]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/sched/sch_pie.c
net: sched: gred: pass the right attribute to gred_change_table_def()
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_pie.c
CommitLineData
d4b36210
VS
1/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version 2
6 * of the License.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * Author: Vijay Subramanian <vijaynsu@cisco.com>
14 * Author: Mythili Prabhu <mysuryan@cisco.com>
15 *
16 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
17 * University of Oslo, Norway.
219e288e
VS
18 *
19 * References:
20 * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00
21 * IEEE Conference on High Performance Switching and Routing 2013 :
22 * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem"
d4b36210
VS
23 */
24
25#include <linux/module.h>
26#include <linux/slab.h>
27#include <linux/types.h>
28#include <linux/kernel.h>
29#include <linux/errno.h>
30#include <linux/skbuff.h>
31#include <net/pkt_sched.h>
32#include <net/inet_ecn.h>
33
34#define QUEUE_THRESHOLD 10000
35#define DQCOUNT_INVALID -1
36#define MAX_PROB 0xffffffff
37#define PIE_SCALE 8
38
39/* parameters used */
40struct pie_params {
41 psched_time_t target; /* user specified target delay in pschedtime */
42 u32 tupdate; /* timer frequency (in jiffies) */
43 u32 limit; /* number of packets that can be enqueued */
219e288e 44 u32 alpha; /* alpha and beta are between 0 and 32 */
d4b36210
VS
45 u32 beta; /* and are used for shift relative to 1 */
46 bool ecn; /* true if ecn is enabled */
47 bool bytemode; /* to scale drop early prob based on pkt size */
48};
49
50/* variables used */
51struct pie_vars {
52 u32 prob; /* probability but scaled by u32 limit. */
53 psched_time_t burst_time;
54 psched_time_t qdelay;
55 psched_time_t qdelay_old;
56 u64 dq_count; /* measured in bytes */
57 psched_time_t dq_tstamp; /* drain rate */
58 u32 avg_dq_rate; /* bytes per pschedtime tick,scaled */
59 u32 qlen_old; /* in bytes */
60};
61
62/* statistics gathering */
63struct pie_stats {
64 u32 packets_in; /* total number of packets enqueued */
65 u32 dropped; /* packets dropped due to pie_action */
66 u32 overlimit; /* dropped due to lack of space in queue */
67 u32 maxq; /* maximum queue size */
68 u32 ecn_mark; /* packets marked with ECN */
69};
70
71/* private data for the Qdisc */
72struct pie_sched_data {
73 struct pie_params params;
74 struct pie_vars vars;
75 struct pie_stats stats;
76 struct timer_list adapt_timer;
cdeabbb8 77 struct Qdisc *sch;
d4b36210
VS
78};
79
80static void pie_params_init(struct pie_params *params)
81{
82 params->alpha = 2;
83 params->beta = 20;
84 params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */
85 params->limit = 1000; /* default of 1000 packets */
86 params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC); /* 20 ms */
87 params->ecn = false;
88 params->bytemode = false;
89}
90
91static void pie_vars_init(struct pie_vars *vars)
92{
93 vars->dq_count = DQCOUNT_INVALID;
94 vars->avg_dq_rate = 0;
95 /* default of 100 ms in pschedtime */
96 vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC);
97}
98
99static bool drop_early(struct Qdisc *sch, u32 packet_size)
100{
101 struct pie_sched_data *q = qdisc_priv(sch);
102 u32 rnd;
103 u32 local_prob = q->vars.prob;
104 u32 mtu = psched_mtu(qdisc_dev(sch));
105
106 /* If there is still burst allowance left skip random early drop */
107 if (q->vars.burst_time > 0)
108 return false;
109
110 /* If current delay is less than half of target, and
111 * if drop prob is low already, disable early_drop
112 */
113 if ((q->vars.qdelay < q->params.target / 2)
114 && (q->vars.prob < MAX_PROB / 5))
115 return false;
116
117 /* If we have fewer than 2 mtu-sized packets, disable drop_early,
118 * similar to min_th in RED
119 */
120 if (sch->qstats.backlog < 2 * mtu)
121 return false;
122
123 /* If bytemode is turned on, use packet size to compute new
124 * probablity. Smaller packets will have lower drop prob in this case
125 */
126 if (q->params.bytemode && packet_size <= mtu)
127 local_prob = (local_prob / mtu) * packet_size;
128 else
129 local_prob = q->vars.prob;
130
63862b5b 131 rnd = prandom_u32();
d4b36210
VS
132 if (rnd < local_prob)
133 return true;
134
135 return false;
136}
137
520ac30f
ED
138static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
139 struct sk_buff **to_free)
d4b36210
VS
140{
141 struct pie_sched_data *q = qdisc_priv(sch);
142 bool enqueue = false;
143
144 if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
145 q->stats.overlimit++;
146 goto out;
147 }
148
149 if (!drop_early(sch, skb->len)) {
150 enqueue = true;
151 } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
152 INET_ECN_set_ce(skb)) {
153 /* If packet is ecn capable, mark it if drop probability
154 * is lower than 10%, else drop it.
