]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/sched/sch_fq.c
ip6tnl: allow to use rtnl ops on fb tunnel
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_fq.c
CommitLineData
afe4fd06
ED
1/*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for localy generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/jiffies.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/errno.h>
44#include <linux/init.h>
45#include <linux/skbuff.h>
46#include <linux/slab.h>
47#include <linux/rbtree.h>
48#include <linux/hash.h>
08f89b98 49#include <linux/prefetch.h>
afe4fd06
ED
50#include <net/netlink.h>
51#include <net/pkt_sched.h>
52#include <net/sock.h>
53#include <net/tcp_states.h>
54
55/*
56 * Per flow structure, dynamically allocated
57 */
58struct fq_flow {
59 struct sk_buff *head; /* list of skbs for this flow : first skb */
60 union {
61 struct sk_buff *tail; /* last skb in the list */
62 unsigned long age; /* jiffies when flow was emptied, for gc */
63 };
64 struct rb_node fq_node; /* anchor in fq_root[] trees */
65 struct sock *sk;
66 int qlen; /* number of packets in flow queue */
67 int credit;
68 u32 socket_hash; /* sk_hash */
69 struct fq_flow *next; /* next pointer in RR lists, or &detached */
70
71 struct rb_node rate_node; /* anchor in q->delayed tree */
72 u64 time_next_packet;
73};
74
75struct fq_flow_head {
76 struct fq_flow *first;
77 struct fq_flow *last;
78};
79
80struct fq_sched_data {
81 struct fq_flow_head new_flows;
82
83 struct fq_flow_head old_flows;
84
85 struct rb_root delayed; /* for rate limited flows */
86 u64 time_next_delayed_flow;
87
88 struct fq_flow internal; /* for non classified or high prio packets */
89 u32 quantum;
90 u32 initial_quantum;
91 u32 flow_default_rate;/* rate per flow : bytes per second */
92 u32 flow_max_rate; /* optional max rate per flow */
93 u32 flow_plimit; /* max packets per flow */
94 struct rb_root *fq_root;
95 u8 rate_enable;
96 u8 fq_trees_log;
97
98 u32 flows;
99 u32 inactive_flows;
100 u32 throttled_flows;
101
102 u64 stat_gc_flows;
103 u64 stat_internal_packets;
104 u64 stat_tcp_retrans;
105 u64 stat_throttled;
106 u64 stat_flows_plimit;
107 u64 stat_pkts_too_long;
108 u64 stat_allocation_errors;
109 struct qdisc_watchdog watchdog;
110};
111
112/* special value to mark a detached flow (not on old/new list) */
113static struct fq_flow detached, throttled;
114
115static void fq_flow_set_detached(struct fq_flow *f)
116{
117 f->next = &detached;
118}
119
120static bool fq_flow_is_detached(const struct fq_flow *f)
121{
122 return f->next == &detached;
123}
124
125static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
126{
127 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
128
129 while (*p) {
130 struct fq_flow *aux;
131
132 parent = *p;
133 aux = container_of(parent, struct fq_flow, rate_node);
134 if (f->time_next_packet >= aux->time_next_packet)
135 p = &parent->rb_right;
136 else
137 p = &parent->rb_left;
138 }
139 rb_link_node(&f->rate_node, parent, p);
140 rb_insert_color(&f->rate_node, &q->delayed);
141 q->throttled_flows++;
142 q->stat_throttled++;
143
144 f->next = &throttled;
145 if (q->time_next_delayed_flow > f->time_next_packet)
146 q->time_next_delayed_flow = f->time_next_packet;
147}
148
149
150static struct kmem_cache *fq_flow_cachep __read_mostly;
151
152static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
153{
154 if (head->first)
155 head->last->next = flow;
156 else
157 head->first = flow;
158 head->last = flow;
159 flow->next = NULL;
160}
161
162/* limit number of collected flows per round */
163#define FQ_GC_MAX 8
164#define FQ_GC_AGE (3*HZ)
165
166static bool fq_gc_candidate(const struct fq_flow *f)
