]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - net/sched/sch_qfq.c
net: sched: sch: add extack for block callback
[mirror_ubuntu-hirsute-kernel.git] / net / sched / sch_qfq.c
CommitLineData
0545a303 1/*
462dbc91 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
0545a303 3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
462dbc91 5 * Copyright (c) 2012 Paolo Valente.
0545a303 6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/bitops.h>
15#include <linux/errno.h>
16#include <linux/netdevice.h>
17#include <linux/pkt_sched.h>
18#include <net/sch_generic.h>
19#include <net/pkt_sched.h>
20#include <net/pkt_cls.h>
21
22
462dbc91
PV
23/* Quick Fair Queueing Plus
24 ========================
0545a303 25
26 Sources:
27
462dbc91
PV
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
0545a303 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41/*
42
462dbc91
PV
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
0545a303 57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93/*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97#define QFQ_MAX_SLOTS 32
98
99/*
462dbc91
PV
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
0545a303 102 * group with the smallest index that can support the L_i / r_i configured
462dbc91 103 * for the classes in the aggregate.
0545a303 104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
3015f3d2 108#define QFQ_MAX_INDEX 24
462dbc91 109#define QFQ_MAX_WSHIFT 10
0545a303 110
462dbc91
PV
111#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112#define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
0545a303 113
114#define FRAC_BITS 30 /* fixed point arithmetic */
115#define ONE_FP (1UL << FRAC_BITS)
0545a303 116
3015f3d2 117#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
462dbc91
PV
118#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
119
120#define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
0545a303 121
122/*
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128struct qfq_group;
129
462dbc91
PV
130struct qfq_aggregate;
131
0545a303 132struct qfq_class {
133 struct Qdisc_class_common common;
134
0545a303 135 unsigned int filter_cnt;
136
137 struct gnet_stats_basic_packed bstats;
138 struct gnet_stats_queue qstats;
1c0d32fd 139 struct net_rate_estimator __rcu *rate_est;
0545a303 140 struct Qdisc *qdisc;
462dbc91
PV
141 struct list_head alist; /* Link for active-classes list. */
142 struct qfq_aggregate *agg; /* Parent aggregate. */
143 int deficit; /* DRR deficit counter. */
144};
0545a303 145
462dbc91 146struct qfq_aggregate {
0545a303 147 struct hlist_node next; /* Link for the slot list. */
148 u64 S, F; /* flow timestamps (exact) */
149
150 /* group we belong to. In principle we would need the index,
151 * which is log_2(lmax/weight), but we never reference it
152 * directly, only the group.
153 */
154 struct qfq_group *grp;
155
156 /* these are copied from the flowset. */
462dbc91
PV
157 u32 class_weight; /* Weight of each class in this aggregate. */
158 /* Max pkt size for the classes in this aggregate, DRR quantum. */
159 int lmax;
160
161 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
162 u32 budgetmax; /* Max budget for this aggregate. */
163 u32 initial_budget, budget; /* Initial and current budget. */
164
165 int num_classes; /* Number of classes in this aggr. */
166 struct list_head active; /* DRR queue of active classes. */
167
168 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
0545a303 169};
170
171struct qfq_group {
172 u64 S, F; /* group timestamps (approx). */
173 unsigned int slot_shift; /* Slot shift. */
174 unsigned int index; /* Group index. */
175 unsigned int front; /* Index of the front slot. */
176 unsigned long full_slots; /* non-empty slots */
177
462dbc91 178 /* Array of RR lists of active aggregates. */
0545a303 179 struct hlist_head slots[QFQ_MAX_SLOTS];
180};
181
182struct qfq_sched {
25d8c0d5 183 struct tcf_proto __rcu *filter_list;
6529eaba 184 struct tcf_block *block;
0545a303 185 struct Qdisc_class_hash clhash;
186
462dbc91
PV
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
462dbc91 189 u32 wsum; /* weight sum */
87f40dd6 190 u32 iwsum; /* inverse weight sum */
0545a303 191
192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
462dbc91
PV
194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
195
196 u32 max_agg_classes; /* Max number of classes per aggr. */
197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
0545a303 198};
199
462dbc91
PV
200/*
201 * Possible reasons why the timestamps of an aggregate are updated
202 * enqueue: the aggregate switches from idle to active and must scheduled
203 * for service
204 * requeue: the aggregate finishes its budget, so it stops being served and
205 * must be rescheduled for service
206 */
207enum update_reason {enqueue, requeue};
208
0545a303 209static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
210{
211 struct qfq_sched *q = qdisc_priv(sch);
212 struct Qdisc_class_common *clc;
213
214 clc = qdisc_class_find(&q->clhash, classid);
215 if (clc == NULL)
216 return NULL;
217 return container_of(clc, struct qfq_class, common);
218}
219
220static void qfq_purge_queue(struct qfq_class *cl)
221{
222 unsigned int len = cl->qdisc->q.qlen;
2ccccf5f 223 unsigned int backlog = cl->qdisc->qstats.backlog;
0545a303 224
225 qdisc_reset(cl->qdisc);
2ccccf5f 226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
0545a303 227}
228
229static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232};
233
234/*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
462dbc91 239static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
0545a303 240{
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
462dbc91 245 size_map = slot_size >> min_slot_shift;
0545a303 246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
462dbc91 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
0545a303 251
252 if (index < 0)
253 index = 0;
