]>
Commit | Line | Data |
---|---|---|
60c778b2 | 1 | /* SCTP kernel implementation |
1f485649 VY |
2 | * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. |
3 | * | |
60c778b2 | 4 | * This file is part of the SCTP kernel implementation |
1f485649 | 5 | * |
60c778b2 | 6 | * This SCTP implementation is free software; |
1f485649 VY |
7 | * you can redistribute it and/or modify it under the terms of |
8 | * the GNU General Public License as published by | |
9 | * the Free Software Foundation; either version 2, or (at your option) | |
10 | * any later version. | |
11 | * | |
60c778b2 | 12 | * This SCTP implementation is distributed in the hope that it |
1f485649 VY |
13 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
14 | * ************************ | |
15 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | |
16 | * See the GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
4b2f13a2 JK |
19 | * along with GNU CC; see the file COPYING. If not, see |
20 | * <http://www.gnu.org/licenses/>. | |
1f485649 VY |
21 | * |
22 | * Please send any bug reports or fixes you make to the | |
23 | * email address(es): | |
91705c61 | 24 | * lksctp developers <linux-sctp@vger.kernel.org> |
1f485649 | 25 | * |
1f485649 VY |
26 | * Written or modified by: |
27 | * Vlad Yasevich <vladislav.yasevich@hp.com> | |
1f485649 VY |
28 | */ |
29 | ||
5821c769 | 30 | #include <crypto/hash.h> |
5a0e3ad6 | 31 | #include <linux/slab.h> |
1f485649 | 32 | #include <linux/types.h> |
1f485649 VY |
33 | #include <linux/scatterlist.h> |
34 | #include <net/sctp/sctp.h> | |
35 | #include <net/sctp/auth.h> | |
36 | ||
37 | static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { | |
38 | { | |
39 | /* id 0 is reserved. as all 0 */ | |
40 | .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, | |
41 | }, | |
42 | { | |
43 | .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, | |
cb3f837b | 44 | .hmac_name = "hmac(sha1)", |
1f485649 VY |
45 | .hmac_len = SCTP_SHA1_SIG_SIZE, |
46 | }, | |
47 | { | |
48 | /* id 2 is reserved as well */ | |
49 | .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, | |
50 | }, | |
aebf5de0 | 51 | #if IS_ENABLED(CONFIG_CRYPTO_SHA256) |
1f485649 VY |
52 | { |
53 | .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, | |
cb3f837b | 54 | .hmac_name = "hmac(sha256)", |
1f485649 VY |
55 | .hmac_len = SCTP_SHA256_SIG_SIZE, |
56 | } | |
b7e0fe9f | 57 | #endif |
1f485649 VY |
58 | }; |
59 | ||
60 | ||
61 | void sctp_auth_key_put(struct sctp_auth_bytes *key) | |
62 | { | |
63 | if (!key) | |
64 | return; | |
65 | ||
66 | if (atomic_dec_and_test(&key->refcnt)) { | |
586c31f3 | 67 | kzfree(key); |
1f485649 VY |
68 | SCTP_DBG_OBJCNT_DEC(keys); |
69 | } | |
70 | } | |
71 | ||
72 | /* Create a new key structure of a given length */ | |
73 | static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) | |
74 | { | |
75 | struct sctp_auth_bytes *key; | |
76 | ||
30c2235c | 77 | /* Verify that we are not going to overflow INT_MAX */ |
c89304b8 | 78 | if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) |
30c2235c VY |
79 | return NULL; |
80 | ||
1f485649 VY |
81 | /* Allocate the shared key */ |
82 | key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); | |
83 | if (!key) | |
84 | return NULL; | |
85 | ||
86 | key->len = key_len; | |
87 | atomic_set(&key->refcnt, 1); | |
88 | SCTP_DBG_OBJCNT_INC(keys); | |
89 | ||
90 | return key; | |
91 | } | |
92 | ||
93 | /* Create a new shared key container with a give key id */ | |
94 | struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) | |
95 | { | |
96 | struct sctp_shared_key *new; | |
97 | ||
98 | /* Allocate the shared key container */ | |
99 | new = kzalloc(sizeof(struct sctp_shared_key), gfp); | |
100 | if (!new) | |
101 | return NULL; | |
102 | ||
103 | INIT_LIST_HEAD(&new->key_list); | |
104 | new->key_id = key_id; | |
105 | ||
106 | return new; | |
107 | } | |
108 | ||
25985edc | 109 | /* Free the shared key structure */ |
8ad7c62b | 110 | static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) |
1f485649 VY |
111 | { |
112 | BUG_ON(!list_empty(&sh_key->key_list)); | |
113 | sctp_auth_key_put(sh_key->key); | |
114 | sh_key->key = NULL; | |
