]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/sched/sch_fq.c
pkt_sched: fq: warn users using defrate
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_fq.c
CommitLineData
afe4fd06
ED
1/*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for localy generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/jiffies.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/errno.h>
44#include <linux/init.h>
45#include <linux/skbuff.h>
46#include <linux/slab.h>
47#include <linux/rbtree.h>
48#include <linux/hash.h>
08f89b98 49#include <linux/prefetch.h>
afe4fd06
ED
50#include <net/netlink.h>
51#include <net/pkt_sched.h>
52#include <net/sock.h>
53#include <net/tcp_states.h>
54
55/*
56 * Per flow structure, dynamically allocated
57 */
58struct fq_flow {
59 struct sk_buff *head; /* list of skbs for this flow : first skb */
60 union {
61 struct sk_buff *tail; /* last skb in the list */
62 unsigned long age; /* jiffies when flow was emptied, for gc */
63 };
64 struct rb_node fq_node; /* anchor in fq_root[] trees */
65 struct sock *sk;
66 int qlen; /* number of packets in flow queue */
67 int credit;
68 u32 socket_hash; /* sk_hash */
69 struct fq_flow *next; /* next pointer in RR lists, or &detached */
70
71 struct rb_node rate_node; /* anchor in q->delayed tree */
72 u64 time_next_packet;
73};
74
75struct fq_flow_head {
76 struct fq_flow *first;
77 struct fq_flow *last;
78};
79
80struct fq_sched_data {
81 struct fq_flow_head new_flows;
82
83 struct fq_flow_head old_flows;
84
85 struct rb_root delayed; /* for rate limited flows */
86 u64 time_next_delayed_flow;
87
88 struct fq_flow internal; /* for non classified or high prio packets */
89 u32 quantum;
90 u32 initial_quantum;
afe4fd06
ED
91 u32 flow_max_rate; /* optional max rate per flow */
92 u32 flow_plimit; /* max packets per flow */
93 struct rb_root *fq_root;
94 u8 rate_enable;
95 u8 fq_trees_log;
96
97 u32 flows;
98 u32 inactive_flows;
99 u32 throttled_flows;
100
101 u64 stat_gc_flows;
102 u64 stat_internal_packets;
103 u64 stat_tcp_retrans;
104 u64 stat_throttled;
105 u64 stat_flows_plimit;
106 u64 stat_pkts_too_long;
107 u64 stat_allocation_errors;
108 struct qdisc_watchdog watchdog;
109};
110
111/* special value to mark a detached flow (not on old/new list) */
112static struct fq_flow detached, throttled;
113
114static void fq_flow_set_detached(struct fq_flow *f)
115{
116 f->next = &detached;
117}
118
119static bool fq_flow_is_detached(const struct fq_flow *f)
120{
121 return f->next == &detached;
122}
123
124static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
125{
126 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
127
128 while (*p) {
129 struct fq_flow *aux;
130
131 parent = *p;
132 aux = container_of(parent, struct fq_flow, rate_node);
133 if (f->time_next_packet >= aux->time_next_packet)
134 p = &parent->rb_right;
135 else
136 p = &parent->rb_left;
137 }
138 rb_link_node(&f->rate_node, parent, p);
139 rb_insert_color(&f->rate_node, &q->delayed);
140 q->throttled_flows++;
141 q->stat_throttled++;
142
143 f->next = &throttled;
144 if (q->time_next_delayed_flow > f->time_next_packet)
145 q->time_next_delayed_flow = f->time_next_packet;
146}
147
148
149static struct kmem_cache *fq_flow_cachep __read_mostly;
150
151static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
152{
153 if (head->first)
154 head->last->next = flow;
155 else
156 head->first = flow;
157 head->last = flow;
158 flow->next = NULL;
159}
160
161/* limit number of collected flows per round */
162#define FQ_GC_MAX 8
