]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/sched/sch_tbf.c
Merge tag 'staging-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_tbf.c
CommitLineData
1da177e4
LT
1/*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
12 *
13 */
14
1da177e4 15#include <linux/module.h>
1da177e4
LT
16#include <linux/types.h>
17#include <linux/kernel.h>
1da177e4 18#include <linux/string.h>
1da177e4 19#include <linux/errno.h>
1da177e4 20#include <linux/skbuff.h>
0ba48053 21#include <net/netlink.h>
b757c933 22#include <net/sch_generic.h>
1da177e4
LT
23#include <net/pkt_sched.h>
24
25
26/* Simple Token Bucket Filter.
27 =======================================
28
29 SOURCE.
30 -------
31
32 None.
33
34 Description.
35 ------------
36
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
40
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
44
45 s_i+....+s_k <= B + R*(t_k - t_i)
46
47 Algorithm.
48 ----------
49
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51
52 N(t+delta) = min{B/R, N(t) + delta}
53
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
57
58 N(t_* + 0) = N(t_* - 0) - S/R.
59
60
61
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
66
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
69
70 When TBF works in reshaping mode, latency is estimated as:
71
72 lat = max ((L-B)/R, (L-M)/P)
73
74
75 NOTES.
76 ------
77
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
84
85
86 This means, that with depth B, the maximal rate is
87
88 R_crit = B*HZ
89
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
95
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
99*/
100
cc7ec456 101struct tbf_sched_data {
1da177e4
LT
102/* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
b757c933
JP
104 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
105 s64 mtu;
1da177e4 106 u32 max_size;
b757c933
JP
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
109 bool peak_present;
1da177e4
LT
110
111/* Variables */
b757c933
JP
112 s64 tokens; /* Current number of B tokens */
113 s64 ptokens; /* Current number of P tokens */
114 s64 t_c; /* Time check-point */
1da177e4 115 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
f7f593e3 116 struct qdisc_watchdog watchdog; /* Watchdog timer */
1da177e4
LT
117};
118
e43ac79a 119
cc106e44
YY
120/* Time to Length, convert time in ns to length in bytes
121 * to determinate how many bytes can be sent in given time.
122 */
123static u64 psched_ns_t2l(const struct psched_ratecfg *r,
124 u64 time_in_ns)
125{
126 /* The formula is :
127 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
128 */
129 u64 len = time_in_ns * r->rate_bytes_ps;
130
131 do_div(len, NSEC_PER_SEC);
132
d55d282e
YY
133 if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
134 do_div(len, 53);
135 len = len * 48;
136 }
cc106e44
YY
137
138 if (len > r->overhead)
139 len -= r->overhead;
140 else
141 len = 0;
142
143 return len;
144}
145
4d0820cf
ED
146/*
147 * Return length of individual segments of a gso packet,
148 * including all headers (MAC, IP, TCP/UDP)
149 */
de960aa9 150static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4d0820cf
ED
151{
152 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
de960aa9 153 return hdr_len + skb_gso_transport_seglen(skb);
4d0820cf
ED
154}
155
e43ac79a
ED
156/* GSO packet is too big, segment it so that tbf can transmit
157 * each segment in time
158 */
159static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