115 | kfree(sh_key); | |
116 | } | |
117 | ||
25985edc | 118 | /* Destroy the entire key list. This is done during the |
1f485649 VY |
119 | * associon and endpoint free process. |
120 | */ | |
121 | void sctp_auth_destroy_keys(struct list_head *keys) | |
122 | { | |
123 | struct sctp_shared_key *ep_key; | |
124 | struct sctp_shared_key *tmp; | |
125 | ||
126 | if (list_empty(keys)) | |
127 | return; | |
128 | ||
129 | key_for_each_safe(ep_key, tmp, keys) { | |
130 | list_del_init(&ep_key->key_list); | |
131 | sctp_auth_shkey_free(ep_key); | |
132 | } | |
133 | } | |
134 | ||
135 | /* Compare two byte vectors as numbers. Return values | |
136 | * are: | |
137 | * 0 - vectors are equal | |
025dfdaf FS |
138 | * < 0 - vector 1 is smaller than vector2 |
139 | * > 0 - vector 1 is greater than vector2 | |
1f485649 VY |
140 | * |
141 | * Algorithm is: | |
142 | * This is performed by selecting the numerically smaller key vector... | |
143 | * If the key vectors are equal as numbers but differ in length ... | |
144 | * the shorter vector is considered smaller | |
145 | * | |
146 | * Examples (with small values): | |
147 | * 000123456789 > 123456789 (first number is longer) | |
148 | * 000123456789 < 234567891 (second number is larger numerically) | |
149 | * 123456789 > 2345678 (first number is both larger & longer) | |
150 | */ | |
151 | static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, | |
152 | struct sctp_auth_bytes *vector2) | |
153 | { | |
154 | int diff; | |
155 | int i; | |
156 | const __u8 *longer; | |
157 | ||
158 | diff = vector1->len - vector2->len; | |
159 | if (diff) { | |
160 | longer = (diff > 0) ? vector1->data : vector2->data; | |
161 | ||
162 | /* Check to see if the longer number is | |
163 | * lead-zero padded. If it is not, it | |
164 | * is automatically larger numerically. | |
165 | */ | |
cb3f837b | 166 | for (i = 0; i < abs(diff); i++) { |
1f485649 VY |
167 | if (longer[i] != 0) |
168 | return diff; | |
169 | } | |
170 | } | |
171 | ||
172 | /* lengths are the same, compare numbers */ | |
173 | return memcmp(vector1->data, vector2->data, vector1->len); | |
174 | } | |
175 | ||
176 | /* | |
177 | * Create a key vector as described in SCTP-AUTH, Section 6.1 | |
178 | * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO | |
179 | * parameter sent by each endpoint are concatenated as byte vectors. | |
180 | * These parameters include the parameter type, parameter length, and | |
181 | * the parameter value, but padding is omitted; all padding MUST be | |
182 | * removed from this concatenation before proceeding with further | |
183 | * computation of keys. Parameters which were not sent are simply | |
184 | * omitted from the concatenation process. The resulting two vectors | |
185 | * are called the two key vectors. | |
186 | */ | |
187 | static struct sctp_auth_bytes *sctp_auth_make_key_vector( | |
188 | sctp_random_param_t *random, | |
189 | sctp_chunks_param_t *chunks, | |
190 | sctp_hmac_algo_param_t *hmacs, | |
191 | gfp_t gfp) | |
192 | { | |
193 | struct sctp_auth_bytes *new; | |
194 | __u32 len; | |
195 | __u32 offset = 0; | |
241448c2 | 196 | __u16 random_len, hmacs_len, chunks_len = 0; |
1f485649 | 197 | |
241448c2 DB |
198 | random_len = ntohs(random->param_hdr.length); |
199 | hmacs_len = ntohs(hmacs->param_hdr.length); | |
200 | if (chunks) | |
201 | chunks_len = ntohs(chunks->param_hdr.length); | |
202 | ||
203 | len = random_len + hmacs_len + chunks_len; | |
1f485649 | 204 | |
03536e23 | 205 | new = sctp_auth_create_key(len, gfp); |
1f485649 VY |
206 | if (!new) |
207 | return NULL; | |
208 | ||
241448c2 DB |
209 | memcpy(new->data, random, random_len); |
210 | offset += random_len; | |
1f485649 VY |
211 | |
212 | if (chunks) { | |
241448c2 DB |
213 | memcpy(new->data + offset, chunks, chunks_len); |
214 | offset += chunks_len; | |
1f485649 VY |
215 | } |
216 | ||
241448c2 | 217 | memcpy(new->data + offset, hmacs, hmacs_len); |
1f485649 VY |
218 | |
219 | return new; | |
220 | } | |
221 | ||
222 | ||
223 | /* Make a key vector based on our local parameters */ | |
8ad7c62b | 224 | static struct sctp_auth_bytes *sctp_auth_make_local_vector( |
