASK));
046f6fd5 2544
a729b7f0
THJ
2545 if (tb[TCA_CAKE_ATM])
2546 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2547
2548 if (tb[TCA_CAKE_OVERHEAD]) {
2549 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2550 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2551
2552 q->max_netlen = 0;
2553 q->max_adjlen = 0;
2554 q->min_netlen = ~0;
2555 q->min_adjlen = ~0;
2556 }
2557
2558 if (tb[TCA_CAKE_RAW]) {
2559 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2560
2561 q->max_netlen = 0;
2562 q->max_adjlen = 0;
2563 q->min_netlen = ~0;
2564 q->min_adjlen = ~0;
2565 }
2566
2567 if (tb[TCA_CAKE_MPU])
2568 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2569
046f6fd5
THJ
2570 if (tb[TCA_CAKE_RTT]) {
2571 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2572
2573 if (!q->interval)
2574 q->interval = 1;
2575 }
2576
2577 if (tb[TCA_CAKE_TARGET]) {
2578 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2579
2580 if (!q->target)
2581 q->target = 1;
2582 }
2583
7298de9c
THJ
2584 if (tb[TCA_CAKE_AUTORATE]) {
2585 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2586 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2587 else
2588 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2589 }
2590
2591 if (tb[TCA_CAKE_INGRESS]) {
2592 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2593 q->rate_flags |= CAKE_FLAG_INGRESS;
2594 else
2595 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2596 }
2597
8b713881
THJ
2598 if (tb[TCA_CAKE_ACK_FILTER])
2599 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2600
046f6fd5
THJ
2601 if (tb[TCA_CAKE_MEMORY])
2602 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2603
2db6dc26
DT
2604 if (tb[TCA_CAKE_SPLIT_GSO]) {
2605 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2606 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2607 else
2608 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2609 }
0c850344 2610
0b5c7efd 2611 if (tb[TCA_CAKE_FWMARK]) {
eab2fc82
THJ
2612 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2613 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
0b5c7efd
KDB
2614 }
2615
046f6fd5
THJ
2616 if (q->tins) {
2617 sch_tree_lock(sch);
2618 cake_reconfigure(sch);
2619 sch_tree_unlock(sch);
2620 }
2621
2622 return 0;
2623}
2624
2625static void cake_destroy(struct Qdisc *sch)
2626{
2627 struct cake_sched_data *q = qdisc_priv(sch);
2628
2629 qdisc_watchdog_cancel(&q->watchdog);
2630 tcf_block_put(q->block);
2631 kvfree(q->tins);
2632}
2633
2634static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2635 struct netlink_ext_ack *extack)
2636{
2637 struct cake_sched_data *q = qdisc_priv(sch);
2638 int i, j, err;
2639
2640 sch->limit = 10240;
83f8fd69 2641 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
046f6fd5
THJ
2642 q->flow_mode = CAKE_FLOW_TRIPLE;
2643
2644 q->rate_bps = 0; /* unlimited by default */
2645
2646 q->interval = 100000; /* 100ms default */
2647 q->target = 5000; /* 5ms: codel RFC argues
2648 * for 5 to 10% of interval
2649 */
2db6dc26 2650 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
046f6fd5
THJ
2651 q->cur_tin = 0;
2652 q->cur_flow = 0;
2653
2654 qdisc_watchdog_init(&q->watchdog, sch);
2655
2656 if (opt) {
2657 int err = cake_change(sch, opt, extack);
2658
2659 if (err)
2660 return err;
2661 }
2662
2663 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2664 if (err)
2665 return err;
2666
2667 quantum_div[0] = ~0;
2668 for (i = 1; i <= CAKE_QUEUES; i++)
2669 quantum_div[i] = 65535 / i;
2670
329e0989 2671 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
046f6fd5
THJ
2672 GFP_KERNEL);
2673 if (!q->tins)
2674 goto nomem;
2675
2676 for (i = 0; i < CAKE_MAX_TINS; i++) {
2677 struct cake_tin_data *b = q->tins + i;
2678
2679 INIT_LIST_HEAD(&b->new_flows);
2680 INIT_LIST_HEAD(&b->old_flows);
2681 INIT_LIST_HEAD(&b->decaying_flows);
2682 b->sparse_flow_count = 0;
2683 b->bulk_flow_count = 0;
2684 b->decaying_flow_count = 0;
2685
2686 for (j = 0; j < CAKE_QUEUES; j++) {
2687 struct cake_flow *flow = b->flows + j;
2688 u32 k = j * CAKE_MAX_TINS + i;
2689
2690 INIT_LIST_HEAD(&flow->flowchain);
2691 cobalt_vars_init(&flow->cvars);
2692
2693 q->overflow_heap[k].t = i;
2694 q->overflow_heap[k].b = j;
2695 b->overflow_idx[j] = k;
2696 }
2697 }
2698
2699 cake_reconfigure(sch);
2700 q->avg_peak_bandwidth = q->rate_bps;
2701 q->min_netlen = ~0;
2702 q->min_adjlen = ~0;
2703 return 0;
2704
2705nomem:
2706 cake_destroy(sch);
2707 return -ENOMEM;
2708}
2709
2710static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2711{
2712 struct cake_sched_data *q = qdisc_priv(sch);
2713 struct nlattr *opts;
2714
ae0be8de 2715 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
046f6fd5
THJ
2716 if (!opts)
2717 goto nla_put_failure;
2718
2719 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2720 TCA_CAKE_PAD))
2721 goto nla_put_failure;
2722
2723 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2724 q->flow_mode & CAKE_FLOW_MASK))
2725 goto nla_put_failure;
2726
