]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/sched/sch_tbf.c
sch_tbf: fix two null pointer dereferences on init failure
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_tbf.c
CommitLineData
1da177e4
LT
1/*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
12 *
13 */
14
1da177e4 15#include <linux/module.h>
1da177e4
LT
16#include <linux/types.h>
17#include <linux/kernel.h>
1da177e4 18#include <linux/string.h>
1da177e4 19#include <linux/errno.h>
1da177e4 20#include <linux/skbuff.h>
0ba48053 21#include <net/netlink.h>
b757c933 22#include <net/sch_generic.h>
1da177e4
LT
23#include <net/pkt_sched.h>
24
25
26/* Simple Token Bucket Filter.
27 =======================================
28
29 SOURCE.
30 -------
31
32 None.
33
34 Description.
35 ------------
36
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
40
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
44
45 s_i+....+s_k <= B + R*(t_k - t_i)
46
47 Algorithm.
48 ----------
49
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51
52 N(t+delta) = min{B/R, N(t) + delta}
53
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
57
58 N(t_* + 0) = N(t_* - 0) - S/R.
59
60
61
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
66
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
69
70 When TBF works in reshaping mode, latency is estimated as:
71
72 lat = max ((L-B)/R, (L-M)/P)
73
74
75 NOTES.
76 ------
77
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
84
85
86 This means, that with depth B, the maximal rate is
87
88 R_crit = B*HZ
89
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
95
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
99*/
100
cc7ec456 101struct tbf_sched_data {
1da177e4
LT
102/* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
a135e598 104 u32 max_size;
b757c933
JP
105 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
106 s64 mtu;
b757c933
JP
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
1da177e4
LT
109
110/* Variables */
b757c933
JP
111 s64 tokens; /* Current number of B tokens */
112 s64 ptokens; /* Current number of P tokens */
113 s64 t_c; /* Time check-point */
1da177e4 114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
f7f593e3 115 struct qdisc_watchdog watchdog; /* Watchdog timer */
1da177e4
LT
116};
117
e43ac79a 118
cc106e44
YY
119/* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
121 */
122static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123 u64 time_in_ns)
124{
125 /* The formula is :
126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127 */
128 u64 len = time_in_ns * r->rate_bytes_ps;
129
130 do_div(len, NSEC_PER_SEC);
131
d55d282e
YY
132 if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133 do_div(len, 53);
134 len = len * 48;
135 }
cc106e44
YY
136
137 if (len > r->overhead)
138 len -= r->overhead;
139 else
140 len = 0;
141
142 return len;
143}
144
4d0820cf
ED
145/*
146 * Return length of individual segments of a gso packet,
147 * including all headers (MAC, IP, TCP/UDP)
148 */
de960aa9 149static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4d0820cf
ED
150{
151 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
de960aa9 152 return hdr_len + skb_gso_transport_seglen(skb);
4d0820cf
ED
153}
154
e43ac79a
ED
155/* GSO packet is too big, segment it so that tbf can transmit
156 * each segment in time
157 */
520ac30f
ED
158static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
159 struct sk_buff **to_free)
e43ac79a
ED
160{
161 struct tbf_sched_data *q = qdisc_priv(sch);