1f485649 VY |
225 | const struct sctp_association *asoc, |
226 | gfp_t gfp) | |
227 | { | |
228 | return sctp_auth_make_key_vector( | |
26ac8e5f | 229 | (sctp_random_param_t *)asoc->c.auth_random, |
230 | (sctp_chunks_param_t *)asoc->c.auth_chunks, | |
231 | (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs, | |
1f485649 VY |
232 | gfp); |
233 | } | |
234 | ||
235 | /* Make a key vector based on peer's parameters */ | |
8ad7c62b | 236 | static struct sctp_auth_bytes *sctp_auth_make_peer_vector( |
1f485649 VY |
237 | const struct sctp_association *asoc, |
238 | gfp_t gfp) | |
239 | { | |
240 | return sctp_auth_make_key_vector(asoc->peer.peer_random, | |
241 | asoc->peer.peer_chunks, | |
242 | asoc->peer.peer_hmacs, | |
243 | gfp); | |
244 | } | |
245 | ||
246 | ||
247 | /* Set the value of the association shared key base on the parameters | |
248 | * given. The algorithm is: | |
249 | * From the endpoint pair shared keys and the key vectors the | |
250 | * association shared keys are computed. This is performed by selecting | |
251 | * the numerically smaller key vector and concatenating it to the | |
252 | * endpoint pair shared key, and then concatenating the numerically | |
253 | * larger key vector to that. The result of the concatenation is the | |
254 | * association shared key. | |
255 | */ | |
256 | static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( | |
257 | struct sctp_shared_key *ep_key, | |
258 | struct sctp_auth_bytes *first_vector, | |
259 | struct sctp_auth_bytes *last_vector, | |
260 | gfp_t gfp) | |
261 | { | |
262 | struct sctp_auth_bytes *secret; | |
263 | __u32 offset = 0; | |
264 | __u32 auth_len; | |
265 | ||
266 | auth_len = first_vector->len + last_vector->len; | |
267 | if (ep_key->key) | |
268 | auth_len += ep_key->key->len; | |
269 | ||
270 | secret = sctp_auth_create_key(auth_len, gfp); | |
271 | if (!secret) | |
272 | return NULL; | |
273 | ||
274 | if (ep_key->key) { | |
275 | memcpy(secret->data, ep_key->key->data, ep_key->key->len); | |
276 | offset += ep_key->key->len; | |
277 | } | |
278 | ||
279 | memcpy(secret->data + offset, first_vector->data, first_vector->len); | |
280 | offset += first_vector->len; | |
281 | ||
282 | memcpy(secret->data + offset, last_vector->data, last_vector->len); | |
283 | ||
284 | return secret; | |
285 | } | |
286 | ||
287 | /* Create an association shared key. Follow the algorithm | |
288 | * described in SCTP-AUTH, Section 6.1 | |
289 | */ | |
290 | static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( | |
291 | const struct sctp_association *asoc, | |
292 | struct sctp_shared_key *ep_key, | |
293 | gfp_t gfp) | |
294 | { | |
295 | struct sctp_auth_bytes *local_key_vector; | |
296 | struct sctp_auth_bytes *peer_key_vector; | |
297 | struct sctp_auth_bytes *first_vector, | |
298 | *last_vector; | |
299 | struct sctp_auth_bytes *secret = NULL; | |
300 | int cmp; | |
301 | ||
302 | ||
303 | /* Now we need to build the key vectors | |
304 | * SCTP-AUTH , Section 6.1 | |
305 | * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO | |
306 | * parameter sent by each endpoint are concatenated as byte vectors. | |
307 | * These parameters include the parameter type, parameter length, and | |
308 | * the parameter value, but padding is omitted; all padding MUST be | |
309 | * removed from this concatenation before proceeding with further | |
310 | * computation of keys. Parameters which were not sent are simply | |
311 | * omitted from the concatenation process. The resulting two vectors | |
312 | * are called the two key vectors. | |
313 | */ | |
314 | ||
315 | local_key_vector = sctp_auth_make_local_vector(asoc, gfp); | |
316 | peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); | |
317 | ||
318 | if (!peer_key_vector || !local_key_vector) | |
319 | goto out; | |
320 | ||
25985edc | 321 | /* Figure out the order in which the key_vectors will be |
1f485649 VY |
322 | * added to the endpoint shared key. |
323 | * SCTP-AUTH, Section 6.1: | |
324 | * This is performed by selecting the numerically smaller key | |
325 | * vector and concatenating it to the endpoint pair shared | |