163#define FQ_GC_AGE (3*HZ)
164
165static bool fq_gc_candidate(const struct fq_flow *f)
166{
167 return fq_flow_is_detached(f) &&
168 time_after(jiffies, f->age + FQ_GC_AGE);
169}
170
171static void fq_gc(struct fq_sched_data *q,
172 struct rb_root *root,
173 struct sock *sk)
174{
175 struct fq_flow *f, *tofree[FQ_GC_MAX];
176 struct rb_node **p, *parent;
177 int fcnt = 0;
178
179 p = &root->rb_node;
180 parent = NULL;
181 while (*p) {
182 parent = *p;
183
184 f = container_of(parent, struct fq_flow, fq_node);
185 if (f->sk == sk)
186 break;
187
188 if (fq_gc_candidate(f)) {
189 tofree[fcnt++] = f;
190 if (fcnt == FQ_GC_MAX)
191 break;
192 }
193
194 if (f->sk > sk)
195 p = &parent->rb_right;
196 else
197 p = &parent->rb_left;
198 }
199
200 q->flows -= fcnt;
201 q->inactive_flows -= fcnt;
202 q->stat_gc_flows += fcnt;
203 while (fcnt) {
204 struct fq_flow *f = tofree[--fcnt];
205
206 rb_erase(&f->fq_node, root);
207 kmem_cache_free(fq_flow_cachep, f);
208 }
209}
210
afe4fd06
ED
211static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
212{
213 struct rb_node **p, *parent;
214 struct sock *sk = skb->sk;
215 struct rb_root *root;
216 struct fq_flow *f;
afe4fd06
ED
217
218 /* warning: no starvation prevention... */
2abc2f07 219 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
afe4fd06
ED
220 return &q->internal;
221
222 if (unlikely(!sk)) {
223 /* By forcing low order bit to 1, we make sure to not
224 * collide with a local flow (socket pointers are word aligned)
225 */
226 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
227 }
228
229 root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
230
231 if (q->flows >= (2U << q->fq_trees_log) &&
232 q->inactive_flows > q->flows/2)
233 fq_gc(q, root, sk);
234
235 p = &root->rb_node;
236 parent = NULL;
237 while (*p) {
238 parent = *p;
239
240 f = container_of(parent, struct fq_flow, fq_node);
241 if (f->sk == sk) {
242 /* socket might have been reallocated, so check
243 * if its sk_hash is the same.
244 * It not, we need to refill credit with
245 * initial quantum
246 */
247 if (unlikely(skb->sk &&
248 f->socket_hash != sk->sk_hash)) {
249 f->credit = q->initial_quantum;
250 f->socket_hash = sk->sk_hash;
fc59d5bd 251 f->time_next_packet = 0ULL;
afe4fd06
ED
252 }
253 return f;
254 }
255 if (f->sk > sk)
256 p = &parent->rb_right;
257 else
258 p = &parent->rb_left;
259 }
260
261 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
262 if (unlikely(!f)) {
263 q->stat_allocation_errors++;
264 return &q->internal;
265 }
266 fq_flow_set_detached(f);
267 f->sk = sk;
268 if (skb->sk)
269 f->socket_hash = sk->sk_hash;
270 f->credit = q->initial_quantum;
271
272 rb_link_node(&f->fq_node, parent, p);
273 rb_insert_color(&f->fq_node, root);
274
275 q->flows++;
276 q->inactive_flows++;
277 return f;
278}
279
280
281/* remove one skb from head of flow queue */
8d34ce10 282static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
afe4fd06
ED
283{
284 struct sk_buff *skb = flow->head;
285
286 if (skb) {
287 flow->head = skb->next;
288 skb->next = NULL;
289 flow->qlen--;
8d34ce10
ED
290 sch->qstats.backlog -= qdisc_pkt_len(skb);
291 sch->q.qlen--;
afe4fd06
ED
292 }
293 return skb;
294}
295
296/* We might add in the future detection of retransmits
297 * For the time being, just return false
298 */
299static bool skb_is_retransmit(struct sk_buff *skb)
300{
301 return false;
302}
303
304/* add skb to flow queue
305 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
306 * We special case tcp retransmits to be transmitted before other packets.