155 */
156 q->stats.ecn_mark++;
157 enqueue = true;
158 }
159
160 /* we can enqueue the packet */
161 if (enqueue) {
162 q->stats.packets_in++;
163 if (qdisc_qlen(sch) > q->stats.maxq)
164 q->stats.maxq = qdisc_qlen(sch);
165
166 return qdisc_enqueue_tail(skb, sch);
167 }
168
169out:
170 q->stats.dropped++;
520ac30f 171 return qdisc_drop(skb, sch, to_free);
d4b36210
VS
172}
173
174static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
175 [TCA_PIE_TARGET] = {.type = NLA_U32},
176 [TCA_PIE_LIMIT] = {.type = NLA_U32},
177 [TCA_PIE_TUPDATE] = {.type = NLA_U32},
178 [TCA_PIE_ALPHA] = {.type = NLA_U32},
179 [TCA_PIE_BETA] = {.type = NLA_U32},
180 [TCA_PIE_ECN] = {.type = NLA_U32},
181 [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
182};
183
184static int pie_change(struct Qdisc *sch, struct nlattr *opt)
185{
186 struct pie_sched_data *q = qdisc_priv(sch);
187 struct nlattr *tb[TCA_PIE_MAX + 1];
2ccccf5f 188 unsigned int qlen, dropped = 0;
d4b36210
VS
189 int err;
190
191 if (!opt)
192 return -EINVAL;
193
fceb6435 194 err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy, NULL);
d4b36210
VS
195 if (err < 0)
196 return err;
197
198 sch_tree_lock(sch);
199
200 /* convert from microseconds to pschedtime */
201 if (tb[TCA_PIE_TARGET]) {
202 /* target is in us */
203 u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
204
205 /* convert to pschedtime */
206 q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
207 }
208
209 /* tupdate is in jiffies */
210 if (tb[TCA_PIE_TUPDATE])
211 q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
212
213 if (tb[TCA_PIE_LIMIT]) {
214 u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
215
216 q->params.limit = limit;
217 sch->limit = limit;
218 }
219
220 if (tb[TCA_PIE_ALPHA])
221 q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
222
223 if (tb[TCA_PIE_BETA])
224 q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
225
226 if (tb[TCA_PIE_ECN])
227 q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
228
229 if (tb[TCA_PIE_BYTEMODE])
230 q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
231
232 /* Drop excess packets if new limit is lower */
233 qlen = sch->q.qlen;
234 while (sch->q.qlen > sch->limit) {
ed760cb8 235 struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
d4b36210 236
2ccccf5f 237 dropped += qdisc_pkt_len(skb);
25331d6c 238 qdisc_qstats_backlog_dec(sch, skb);
db4879d9 239 rtnl_qdisc_drop(skb, sch);
d4b36210 240 }
2ccccf5f 241 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
d4b36210
VS
242
243 sch_tree_unlock(sch);
244 return 0;
245}
246
247static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
248{
249
250 struct pie_sched_data *q = qdisc_priv(sch);
251 int qlen = sch->qstats.backlog; /* current queue size in bytes */
252
253 /* If current queue is about 10 packets or more and dq_count is unset
254 * we have enough packets to calculate the drain rate. Save
255 * current time as dq_tstamp and start measurement cycle.
256 */
257 if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
258 q->vars.dq_tstamp = psched_get_time();
259 q->vars.dq_count = 0;
260 }
261
262 /* Calculate the average drain rate from this value. If queue length
263 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
264 * the dq_count to -1 as we don't have enough packets to calculate the
265 * drain rate anymore The following if block is entered only when we
266 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
267 * and we calculate the drain rate for the threshold here. dq_count is
268 * in bytes, time difference in psched_time, hence rate is in
269 * bytes/psched_time.