326 | * key, and then concatenating the numerically larger key | |
327 | * vector to that. If the key vectors are equal as numbers | |
328 | * but differ in length, then the concatenation order is the | |
329 | * endpoint shared key, followed by the shorter key vector, | |
330 | * followed by the longer key vector. Otherwise, the key | |
331 | * vectors are identical, and may be concatenated to the | |
332 | * endpoint pair key in any order. | |
333 | */ | |
334 | cmp = sctp_auth_compare_vectors(local_key_vector, | |
335 | peer_key_vector); | |
336 | if (cmp < 0) { | |
337 | first_vector = local_key_vector; | |
338 | last_vector = peer_key_vector; | |
339 | } else { | |
340 | first_vector = peer_key_vector; | |
341 | last_vector = local_key_vector; | |
342 | } | |
343 | ||
344 | secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, | |
345 | gfp); | |
346 | out: | |
03536e23 DB |
347 | sctp_auth_key_put(local_key_vector); |
348 | sctp_auth_key_put(peer_key_vector); | |
1f485649 VY |
349 | |
350 | return secret; | |
351 | } | |
352 | ||
353 | /* | |
354 | * Populate the association overlay list with the list | |
355 | * from the endpoint. | |
356 | */ | |
357 | int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, | |
358 | struct sctp_association *asoc, | |
359 | gfp_t gfp) | |
360 | { | |
361 | struct sctp_shared_key *sh_key; | |
362 | struct sctp_shared_key *new; | |
363 | ||
364 | BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); | |
365 | ||
366 | key_for_each(sh_key, &ep->endpoint_shared_keys) { | |
367 | new = sctp_auth_shkey_create(sh_key->key_id, gfp); | |
368 | if (!new) | |
369 | goto nomem; | |
370 | ||
371 | new->key = sh_key->key; | |
372 | sctp_auth_key_hold(new->key); | |
373 | list_add(&new->key_list, &asoc->endpoint_shared_keys); | |
374 | } | |
375 | ||
376 | return 0; | |
377 | ||
378 | nomem: | |
379 | sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); | |
380 | return -ENOMEM; | |
381 | } | |
382 | ||
383 | ||
ae36806a | 384 | /* Public interface to create the association shared key. |
1f485649 VY |
385 | * See code above for the algorithm. |
386 | */ | |
387 | int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) | |
388 | { | |
389 | struct sctp_auth_bytes *secret; | |
390 | struct sctp_shared_key *ep_key; | |
ae36806a | 391 | struct sctp_chunk *chunk; |
1f485649 VY |
392 | |
393 | /* If we don't support AUTH, or peer is not capable | |
394 | * we don't need to do anything. | |
395 | */ | |
b14878cc | 396 | if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) |
1f485649 VY |
397 | return 0; |
398 | ||
399 | /* If the key_id is non-zero and we couldn't find an | |
400 | * endpoint pair shared key, we can't compute the | |
401 | * secret. | |
402 | * For key_id 0, endpoint pair shared key is a NULL key. | |
403 | */ | |
404 | ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); | |
405 | BUG_ON(!ep_key); | |
406 | ||
407 | secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); | |
408 | if (!secret) | |
409 | return -ENOMEM; | |
410 | ||
411 | sctp_auth_key_put(asoc->asoc_shared_key); | |
412 | asoc->asoc_shared_key = secret; | |
413 | ||
ae36806a MRL |
414 | /* Update send queue in case any chunk already in there now |
415 | * needs authenticating | |
416 | */ | |
417 | list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) { | |
418 | if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) | |
419 | chunk->auth = 1; | |
420 | } | |
421 | ||
1f485649 VY |
422 | return 0; |
423 | } | |
424 | ||
425 | ||
426 | /* Find the endpoint pair shared key based on the key_id */ | |
427 | struct sctp_shared_key *sctp_auth_get_shkey( | |
428 | const struct sctp_association *asoc, | |
429 | __u16 key_id) | |
430 | { | |
7cc08b55 | 431 | struct sctp_shared_key *key; |
1f485649 VY |
432 | |
433 | /* First search associations set of endpoint pair shared keys */ | |
434 | key_for_each(key, &asoc->endpoint_shared_keys) { | |
435 | if (key->key_id == key_id) | |
7cc08b55 | 436 | return key; |
1f485649 VY |
437 | } |
438 | ||
7cc08b55 | 439 | return NULL; |
1f485649 VY |
440 | } |
441 | ||
442 | /* | |
443 | * Initialize all the possible digest transforms that we can use. Right now | |