160{
161 struct tbf_sched_data *q = qdisc_priv(sch);
162 struct sk_buff *segs, *nskb;
163 netdev_features_t features = netif_skb_features(skb);
164 int ret, nb;
165
166 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
167
168 if (IS_ERR_OR_NULL(segs))
169 return qdisc_reshape_fail(skb, sch);
170
171 nb = 0;
172 while (segs) {
173 nskb = segs->next;
174 segs->next = NULL;
4d0820cf
ED
175 qdisc_skb_cb(segs)->pkt_len = segs->len;
176 ret = qdisc_enqueue(segs, q->qdisc);
e43ac79a
ED
177 if (ret != NET_XMIT_SUCCESS) {
178 if (net_xmit_drop_count(ret))
179 sch->qstats.drops++;
180 } else {
181 nb++;
182 }
183 segs = nskb;
184 }
185 sch->q.qlen += nb;
186 if (nb > 1)
187 qdisc_tree_decrease_qlen(sch, 1 - nb);
188 consume_skb(skb);
189 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
190}
191
cc7ec456 192static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1da177e4
LT
193{
194 struct tbf_sched_data *q = qdisc_priv(sch);
195 int ret;
196
e43ac79a 197 if (qdisc_pkt_len(skb) > q->max_size) {
de960aa9 198 if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
e43ac79a 199 return tbf_segment(skb, sch);
69747650 200 return qdisc_reshape_fail(skb, sch);
e43ac79a 201 }
5f86173b 202 ret = qdisc_enqueue(skb, q->qdisc);
9871e50e 203 if (ret != NET_XMIT_SUCCESS) {
378a2f09
JP
204 if (net_xmit_drop_count(ret))
205 sch->qstats.drops++;
1da177e4
LT
206 return ret;
207 }
208
209 sch->q.qlen++;
9871e50e 210 return NET_XMIT_SUCCESS;
1da177e4
LT
211}
212
cc7ec456 213static unsigned int tbf_drop(struct Qdisc *sch)
1da177e4
LT
214{
215 struct tbf_sched_data *q = qdisc_priv(sch);
6d037a26 216 unsigned int len = 0;
1da177e4 217
6d037a26 218 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
1da177e4
LT
219 sch->q.qlen--;
220 sch->qstats.drops++;
221 }
222 return len;
223}
224
cc7ec456 225static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
1da177e4
LT
226{
227 struct tbf_sched_data *q = qdisc_priv(sch);
228 struct sk_buff *skb;
229
03c05f0d 230 skb = q->qdisc->ops->peek(q->qdisc);
1da177e4
LT
231
232 if (skb) {
b757c933
JP
233 s64 now;
234 s64 toks;
235 s64 ptoks = 0;
0abf77e5 236 unsigned int len = qdisc_pkt_len(skb);
1da177e4 237
b757c933
JP
238 now = ktime_to_ns(ktime_get());
239 toks = min_t(s64, now - q->t_c, q->buffer);
1da177e4 240
b757c933 241 if (q->peak_present) {
1da177e4 242 ptoks = toks + q->ptokens;
b757c933 243 if (ptoks > q->mtu)
1da177e4 244 ptoks = q->mtu;
b757c933 245 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
1da177e4
LT
246 }
247 toks += q->tokens;
b757c933 248 if (toks > q->buffer)
1da177e4 249 toks = q->buffer;
b757c933 250 toks -= (s64) psched_l2t_ns(&q->rate, len);
1da177e4
LT
251
252 if ((toks|ptoks) >= 0) {
77be155c 253 skb = qdisc_dequeue_peeked(q->qdisc);
03c05f0d
JP
254 if (unlikely(!skb))
255 return NULL;
256
1da177e4
LT
257 q->t_c = now;
258 q->tokens = toks;
259 q->ptokens = ptoks;
260 sch->q.qlen--;
fd245a4a 261 qdisc_unthrottled(sch);
9190b3b3 262 qdisc_bstats_update(sch, skb);
1da177e4
LT
263 return skb;
264 }
265
b757c933
JP
266 qdisc_watchdog_schedule_ns(&q->watchdog,
267 now + max_t(long, -toks, -ptoks));
1da177e4
LT
268
269 /* Maybe we have a shorter packet in the queue,
270 which can be sent now. It sounds cool,
271 but, however, this is wrong in principle.
272 We MUST NOT reorder packets under these circumstances.
273
274 Really, if we split the flow into independent
275 subflows, it would be a very good solution.