254out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259}
260
462dbc91
PV
261static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
be72f63b 267{
462dbc91
PV
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273}
274
275static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277{
278 struct qfq_aggregate *agg;
462dbc91 279
b67bfe0d 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
462dbc91
PV
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285}
286
be72f63b 287
462dbc91
PV
288/* Update aggregate as a function of the new number of classes. */
289static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291{
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
9b99b7e9
PV
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
304 */
462dbc91
PV
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
308
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
313 }
314
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
87f40dd6 317 q->iwsum = ONE_FP / q->wsum;
462dbc91
PV
318
319 agg->num_classes = new_num_classes;
320}
321
322/* Add class to aggregate. */
323static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
326{
327 cl->agg = agg;
328
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 }
be72f63b
PV
336}
337
462dbc91 338static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
be72f63b 339
462dbc91 340static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 341{
a55e1c5c 342 hlist_del_init(&agg->nonfull_next);
87f40dd6
PV
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
346
462dbc91
PV
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
350}
be72f63b 351
462dbc91
PV
352/* Deschedule class from within its parent aggregate. */
353static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354{
355 struct qfq_aggregate *agg = cl->agg;
be72f63b 356
be72f63b 357
462dbc91
PV
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
be72f63b
PV
361}
362
462dbc91
PV
363/* Remove class from its parent aggregate. */
364static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
3015f3d2 365{
462dbc91 366 struct qfq_aggregate *agg = cl->agg;
3015f3d2 367
462dbc91
PV
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
3015f3d2 372 }
462dbc91
PV
373 qfq_update_agg(q, agg, agg->num_classes-1);
374}
3015f3d2 375
462dbc91
PV
376/* Deschedule class and remove it from its parent aggregate. */
377static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378{
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
3015f3d2 381
462dbc91 382 qfq_rm_from_agg(q, cl);
3015f3d2
PV
383}
384
462dbc91
PV
385/* Move class to a new aggregate, matching the new class weight and/or lmax */
386static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
388{
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
397 }
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
400
401 return 0;
402}
3015f3d2 403
0545a303 404static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
793d81d6
AA
405 struct nlattr **tca, unsigned long *arg,
406 struct netlink_ext_ack *extack)
0545a303 407{
408 struct qfq_sched *q = qdisc_priv(sch);
409 struct qfq_class *cl = (struct qfq_class *)*arg;
462dbc91 410 bool existing = false;
0545a303 411 struct nlattr *tb[TCA_QFQ_MAX + 1];
462dbc91 412 struct qfq_aggregate *new_agg = NULL;
0545a303 413 u32 weight, lmax, inv_w;
3015f3d2 414 int err;
d32ae76f 415 int delta_w;
0545a303 416
417 if (tca[TCA_OPTIONS] == NULL) {
418 pr_notice("qfq: no options\n");
419 return -EINVAL;
420 }
421
fceb6435
JB
422 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
423 NULL);
0545a303 424 if (err < 0)
425 return err;
426
427 if (tb[TCA_QFQ_WEIGHT]) {
428 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
429 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
430 pr_notice("qfq: invalid weight %u\n", weight);
431 return -EINVAL;
432 }
433 } else
434 weight = 1;
435
0545a303 436 if (tb[TCA_QFQ_LMAX]) {
437 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
3015f3d2 438 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
0545a303 439 pr_notice("qfq: invalid max length %u\n", lmax);
440 return -EINVAL;
441 }
442 } else
3015f3d2 443 lmax = psched_mtu(qdisc_dev(sch));
0545a303 444
462dbc91
PV
445 inv_w = ONE_FP / weight;
446 weight = ONE_FP / inv_w;
447
448 if (cl != NULL &&
449 lmax == cl->agg->lmax &&
450 weight == cl->agg->class_weight)
451 return 0; /* nothing to change */
452
453 delta_w = weight - (cl ? cl->agg->class_weight : 0);
454
455 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
456 pr_notice("qfq: total weight out of range (%d + %u)\n",
457 delta_w, q->wsum);
458 return -EINVAL;
459 }
460
461 if (cl != NULL) { /* modify existing class */
0545a303 462 if (tca[TCA_RATE]) {
22e0f8b9
JF
463 err = gen_replace_estimator(&cl->bstats, NULL,
464 &cl->rate_est,
edb09eb1
ED
465 NULL,
466 qdisc_root_sleeping_running(sch),
0545a303 467 tca[TCA_RATE]);
468 if (err)
469 return err;
470 }
462dbc91
PV
471 existing = true;
472 goto set_change_agg;
0545a303 473 }
474
462dbc91 475 /* create and init new class */
0545a303 476 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
477 if (cl == NULL)
478 return -ENOBUFS;
479
0545a303 480 cl->common.classid = classid;
462dbc91 481 cl->deficit = lmax;
0545a303 482
483 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
484 &pfifo_qdisc_ops, classid);
485 if (cl->qdisc == NULL)
486 cl->qdisc = &noop_qdisc;
487
488 if (tca[TCA_RATE]) {
22e0f8b9
JF
489 err = gen_new_estimator(&cl->bstats, NULL,
490 &cl->rate_est,
edb09eb1
ED
491 NULL,
492 qdisc_root_sleeping_running(sch),
0545a303 493 tca[TCA_RATE]);
462dbc91
PV
494 if (err)
495 goto destroy_class;
0545a303 496 }
497
49b49971
JK
498 if (cl->qdisc != &noop_qdisc)
499 qdisc_hash_add(cl->qdisc, true);
0545a303 500 sch_tree_lock(sch);
501 qdisc_class_hash_insert(&q->clhash, &cl->common);
502 sch_tree_unlock(sch);
503
504 qdisc_class_hash_grow(sch, &q->clhash);
505
462dbc91
PV
506set_change_agg:
507 sch_tree_lock(sch);
508 new_agg = qfq_find_agg(q, lmax, weight);
509 if (new_agg == NULL) { /* create new aggregate */
510 sch_tree_unlock(sch);
511 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
512 if (new_agg == NULL) {
513 err = -ENOBUFS;
1c0d32fd 514 gen_kill_estimator(&cl->rate_est);
462dbc91
PV
515 goto destroy_class;
516 }
517 sch_tree_lock(sch);
518 qfq_init_agg(q, new_agg, lmax, weight);
519 }
520 if (existing)
521 qfq_deact_rm_from_agg(q, cl);
522 qfq_add_to_agg(q, new_agg, cl);
523 sch_tree_unlock(sch);
524
0545a303 525 *arg = (unsigned long)cl;
526 return 0;
462dbc91
PV
527
528destroy_class:
529 qdisc_destroy(cl->qdisc);
530 kfree(cl);
531 return err;
0545a303 532}
533
534static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
535{
536 struct qfq_sched *q = qdisc_priv(sch);
537
462dbc91 538 qfq_rm_from_agg(q, cl);
1c0d32fd 539 gen_kill_estimator(&cl->rate_est);
0545a303 540 qdisc_destroy(cl->qdisc);
541 kfree(cl);
542}
543
544static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
545{
546 struct qfq_sched *q = qdisc_priv(sch);
547 struct qfq_class *cl = (struct qfq_class *)arg;
548
549 if (cl->filter_cnt > 0)
550 return -EBUSY;
551
552 sch_tree_lock(sch);
553
554 qfq_purge_queue(cl);
555 qdisc_class_hash_remove(&q->clhash, &cl->common);
556
0545a303 557 sch_tree_unlock(sch);
0545a303 558
143976ce
WC
559 qfq_destroy_class(sch, cl);
560 return 0;
0545a303 561}
562
143976ce 563static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
0545a303 564{
143976ce 565 return (unsigned long)qfq_find_class(sch, classid);
0545a303 566}
567
cbaacc4e
AA
568static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
569 struct netlink_ext_ack *extack)
0545a303 570{
571 struct qfq_sched *q = qdisc_priv(sch);
572
573 if (cl)
574 return NULL;
575
6529eaba 576 return q->block;
0545a303 577}
578
579static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
580 u32 classid)
581{
582 struct qfq_class *cl = qfq_find_class(sch, classid);
583
584 if (cl != NULL)
585 cl->filter_cnt++;
586
587 return (unsigned long)cl;
588}
589
590static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
591{
592 struct qfq_class *cl = (struct qfq_class *)arg;
593
594 cl->filter_cnt--;
595}
596
597static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
598 struct Qdisc *new, struct Qdisc **old)
599{
600 struct qfq_class *cl = (struct qfq_class *)arg;
601
602 if (new == NULL) {
603 new = qdisc_create_dflt(sch->dev_queue,
604 &pfifo_qdisc_ops, cl->common.classid);
605 if (new == NULL)
606 new = &noop_qdisc;
607 }
608
86a7996c 609 *old = qdisc_replace(sch, new, &cl->qdisc);
0545a303 610 return 0;
611}
612
613static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
614{
615 struct qfq_class *cl = (struct qfq_class *)arg;
616
617 return cl->qdisc;
618}
619
620static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
621 struct sk_buff *skb, struct tcmsg *tcm)
622{
623 struct qfq_class *cl = (struct qfq_class *)arg;
624 struct nlattr *nest;
625
626 tcm->tcm_parent = TC_H_ROOT;
627 tcm->tcm_handle = cl->common.classid;
628 tcm->tcm_info = cl->qdisc->handle;
629
630 nest = nla_nest_start(skb, TCA_OPTIONS);
631 if (nest == NULL)
632 goto nla_put_failure;
462dbc91
PV
633 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
634 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
1b34ec43 635 goto nla_put_failure;
0545a303 636 return nla_nest_end(skb, nest);
637
638nla_put_failure:
639 nla_nest_cancel(skb, nest);
640 return -EMSGSIZE;
641}
642
643static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
644 struct gnet_dump *d)
645{
646 struct qfq_class *cl = (struct qfq_class *)arg;
647 struct tc_qfq_stats xstats;
648
649 memset(&xstats, 0, sizeof(xstats));
0545a303 650
462dbc91
PV
651 xstats.weight = cl->agg->class_weight;
652 xstats.lmax = cl->agg->lmax;
0545a303 653
edb09eb1
ED
654 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
655 d, NULL, &cl->bstats) < 0 ||
1c0d32fd 656 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
b0ab6f92
JF
657 gnet_stats_copy_queue(d, NULL,
658 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
0545a303 659 return -1;
660
661 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
662}
663
664static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
665{
666 struct qfq_sched *q = qdisc_priv(sch);
667 struct qfq_class *cl;
0545a303 668 unsigned int i;
669
670 if (arg->stop)
671 return;
672
673 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 674 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
0545a303 675 if (arg->count < arg->skip) {
676 arg->count++;
677 continue;
678 }
679 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
680 arg->stop = 1;
681 return;
682 }
683 arg->count++;
684 }
685 }
686}
687
688static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
689 int *qerr)
690{
691 struct qfq_sched *q = qdisc_priv(sch);
692 struct qfq_class *cl;
693 struct tcf_result res;
25d8c0d5 694 struct tcf_proto *fl;
0545a303 695 int result;
696
697 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
698 pr_debug("qfq_classify: found %d\n", skb->priority);
699 cl = qfq_find_class(sch, skb->priority);
700 if (cl != NULL)
701 return cl;
702 }
703
704 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
25d8c0d5 705 fl = rcu_dereference_bh(q->filter_list);
87d83093 706 result = tcf_classify(skb, fl, &res, false);
0545a303 707 if (result >= 0) {
708#ifdef CONFIG_NET_CLS_ACT
709 switch (result) {
710 case TC_ACT_QUEUED:
711 case TC_ACT_STOLEN:
e25ea21f 712 case TC_ACT_TRAP:
0545a303 713 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
f3ae608e 714 /* fall through */
0545a303 715 case TC_ACT_SHOT:
716 return NULL;
717 }
718#endif
719 cl = (struct qfq_class *)res.class;
720 if (cl == NULL)
721 cl = qfq_find_class(sch, res.classid);
722 return cl;
723 }
724
725 return NULL;
726}
727
728/* Generic comparison function, handling wraparound. */
729static inline int qfq_gt(u64 a, u64 b)