444 | * now, the supported digests are SHA1 and SHA256. We do this here once | |
445 | * because of the restrictiong that transforms may only be allocated in | |
446 | * user context. This forces us to pre-allocated all possible transforms | |
447 | * at the endpoint init time. | |
448 | */ | |
449 | int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) | |
450 | { | |
5821c769 | 451 | struct crypto_shash *tfm = NULL; |
1f485649 VY |
452 | __u16 id; |
453 | ||
b14878cc VY |
454 | /* If AUTH extension is disabled, we are done */ |
455 | if (!ep->auth_enable) { | |
1f485649 VY |
456 | ep->auth_hmacs = NULL; |
457 | return 0; | |
458 | } | |
459 | ||
b14878cc | 460 | /* If the transforms are already allocated, we are done */ |
1f485649 VY |
461 | if (ep->auth_hmacs) |
462 | return 0; | |
463 | ||
464 | /* Allocated the array of pointers to transorms */ | |
5821c769 HX |
465 | ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) * |
466 | SCTP_AUTH_NUM_HMACS, gfp); | |
1f485649 VY |
467 | if (!ep->auth_hmacs) |
468 | return -ENOMEM; | |
469 | ||
470 | for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { | |
471 | ||
472 | /* See is we support the id. Supported IDs have name and | |
473 | * length fields set, so that we can allocated and use | |
474 | * them. We can safely just check for name, for without the | |
475 | * name, we can't allocate the TFM. | |
476 | */ | |
477 | if (!sctp_hmac_list[id].hmac_name) | |
478 | continue; | |
479 | ||
480 | /* If this TFM has been allocated, we are all set */ | |
481 | if (ep->auth_hmacs[id]) | |
482 | continue; | |
483 | ||
484 | /* Allocate the ID */ | |
5821c769 | 485 | tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0); |
1f485649 VY |
486 | if (IS_ERR(tfm)) |
487 | goto out_err; | |
488 | ||
489 | ep->auth_hmacs[id] = tfm; | |
490 | } | |
491 | ||
492 | return 0; | |
493 | ||
494 | out_err: | |
73ac36ea | 495 | /* Clean up any successful allocations */ |
1f485649 VY |
496 | sctp_auth_destroy_hmacs(ep->auth_hmacs); |
497 | return -ENOMEM; | |
498 | } | |
499 | ||
500 | /* Destroy the hmac tfm array */ | |
5821c769 | 501 | void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]) |
1f485649 VY |
502 | { |
503 | int i; | |
504 | ||
505 | if (!auth_hmacs) | |
506 | return; | |
507 | ||
8d72651d | 508 | for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) { |
5821c769 | 509 | crypto_free_shash(auth_hmacs[i]); |
1f485649 VY |
510 | } |
511 | kfree(auth_hmacs); | |
512 | } | |
513 | ||
514 | ||
515 | struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) | |
516 | { | |
517 | return &sctp_hmac_list[hmac_id]; | |
518 | } | |
519 | ||
520 | /* Get an hmac description information that we can use to build | |
521 | * the AUTH chunk | |
522 | */ | |
523 | struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) | |
524 | { | |
525 | struct sctp_hmac_algo_param *hmacs; | |
526 | __u16 n_elt; | |
527 | __u16 id = 0; | |
528 | int i; | |
529 | ||
530 | /* If we have a default entry, use it */ | |
531 | if (asoc->default_hmac_id) | |
532 | return &sctp_hmac_list[asoc->default_hmac_id]; | |
533 | ||
534 | /* Since we do not have a default entry, find the first entry | |
535 | * we support and return that. Do not cache that id. | |
536 | */ | |
537 | hmacs = asoc->peer.peer_hmacs; | |
538 | if (!hmacs) | |
539 | return NULL; | |
540 | ||
541 | n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; | |
542 | for (i = 0; i < n_elt; i++) { | |
543 | id = ntohs(hmacs->hmac_ids[i]); | |
544 | ||
747edc0f | 545 | /* Check the id is in the supported range. And |
546 | * see if we support the id. Supported IDs have name and | |
547 | * length fields set, so that we can allocate and use | |
1f485649 VY |
548 | * them. We can safely just check for name, for without the |
549 | * name, we can't allocate the TFM. | |
550 | */ | |
747edc0f | 551 | if (id > SCTP_AUTH_HMAC_ID_MAX || |
552 | !sctp_hmac_list[id].hmac_name) { | |
51e97a12 | 553 | id = 0; |
1f485649 | 554 | continue; |
51e97a12 | 555 | } |
1f485649 VY |
556 | |
557 | break; | |
558 | } | |
559 | ||
560 | if (id == 0) | |
561 | return NULL; | |
562 | ||
563 | return &sctp_hmac_list[id]; | |