307 * We rely on fact that TCP retransmits are unlikely, so we do not waste
308 * a separate queue or a pointer.
309 * head-> [retrans pkt 1]
310 * [retrans pkt 2]
311 * [ normal pkt 1]
312 * [ normal pkt 2]
313 * [ normal pkt 3]
314 * tail-> [ normal pkt 4]
315 */
316static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
317{
318 struct sk_buff *prev, *head = flow->head;
319
320 skb->next = NULL;
321 if (!head) {
322 flow->head = skb;
323 flow->tail = skb;
324 return;
325 }
326 if (likely(!skb_is_retransmit(skb))) {
327 flow->tail->next = skb;
328 flow->tail = skb;
329 return;
330 }
331
332 /* This skb is a tcp retransmit,
333 * find the last retrans packet in the queue
334 */
335 prev = NULL;
336 while (skb_is_retransmit(head)) {
337 prev = head;
338 head = head->next;
339 if (!head)
340 break;
341 }
342 if (!prev) { /* no rtx packet in queue, become the new head */
343 skb->next = flow->head;
344 flow->head = skb;
345 } else {
346 if (prev == flow->tail)
347 flow->tail = skb;
348 else
349 skb->next = prev->next;
350 prev->next = skb;
351 }
352}
353
354static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
355{
356 struct fq_sched_data *q = qdisc_priv(sch);
357 struct fq_flow *f;
358
359 if (unlikely(sch->q.qlen >= sch->limit))
360 return qdisc_drop(skb, sch);
361
362 f = fq_classify(skb, q);
363 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
364 q->stat_flows_plimit++;
365 return qdisc_drop(skb, sch);
366 }
367
368 f->qlen++;
369 flow_queue_add(f, skb);
370 if (skb_is_retransmit(skb))
371 q->stat_tcp_retrans++;
372 sch->qstats.backlog += qdisc_pkt_len(skb);
373 if (fq_flow_is_detached(f)) {
374 fq_flow_add_tail(&q->new_flows, f);
375 if (q->quantum > f->credit)
376 f->credit = q->quantum;
377 q->inactive_flows--;
378 qdisc_unthrottled(sch);
379 }
380 if (unlikely(f == &q->internal)) {
381 q->stat_internal_packets++;
382 qdisc_unthrottled(sch);
383 }
384 sch->q.qlen++;
385
386 return NET_XMIT_SUCCESS;
387}
388
389static void fq_check_throttled(struct fq_sched_data *q, u64 now)
390{
391 struct rb_node *p;
392
393 if (q->time_next_delayed_flow > now)
394 return;
395
396 q->time_next_delayed_flow = ~0ULL;
397 while ((p = rb_first(&q->delayed)) != NULL) {
398 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
399
400 if (f->time_next_packet > now) {
401 q->time_next_delayed_flow = f->time_next_packet;
402 break;
403 }
404 rb_erase(p, &q->delayed);
405 q->throttled_flows--;
406 fq_flow_add_tail(&q->old_flows, f);
407 }
408}
409
410static struct sk_buff *fq_dequeue(struct Qdisc *sch)
411{
412 struct fq_sched_data *q = qdisc_priv(sch);
413 u64 now = ktime_to_ns(ktime_get());
414 struct fq_flow_head *head;
415 struct sk_buff *skb;
416 struct fq_flow *f;
0eab5eb7 417 u32 rate;
afe4fd06 418
8d34ce10 419 skb = fq_dequeue_head(sch, &q->internal);
afe4fd06
ED
420 if (skb)
421 goto out;
422 fq_check_throttled(q, now);
423begin:
424 head = &q->new_flows;
425 if (!head->first) {
426 head = &q->old_flows;
427 if (!head->first) {
428 if (q->time_next_delayed_flow != ~0ULL)
429 qdisc_watchdog_schedule_ns(&q->watchdog,
430 q->time_next_delayed_flow);
431 return NULL;
432 }
433 }
434 f = head->first;
435
436 if (f->credit <= 0) {
437 f->credit += q->quantum;
438 head->first = f->next;
439 fq_flow_add_tail(&q->old_flows, f);
440 goto begin;
441 }
442