730{
731 return (s64)(a - b) > 0;
732}
733
734/* Round a precise timestamp to its slotted value. */
735static inline u64 qfq_round_down(u64 ts, unsigned int shift)
736{
737 return ts & ~((1ULL << shift) - 1);
738}
739
740/* return the pointer to the group with lowest index in the bitmap */
741static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
742 unsigned long bitmap)
743{
744 int index = __ffs(bitmap);
745 return &q->groups[index];
746}
747/* Calculate a mask to mimic what would be ffs_from(). */
748static inline unsigned long mask_from(unsigned long bitmap, int from)
749{
750 return bitmap & ~((1UL << from) - 1);
751}
752
753/*
754 * The state computation relies on ER=0, IR=1, EB=2, IB=3
755 * First compute eligibility comparing grp->S, q->V,
756 * then check if someone is blocking us and possibly add EB
757 */
758static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
759{
760 /* if S > V we are not eligible */
761 unsigned int state = qfq_gt(grp->S, q->V);
762 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
763 struct qfq_group *next;
764
765 if (mask) {
766 next = qfq_ffs(q, mask);
767 if (qfq_gt(grp->F, next->F))
768 state |= EB;
769 }
770
771 return state;
772}
773
774
775/*
776 * In principle
777 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
778 * q->bitmaps[src] &= ~mask;
779 * but we should make sure that src != dst
780 */
781static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
782 int src, int dst)
783{
784 q->bitmaps[dst] |= q->bitmaps[src] & mask;
785 q->bitmaps[src] &= ~mask;
786}
787
788static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
789{
790 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
791 struct qfq_group *next;
792
793 if (mask) {
794 next = qfq_ffs(q, mask);
795 if (!qfq_gt(next->F, old_F))
796 return;
797 }
798
799 mask = (1UL << index) - 1;
800 qfq_move_groups(q, mask, EB, ER);
801 qfq_move_groups(q, mask, IB, IR);
802}
803
804/*
805 * perhaps
806 *
807 old_V ^= q->V;
462dbc91 808 old_V >>= q->min_slot_shift;
0545a303 809 if (old_V) {
810 ...
811 }
812 *
813 */
462dbc91 814static void qfq_make_eligible(struct qfq_sched *q)
0545a303 815{
462dbc91
PV
816 unsigned long vslot = q->V >> q->min_slot_shift;
817 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
0545a303 818
819 if (vslot != old_vslot) {
87f1369d
PV
820 unsigned long mask;
821 int last_flip_pos = fls(vslot ^ old_vslot);
822
823 if (last_flip_pos > 31) /* higher than the number of groups */
824 mask = ~0UL; /* make all groups eligible */
825 else
826 mask = (1UL << last_flip_pos) - 1;
827
0545a303 828 qfq_move_groups(q, mask, IR, ER);
829 qfq_move_groups(q, mask, IB, EB);
830 }
831}
832
0545a303 833/*
87f40dd6
PV
834 * The index of the slot in which the input aggregate agg is to be
835 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
836 * and not a '-1' because the start time of the group may be moved
837 * backward by one slot after the aggregate has been inserted, and
838 * this would cause non-empty slots to be right-shifted by one
839 * position.
840 *
841 * QFQ+ fully satisfies this bound to the slot index if the parameters
842 * of the classes are not changed dynamically, and if QFQ+ never
843 * happens to postpone the service of agg unjustly, i.e., it never
844 * happens that the aggregate becomes backlogged and eligible, or just
845 * eligible, while an aggregate with a higher approximated finish time
846 * is being served. In particular, in this case QFQ+ guarantees that
847 * the timestamps of agg are low enough that the slot index is never
848 * higher than 2. Unfortunately, QFQ+ cannot provide the same
849 * guarantee if it happens to unjustly postpone the service of agg, or
850 * if the parameters of some class are changed.
851 *
852 * As for the first event, i.e., an out-of-order service, the
853 * upper bound to the slot index guaranteed by QFQ+ grows to
854 * 2 +
855 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
856 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
3015f3d2 857 *
87f40dd6
PV
858 * The following function deals with this problem by backward-shifting
859 * the timestamps of agg, if needed, so as to guarantee that the slot
860 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
861 * cause the service of other aggregates to be postponed, yet the
862 * worst-case guarantees of these aggregates are not violated. In
863 * fact, in case of no out-of-order service, the timestamps of agg
864 * would have been even lower than they are after the backward shift,
865 * because QFQ+ would have guaranteed a maximum value equal to 2 for
866 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
867 * service is postponed because of the backward-shift would have
868 * however waited for the service of agg before being served.
3015f3d2 869 *
87f40dd6
PV
870 * The other event that may cause the slot index to be higher than 2
871 * for agg is a recent change of the parameters of some class. If the
872 * weight of a class is increased or the lmax (max_pkt_size) of the
873 * class is decreased, then a new aggregate with smaller slot size
874 * than the original parent aggregate of the class may happen to be
875 * activated. The activation of this aggregate should be properly
876 * delayed to when the service of the class has finished in the ideal
877 * system tracked by QFQ+. If the activation of the aggregate is not
878 * delayed to this reference time instant, then this aggregate may be
879 * unjustly served before other aggregates waiting for service. This
880 * may cause the above bound to the slot index to be violated for some
881 * of these unlucky aggregates.
3015f3d2 882 *
462dbc91 883 * Instead of delaying the activation of the new aggregate, which is
87f40dd6
PV
884 * quite complex, the above-discussed capping of the slot index is
885 * used to handle also the consequences of a change of the parameters
886 * of a class.