564 | } | |
565 | ||
d06f6082 | 566 | static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) |
1f485649 VY |
567 | { |
568 | int found = 0; | |
569 | int i; | |
570 | ||
571 | for (i = 0; i < n_elts; i++) { | |
572 | if (hmac_id == hmacs[i]) { | |
573 | found = 1; | |
574 | break; | |
575 | } | |
576 | } | |
577 | ||
578 | return found; | |
579 | } | |
580 | ||
581 | /* See if the HMAC_ID is one that we claim as supported */ | |
582 | int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, | |
d06f6082 | 583 | __be16 hmac_id) |
1f485649 VY |
584 | { |
585 | struct sctp_hmac_algo_param *hmacs; | |
586 | __u16 n_elt; | |
587 | ||
588 | if (!asoc) | |
589 | return 0; | |
590 | ||
591 | hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; | |
592 | n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; | |
593 | ||
594 | return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); | |
595 | } | |
596 | ||
597 | ||
598 | /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: | |
599 | * Section 6.1: | |
600 | * The receiver of a HMAC-ALGO parameter SHOULD use the first listed | |
601 | * algorithm it supports. | |
602 | */ | |
603 | void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, | |
604 | struct sctp_hmac_algo_param *hmacs) | |
605 | { | |
606 | struct sctp_endpoint *ep; | |
607 | __u16 id; | |
608 | int i; | |
609 | int n_params; | |
610 | ||
611 | /* if the default id is already set, use it */ | |
612 | if (asoc->default_hmac_id) | |
613 | return; | |
614 | ||
615 | n_params = (ntohs(hmacs->param_hdr.length) | |
616 | - sizeof(sctp_paramhdr_t)) >> 1; | |
617 | ep = asoc->ep; | |
618 | for (i = 0; i < n_params; i++) { | |
619 | id = ntohs(hmacs->hmac_ids[i]); | |
620 | ||
621 | /* Check the id is in the supported range */ | |
622 | if (id > SCTP_AUTH_HMAC_ID_MAX) | |
623 | continue; | |
624 | ||
625 | /* If this TFM has been allocated, use this id */ | |
626 | if (ep->auth_hmacs[id]) { | |
627 | asoc->default_hmac_id = id; | |
628 | break; | |
629 | } | |
630 | } | |
631 | } | |
632 | ||
633 | ||
634 | /* Check to see if the given chunk is supposed to be authenticated */ | |
635 | static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) | |
636 | { | |
637 | unsigned short len; | |
638 | int found = 0; | |
639 | int i; | |
640 | ||
555d3d5d | 641 | if (!param || param->param_hdr.length == 0) |
1f485649 VY |
642 | return 0; |
643 | ||
644 | len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); | |
645 | ||
646 | /* SCTP-AUTH, Section 3.2 | |
647 | * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH | |
648 | * chunks MUST NOT be listed in the CHUNKS parameter. However, if | |
649 | * a CHUNKS parameter is received then the types for INIT, INIT-ACK, | |
650 | * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. | |
651 | */ | |
652 | for (i = 0; !found && i < len; i++) { | |
653 | switch (param->chunks[i]) { | |
f7010e61 | 654 | case SCTP_CID_INIT: |
655 | case SCTP_CID_INIT_ACK: | |
656 | case SCTP_CID_SHUTDOWN_COMPLETE: | |
657 | case SCTP_CID_AUTH: | |
1f485649 VY |
658 | break; |
659 | ||
f7010e61 | 660 | default: |
1f485649 | 661 | if (param->chunks[i] == chunk) |
f7010e61 | 662 | found = 1; |
1f485649 VY |
663 | break; |
664 | } | |
665 | } | |
666 | ||
667 | return found; | |
668 | } | |
669 | ||
670 | /* Check if peer requested that this chunk is authenticated */ | |
671 | int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) | |
672 | { | |
e1fc3b14 EB |
673 | if (!asoc) |
674 | return 0; | |
675 | ||
b14878cc | 676 | if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) |
1f485649 VY |
677 | return 0; |
678 | ||
679 | return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); | |
680 | } | |
681 | ||
682 | /* Check if we requested that peer authenticate this chunk. */ | |
683 | int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) | |
684 | { | |
e1fc3b14 EB |
685 | if (!asoc) |
686 | return 0; | |
687 | ||
b14878cc | 688 | if (!asoc->ep->auth_enable) |
1f485649 VY |
689 | return 0; |
690 | ||
691 | return __sctp_auth_cid(chunk, | |
692 | (struct sctp_chunks_param *)asoc->c.auth_chunks); | |
693 | } | |
694 | ||