270 */
271 if (q->vars.dq_count != DQCOUNT_INVALID) {
272 q->vars.dq_count += skb->len;
273
274 if (q->vars.dq_count >= QUEUE_THRESHOLD) {
275 psched_time_t now = psched_get_time();
276 u32 dtime = now - q->vars.dq_tstamp;
277 u32 count = q->vars.dq_count << PIE_SCALE;
278
279 if (dtime == 0)
280 return;
281
282 count = count / dtime;
283
284 if (q->vars.avg_dq_rate == 0)
285 q->vars.avg_dq_rate = count;
286 else
287 q->vars.avg_dq_rate =
288 (q->vars.avg_dq_rate -
289 (q->vars.avg_dq_rate >> 3)) + (count >> 3);
290
291 /* If the queue has receded below the threshold, we hold
292 * on to the last drain rate calculated, else we reset
293 * dq_count to 0 to re-enter the if block when the next
294 * packet is dequeued
295 */
296 if (qlen < QUEUE_THRESHOLD)
297 q->vars.dq_count = DQCOUNT_INVALID;
298 else {
299 q->vars.dq_count = 0;
300 q->vars.dq_tstamp = psched_get_time();
301 }
302
303 if (q->vars.burst_time > 0) {
304 if (q->vars.burst_time > dtime)
305 q->vars.burst_time -= dtime;
306 else
307 q->vars.burst_time = 0;
308 }
309 }
310 }
311}
312
313static void calculate_probability(struct Qdisc *sch)
314{
315 struct pie_sched_data *q = qdisc_priv(sch);
316 u32 qlen = sch->qstats.backlog; /* queue size in bytes */
317 psched_time_t qdelay = 0; /* in pschedtime */
318 psched_time_t qdelay_old = q->vars.qdelay; /* in pschedtime */
319 s32 delta = 0; /* determines the change in probability */
320 u32 oldprob;
321 u32 alpha, beta;
322 bool update_prob = true;
323
324 q->vars.qdelay_old = q->vars.qdelay;
325
326 if (q->vars.avg_dq_rate > 0)
327 qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
328 else
329 qdelay = 0;
330
331 /* If qdelay is zero and qlen is not, it means qlen is very small, less
332 * than dequeue_rate, so we do not update probabilty in this round
333 */
334 if (qdelay == 0 && qlen != 0)
335 update_prob = false;
336
219e288e
VS
337 /* In the algorithm, alpha and beta are between 0 and 2 with typical
338 * value for alpha as 0.125. In this implementation, we use values 0-32
339 * passed from user space to represent this. Also, alpha and beta have
340 * unit of HZ and need to be scaled before they can used to update
341 * probability. alpha/beta are updated locally below by 1) scaling them
342 * appropriately 2) scaling down by 16 to come to 0-2 range.
343 * Please see paper for details.
344 *
345 * We scale alpha and beta differently depending on whether we are in
346 * light, medium or high dropping mode.
d4b36210
VS
347 */
348 if (q->vars.prob < MAX_PROB / 100) {
349 alpha =
350 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
351 beta =
352 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
353 } else if (q->vars.prob < MAX_PROB / 10) {
354 alpha =
355 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
356 beta =
357 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
358 } else {
359 alpha =
360 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
361 beta =
362 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
363 }
364
365 /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
366 delta += alpha * ((qdelay - q->params.target));
367 delta += beta * ((qdelay - qdelay_old));
368
369 oldprob = q->vars.prob;
370
371 /* to ensure we increase probability in steps of no more than 2% */
372 if (delta > (s32) (MAX_PROB / (100 / 2)) &&
373 q->vars.prob >= MAX_PROB / 10)
374 delta = (MAX_PROB / 100) * 2;
375
376 /* Non-linear drop:
377 * Tune drop probability to increase quickly for high delays(>= 250ms)
378 * 250ms is derived through experiments and provides error protection
379 */
380
381 if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
382 delta += MAX_PROB / (100 / 2);
383
384 q->vars.prob += delta;
385
386 if (delta > 0) {
387 /* prevent overflow */
388 if (q->vars.prob < oldprob) {
389 q->vars.prob = MAX_PROB;
390 /* Prevent normalization error. If probability is at
391 * maximum value already, we normalize it here, and
392 * skip the check to do a non-linear drop in the next
393 * section.
394 */
395 update_prob = false;
396 }
397 } else {
398 /* prevent underflow */
399 if (q->vars.prob > oldprob)
400 q->vars.prob = 0;
401 }
402
403 /* Non-linear drop in probability: Reduce drop probability quickly if
404 * delay is 0 for 2 consecutive Tupdate periods.