2727 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2728 goto nla_put_failure;
2729
2730 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2731 goto nla_put_failure;
2732
2733 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2734 goto nla_put_failure;
2735
7298de9c
THJ
2736 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2737 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2738 goto nla_put_failure;
2739
2740 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2741 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2742 goto nla_put_failure;
2743
8b713881
THJ
2744 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2745 goto nla_put_failure;
2746
ea825115
THJ
2747 if (nla_put_u32(skb, TCA_CAKE_NAT,
2748 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2749 goto nla_put_failure;
2750
83f8fd69
THJ
2751 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2752 goto nla_put_failure;
2753
2754 if (nla_put_u32(skb, TCA_CAKE_WASH,
2755 !!(q->rate_flags & CAKE_FLAG_WASH)))
2756 goto nla_put_failure;
a729b7f0
THJ
2757
2758 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2759 goto nla_put_failure;
2760
2761 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2762 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2763 goto nla_put_failure;
2764
2765 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2766 goto nla_put_failure;
2767
2768 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2769 goto nla_put_failure;
0c850344
THJ
2770
2771 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2772 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2773 goto nla_put_failure;
0b5c7efd 2774
eab2fc82 2775 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
0b5c7efd 2776 goto nla_put_failure;
83f8fd69 2777
046f6fd5
THJ
2778 return nla_nest_end(skb, opts);
2779
2780nla_put_failure:
2781 return -1;
2782}
2783
2784static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2785{
ae0be8de 2786 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
046f6fd5
THJ
2787 struct cake_sched_data *q = qdisc_priv(sch);
2788 struct nlattr *tstats, *ts;
2789 int i;
2790
2791 if (!stats)
2792 return -1;
2793
2794#define PUT_STAT_U32(attr, data) do { \
2795 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2796 goto nla_put_failure; \
2797 } while (0)
2798#define PUT_STAT_U64(attr, data) do { \
2799 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2800 data, TCA_CAKE_STATS_PAD)) \
2801 goto nla_put_failure; \
2802 } while (0)
2803
2804 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2805 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2806 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2807 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2808 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2809 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2810 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2811 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2812
2813#undef PUT_STAT_U32
2814#undef PUT_STAT_U64
2815
ae0be8de 2816 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
046f6fd5
THJ
2817 if (!tstats)
2818 goto nla_put_failure;
2819
2820#define PUT_TSTAT_U32(attr, data) do { \
2821 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2822 goto nla_put_failure; \
2823 } while (0)
2824#define PUT_TSTAT_U64(attr, data) do { \
2825 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2826 data, TCA_CAKE_TIN_STATS_PAD)) \
2827 goto nla_put_failure; \
2828 } while (0)
2829
2830 for (i = 0; i < q->tin_cnt; i++) {
83f8fd69 2831 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
046f6fd5 2832
ae0be8de 2833 ts = nla_nest_start_noflag(d->skb, i + 1);
046f6fd5
THJ
2834 if (!ts)
2835 goto nla_put_failure;
2836
2837 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2838 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2839 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2840
2841 PUT_TSTAT_U32(TARGET_US,
2842 ktime_to_us(ns_to_ktime(b->cparams.target)));
2843 PUT_TSTAT_U32(INTERVAL_US,
2844 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2845
2846 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2847 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2848 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2849 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2850
2851 PUT_TSTAT_U32(PEAK_DELAY_US,
2852 ktime_to_us(ns_to_ktime(b->peak_delay)));
2853 PUT_TSTAT_U32(AVG_DELAY_US,
2854 ktime_to_us(ns_to_ktime(b->avge_delay)));
2855 PUT_TSTAT_U32(BASE_DELAY_US,
2856 ktime_to_us(ns_to_ktime(b->base_delay)));
2857
2858 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2859 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2860 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2861
2862 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2863 b->decaying_flow_count);
2864 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2865 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2866 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2867