443 if (unlikely(f->head && now < f->time_next_packet)) {
444 head->first = f->next;
445 fq_flow_set_throttled(q, f);
446 goto begin;
447 }
448
8d34ce10 449 skb = fq_dequeue_head(sch, f);
afe4fd06
ED
450 if (!skb) {
451 head->first = f->next;
452 /* force a pass through old_flows to prevent starvation */
453 if ((head == &q->new_flows) && q->old_flows.first) {
454 fq_flow_add_tail(&q->old_flows, f);
455 } else {
456 fq_flow_set_detached(f);
457 f->age = jiffies;
458 q->inactive_flows++;
459 }
460 goto begin;
461 }
08f89b98 462 prefetch(&skb->end);
afe4fd06
ED
463 f->time_next_packet = now;
464 f->credit -= qdisc_pkt_len(skb);
465
0eab5eb7
ED
466 if (f->credit > 0 || !q->rate_enable)
467 goto out;
afe4fd06 468
7eec4174
ED
469 rate = q->flow_max_rate;
470 if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
471 rate = min(skb->sk->sk_pacing_rate, rate);
afe4fd06 472
7eec4174 473 if (rate != ~0U) {
0eab5eb7
ED
474 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
475 u64 len = (u64)plen * NSEC_PER_SEC;
476
7eec4174
ED
477 if (likely(rate))
478 do_div(len, rate);
0eab5eb7
ED
479 /* Since socket rate can change later,
480 * clamp the delay to 125 ms.
481 * TODO: maybe segment the too big skb, as in commit
482 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
483 */
484 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
485 len = 125 * NSEC_PER_MSEC;
486 q->stat_pkts_too_long++;
afe4fd06 487 }
0eab5eb7
ED
488
489 f->time_next_packet = now + len;
afe4fd06
ED
490 }
491out:
afe4fd06 492 qdisc_bstats_update(sch, skb);
afe4fd06
ED
493 qdisc_unthrottled(sch);
494 return skb;
495}
496
497static void fq_reset(struct Qdisc *sch)
498{
8d34ce10
ED
499 struct fq_sched_data *q = qdisc_priv(sch);
500 struct rb_root *root;
afe4fd06 501 struct sk_buff *skb;
8d34ce10
ED
502 struct rb_node *p;
503 struct fq_flow *f;
504 unsigned int idx;
afe4fd06 505
8d34ce10 506 while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
afe4fd06 507 kfree_skb(skb);
8d34ce10
ED
508
509 if (!q->fq_root)
510 return;
511
512 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
513 root = &q->fq_root[idx];
514 while ((p = rb_first(root)) != NULL) {
515 f = container_of(p, struct fq_flow, fq_node);
516 rb_erase(p, root);
517
518 while ((skb = fq_dequeue_head(sch, f)) != NULL)
519 kfree_skb(skb);
520
521 kmem_cache_free(fq_flow_cachep, f);
522 }
523 }
524 q->new_flows.first = NULL;
525 q->old_flows.first = NULL;
526 q->delayed = RB_ROOT;
527 q->flows = 0;
528 q->inactive_flows = 0;
529 q->throttled_flows = 0;
afe4fd06
ED
530}
531
532static void fq_rehash(struct fq_sched_data *q,
533 struct rb_root *old_array, u32 old_log,
534 struct rb_root *new_array, u32 new_log)
535{
536 struct rb_node *op, **np, *parent;
537 struct rb_root *oroot, *nroot;
538 struct fq_flow *of, *nf;
539 int fcnt = 0;
540 u32 idx;
541
542 for (idx = 0; idx < (1U << old_log); idx++) {
543 oroot = &old_array[idx];
544 while ((op = rb_first(oroot)) != NULL) {
545 rb_erase(op, oroot);
546 of = container_of(op, struct fq_flow, fq_node);
547 if (fq_gc_candidate(of)) {
548 fcnt++;
549 kmem_cache_free(fq_flow_cachep, of);
550 continue;
551 }
552 nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
553
554 np = &nroot->rb_node;
555 parent = NULL;
556 while (*np) {
557 parent = *np;
558
559 nf = container_of(parent, struct fq_flow, fq_node);
560 BUG_ON(nf->sk == of->sk);