405 */
406
407 if ((qdelay == 0) && (qdelay_old == 0) && update_prob)
408 q->vars.prob = (q->vars.prob * 98) / 100;
409
410 q->vars.qdelay = qdelay;
411 q->vars.qlen_old = qlen;
412
413 /* We restart the measurement cycle if the following conditions are met
414 * 1. If the delay has been low for 2 consecutive Tupdate periods
415 * 2. Calculated drop probability is zero
416 * 3. We have atleast one estimate for the avg_dq_rate ie.,
417 * is a non-zero value
418 */
419 if ((q->vars.qdelay < q->params.target / 2) &&
420 (q->vars.qdelay_old < q->params.target / 2) &&
421 (q->vars.prob == 0) &&
422 (q->vars.avg_dq_rate > 0))
423 pie_vars_init(&q->vars);
424}
425
cdeabbb8 426static void pie_timer(struct timer_list *t)
d4b36210 427{
cdeabbb8
KC
428 struct pie_sched_data *q = from_timer(q, t, adapt_timer);
429 struct Qdisc *sch = q->sch;
d4b36210
VS
430 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
431
432 spin_lock(root_lock);
433 calculate_probability(sch);
434
435 /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
436 if (q->params.tupdate)
437 mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
438 spin_unlock(root_lock);
439
440}
441
442static int pie_init(struct Qdisc *sch, struct nlattr *opt)
443{
444 struct pie_sched_data *q = qdisc_priv(sch);
445
446 pie_params_init(&q->params);
447 pie_vars_init(&q->vars);
448 sch->limit = q->params.limit;
449
cdeabbb8
KC
450 q->sch = sch;
451 timer_setup(&q->adapt_timer, pie_timer, 0);
d4b36210
VS
452
453 if (opt) {
454 int err = pie_change(sch, opt);
455
456 if (err)
457 return err;
458 }
459
d5610902 460 mod_timer(&q->adapt_timer, jiffies + HZ / 2);
d4b36210
VS
461 return 0;
462}
463
464static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
465{
466 struct pie_sched_data *q = qdisc_priv(sch);
467 struct nlattr *opts;
468
469 opts = nla_nest_start(skb, TCA_OPTIONS);
470 if (opts == NULL)
471 goto nla_put_failure;
472
473 /* convert target from pschedtime to us */
474 if (nla_put_u32(skb, TCA_PIE_TARGET,
475 ((u32) PSCHED_TICKS2NS(q->params.target)) /
476 NSEC_PER_USEC) ||
477 nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
478 nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) ||
479 nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
480 nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
481 nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
482 nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
483 goto nla_put_failure;
484
485 return nla_nest_end(skb, opts);
486
487nla_put_failure:
488 nla_nest_cancel(skb, opts);
489 return -1;
490
491}
492
493static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
494{
495 struct pie_sched_data *q = qdisc_priv(sch);
496 struct tc_pie_xstats st = {
497 .prob = q->vars.prob,
498 .delay = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) /
499 NSEC_PER_USEC,
500 /* unscale and return dq_rate in bytes per sec */
501 .avg_dq_rate = q->vars.avg_dq_rate *
502 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
503 .packets_in = q->stats.packets_in,
504 .overlimit = q->stats.overlimit,
505 .maxq = q->stats.maxq,
506 .dropped = q->stats.dropped,
507 .ecn_mark = q->stats.ecn_mark,
508 };
509
510 return gnet_stats_copy_app(d, &st, sizeof(st));
511}
512
513static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
514{
515 struct sk_buff *skb;
1486587b 516 skb = qdisc_dequeue_head(sch);
d4b36210
VS
517
518 if (!skb)
519 return NULL;
520
521 pie_process_dequeue(sch, skb);
522 return skb;
523}
524
525static void pie_reset(struct Qdisc *sch)
526{
527 struct pie_sched_data *q = qdisc_priv(sch);
528 qdisc_reset_queue(sch);
529 pie_vars_init(&q->vars);
530}
531
532static void pie_destroy(struct Qdisc *sch)
533{
534 struct pie_sched_data *q = qdisc_priv(sch);
535 q->params.tupdate = 0;
536 del_timer_sync(&q->adapt_timer);
537}
538
539static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
540 .id = "pie",
541 .priv_size = sizeof(struct pie_sched_data),
542 .enqueue = pie_qdisc_enqueue,
543 .dequeue = pie_qdisc_dequeue,
544 .peek = qdisc_peek_dequeued,
545 .init = pie_init,
546 .destroy = pie_destroy,
547 .reset = pie_reset,
548 .change = pie_change,
549 .dump = pie_dump,
550 .dump_stats = pie_dump_stats,
551 .owner = THIS_MODULE,
552};
553
554static int __init pie_module_init(void)
555{
556 return register_qdisc(&pie_qdisc_ops);
557}
558
559static void __exit pie_module_exit(void)
560{
561 unregister_qdisc(&pie_qdisc_ops);
562}
563
564module_init(pie_module_init);
565module_exit(pie_module_exit);
566
567MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
568MODULE_AUTHOR("Vijay Subramanian");
569MODULE_AUTHOR("Mythili Prabhu");
570MODULE_LICENSE("GPL");