0545a303 887 */
462dbc91 888static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
0545a303 889 u64 roundedS)
890{
891 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
3015f3d2
PV
892 unsigned int i; /* slot index in the bucket list */
893
894 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
895 u64 deltaS = roundedS - grp->S -
896 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
462dbc91
PV
897 agg->S -= deltaS;
898 agg->F -= deltaS;
3015f3d2
PV
899 slot = QFQ_MAX_SLOTS - 2;
900 }
901
902 i = (grp->front + slot) % QFQ_MAX_SLOTS;
0545a303 903
462dbc91 904 hlist_add_head(&agg->next, &grp->slots[i]);
0545a303 905 __set_bit(slot, &grp->full_slots);
906}
907
908/* Maybe introduce hlist_first_entry?? */
462dbc91 909static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
0545a303 910{
911 return hlist_entry(grp->slots[grp->front].first,
462dbc91 912 struct qfq_aggregate, next);
0545a303 913}
914
915/*
916 * remove the entry from the slot
917 */
918static void qfq_front_slot_remove(struct qfq_group *grp)
919{
462dbc91 920 struct qfq_aggregate *agg = qfq_slot_head(grp);
0545a303 921
462dbc91
PV
922 BUG_ON(!agg);
923 hlist_del(&agg->next);
0545a303 924 if (hlist_empty(&grp->slots[grp->front]))
925 __clear_bit(0, &grp->full_slots);
926}
927
928/*
462dbc91
PV
929 * Returns the first aggregate in the first non-empty bucket of the
930 * group. As a side effect, adjusts the bucket list so the first
931 * non-empty bucket is at position 0 in full_slots.
0545a303 932 */
462dbc91 933static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
0545a303 934{
935 unsigned int i;
936
937 pr_debug("qfq slot_scan: grp %u full %#lx\n",
938 grp->index, grp->full_slots);
939
940 if (grp->full_slots == 0)
941 return NULL;
942
943 i = __ffs(grp->full_slots); /* zero based */
944 if (i > 0) {
945 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
946 grp->full_slots >>= i;
947 }
948
949 return qfq_slot_head(grp);
950}
951
952/*
953 * adjust the bucket list. When the start time of a group decreases,
954 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
955 * move the objects. The mask of occupied slots must be shifted
956 * because we use ffs() to find the first non-empty slot.
957 * This covers decreases in the group's start time, but what about
958 * increases of the start time ?
959 * Here too we should make sure that i is less than 32
960 */
961static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
962{
963 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
964
965 grp->full_slots <<= i;
966 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
967}
968
462dbc91 969static void qfq_update_eligible(struct qfq_sched *q)
0545a303 970{
971 struct qfq_group *grp;
972 unsigned long ineligible;
973
974 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
975 if (ineligible) {
976 if (!q->bitmaps[ER]) {
977 grp = qfq_ffs(q, ineligible);
978 if (qfq_gt(grp->S, q->V))
979 q->V = grp->S;
980 }
462dbc91 981 qfq_make_eligible(q);
0545a303 982 }
983}
984
462dbc91
PV
985/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
986static void agg_dequeue(struct qfq_aggregate *agg,
987 struct qfq_class *cl, unsigned int len)
0545a303 988{
462dbc91 989 qdisc_dequeue_peeked(cl->qdisc);
0545a303 990
462dbc91 991 cl->deficit -= (int) len;
0545a303 992
462dbc91
PV
993 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
994 list_del(&cl->alist);
995 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
996 cl->deficit += agg->lmax;
997 list_move_tail(&cl->alist, &agg->active);
0545a303 998 }
462dbc91
PV
999}
1000
1001static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1002 struct qfq_class **cl,
1003 unsigned int *len)
1004{
1005 struct sk_buff *skb;
0545a303 1006
462dbc91
PV
1007 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1008 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1009 if (skb == NULL)
1010 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1011 else
1012 *len = qdisc_pkt_len(skb);
1013
1014 return skb;
1015}
1016
1017/* Update F according to the actual service received by the aggregate. */
1018static inline void charge_actual_service(struct qfq_aggregate *agg)
1019{
9b99b7e9
PV
1020 /* Compute the service received by the aggregate, taking into
1021 * account that, after decreasing the number of classes in
1022 * agg, it may happen that
1023 * agg->initial_budget - agg->budget > agg->bugdetmax
1024 */
1025 u32 service_received = min(agg->budgetmax,
1026 agg->initial_budget - agg->budget);
462dbc91
PV
1027
1028 agg->F = agg->S + (u64)service_received * agg->inv_w;
0545a303 1029}
1030
88d4f419
PV
1031/* Assign a reasonable start time for a new aggregate in group i.
1032 * Admissible values for \hat(F) are multiples of \sigma_i
1033 * no greater than V+\sigma_i . Larger values mean that
1034 * we had a wraparound so we consider the timestamp to be stale.
1035 *
1036 * If F is not stale and F >= V then we set S = F.
1037 * Otherwise we should assign S = V, but this may violate
1038 * the ordering in EB (see [2]). So, if we have groups in ER,
1039 * set S to the F_j of the first group j which would be blocking us.
1040 * We are guaranteed not to move S backward because
1041 * otherwise our group i would still be blocked.
1042 */
1043static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1044{
1045 unsigned long mask;
1046 u64 limit, roundedF;
1047 int slot_shift = agg->grp->slot_shift;
1048
1049 roundedF = qfq_round_down(agg->F, slot_shift);
1050 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1051
1052 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1053 /* timestamp was stale */
1054 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1055 if (mask) {
1056 struct qfq_group *next = qfq_ffs(q, mask);
1057 if (qfq_gt(roundedF, next->F)) {
1058 if (qfq_gt(limit, next->F))
1059 agg->S = next->F;
1060 else /* preserve timestamp correctness */
1061 agg->S = limit;
1062 return;
1063 }
1064 }
1065 agg->S = q->V;
1066 } else /* timestamp is not stale */
1067 agg->S = agg->F;
1068}
1069
1070/* Update the timestamps of agg before scheduling/rescheduling it for
1071 * service. In particular, assign to agg->F its maximum possible
1072 * value, i.e., the virtual finish time with which the aggregate
1073 * should be labeled if it used all its budget once in service.