561
562 if (nf->sk > of->sk)
563 np = &parent->rb_right;
564 else
565 np = &parent->rb_left;
566 }
567
568 rb_link_node(&of->fq_node, parent, np);
569 rb_insert_color(&of->fq_node, nroot);
570 }
571 }
572 q->flows -= fcnt;
573 q->inactive_flows -= fcnt;
574 q->stat_gc_flows += fcnt;
575}
576
577static int fq_resize(struct fq_sched_data *q, u32 log)
578{
579 struct rb_root *array;
580 u32 idx;
581
582 if (q->fq_root && log == q->fq_trees_log)
583 return 0;
584
585 array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
586 if (!array)
587 return -ENOMEM;
588
589 for (idx = 0; idx < (1U << log); idx++)
590 array[idx] = RB_ROOT;
591
592 if (q->fq_root) {
593 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
594 kfree(q->fq_root);
595 }
596 q->fq_root = array;
597 q->fq_trees_log = log;
598
599 return 0;
600}
601
602static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
603 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
604 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
605 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
606 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
607 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
608 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
609 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
610 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
611};
612
613static int fq_change(struct Qdisc *sch, struct nlattr *opt)
614{
615 struct fq_sched_data *q = qdisc_priv(sch);
616 struct nlattr *tb[TCA_FQ_MAX + 1];
617 int err, drop_count = 0;
618 u32 fq_log;
619
620 if (!opt)
621 return -EINVAL;
622
623 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
624 if (err < 0)
625 return err;
626
627 sch_tree_lock(sch);
628
629 fq_log = q->fq_trees_log;
630
631 if (tb[TCA_FQ_BUCKETS_LOG]) {
632 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
633
634 if (nval >= 1 && nval <= ilog2(256*1024))
635 fq_log = nval;
636 else
637 err = -EINVAL;
638 }
639 if (tb[TCA_FQ_PLIMIT])
640 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
641
642 if (tb[TCA_FQ_FLOW_PLIMIT])
643 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
644
645 if (tb[TCA_FQ_QUANTUM])
646 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
647
648 if (tb[TCA_FQ_INITIAL_QUANTUM])
ede869cd 649 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
afe4fd06
ED
650
651 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
65c5189a
ED
652 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
653 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
afe4fd06
ED
654
655 if (tb[TCA_FQ_FLOW_MAX_RATE])
656 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
657
658 if (tb[TCA_FQ_RATE_ENABLE]) {
659 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
660
661 if (enable <= 1)
662 q->rate_enable = enable;
663 else
664 err = -EINVAL;
665 }
666
667 if (!err)
668 err = fq_resize(q, fq_log);
669
670 while (sch->q.qlen > sch->limit) {
671 struct sk_buff *skb = fq_dequeue(sch);
672
8d34ce10
ED
673 if (!skb)
674 break;
afe4fd06
ED
675 kfree_skb(skb);
676 drop_count++;
677 }
678 qdisc_tree_decrease_qlen(sch, drop_count);
679
680 sch_tree_unlock(sch);
681 return err;
682}
683
684static void fq_destroy(struct Qdisc *sch)
685{
686 struct fq_sched_data *q = qdisc_priv(sch);
afe4fd06 687
8d34ce10
ED
688 fq_reset(sch);
689 kfree(q->fq_root);