162 struct sk_buff *segs, *nskb;
163 netdev_features_t features = netif_skb_features(skb);
2ccccf5f 164 unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
e43ac79a
ED
165 int ret, nb;
166
167 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
168
169 if (IS_ERR_OR_NULL(segs))
520ac30f 170 return qdisc_drop(skb, sch, to_free);
e43ac79a
ED
171
172 nb = 0;
173 while (segs) {
174 nskb = segs->next;
175 segs->next = NULL;
4d0820cf 176 qdisc_skb_cb(segs)->pkt_len = segs->len;
2ccccf5f 177 len += segs->len;
520ac30f 178 ret = qdisc_enqueue(segs, q->qdisc, to_free);
e43ac79a
ED
179 if (ret != NET_XMIT_SUCCESS) {
180 if (net_xmit_drop_count(ret))
25331d6c 181 qdisc_qstats_drop(sch);
e43ac79a
ED
182 } else {
183 nb++;
184 }
185 segs = nskb;
186 }
187 sch->q.qlen += nb;
188 if (nb > 1)
2ccccf5f 189 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
e43ac79a
ED
190 consume_skb(skb);
191 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
192}
193
520ac30f
ED
194static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
195 struct sk_buff **to_free)
1da177e4
LT
196{
197 struct tbf_sched_data *q = qdisc_priv(sch);
198 int ret;
199
e43ac79a 200 if (qdisc_pkt_len(skb) > q->max_size) {
de960aa9 201 if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
520ac30f
ED
202 return tbf_segment(skb, sch, to_free);
203 return qdisc_drop(skb, sch, to_free);
e43ac79a 204 }
520ac30f 205 ret = qdisc_enqueue(skb, q->qdisc, to_free);
9871e50e 206 if (ret != NET_XMIT_SUCCESS) {
378a2f09 207 if (net_xmit_drop_count(ret))
25331d6c 208 qdisc_qstats_drop(sch);
1da177e4
LT
209 return ret;
210 }
211
8d5958f4 212 qdisc_qstats_backlog_inc(sch, skb);
1da177e4 213 sch->q.qlen++;
9871e50e 214 return NET_XMIT_SUCCESS;
1da177e4
LT
215}
216
a135e598
HS
217static bool tbf_peak_present(const struct tbf_sched_data *q)
218{
219 return q->peak.rate_bytes_ps;
220}
221
cc7ec456 222static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
1da177e4
LT
223{
224 struct tbf_sched_data *q = qdisc_priv(sch);
225 struct sk_buff *skb;
226
03c05f0d 227 skb = q->qdisc->ops->peek(q->qdisc);
1da177e4
LT
228
229 if (skb) {
b757c933
JP
230 s64 now;
231 s64 toks;
232 s64 ptoks = 0;
0abf77e5 233 unsigned int len = qdisc_pkt_len(skb);
1da177e4 234
d2de875c 235 now = ktime_get_ns();
b757c933 236 toks = min_t(s64, now - q->t_c, q->buffer);
1da177e4 237
a135e598 238 if (tbf_peak_present(q)) {
1da177e4 239 ptoks = toks + q->ptokens;
b757c933 240 if (ptoks > q->mtu)
1da177e4 241 ptoks = q->mtu;
b757c933 242 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
1da177e4
LT
243 }
244 toks += q->tokens;
b757c933 245 if (toks > q->buffer)
1da177e4 246 toks = q->buffer;
b757c933 247 toks -= (s64) psched_l2t_ns(&q->rate, len);
1da177e4
LT
248
249 if ((toks|ptoks) >= 0) {
77be155c 250 skb = qdisc_dequeue_peeked(q->qdisc);
03c05f0d
JP
251 if (unlikely(!skb))
252 return NULL;
253
1da177e4
LT
254 q->t_c = now;
255 q->tokens = toks;
256 q->ptokens = ptoks;
8d5958f4 257 qdisc_qstats_backlog_dec(sch, skb);
1da177e4 258 sch->q.qlen--;
9190b3b3 259 qdisc_bstats_update(sch, skb);
1da177e4
LT
260 return skb;
261 }
262
b757c933 263 qdisc_watchdog_schedule_ns(&q->watchdog,
45f50bed 264 now + max_t(long, -toks, -ptoks));
1da177e4
LT
265
266 /* Maybe we have a shorter packet in the queue,
267 which can be sent now. It sounds cool,
268 but, however, this is wrong in principle.
269 We MUST NOT reorder packets under these circumstances.
270
271 Really, if we split the flow into independent
272 subflows, it would be a very good solution.