167{
168 return fq_flow_is_detached(f) &&
169 time_after(jiffies, f->age + FQ_GC_AGE);
170}
171
172static void fq_gc(struct fq_sched_data *q,
173 struct rb_root *root,
174 struct sock *sk)
175{
176 struct fq_flow *f, *tofree[FQ_GC_MAX];
177 struct rb_node **p, *parent;
178 int fcnt = 0;
179
180 p = &root->rb_node;
181 parent = NULL;
182 while (*p) {
183 parent = *p;
184
185 f = container_of(parent, struct fq_flow, fq_node);
186 if (f->sk == sk)
187 break;
188
189 if (fq_gc_candidate(f)) {
190 tofree[fcnt++] = f;
191 if (fcnt == FQ_GC_MAX)
192 break;
193 }
194
195 if (f->sk > sk)
196 p = &parent->rb_right;
197 else
198 p = &parent->rb_left;
199 }
200
201 q->flows -= fcnt;
202 q->inactive_flows -= fcnt;
203 q->stat_gc_flows += fcnt;
204 while (fcnt) {
205 struct fq_flow *f = tofree[--fcnt];
206
207 rb_erase(&f->fq_node, root);
208 kmem_cache_free(fq_flow_cachep, f);
209 }
210}
211
212static const u8 prio2band[TC_PRIO_MAX + 1] = {
213 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
214};
215
216static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217{
218 struct rb_node **p, *parent;
219 struct sock *sk = skb->sk;
220 struct rb_root *root;
221 struct fq_flow *f;
222 int band;
223
224 /* warning: no starvation prevention... */
225 band = prio2band[skb->priority & TC_PRIO_MAX];
226 if (unlikely(band == 0))
227 return &q->internal;
228
229 if (unlikely(!sk)) {
230 /* By forcing low order bit to 1, we make sure to not
231 * collide with a local flow (socket pointers are word aligned)
232 */
233 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
234 }
235
236 root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
237
238 if (q->flows >= (2U << q->fq_trees_log) &&
239 q->inactive_flows > q->flows/2)
240 fq_gc(q, root, sk);
241
242 p = &root->rb_node;
243 parent = NULL;
244 while (*p) {
245 parent = *p;
246
247 f = container_of(parent, struct fq_flow, fq_node);
248 if (f->sk == sk) {
249 /* socket might have been reallocated, so check
250 * if its sk_hash is the same.
251 * It not, we need to refill credit with
252 * initial quantum
253 */
254 if (unlikely(skb->sk &&
255 f->socket_hash != sk->sk_hash)) {
256 f->credit = q->initial_quantum;
257 f->socket_hash = sk->sk_hash;
258 }
259 return f;
260 }
261 if (f->sk > sk)
262 p = &parent->rb_right;
263 else
264 p = &parent->rb_left;
265 }
266
267 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
268 if (unlikely(!f)) {
269 q->stat_allocation_errors++;
270 return &q->internal;
271 }
272 fq_flow_set_detached(f);
273 f->sk = sk;
274 if (skb->sk)
275 f->socket_hash = sk->sk_hash;
276 f->credit = q->initial_quantum;
277
278 rb_link_node(&f->fq_node, parent, p);
279 rb_insert_color(&f->fq_node, root);
280
281 q->flows++;
282 q->inactive_flows++;
283 return f;
284}
285
286
287/* remove one skb from head of flow queue */
8d34ce10 288static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
afe4fd06
ED
289{
290 struct sk_buff *skb = flow->head;
291
292 if (skb) {
293 flow->head = skb->next;
294 skb->next = NULL;
295 flow->qlen--;
8d34ce10
ED
296 sch->qstats.backlog -= qdisc_pkt_len(skb);
297 sch->q.qlen--;
afe4fd06
ED
298 }
299 return skb;
300}
301
302/* We might add in the future detection of retransmits
303 * For the time being, just return false
304 */
305static bool skb_is_retransmit(struct sk_buff *skb)
306{
307 return false;
308}
309
310/* add skb to flow queue
311 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
312 * We special case tcp retransmits to be transmitted before other packets.
313 * We rely on fact that TCP retransmits are unlikely, so we do not waste
314 * a separate queue or a pointer.