695 | /* SCTP-AUTH: Section 6.2: | |
696 | * The sender MUST calculate the MAC as described in RFC2104 [2] using | |
697 | * the hash function H as described by the MAC Identifier and the shared | |
698 | * association key K based on the endpoint pair shared key described by | |
699 | * the shared key identifier. The 'data' used for the computation of | |
700 | * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to | |
701 | * zero (as shown in Figure 6) followed by all chunks that are placed | |
702 | * after the AUTH chunk in the SCTP packet. | |
703 | */ | |
704 | void sctp_auth_calculate_hmac(const struct sctp_association *asoc, | |
705 | struct sk_buff *skb, | |
706 | struct sctp_auth_chunk *auth, | |
707 | gfp_t gfp) | |
708 | { | |
5821c769 | 709 | struct crypto_shash *tfm; |
1f485649 VY |
710 | struct sctp_auth_bytes *asoc_key; |
711 | __u16 key_id, hmac_id; | |
712 | __u8 *digest; | |
713 | unsigned char *end; | |
714 | int free_key = 0; | |
715 | ||
716 | /* Extract the info we need: | |
717 | * - hmac id | |
718 | * - key id | |
719 | */ | |
720 | key_id = ntohs(auth->auth_hdr.shkey_id); | |
721 | hmac_id = ntohs(auth->auth_hdr.hmac_id); | |
722 | ||
723 | if (key_id == asoc->active_key_id) | |
724 | asoc_key = asoc->asoc_shared_key; | |
725 | else { | |
726 | struct sctp_shared_key *ep_key; | |
727 | ||
728 | ep_key = sctp_auth_get_shkey(asoc, key_id); | |
729 | if (!ep_key) | |
730 | return; | |
731 | ||
732 | asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); | |
733 | if (!asoc_key) | |
734 | return; | |
735 | ||
736 | free_key = 1; | |
737 | } | |
738 | ||
739 | /* set up scatter list */ | |
740 | end = skb_tail_pointer(skb); | |
1f485649 | 741 | |
5821c769 | 742 | tfm = asoc->ep->auth_hmacs[hmac_id]; |
1f485649 VY |
743 | |
744 | digest = auth->auth_hdr.hmac; | |
5821c769 | 745 | if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len)) |
1f485649 VY |
746 | goto free; |
747 | ||
5821c769 HX |
748 | { |
749 | SHASH_DESC_ON_STACK(desc, tfm); | |
750 | ||
751 | desc->tfm = tfm; | |
752 | desc->flags = 0; | |
753 | crypto_shash_digest(desc, (u8 *)auth, | |
754 | end - (unsigned char *)auth, digest); | |
755 | shash_desc_zero(desc); | |
756 | } | |
1f485649 VY |
757 | |
758 | free: | |
759 | if (free_key) | |
760 | sctp_auth_key_put(asoc_key); | |
761 | } | |
65b07e5d VY |
762 | |
763 | /* API Helpers */ | |
764 | ||
765 | /* Add a chunk to the endpoint authenticated chunk list */ | |
766 | int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) | |
767 | { | |
768 | struct sctp_chunks_param *p = ep->auth_chunk_list; | |
769 | __u16 nchunks; | |
770 | __u16 param_len; | |
771 | ||
772 | /* If this chunk is already specified, we are done */ | |
773 | if (__sctp_auth_cid(chunk_id, p)) | |
774 | return 0; | |
775 | ||
776 | /* Check if we can add this chunk to the array */ | |
777 | param_len = ntohs(p->param_hdr.length); | |
778 | nchunks = param_len - sizeof(sctp_paramhdr_t); | |
779 | if (nchunks == SCTP_NUM_CHUNK_TYPES) | |
780 | return -EINVAL; | |
781 | ||
782 | p->chunks[nchunks] = chunk_id; | |
783 | p->param_hdr.length = htons(param_len + 1); | |
784 | return 0; | |
785 | } | |
786 | ||
787 | /* Add hmac identifires to the endpoint list of supported hmac ids */ | |
788 | int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, | |
789 | struct sctp_hmacalgo *hmacs) | |
790 | { | |
791 | int has_sha1 = 0; | |
792 | __u16 id; | |
793 | int i; | |
794 | ||
795 | /* Scan the list looking for unsupported id. Also make sure that | |
796 | * SHA1 is specified. | |
797 | */ | |
798 | for (i = 0; i < hmacs->shmac_num_idents; i++) { | |
799 | id = hmacs->shmac_idents[i]; | |
800 | ||
d9724055 VY |
801 | if (id > SCTP_AUTH_HMAC_ID_MAX) |
802 | return -EOPNOTSUPP; | |
803 | ||
65b07e5d VY |
804 | if (SCTP_AUTH_HMAC_ID_SHA1 == id) |
805 | has_sha1 = 1; | |
806 | ||
807 | if (!sctp_hmac_list[id].hmac_name) | |
808 | return -EOPNOTSUPP; | |
809 | } | |
810 | ||
811 | if (!has_sha1) | |
812 | return -EINVAL; | |
813 | ||
ed5a377d | 814 | for (i = 0; i < hmacs->shmac_num_idents; i++) |
815 | ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]); | |
65b07e5d VY |