276 This is the main idea of all FQ algorithms
277 (cf. CSZ, HPFQ, HFSC)
278 */
279
1da177e4
LT
280 sch->qstats.overlimits++;
281 }
282 return NULL;
283}
284
cc7ec456 285static void tbf_reset(struct Qdisc *sch)
1da177e4
LT
286{
287 struct tbf_sched_data *q = qdisc_priv(sch);
288
289 qdisc_reset(q->qdisc);
290 sch->q.qlen = 0;
b757c933 291 q->t_c = ktime_to_ns(ktime_get());
1da177e4
LT
292 q->tokens = q->buffer;
293 q->ptokens = q->mtu;
f7f593e3 294 qdisc_watchdog_cancel(&q->watchdog);
1da177e4
LT
295}
296
27a3421e
PM
297static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
298 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
299 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
300 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
a33c4a26
YY
301 [TCA_TBF_RATE64] = { .type = NLA_U64 },
302 [TCA_TBF_PRATE64] = { .type = NLA_U64 },
2e04ad42
YY
303 [TCA_TBF_BURST] = { .type = NLA_U32 },
304 [TCA_TBF_PBURST] = { .type = NLA_U32 },
27a3421e
PM
305};
306
cc7ec456 307static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
1da177e4 308{
cee63723 309 int err;
1da177e4 310 struct tbf_sched_data *q = qdisc_priv(sch);
a33c4a26 311 struct nlattr *tb[TCA_TBF_MAX + 1];
1da177e4 312 struct tc_tbf_qopt *qopt;
1da177e4 313 struct Qdisc *child = NULL;
cc106e44
YY
314 struct psched_ratecfg rate;
315 struct psched_ratecfg peak;
316 u64 max_size;
317 s64 buffer, mtu;
a33c4a26 318 u64 rate64 = 0, prate64 = 0;
1da177e4 319
a33c4a26 320 err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
cee63723
PM
321 if (err < 0)
322 return err;
323
324 err = -EINVAL;
27a3421e 325 if (tb[TCA_TBF_PARMS] == NULL)
1da177e4
LT
326 goto done;
327
1e90474c 328 qopt = nla_data(tb[TCA_TBF_PARMS]);
cc106e44
YY
329 if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
330 qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
331 tb[TCA_TBF_RTAB]));
1da177e4 332
cc106e44
YY
333 if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
334 qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
335 tb[TCA_TBF_PTAB]));
4d0820cf 336
f0cd1508 337 if (q->qdisc != &noop_qdisc) {
338 err = fifo_set_limit(q->qdisc, qopt->limit);
339 if (err)
340 goto done;
341 } else if (qopt->limit > 0) {
fb0305ce
PM
342 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
343 if (IS_ERR(child)) {
344 err = PTR_ERR(child);
1da177e4 345 goto done;
fb0305ce 346 }
1da177e4
LT
347 }
348
cc106e44
YY
349 buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
350 mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
351
352 if (tb[TCA_TBF_RATE64])
353 rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
354 psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
355
2e04ad42
YY
356 if (tb[TCA_TBF_BURST]) {
357 max_size = nla_get_u32(tb[TCA_TBF_BURST]);
358 buffer = psched_l2t_ns(&rate, max_size);
359 } else {
360 max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
361 }
cc106e44
YY
362
363 if (qopt->peakrate.rate) {
364 if (tb[TCA_TBF_PRATE64])
365 prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
366 psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
367 if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
368 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
2e04ad42 369 peak.rate_bytes_ps, rate.rate_bytes_ps);
cc106e44
YY
370 err = -EINVAL;
371 goto done;
372 }
373
2e04ad42
YY
374 if (tb[TCA_TBF_PBURST]) {
375 u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
376 max_size = min_t(u32, max_size, pburst);
377 mtu = psched_l2t_ns(&peak, pburst);
378 } else {
379 max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
380 }
cc106e44
YY
381 }
382
383 if (max_size < psched_mtu(qdisc_dev(sch)))
384 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
385 max_size, qdisc_dev(sch)->name,
386 psched_mtu(qdisc_dev(sch)));
387
388 if (!max_size) {
389 err = -EINVAL;
390 goto done;
391 }
392
1da177e4 393 sch_tree_lock(sch);
5e50da01
PM
394 if (child) {
395 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
b94c8afc
PM
396 qdisc_destroy(q->qdisc);
397 q->qdisc = child;
5e50da01 398 }
1da177e4 399 q->limit = qopt->limit;
2e04ad42
YY
400 if (tb[TCA_TBF_PBURST])
401 q->mtu = mtu;
402 else
403 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
1da177e4 404 q->max_size = max_size;
2e04ad42
YY
405 if (tb[TCA_TBF_BURST])
406 q->buffer = buffer;
407 else
408 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
1da177e4
LT
409 q->tokens = q->buffer;
410 q->ptokens = q->mtu;
b94c8afc 411
cc106e44
YY
412 memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