315 * head-> [retrans pkt 1]
316 * [retrans pkt 2]
317 * [ normal pkt 1]
318 * [ normal pkt 2]
319 * [ normal pkt 3]
320 * tail-> [ normal pkt 4]
321 */
322static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
323{
324 struct sk_buff *prev, *head = flow->head;
325
326 skb->next = NULL;
327 if (!head) {
328 flow->head = skb;
329 flow->tail = skb;
330 return;
331 }
332 if (likely(!skb_is_retransmit(skb))) {
333 flow->tail->next = skb;
334 flow->tail = skb;
335 return;
336 }
337
338 /* This skb is a tcp retransmit,
339 * find the last retrans packet in the queue
340 */
341 prev = NULL;
342 while (skb_is_retransmit(head)) {
343 prev = head;
344 head = head->next;
345 if (!head)
346 break;
347 }
348 if (!prev) { /* no rtx packet in queue, become the new head */
349 skb->next = flow->head;
350 flow->head = skb;
351 } else {
352 if (prev == flow->tail)
353 flow->tail = skb;
354 else
355 skb->next = prev->next;
356 prev->next = skb;
357 }
358}
359
360static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
361{
362 struct fq_sched_data *q = qdisc_priv(sch);
363 struct fq_flow *f;
364
365 if (unlikely(sch->q.qlen >= sch->limit))
366 return qdisc_drop(skb, sch);
367
368 f = fq_classify(skb, q);
369 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
370 q->stat_flows_plimit++;
371 return qdisc_drop(skb, sch);
372 }
373
374 f->qlen++;
375 flow_queue_add(f, skb);
376 if (skb_is_retransmit(skb))
377 q->stat_tcp_retrans++;
378 sch->qstats.backlog += qdisc_pkt_len(skb);
379 if (fq_flow_is_detached(f)) {
380 fq_flow_add_tail(&q->new_flows, f);
381 if (q->quantum > f->credit)
382 f->credit = q->quantum;
383 q->inactive_flows--;
384 qdisc_unthrottled(sch);
385 }
386 if (unlikely(f == &q->internal)) {
387 q->stat_internal_packets++;
388 qdisc_unthrottled(sch);
389 }
390 sch->q.qlen++;
391
392 return NET_XMIT_SUCCESS;
393}
394
395static void fq_check_throttled(struct fq_sched_data *q, u64 now)
396{
397 struct rb_node *p;
398
399 if (q->time_next_delayed_flow > now)
400 return;
401
402 q->time_next_delayed_flow = ~0ULL;
403 while ((p = rb_first(&q->delayed)) != NULL) {
404 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
405
406 if (f->time_next_packet > now) {
407 q->time_next_delayed_flow = f->time_next_packet;
408 break;
409 }
410 rb_erase(p, &q->delayed);
411 q->throttled_flows--;
412 fq_flow_add_tail(&q->old_flows, f);
413 }
414}
415
416static struct sk_buff *fq_dequeue(struct Qdisc *sch)
417{
418 struct fq_sched_data *q = qdisc_priv(sch);
419 u64 now = ktime_to_ns(ktime_get());
420 struct fq_flow_head *head;
421 struct sk_buff *skb;
422 struct fq_flow *f;
423
8d34ce10 424 skb = fq_dequeue_head(sch, &q->internal);
afe4fd06
ED
425 if (skb)
426 goto out;
427 fq_check_throttled(q, now);
428begin:
429 head = &q->new_flows;
430 if (!head->first) {
431 head = &q->old_flows;
432 if (!head->first) {
433 if (q->time_next_delayed_flow != ~0ULL)
434 qdisc_watchdog_schedule_ns(&q->watchdog,
435 q->time_next_delayed_flow);
436 return NULL;
437 }
438 }
439 f = head->first;
440
441 if (f->credit <= 0) {
442 f->credit += q->quantum;
443 head->first = f->next;
444 fq_flow_add_tail(&q->old_flows, f);
445 goto begin;
446 }
447
448 if (unlikely(f->head && now < f->time_next_packet)) {
449 head->first = f->next;
450 fq_flow_set_throttled(q, f);
451 goto begin;
452 }
453
8d34ce10 454 skb = fq_dequeue_head(sch, f);
afe4fd06
ED
455 if (!skb) {
456 head->first = f->next;
457 /* force a pass through old_flows to prevent starvation */
458 if ((head == &q->new_flows) && q->old_flows.first) {
459 fq_flow_add_tail(&q->old_flows, f);
460 } else {
461 fq_flow_set_detached(f);
462 f->age = jiffies;
463 q->inactive_flows++;
464 }
465 goto begin;
466 }
08f89b98 467 prefetch(&skb->end);
afe4fd06
ED
468 f->time_next_packet = now;
469 f->credit -= qdisc_pkt_len(skb);
470
471 if (f->credit <= 0 &&
472 q->rate_enable &&
473 skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
474 u32 rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
475
476 rate = min(rate, q->flow_max_rate);
477 if (rate) {
478 u64 len = (u64)qdisc_pkt_len(skb) * NSEC_PER_SEC;
479
480 do_div(len, rate);
481 /* Since socket rate can change later,
482 * clamp the delay to 125 ms.