273 This is the main idea of all FQ algorithms
274 (cf. CSZ, HPFQ, HFSC)
275 */
276
25331d6c 277 qdisc_qstats_overlimit(sch);
1da177e4
LT
278 }
279 return NULL;
280}
281
cc7ec456 282static void tbf_reset(struct Qdisc *sch)
1da177e4
LT
283{
284 struct tbf_sched_data *q = qdisc_priv(sch);
285
286 qdisc_reset(q->qdisc);
8d5958f4 287 sch->qstats.backlog = 0;
1da177e4 288 sch->q.qlen = 0;
d2de875c 289 q->t_c = ktime_get_ns();
1da177e4
LT
290 q->tokens = q->buffer;
291 q->ptokens = q->mtu;
f7f593e3 292 qdisc_watchdog_cancel(&q->watchdog);
1da177e4
LT
293}
294
27a3421e
PM
295static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
296 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
297 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
298 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
a33c4a26
YY
299 [TCA_TBF_RATE64] = { .type = NLA_U64 },
300 [TCA_TBF_PRATE64] = { .type = NLA_U64 },
2e04ad42
YY
301 [TCA_TBF_BURST] = { .type = NLA_U32 },
302 [TCA_TBF_PBURST] = { .type = NLA_U32 },
27a3421e
PM
303};
304
cc7ec456 305static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
1da177e4 306{
cee63723 307 int err;
1da177e4 308 struct tbf_sched_data *q = qdisc_priv(sch);
a33c4a26 309 struct nlattr *tb[TCA_TBF_MAX + 1];
1da177e4 310 struct tc_tbf_qopt *qopt;
1da177e4 311 struct Qdisc *child = NULL;
cc106e44
YY
312 struct psched_ratecfg rate;
313 struct psched_ratecfg peak;
314 u64 max_size;
315 s64 buffer, mtu;
a33c4a26 316 u64 rate64 = 0, prate64 = 0;
1da177e4 317
fceb6435 318 err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy, NULL);
cee63723
PM
319 if (err < 0)
320 return err;
321
322 err = -EINVAL;
27a3421e 323 if (tb[TCA_TBF_PARMS] == NULL)
1da177e4
LT
324 goto done;
325
1e90474c 326 qopt = nla_data(tb[TCA_TBF_PARMS]);
cc106e44
YY
327 if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
328 qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
329 tb[TCA_TBF_RTAB]));
1da177e4 330
cc106e44
YY
331 if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
332 qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
333 tb[TCA_TBF_PTAB]));
4d0820cf 334
cc106e44
YY
335 buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
336 mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
337
338 if (tb[TCA_TBF_RATE64])
339 rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
340 psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
341
2e04ad42
YY
342 if (tb[TCA_TBF_BURST]) {
343 max_size = nla_get_u32(tb[TCA_TBF_BURST]);
344 buffer = psched_l2t_ns(&rate, max_size);
345 } else {
346 max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
347 }
cc106e44
YY
348
349 if (qopt->peakrate.rate) {
350 if (tb[TCA_TBF_PRATE64])
351 prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
352 psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
353 if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
354 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
2e04ad42 355 peak.rate_bytes_ps, rate.rate_bytes_ps);
cc106e44
YY
356 err = -EINVAL;
357 goto done;
358 }
359
2e04ad42
YY
360 if (tb[TCA_TBF_PBURST]) {
361 u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
362 max_size = min_t(u32, max_size, pburst);
363 mtu = psched_l2t_ns(&peak, pburst);
364 } else {
365 max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
366 }
a135e598
HS
367 } else {
368 memset(&peak, 0, sizeof(peak));
cc106e44
YY
369 }
370
371 if (max_size < psched_mtu(qdisc_dev(sch)))
372 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
373 max_size, qdisc_dev(sch)->name,
374 psched_mtu(qdisc_dev(sch)));
375
376 if (!max_size) {
377 err = -EINVAL;
378 goto done;
379 }
380
724b9e1d
HS
381 if (q->qdisc != &noop_qdisc) {
382 err = fifo_set_limit(q->qdisc, qopt->limit);
383 if (err)
384 goto done;
385 } else if (qopt->limit > 0) {
386 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
387 if (IS_ERR(child)) {
388 err = PTR_ERR(child);
389 goto done;
390 }
391 }
392
1da177e4 393 sch_tree_lock(sch);
5e50da01 394 if (child) {
2ccccf5f
WC
395 qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
396 q->qdisc->qstats.backlog);
b94c8afc
PM
397 qdisc_destroy(q->qdisc);
398 q->qdisc = child;
e33cc316 399 if (child != &noop_qdisc)
49b49971 400 qdisc_hash_add(child, true);
5e50da01 401 }
1da177e4 402 q->limit = qopt->limit;
2e04ad42
YY
403 if (tb[TCA_TBF_PBURST])
404 q->mtu = mtu;
405 else
406 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
1da177e4 407 q->max_size = max_size;
2e04ad42
YY
408 if (tb[TCA_TBF_BURST])
409 q->buffer = buffer;
410 else