1074 */
1075static inline void
1076qfq_update_agg_ts(struct qfq_sched *q,
1077 struct qfq_aggregate *agg, enum update_reason reason)
1078{
1079 if (reason != requeue)
1080 qfq_update_start(q, agg);
1081 else /* just charge agg for the service received */
1082 agg->S = agg->F;
1083
1084 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1085}
2f3b89a1
PV
1086
1087static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1088
0545a303 1089static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1090{
1091 struct qfq_sched *q = qdisc_priv(sch);
462dbc91 1092 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
0545a303 1093 struct qfq_class *cl;
462dbc91
PV
1094 struct sk_buff *skb = NULL;
1095 /* next-packet len, 0 means no more active classes in in-service agg */
1096 unsigned int len = 0;
0545a303 1097
462dbc91 1098 if (in_serv_agg == NULL)
0545a303 1099 return NULL;
1100
462dbc91
PV
1101 if (!list_empty(&in_serv_agg->active))
1102 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1103
462dbc91
PV
1104 /*
1105 * If there are no active classes in the in-service aggregate,
1106 * or if the aggregate has not enough budget to serve its next
1107 * class, then choose the next aggregate to serve.
1108 */
1109 if (len == 0 || in_serv_agg->budget < len) {
1110 charge_actual_service(in_serv_agg);
1111
1112 /* recharge the budget of the aggregate */
1113 in_serv_agg->initial_budget = in_serv_agg->budget =
1114 in_serv_agg->budgetmax;
1115
2f3b89a1 1116 if (!list_empty(&in_serv_agg->active)) {
462dbc91
PV
1117 /*
1118 * Still active: reschedule for
1119 * service. Possible optimization: if no other
1120 * aggregate is active, then there is no point
1121 * in rescheduling this aggregate, and we can
1122 * just keep it as the in-service one. This
1123 * should be however a corner case, and to
1124 * handle it, we would need to maintain an
1125 * extra num_active_aggs field.
1126 */
2f3b89a1
PV
1127 qfq_update_agg_ts(q, in_serv_agg, requeue);
1128 qfq_schedule_agg(q, in_serv_agg);
1129 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
462dbc91
PV
1130 q->in_serv_agg = NULL;
1131 return NULL;
1132 }
1133
1134 /*
1135 * If we get here, there are other aggregates queued:
1136 * choose the new aggregate to serve.
1137 */
1138 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1139 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
0545a303 1140 }
462dbc91
PV
1141 if (!skb)
1142 return NULL;
0545a303 1143
2ed5c3f0 1144 qdisc_qstats_backlog_dec(sch, skb);
0545a303 1145 sch->q.qlen--;
1146 qdisc_bstats_update(sch, skb);
1147
462dbc91 1148 agg_dequeue(in_serv_agg, cl, len);
a0143efa
PV
1149 /* If lmax is lowered, through qfq_change_class, for a class
1150 * owning pending packets with larger size than the new value
1151 * of lmax, then the following condition may hold.
1152 */
1153 if (unlikely(in_serv_agg->budget < len))
1154 in_serv_agg->budget = 0;
1155 else
1156 in_serv_agg->budget -= len;
1157
87f40dd6 1158 q->V += (u64)len * q->iwsum;
0545a303 1159 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
462dbc91
PV
1160 len, (unsigned long long) in_serv_agg->F,
1161 (unsigned long long) q->V);
0545a303 1162
462dbc91
PV
1163 return skb;
1164}
0545a303 1165
462dbc91
PV
1166static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1167{
1168 struct qfq_group *grp;
1169 struct qfq_aggregate *agg, *new_front_agg;
1170 u64 old_F;
0545a303 1171
462dbc91
PV
1172 qfq_update_eligible(q);
1173 q->oldV = q->V;
1174
1175 if (!q->bitmaps[ER])
1176 return NULL;
1177
1178 grp = qfq_ffs(q, q->bitmaps[ER]);
1179 old_F = grp->F;
1180
1181 agg = qfq_slot_head(grp);
0545a303 1182
462dbc91
PV
1183 /* agg starts to be served, remove it from schedule */
1184 qfq_front_slot_remove(grp);
1185
1186 new_front_agg = qfq_slot_scan(grp);
1187
1188 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1189 __clear_bit(grp->index, &q->bitmaps[ER]);
1190 else {
1191 u64 roundedS = qfq_round_down(new_front_agg->S,
1192 grp->slot_shift);
1193 unsigned int s;
1194
1195 if (grp->S == roundedS)
1196 return agg;
1197 grp->S = roundedS;
1198 grp->F = roundedS + (2ULL << grp->slot_shift);
1199 __clear_bit(grp->index, &q->bitmaps[ER]);
1200 s = qfq_calc_state(q, grp);
1201 __set_bit(grp->index, &q->bitmaps[s]);
0545a303 1202 }
1203
462dbc91 1204 qfq_unblock_groups(q, grp->index, old_F);
0545a303 1205
462dbc91 1206 return agg;
0545a303 1207}
1208
520ac30f
ED
1209static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1210 struct sk_buff **to_free)
0545a303 1211{
1212 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1213 struct qfq_class *cl;
462dbc91 1214 struct qfq_aggregate *agg;
f54ba779 1215 int err = 0;
0545a303 1216
1217 cl = qfq_classify(skb, sch, &err);
1218 if (cl == NULL) {
1219 if (err & __NET_XMIT_BYPASS)
25331d6c 1220 qdisc_qstats_drop(sch);
39ad1297 1221 __qdisc_drop(skb, to_free);
0545a303 1222 return err;
1223 }
1224 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1225
462dbc91 1226 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
3015f3d2 1227 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
462dbc91
PV
1228 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1229 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1230 qdisc_pkt_len(skb));
9b15350f
FW
1231 if (err) {
1232 cl->qstats.drops++;
520ac30f 1233 return qdisc_drop(skb, sch, to_free);
9b15350f 1234 }
3015f3d2
PV
1235 }
1236
520ac30f 1237 err = qdisc_enqueue(skb, cl->qdisc, to_free);
0545a303 1238 if (unlikely(err != NET_XMIT_SUCCESS)) {
1239 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1240 if (net_xmit_drop_count(err)) {
1241 cl->qstats.drops++;
25331d6c 1242 qdisc_qstats_drop(sch);
0545a303 1243 }
1244 return err;
1245 }
1246
1247 bstats_update(&cl->bstats, skb);
2ed5c3f0 1248 qdisc_qstats_backlog_inc(sch, skb);
0545a303 1249 ++sch->q.qlen;
1250
462dbc91
PV
1251 agg = cl->agg;
1252 /* if the queue was not empty, then done here */
1253 if (cl->qdisc->q.qlen != 1) {
1254 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1255 list_first_entry(&agg->active, struct qfq_class, alist)
1256 == cl && cl->deficit < qdisc_pkt_len(skb))
1257 list_move_tail(&cl->alist, &agg->active);
1258
0545a303 1259 return err;
462dbc91
PV
1260 }
1261
1262 /* schedule class for service within the aggregate */
1263 cl->deficit = agg->lmax;
1264 list_add_tail(&cl->alist, &agg->active);
0545a303 1265
2f3b89a1
PV
1266 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1267 q->in_serv_agg == agg)
1268 return err; /* non-empty or in service, nothing else to do */
462dbc91 1269
2f3b89a1 1270 qfq_activate_agg(q, agg, enqueue);
be72f63b
PV
1271
1272 return err;
1273}
1274
1275/*
462dbc91 1276 * Schedule aggregate according to its timestamps.