483 * TODO: maybe segment the too big skb, as in commit
484 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
485 */
486 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
487 len = 125 * NSEC_PER_MSEC;
488 q->stat_pkts_too_long++;
489 }
490
491 f->time_next_packet = now + len;
492 }
493 }
494out:
afe4fd06 495 qdisc_bstats_update(sch, skb);
afe4fd06
ED
496 qdisc_unthrottled(sch);
497 return skb;
498}
499
500static void fq_reset(struct Qdisc *sch)
501{
8d34ce10
ED
502 struct fq_sched_data *q = qdisc_priv(sch);
503 struct rb_root *root;
afe4fd06 504 struct sk_buff *skb;
8d34ce10
ED
505 struct rb_node *p;
506 struct fq_flow *f;
507 unsigned int idx;
afe4fd06 508
8d34ce10 509 while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
afe4fd06 510 kfree_skb(skb);
8d34ce10
ED
511
512 if (!q->fq_root)
513 return;
514
515 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
516 root = &q->fq_root[idx];
517 while ((p = rb_first(root)) != NULL) {
518 f = container_of(p, struct fq_flow, fq_node);
519 rb_erase(p, root);
520
521 while ((skb = fq_dequeue_head(sch, f)) != NULL)
522 kfree_skb(skb);
523
524 kmem_cache_free(fq_flow_cachep, f);
525 }
526 }
527 q->new_flows.first = NULL;
528 q->old_flows.first = NULL;
529 q->delayed = RB_ROOT;
530 q->flows = 0;
531 q->inactive_flows = 0;
532 q->throttled_flows = 0;
afe4fd06
ED
533}
534
535static void fq_rehash(struct fq_sched_data *q,
536 struct rb_root *old_array, u32 old_log,
537 struct rb_root *new_array, u32 new_log)
538{
539 struct rb_node *op, **np, *parent;
540 struct rb_root *oroot, *nroot;
541 struct fq_flow *of, *nf;
542 int fcnt = 0;
543 u32 idx;
544
545 for (idx = 0; idx < (1U << old_log); idx++) {
546 oroot = &old_array[idx];
547 while ((op = rb_first(oroot)) != NULL) {
548 rb_erase(op, oroot);
549 of = container_of(op, struct fq_flow, fq_node);
550 if (fq_gc_candidate(of)) {
551 fcnt++;
552 kmem_cache_free(fq_flow_cachep, of);
553 continue;
554 }
555 nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
556
557 np = &nroot->rb_node;
558 parent = NULL;
559 while (*np) {
560 parent = *np;
561
562 nf = container_of(parent, struct fq_flow, fq_node);
563 BUG_ON(nf->sk == of->sk);
564
565 if (nf->sk > of->sk)
566 np = &parent->rb_right;
567 else
568 np = &parent->rb_left;
569 }
570
571 rb_link_node(&of->fq_node, parent, np);
572 rb_insert_color(&of->fq_node, nroot);
573 }
574 }
575 q->flows -= fcnt;
576 q->inactive_flows -= fcnt;
577 q->stat_gc_flows += fcnt;
578}
579
580static int fq_resize(struct fq_sched_data *q, u32 log)
581{
582 struct rb_root *array;
583 u32 idx;
584
585 if (q->fq_root && log == q->fq_trees_log)
586 return 0;
587
588 array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
589 if (!array)
590 return -ENOMEM;
591
592 for (idx = 0; idx < (1U << log); idx++)
593 array[idx] = RB_ROOT;
594
595 if (q->fq_root) {
596 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
597 kfree(q->fq_root);
598 }
599 q->fq_root = array;
600 q->fq_trees_log = log;
601
602 return 0;
603}
604
605static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
606 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
607 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
608 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
609 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
610 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
611 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
612 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
613 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
614};
615
616static int fq_change(struct Qdisc *sch, struct nlattr *opt)
617{
618 struct fq_sched_data *q = qdisc_priv(sch);
619 struct nlattr *tb[TCA_FQ_MAX + 1];
620 int err, drop_count = 0;
621 u32 fq_log;
622
623 if (!opt)
624 return -EINVAL;
625
626 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
627 if (err < 0)
628 return err;
629
630 sch_tree_lock(sch);
631
632 fq_log = q->fq_trees_log;
633
634 if (tb[TCA_FQ_BUCKETS_LOG]) {
635 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
636
637 if (nval >= 1 && nval <= ilog2(256*1024))
638 fq_log = nval;
639 else
640 err = -EINVAL;
641 }
642 if (tb[TCA_FQ_PLIMIT])
643 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
644
645 if (tb[TCA_FQ_FLOW_PLIMIT])
646 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
647
648 if (tb[TCA_FQ_QUANTUM])