816 | ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + |
817 | hmacs->shmac_num_idents * sizeof(__u16)); | |
818 | return 0; | |
819 | } | |
820 | ||
821 | /* Set a new shared key on either endpoint or association. If the | |
822 | * the key with a same ID already exists, replace the key (remove the | |
823 | * old key and add a new one). | |
824 | */ | |
825 | int sctp_auth_set_key(struct sctp_endpoint *ep, | |
826 | struct sctp_association *asoc, | |
827 | struct sctp_authkey *auth_key) | |
828 | { | |
829 | struct sctp_shared_key *cur_key = NULL; | |
830 | struct sctp_auth_bytes *key; | |
831 | struct list_head *sh_keys; | |
832 | int replace = 0; | |
833 | ||
834 | /* Try to find the given key id to see if | |
835 | * we are doing a replace, or adding a new key | |
836 | */ | |
837 | if (asoc) | |
838 | sh_keys = &asoc->endpoint_shared_keys; | |
839 | else | |
840 | sh_keys = &ep->endpoint_shared_keys; | |
841 | ||
842 | key_for_each(cur_key, sh_keys) { | |
843 | if (cur_key->key_id == auth_key->sca_keynumber) { | |
844 | replace = 1; | |
845 | break; | |
846 | } | |
847 | } | |
848 | ||
849 | /* If we are not replacing a key id, we need to allocate | |
850 | * a shared key. | |
851 | */ | |
852 | if (!replace) { | |
853 | cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, | |
854 | GFP_KERNEL); | |
855 | if (!cur_key) | |
856 | return -ENOMEM; | |
857 | } | |
858 | ||
859 | /* Create a new key data based on the info passed in */ | |
7e8616d8 | 860 | key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); |
65b07e5d VY |
861 | if (!key) |
862 | goto nomem; | |
863 | ||
7e8616d8 | 864 | memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); |
65b07e5d VY |
865 | |
866 | /* If we are replacing, remove the old keys data from the | |
867 | * key id. If we are adding new key id, add it to the | |
868 | * list. | |
869 | */ | |
870 | if (replace) | |
871 | sctp_auth_key_put(cur_key->key); | |
872 | else | |
873 | list_add(&cur_key->key_list, sh_keys); | |
874 | ||
875 | cur_key->key = key; | |
65b07e5d VY |
876 | return 0; |
877 | nomem: | |
878 | if (!replace) | |
879 | sctp_auth_shkey_free(cur_key); | |
880 | ||
881 | return -ENOMEM; | |
882 | } | |
883 | ||
884 | int sctp_auth_set_active_key(struct sctp_endpoint *ep, | |
885 | struct sctp_association *asoc, | |
886 | __u16 key_id) | |
887 | { | |
888 | struct sctp_shared_key *key; | |
889 | struct list_head *sh_keys; | |
890 | int found = 0; | |
891 | ||
892 | /* The key identifier MUST correst to an existing key */ | |
893 | if (asoc) | |
894 | sh_keys = &asoc->endpoint_shared_keys; | |
895 | else | |
896 | sh_keys = &ep->endpoint_shared_keys; | |
897 | ||
898 | key_for_each(key, sh_keys) { | |
899 | if (key->key_id == key_id) { | |
900 | found = 1; | |
901 | break; | |
902 | } | |
903 | } | |
904 | ||
905 | if (!found) | |
906 | return -EINVAL; | |
907 | ||
908 | if (asoc) { | |
909 | asoc->active_key_id = key_id; | |
910 | sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); | |
911 | } else | |
912 | ep->active_key_id = key_id; | |
913 | ||
914 | return 0; | |
915 | } | |
916 | ||
917 | int sctp_auth_del_key_id(struct sctp_endpoint *ep, | |
918 | struct sctp_association *asoc, | |
919 | __u16 key_id) | |
920 | { | |
921 | struct sctp_shared_key *key; | |
922 | struct list_head *sh_keys; | |
923 | int found = 0; | |
924 | ||
925 | /* The key identifier MUST NOT be the current active key | |
926 | * The key identifier MUST correst to an existing key | |
927 | */ | |
928 | if (asoc) { | |
929 | if (asoc->active_key_id == key_id) | |
930 | return -EINVAL; | |
931 | ||
932 | sh_keys = &asoc->endpoint_shared_keys; | |
933 | } else { | |
934 | if (ep->active_key_id == key_id) | |
935 | return -EINVAL; | |
936 | ||
937 | sh_keys = &ep->endpoint_shared_keys; | |
938 | } | |
939 | ||
940 | key_for_each(key, sh_keys) { | |
941 | if (key->key_id == key_id) { | |
942 | found = 1; | |
943 | break; | |
944 | } | |
945 | } | |
946 | ||
947 | if (!found) | |
948 | return -EINVAL; | |
949 | ||
950 | /* Delete the shared key */ | |
951 | list_del_init(&key->key_list); | |
952 | sctp_auth_shkey_free(key); | |
953 | ||
954 | return 0; | |
955 | } |