411 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
1da177e4
LT
412 q->tokens = q->buffer;
413 q->ptokens = q->mtu;
b94c8afc 414
cc106e44 415 memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
a135e598 416 memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
b94c8afc 417
1da177e4
LT
418 sch_tree_unlock(sch);
419 err = 0;
420done:
1da177e4
LT
421 return err;
422}
423
cc7ec456 424static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
1da177e4
LT
425{
426 struct tbf_sched_data *q = qdisc_priv(sch);
427
c2d6511e
NA
428 qdisc_watchdog_init(&q->watchdog, sch);
429 q->qdisc = &noop_qdisc;
430
1da177e4
LT
431 if (opt == NULL)
432 return -EINVAL;
433
d2de875c 434 q->t_c = ktime_get_ns();
1da177e4
LT
435
436 return tbf_change(sch, opt);
437}
438
439static void tbf_destroy(struct Qdisc *sch)
440{
441 struct tbf_sched_data *q = qdisc_priv(sch);
442
f7f593e3 443 qdisc_watchdog_cancel(&q->watchdog);
1da177e4
LT
444 qdisc_destroy(q->qdisc);
445}
446
447static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
448{
449 struct tbf_sched_data *q = qdisc_priv(sch);
4b3550ef 450 struct nlattr *nest;
1da177e4
LT
451 struct tc_tbf_qopt opt;
452
b0460e44 453 sch->qstats.backlog = q->qdisc->qstats.backlog;
4b3550ef
PM
454 nest = nla_nest_start(skb, TCA_OPTIONS);
455 if (nest == NULL)
456 goto nla_put_failure;
1da177e4
LT
457
458 opt.limit = q->limit;
01cb71d2 459 psched_ratecfg_getrate(&opt.rate, &q->rate);
a135e598 460 if (tbf_peak_present(q))
01cb71d2 461 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
1da177e4
LT
462 else
463 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
b757c933
JP
464 opt.mtu = PSCHED_NS2TICKS(q->mtu);
465 opt.buffer = PSCHED_NS2TICKS(q->buffer);
1b34ec43
DM
466 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
467 goto nla_put_failure;
a33c4a26 468 if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
2a51c1e8
ND
469 nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
470 TCA_TBF_PAD))
a33c4a26 471 goto nla_put_failure;
a135e598 472 if (tbf_peak_present(q) &&
a33c4a26 473 q->peak.rate_bytes_ps >= (1ULL << 32) &&
2a51c1e8
ND
474 nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
475 TCA_TBF_PAD))
a33c4a26 476 goto nla_put_failure;
1da177e4 477
d59b7d80 478 return nla_nest_end(skb, nest);
1da177e4 479
1e90474c 480nla_put_failure:
4b3550ef 481 nla_nest_cancel(skb, nest);
1da177e4
LT
482 return -1;
483}
484
485static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
486 struct sk_buff *skb, struct tcmsg *tcm)
487{
488 struct tbf_sched_data *q = qdisc_priv(sch);
489
1da177e4
LT
490 tcm->tcm_handle |= TC_H_MIN(1);
491 tcm->tcm_info = q->qdisc->handle;
492
493 return 0;
494}
495
496static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
497 struct Qdisc **old)
498{
499 struct tbf_sched_data *q = qdisc_priv(sch);
500
501 if (new == NULL)
502 new = &noop_qdisc;
503
86a7996c 504 *old = qdisc_replace(sch, new, &q->qdisc);
1da177e4
LT
505 return 0;
506}
507
508static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
509{
510 struct tbf_sched_data *q = qdisc_priv(sch);
511 return q->qdisc;
512}
513
514static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
515{
516 return 1;
517}
518
519static void tbf_put(struct Qdisc *sch, unsigned long arg)
520{
521}
522
1da177e4
LT
523static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
524{
525 if (!walker->stop) {
526 if (walker->count >= walker->skip)
527 if (walker->fn(sch, 1, walker) < 0) {
528 walker->stop = 1;
529 return;
530 }
531 walker->count++;
532 }
533}
534
cc7ec456 535static const struct Qdisc_class_ops tbf_class_ops = {
1da177e4
LT
536 .graft = tbf_graft,
537 .leaf = tbf_leaf,
538 .get = tbf_get,
539 .put = tbf_put,
1da177e4 540 .walk = tbf_walk,
1da177e4
LT
541 .dump = tbf_dump_class,
542};
543
20fea08b 544static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
1da177e4
LT
545 .next = NULL,
546 .cl_ops = &tbf_class_ops,
547 .id = "tbf",
548 .priv_size = sizeof(struct tbf_sched_data),
549 .enqueue = tbf_enqueue,
550 .dequeue = tbf_dequeue,
77be155c 551 .peek = qdisc_peek_dequeued,
1da177e4
LT
552 .init = tbf_init,
553 .reset = tbf_reset,
554 .destroy = tbf_destroy,
555 .change = tbf_change,
556 .dump = tbf_dump,
557 .owner = THIS_MODULE,
558};
559
560static int __init tbf_module_init(void)
561{
562 return register_qdisc(&tbf_qdisc_ops);
563}
564
565static void __exit tbf_module_exit(void)
566{
567 unregister_qdisc(&tbf_qdisc_ops);
568}
569module_init(tbf_module_init)
570module_exit(tbf_module_exit)
571MODULE_LICENSE("GPL");