2868 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2869 nla_nest_end(d->skb, ts);
2870 }
2871
2872#undef PUT_TSTAT_U32
2873#undef PUT_TSTAT_U64
2874
2875 nla_nest_end(d->skb, tstats);
2876 return nla_nest_end(d->skb, stats);
2877
2878nla_put_failure:
2879 nla_nest_cancel(d->skb, stats);
2880 return -1;
2881}
2882
2883static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2884{
2885 return NULL;
2886}
2887
2888static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2889{
2890 return 0;
2891}
2892
2893static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2894 u32 classid)
2895{
2896 return 0;
2897}
2898
2899static void cake_unbind(struct Qdisc *q, unsigned long cl)
2900{
2901}
2902
2903static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2904 struct netlink_ext_ack *extack)
2905{
2906 struct cake_sched_data *q = qdisc_priv(sch);
2907
2908 if (cl)
2909 return NULL;
2910 return q->block;
2911}
2912
2913static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2914 struct sk_buff *skb, struct tcmsg *tcm)
2915{
2916 tcm->tcm_handle |= TC_H_MIN(cl);
2917 return 0;
2918}
2919
2920static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2921 struct gnet_dump *d)
2922{
2923 struct cake_sched_data *q = qdisc_priv(sch);
2924 const struct cake_flow *flow = NULL;
2925 struct gnet_stats_queue qs = { 0 };
2926 struct nlattr *stats;
2927 u32 idx = cl - 1;
2928
2929 if (idx < CAKE_QUEUES * q->tin_cnt) {
83f8fd69
THJ
2930 const struct cake_tin_data *b = \
2931 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
046f6fd5
THJ
2932 const struct sk_buff *skb;
2933
2934 flow = &b->flows[idx % CAKE_QUEUES];
2935
2936 if (flow->head) {
2937 sch_tree_lock(sch);
2938 skb = flow->head;
2939 while (skb) {
2940 qs.qlen++;
2941 skb = skb->next;
2942 }
2943 sch_tree_unlock(sch);
2944 }
2945 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
2946 qs.drops = flow->dropped;
2947 }
2948 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
2949 return -1;
2950 if (flow) {
2951 ktime_t now = ktime_get();
2952
ae0be8de 2953 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
046f6fd5
THJ
2954 if (!stats)
2955 return -1;
2956
2957#define PUT_STAT_U32(attr, data) do { \
2958 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2959 goto nla_put_failure; \
2960 } while (0)
2961#define PUT_STAT_S32(attr, data) do { \
2962 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2963 goto nla_put_failure; \
2964 } while (0)
2965
2966 PUT_STAT_S32(DEFICIT, flow->deficit);
2967 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
2968 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
2969 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
2970 if (flow->cvars.p_drop) {
2971 PUT_STAT_S32(BLUE_TIMER_US,
2972 ktime_to_us(
2973 ktime_sub(now,
2974 flow->cvars.blue_timer)));
2975 }
2976 if (flow->cvars.dropping) {
2977 PUT_STAT_S32(DROP_NEXT_US,
2978 ktime_to_us(
2979 ktime_sub(now,
2980 flow->cvars.drop_next)));
2981 }
2982
2983 if (nla_nest_end(d->skb, stats) < 0)
2984 return -1;
2985 }
2986
2987 return 0;
2988
2989nla_put_failure:
2990 nla_nest_cancel(d->skb, stats);
2991 return -1;
2992}
2993
2994static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2995{
2996 struct cake_sched_data *q = qdisc_priv(sch);
2997 unsigned int i, j;
2998
2999 if (arg->stop)
3000 return;
3001
3002 for (i = 0; i < q->tin_cnt; i++) {
83f8fd69 3003 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
046f6fd5
THJ
3004
3005 for (j = 0; j < CAKE_QUEUES; j++) {
3006 if (list_empty(&b->flows[j].flowchain) ||
3007 arg->count < arg->skip) {
3008 arg->count++;
3009 continue;
3010 }
3011 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3012 arg->stop = 1;
3013 break;
3014 }
3015 arg->count++;
3016 }
3017 }
3018}
3019
3020static const struct Qdisc_class_ops cake_class_ops = {
3021 .leaf = cake_leaf,
3022 .find = cake_find,
3023 .tcf_block = cake_tcf_block,
3024 .bind_tcf = cake_bind,
3025 .unbind_tcf = cake_unbind,
3026 .dump = cake_dump_class,
3027 .dump_stats = cake_dump_class_stats,
3028 .walk = cake_walk,
3029};
3030
3031static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3032 .cl_ops = &cake_class_ops,
3033 .id = "cake",
3034 .priv_size = sizeof(struct cake_sched_data),
3035 .enqueue = cake_enqueue,
3036 .dequeue = cake_dequeue,
3037 .peek = qdisc_peek_dequeued,
3038 .init = cake_init,
3039 .reset = cake_reset,
3040 .destroy = cake_destroy,
3041 .change = cake_change,
3042 .dump = cake_dump,
3043 .dump_stats = cake_dump_stats,
3044 .owner = THIS_MODULE,
3045};
3046
3047static int __init cake_module_init(void)
3048{
3049 return register_qdisc(&cake_qdisc_ops);
3050}
3051
3052static void __exit cake_module_exit(void)
3053{
3054 unregister_qdisc(&cake_qdisc_ops);
3055}
3056
3057module_init(cake_module_init)
3058module_exit(cake_module_exit)
3059MODULE_AUTHOR("Jonathan Morton");
3060MODULE_LICENSE("Dual BSD/GPL");
3061MODULE_DESCRIPTION("The CAKE shaper.");