413 if (qopt->peakrate.rate) {
414 memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
b757c933
JP
415 q->peak_present = true;
416 } else {
417 q->peak_present = false;
418 }
b94c8afc 419
1da177e4
LT
420 sch_tree_unlock(sch);
421 err = 0;
422done:
1da177e4
LT
423 return err;
424}
425
cc7ec456 426static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
1da177e4
LT
427{
428 struct tbf_sched_data *q = qdisc_priv(sch);
429
430 if (opt == NULL)
431 return -EINVAL;
432
b757c933 433 q->t_c = ktime_to_ns(ktime_get());
f7f593e3 434 qdisc_watchdog_init(&q->watchdog, sch);
1da177e4
LT
435 q->qdisc = &noop_qdisc;
436
437 return tbf_change(sch, opt);
438}
439
440static void tbf_destroy(struct Qdisc *sch)
441{
442 struct tbf_sched_data *q = qdisc_priv(sch);
443
f7f593e3 444 qdisc_watchdog_cancel(&q->watchdog);
1da177e4
LT
445 qdisc_destroy(q->qdisc);
446}
447
448static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
449{
450 struct tbf_sched_data *q = qdisc_priv(sch);
4b3550ef 451 struct nlattr *nest;
1da177e4
LT
452 struct tc_tbf_qopt opt;
453
b0460e44 454 sch->qstats.backlog = q->qdisc->qstats.backlog;
4b3550ef
PM
455 nest = nla_nest_start(skb, TCA_OPTIONS);
456 if (nest == NULL)
457 goto nla_put_failure;
1da177e4
LT
458
459 opt.limit = q->limit;
01cb71d2 460 psched_ratecfg_getrate(&opt.rate, &q->rate);
b757c933 461 if (q->peak_present)
01cb71d2 462 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
1da177e4
LT
463 else
464 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
b757c933
JP
465 opt.mtu = PSCHED_NS2TICKS(q->mtu);
466 opt.buffer = PSCHED_NS2TICKS(q->buffer);
1b34ec43
DM
467 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
468 goto nla_put_failure;
a33c4a26
YY
469 if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
470 nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps))
471 goto nla_put_failure;
472 if (q->peak_present &&
473 q->peak.rate_bytes_ps >= (1ULL << 32) &&
474 nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps))
475 goto nla_put_failure;
1da177e4 476
4b3550ef 477 nla_nest_end(skb, nest);
1da177e4
LT
478 return skb->len;
479
1e90474c 480nla_put_failure:
4b3550ef 481 nla_nest_cancel(skb, nest);
1da177e4
LT
482 return -1;
483}
484
485static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
486 struct sk_buff *skb, struct tcmsg *tcm)
487{
488 struct tbf_sched_data *q = qdisc_priv(sch);
489
1da177e4
LT
490 tcm->tcm_handle |= TC_H_MIN(1);
491 tcm->tcm_info = q->qdisc->handle;
492
493 return 0;
494}
495
496static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
497 struct Qdisc **old)
498{
499 struct tbf_sched_data *q = qdisc_priv(sch);
500
501 if (new == NULL)
502 new = &noop_qdisc;
503
504 sch_tree_lock(sch);
b94c8afc
PM
505 *old = q->qdisc;
506 q->qdisc = new;
5e50da01 507 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1da177e4 508 qdisc_reset(*old);
1da177e4
LT
509 sch_tree_unlock(sch);
510
511 return 0;
512}
513
514static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
515{
516 struct tbf_sched_data *q = qdisc_priv(sch);
517 return q->qdisc;
518}
519
520static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
521{
522 return 1;
523}
524
525static void tbf_put(struct Qdisc *sch, unsigned long arg)
526{
527}
528
1da177e4
LT
529static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
530{
531 if (!walker->stop) {
532 if (walker->count >= walker->skip)
533 if (walker->fn(sch, 1, walker) < 0) {
534 walker->stop = 1;
535 return;
536 }
537 walker->count++;
538 }
539}
540
cc7ec456 541static const struct Qdisc_class_ops tbf_class_ops = {
1da177e4
LT
542 .graft = tbf_graft,
543 .leaf = tbf_leaf,
544 .get = tbf_get,
545 .put = tbf_put,
1da177e4 546 .walk = tbf_walk,
1da177e4
LT
547 .dump = tbf_dump_class,
548};
549
20fea08b 550static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
1da177e4
LT
551 .next = NULL,
552 .cl_ops = &tbf_class_ops,
553 .id = "tbf",
554 .priv_size = sizeof(struct tbf_sched_data),
555 .enqueue = tbf_enqueue,
556 .dequeue = tbf_dequeue,
77be155c 557 .peek = qdisc_peek_dequeued,
1da177e4
LT
558 .drop = tbf_drop,
559 .init = tbf_init,
560 .reset = tbf_reset,
561 .destroy = tbf_destroy,
562 .change = tbf_change,
563 .dump = tbf_dump,
564 .owner = THIS_MODULE,
565};
566
567static int __init tbf_module_init(void)
568{
569 return register_qdisc(&tbf_qdisc_ops);
570}
571
572static void __exit tbf_module_exit(void)
573{
574 unregister_qdisc(&tbf_qdisc_ops);
575}
576module_init(tbf_module_init)
577module_exit(tbf_module_exit)
578MODULE_LICENSE("GPL");