be72f63b 1277 */
462dbc91 1278static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
be72f63b 1279{
462dbc91 1280 struct qfq_group *grp = agg->grp;
be72f63b
PV
1281 u64 roundedS;
1282 int s;
1283
462dbc91 1284 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1285
1286 /*
462dbc91
PV
1287 * Insert agg in the correct bucket.
1288 * If agg->S >= grp->S we don't need to adjust the
0545a303 1289 * bucket list and simply go to the insertion phase.
1290 * Otherwise grp->S is decreasing, we must make room
1291 * in the bucket list, and also recompute the group state.
1292 * Finally, if there were no flows in this group and nobody
1293 * was in ER make sure to adjust V.
1294 */
1295 if (grp->full_slots) {
462dbc91 1296 if (!qfq_gt(grp->S, agg->S))
0545a303 1297 goto skip_update;
1298
462dbc91 1299 /* create a slot for this agg->S */
0545a303 1300 qfq_slot_rotate(grp, roundedS);
1301 /* group was surely ineligible, remove */
1302 __clear_bit(grp->index, &q->bitmaps[IR]);
1303 __clear_bit(grp->index, &q->bitmaps[IB]);
40dd2d54
PV
1304 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1305 q->in_serv_agg == NULL)
0545a303 1306 q->V = roundedS;
1307
1308 grp->S = roundedS;
1309 grp->F = roundedS + (2ULL << grp->slot_shift);
1310 s = qfq_calc_state(q, grp);
1311 __set_bit(grp->index, &q->bitmaps[s]);
1312
1313 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1314 s, q->bitmaps[s],
462dbc91
PV
1315 (unsigned long long) agg->S,
1316 (unsigned long long) agg->F,
0545a303 1317 (unsigned long long) q->V);
1318
1319skip_update:
462dbc91 1320 qfq_slot_insert(grp, agg, roundedS);
0545a303 1321}
1322
1323
462dbc91
PV
1324/* Update agg ts and schedule agg for service */
1325static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1326 enum update_reason reason)
1327{
2f3b89a1
PV
1328 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1329
462dbc91 1330 qfq_update_agg_ts(q, agg, reason);
2f3b89a1
PV
1331 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1332 q->in_serv_agg = agg; /* start serving this aggregate */
1333 /* update V: to be in service, agg must be eligible */
1334 q->oldV = q->V = agg->S;
1335 } else if (agg != q->in_serv_agg)
1336 qfq_schedule_agg(q, agg);
462dbc91
PV
1337}
1338
0545a303 1339static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
462dbc91 1340 struct qfq_aggregate *agg)
0545a303 1341{
1342 unsigned int i, offset;
1343 u64 roundedS;
1344
462dbc91 1345 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1346 offset = (roundedS - grp->S) >> grp->slot_shift;
462dbc91 1347
0545a303 1348 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1349
462dbc91 1350 hlist_del(&agg->next);
0545a303 1351 if (hlist_empty(&grp->slots[i]))
1352 __clear_bit(offset, &grp->full_slots);
1353}
1354
1355/*
462dbc91
PV
1356 * Called to forcibly deschedule an aggregate. If the aggregate is
1357 * not in the front bucket, or if the latter has other aggregates in
1358 * the front bucket, we can simply remove the aggregate with no other
1359 * side effects.
0545a303 1360 * Otherwise we must propagate the event up.