afe4fd06
ED
690 qdisc_watchdog_cancel(&q->watchdog);
691}
692
693static int fq_init(struct Qdisc *sch, struct nlattr *opt)
694{
695 struct fq_sched_data *q = qdisc_priv(sch);
696 int err;
697
698 sch->limit = 10000;
699 q->flow_plimit = 100;
700 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
701 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
afe4fd06
ED
702 q->flow_max_rate = ~0U;
703 q->rate_enable = 1;
704 q->new_flows.first = NULL;
705 q->old_flows.first = NULL;
706 q->delayed = RB_ROOT;
707 q->fq_root = NULL;
708 q->fq_trees_log = ilog2(1024);
709 qdisc_watchdog_init(&q->watchdog, sch);
710
711 if (opt)
712 err = fq_change(sch, opt);
713 else
714 err = fq_resize(q, q->fq_trees_log);
715
716 return err;
717}
718
719static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
720{
721 struct fq_sched_data *q = qdisc_priv(sch);
722 struct nlattr *opts;
723
724 opts = nla_nest_start(skb, TCA_OPTIONS);
725 if (opts == NULL)
726 goto nla_put_failure;
727
65c5189a
ED
728 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
729
afe4fd06
ED
730 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
731 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
732 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
733 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
734 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
afe4fd06
ED
735 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
736 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
737 goto nla_put_failure;
738
739 nla_nest_end(skb, opts);
740 return skb->len;
741
742nla_put_failure:
743 return -1;
744}
745
746static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
747{
748 struct fq_sched_data *q = qdisc_priv(sch);
749 u64 now = ktime_to_ns(ktime_get());
750 struct tc_fq_qd_stats st = {
751 .gc_flows = q->stat_gc_flows,
752 .highprio_packets = q->stat_internal_packets,
753 .tcp_retrans = q->stat_tcp_retrans,
754 .throttled = q->stat_throttled,
755 .flows_plimit = q->stat_flows_plimit,
756 .pkts_too_long = q->stat_pkts_too_long,
757 .allocation_errors = q->stat_allocation_errors,
758 .flows = q->flows,
759 .inactive_flows = q->inactive_flows,
760 .throttled_flows = q->throttled_flows,
761 .time_next_delayed_flow = q->time_next_delayed_flow - now,
762 };
763
764 return gnet_stats_copy_app(d, &st, sizeof(st));
765}
766
767static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
768 .id = "fq",
769 .priv_size = sizeof(struct fq_sched_data),
770
771 .enqueue = fq_enqueue,
772 .dequeue = fq_dequeue,
773 .peek = qdisc_peek_dequeued,
774 .init = fq_init,
775 .reset = fq_reset,
776 .destroy = fq_destroy,
777 .change = fq_change,
778 .dump = fq_dump,
779 .dump_stats = fq_dump_stats,
780 .owner = THIS_MODULE,
781};
782
783static int __init fq_module_init(void)
784{
785 int ret;
786
787 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
788 sizeof(struct fq_flow),
789 0, 0, NULL);
790 if (!fq_flow_cachep)
791 return -ENOMEM;
792
793 ret = register_qdisc(&fq_qdisc_ops);
794 if (ret)
795 kmem_cache_destroy(fq_flow_cachep);
796 return ret;
797}
798
799static void __exit fq_module_exit(void)
800{
801 unregister_qdisc(&fq_qdisc_ops);
802 kmem_cache_destroy(fq_flow_cachep);
803}
804
805module_init(fq_module_init)
806module_exit(fq_module_exit)
807MODULE_AUTHOR("Eric Dumazet");
808MODULE_LICENSE("GPL");