649 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
650
651 if (tb[TCA_FQ_INITIAL_QUANTUM])
652 q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
653
654 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
655 q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
656
657 if (tb[TCA_FQ_FLOW_MAX_RATE])
658 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
659
660 if (tb[TCA_FQ_RATE_ENABLE]) {
661 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
662
663 if (enable <= 1)
664 q->rate_enable = enable;
665 else
666 err = -EINVAL;
667 }
668
669 if (!err)
670 err = fq_resize(q, fq_log);
671
672 while (sch->q.qlen > sch->limit) {
673 struct sk_buff *skb = fq_dequeue(sch);
674
8d34ce10
ED
675 if (!skb)
676 break;
afe4fd06
ED
677 kfree_skb(skb);
678 drop_count++;
679 }
680 qdisc_tree_decrease_qlen(sch, drop_count);
681
682 sch_tree_unlock(sch);
683 return err;
684}
685
686static void fq_destroy(struct Qdisc *sch)
687{
688 struct fq_sched_data *q = qdisc_priv(sch);
afe4fd06 689
8d34ce10
ED
690 fq_reset(sch);
691 kfree(q->fq_root);
afe4fd06
ED
692 qdisc_watchdog_cancel(&q->watchdog);
693}
694
695static int fq_init(struct Qdisc *sch, struct nlattr *opt)
696{
697 struct fq_sched_data *q = qdisc_priv(sch);
698 int err;
699
700 sch->limit = 10000;
701 q->flow_plimit = 100;
702 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
703 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
704 q->flow_default_rate = 0;
705 q->flow_max_rate = ~0U;
706 q->rate_enable = 1;
707 q->new_flows.first = NULL;
708 q->old_flows.first = NULL;
709 q->delayed = RB_ROOT;
710 q->fq_root = NULL;
711 q->fq_trees_log = ilog2(1024);
712 qdisc_watchdog_init(&q->watchdog, sch);
713
714 if (opt)
715 err = fq_change(sch, opt);
716 else
717 err = fq_resize(q, q->fq_trees_log);
718
719 return err;
720}
721
722static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
723{
724 struct fq_sched_data *q = qdisc_priv(sch);
725 struct nlattr *opts;
726
727 opts = nla_nest_start(skb, TCA_OPTIONS);
728 if (opts == NULL)
729 goto nla_put_failure;
730
731 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
732 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
733 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
734 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
735 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
736 nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
737 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
738 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
739 goto nla_put_failure;
740
741 nla_nest_end(skb, opts);
742 return skb->len;
743
744nla_put_failure:
745 return -1;
746}
747
748static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
749{
750 struct fq_sched_data *q = qdisc_priv(sch);
751 u64 now = ktime_to_ns(ktime_get());
752 struct tc_fq_qd_stats st = {
753 .gc_flows = q->stat_gc_flows,
754 .highprio_packets = q->stat_internal_packets,
755 .tcp_retrans = q->stat_tcp_retrans,
756 .throttled = q->stat_throttled,
757 .flows_plimit = q->stat_flows_plimit,
758 .pkts_too_long = q->stat_pkts_too_long,
759 .allocation_errors = q->stat_allocation_errors,
760 .flows = q->flows,
761 .inactive_flows = q->inactive_flows,
762 .throttled_flows = q->throttled_flows,
763 .time_next_delayed_flow = q->time_next_delayed_flow - now,
764 };
765
766 return gnet_stats_copy_app(d, &st, sizeof(st));
767}
768
769static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
770 .id = "fq",
771 .priv_size = sizeof(struct fq_sched_data),
772
773 .enqueue = fq_enqueue,
774 .dequeue = fq_dequeue,
775 .peek = qdisc_peek_dequeued,
776 .init = fq_init,
777 .reset = fq_reset,
778 .destroy = fq_destroy,
779 .change = fq_change,
780 .dump = fq_dump,
781 .dump_stats = fq_dump_stats,
782 .owner = THIS_MODULE,
783};
784
785static int __init fq_module_init(void)
786{
787 int ret;
788
789 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
790 sizeof(struct fq_flow),
791 0, 0, NULL);
792 if (!fq_flow_cachep)
793 return -ENOMEM;
794
795 ret = register_qdisc(&fq_qdisc_ops);
796 if (ret)
797 kmem_cache_destroy(fq_flow_cachep);
798 return ret;
799}
800
801static void __exit fq_module_exit(void)
802{
803 unregister_qdisc(&fq_qdisc_ops);
804 kmem_cache_destroy(fq_flow_cachep);
805}
806
807module_init(fq_module_init)
808module_exit(fq_module_exit)
809MODULE_AUTHOR("Eric Dumazet");
810MODULE_LICENSE("GPL");