1361 */
462dbc91 1362static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
0545a303 1363{
462dbc91 1364 struct qfq_group *grp = agg->grp;
0545a303 1365 unsigned long mask;
1366 u64 roundedS;
1367 int s;
1368
462dbc91
PV
1369 if (agg == q->in_serv_agg) {
1370 charge_actual_service(agg);
1371 q->in_serv_agg = qfq_choose_next_agg(q);
1372 return;
1373 }
1374
1375 agg->F = agg->S;
1376 qfq_slot_remove(q, grp, agg);
0545a303 1377
1378 if (!grp->full_slots) {
1379 __clear_bit(grp->index, &q->bitmaps[IR]);
1380 __clear_bit(grp->index, &q->bitmaps[EB]);
1381 __clear_bit(grp->index, &q->bitmaps[IB]);
1382
1383 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1384 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1385 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1386 if (mask)
1387 mask = ~((1UL << __fls(mask)) - 1);
1388 else
1389 mask = ~0UL;
1390 qfq_move_groups(q, mask, EB, ER);
1391 qfq_move_groups(q, mask, IB, IR);
1392 }
1393 __clear_bit(grp->index, &q->bitmaps[ER]);
1394 } else if (hlist_empty(&grp->slots[grp->front])) {
462dbc91
PV
1395 agg = qfq_slot_scan(grp);
1396 roundedS = qfq_round_down(agg->S, grp->slot_shift);
0545a303 1397 if (grp->S != roundedS) {
1398 __clear_bit(grp->index, &q->bitmaps[ER]);
1399 __clear_bit(grp->index, &q->bitmaps[IR]);
1400 __clear_bit(grp->index, &q->bitmaps[EB]);
1401 __clear_bit(grp->index, &q->bitmaps[IB]);
1402 grp->S = roundedS;
1403 grp->F = roundedS + (2ULL << grp->slot_shift);
1404 s = qfq_calc_state(q, grp);
1405 __set_bit(grp->index, &q->bitmaps[s]);
1406 }
1407 }
0545a303 1408}
1409
1410static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1411{
1412 struct qfq_sched *q = qdisc_priv(sch);
1413 struct qfq_class *cl = (struct qfq_class *)arg;
1414
95946658 1415 qfq_deactivate_class(q, cl);
0545a303 1416}
1417
e63d7dfd
AA
1418static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1419 struct netlink_ext_ack *extack)
0545a303 1420{
1421 struct qfq_sched *q = qdisc_priv(sch);
1422 struct qfq_group *grp;
1423 int i, j, err;
462dbc91 1424 u32 max_cl_shift, maxbudg_shift, max_classes;
0545a303 1425
69d78ef2 1426 err = tcf_block_get(&q->block, &q->filter_list, sch);
6529eaba
JP
1427 if (err)
1428 return err;
1429
0545a303 1430 err = qdisc_class_hash_init(&q->clhash);
1431 if (err < 0)
1432 return err;
1433
462dbc91
PV
1434 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1435 max_classes = QFQ_MAX_AGG_CLASSES;
1436 else
1437 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1438 /* max_cl_shift = floor(log_2(max_classes)) */
1439 max_cl_shift = __fls(max_classes);
1440 q->max_agg_classes = 1<<max_cl_shift;
1441
1442 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1443 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1444 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1445
0545a303 1446 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1447 grp = &q->groups[i];
1448 grp->index = i;
462dbc91 1449 grp->slot_shift = q->min_slot_shift + i;
0545a303 1450 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1451 INIT_HLIST_HEAD(&grp->slots[j]);
1452 }
1453
462dbc91
PV
1454 INIT_HLIST_HEAD(&q->nonfull_aggs);
1455
0545a303 1456 return 0;
1457}
1458
1459static void qfq_reset_qdisc(struct Qdisc *sch)
1460{
1461 struct qfq_sched *q = qdisc_priv(sch);
0545a303 1462 struct qfq_class *cl;
462dbc91 1463 unsigned int i;
0545a303 1464
462dbc91 1465 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1466 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
462dbc91 1467 if (cl->qdisc->q.qlen > 0)
0545a303 1468 qfq_deactivate_class(q, cl);
0545a303 1469
0545a303 1470 qdisc_reset(cl->qdisc);
462dbc91 1471 }
0545a303 1472 }
2ed5c3f0 1473 sch->qstats.backlog = 0;
0545a303 1474 sch->q.qlen = 0;
1475}
1476
1477static void qfq_destroy_qdisc(struct Qdisc *sch)
1478{
1479 struct qfq_sched *q = qdisc_priv(sch);
1480 struct qfq_class *cl;
b67bfe0d 1481 struct hlist_node *next;
0545a303 1482 unsigned int i;
1483
6529eaba 1484 tcf_block_put(q->block);
0545a303 1485
1486 for (i = 0; i < q->clhash.hashsize; i++) {
b67bfe0d 1487 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
0545a303 1488 common.hnode) {
1489 qfq_destroy_class(sch, cl);
1490 }
1491 }
1492 qdisc_class_hash_destroy(&q->clhash);
1493}
1494
1495static const struct Qdisc_class_ops qfq_class_ops = {
1496 .change = qfq_change_class,
1497 .delete = qfq_delete_class,
143976ce 1498 .find = qfq_search_class,
6529eaba 1499 .tcf_block = qfq_tcf_block,
0545a303 1500 .bind_tcf = qfq_bind_tcf,
1501 .unbind_tcf = qfq_unbind_tcf,
1502 .graft = qfq_graft_class,
1503 .leaf = qfq_class_leaf,
1504 .qlen_notify = qfq_qlen_notify,
1505 .dump = qfq_dump_class,
1506 .dump_stats = qfq_dump_class_stats,
1507 .walk = qfq_walk,
1508};
1509
1510static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1511 .cl_ops = &qfq_class_ops,
1512 .id = "qfq",
1513 .priv_size = sizeof(struct qfq_sched),
1514 .enqueue = qfq_enqueue,
1515 .dequeue = qfq_dequeue,
1516 .peek = qdisc_peek_dequeued,
0545a303 1517 .init = qfq_init_qdisc,
1518 .reset = qfq_reset_qdisc,
1519 .destroy = qfq_destroy_qdisc,
1520 .owner = THIS_MODULE,
1521};
1522
1523static int __init qfq_init(void)
1524{
1525 return register_qdisc(&qfq_qdisc_ops);
1526}
1527
1528static void __exit qfq_exit(void)
1529{
1530 unregister_qdisc(&qfq_qdisc_ops);
1531}
1532
1533module_init(qfq_init);
1534module_exit(qfq_exit);
1535MODULE_LICENSE("GPL");