]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - net/sunrpc/cache.c
[PATCH] knfsd: Remove DefineCacheLookup
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / cache.c
CommitLineData
1da177e4
LT
1/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
4a3e2f71 29#include <linux/mutex.h>
1da177e4
LT
30#include <asm/ioctls.h>
31#include <linux/sunrpc/types.h>
32#include <linux/sunrpc/cache.h>
33#include <linux/sunrpc/stats.h>
34
35#define RPCDBG_FACILITY RPCDBG_CACHE
36
37static void cache_defer_req(struct cache_req *req, struct cache_head *item);
38static void cache_revisit_request(struct cache_head *item);
39
40void cache_init(struct cache_head *h)
41{
42 time_t now = get_seconds();
43 h->next = NULL;
44 h->flags = 0;
45 atomic_set(&h->refcnt, 1);
46 h->expiry_time = now + CACHE_NEW_EXPIRY;
47 h->last_refresh = now;
48}
49
15a5f6bd
N
50struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 struct cache_head *key, int hash)
52{
53 struct cache_head **head, **hp;
54 struct cache_head *new = NULL;
55
56 head = &detail->hash_table[hash];
57
58 read_lock(&detail->hash_lock);
59
60 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 struct cache_head *tmp = *hp;
62 if (detail->match(tmp, key)) {
63 cache_get(tmp);
64 read_unlock(&detail->hash_lock);
65 return tmp;
66 }
67 }
68 read_unlock(&detail->hash_lock);
69 /* Didn't find anything, insert an empty entry */
70
71 new = detail->alloc();
72 if (!new)
73 return NULL;
74 cache_init(new);
75
76 write_lock(&detail->hash_lock);
77
78 /* check if entry appeared while we slept */
79 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
80 struct cache_head *tmp = *hp;
81 if (detail->match(tmp, key)) {
82 cache_get(tmp);
83 write_unlock(&detail->hash_lock);
84 detail->cache_put(new, detail);
85 return tmp;
86 }
87 }
88 detail->init(new, key);
89 new->next = *head;
90 *head = new;
91 detail->entries++;
92 cache_get(new);
93 write_unlock(&detail->hash_lock);
94
95 return new;
96}
97EXPORT_SYMBOL(sunrpc_cache_lookup);
98
99struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
100 struct cache_head *new, struct cache_head *old, int hash)
101{
102 /* The 'old' entry is to be replaced by 'new'.
103 * If 'old' is not VALID, we update it directly,
104 * otherwise we need to replace it
105 */
106 struct cache_head **head;
107 struct cache_head *tmp;
108
109 if (!test_bit(CACHE_VALID, &old->flags)) {
110 write_lock(&detail->hash_lock);
111 if (!test_bit(CACHE_VALID, &old->flags)) {
112 if (test_bit(CACHE_NEGATIVE, &new->flags))
113 set_bit(CACHE_NEGATIVE, &old->flags);
114 else
115 detail->update(old, new);
116 /* FIXME cache_fresh should come first */
117 write_unlock(&detail->hash_lock);
118 cache_fresh(detail, old, new->expiry_time);
119 return old;
120 }
121 write_unlock(&detail->hash_lock);
122 }
123 /* We need to insert a new entry */
124 tmp = detail->alloc();
125 if (!tmp) {
126 detail->cache_put(old, detail);
127 return NULL;
128 }
129 cache_init(tmp);
130 detail->init(tmp, old);
131 head = &detail->hash_table[hash];
132
133 write_lock(&detail->hash_lock);
134 if (test_bit(CACHE_NEGATIVE, &new->flags))
135 set_bit(CACHE_NEGATIVE, &tmp->flags);
136 else
137 detail->update(tmp, new);
138 tmp->next = *head;
139 *head = tmp;
140 cache_get(tmp);
141 write_unlock(&detail->hash_lock);
142 cache_fresh(detail, tmp, new->expiry_time);
143 cache_fresh(detail, old, 0);
144 detail->cache_put(old, detail);
145 return tmp;
146}
147EXPORT_SYMBOL(sunrpc_cache_update);
1da177e4
LT
148
149static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
150/*
151 * This is the generic cache management routine for all
152 * the authentication caches.
153 * It checks the currency of a cache item and will (later)
154 * initiate an upcall to fill it if needed.
155 *
156 *
157 * Returns 0 if the cache_head can be used, or cache_puts it and returns
158 * -EAGAIN if upcall is pending,
159 * -ENOENT if cache entry was negative
160 */
161int cache_check(struct cache_detail *detail,
162 struct cache_head *h, struct cache_req *rqstp)
163{
164 int rv;
165 long refresh_age, age;
166
167 /* First decide return status as best we can */
168 if (!test_bit(CACHE_VALID, &h->flags) ||
169 h->expiry_time < get_seconds())
170 rv = -EAGAIN;
171 else if (detail->flush_time > h->last_refresh)
172 rv = -EAGAIN;
173 else {
174 /* entry is valid */
175 if (test_bit(CACHE_NEGATIVE, &h->flags))
176 rv = -ENOENT;
177 else rv = 0;
178 }
179
180 /* now see if we want to start an upcall */
181 refresh_age = (h->expiry_time - h->last_refresh);
182 age = get_seconds() - h->last_refresh;
183
184 if (rqstp == NULL) {
185 if (rv == -EAGAIN)
186 rv = -ENOENT;
187 } else if (rv == -EAGAIN || age > refresh_age/2) {
188 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
189 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
190 switch (cache_make_upcall(detail, h)) {
191 case -EINVAL:
192 clear_bit(CACHE_PENDING, &h->flags);
193 if (rv == -EAGAIN) {
194 set_bit(CACHE_NEGATIVE, &h->flags);
195 cache_fresh(detail, h, get_seconds()+CACHE_NEW_EXPIRY);
196 rv = -ENOENT;
197 }
198 break;
199
200 case -EAGAIN:
201 clear_bit(CACHE_PENDING, &h->flags);
202 cache_revisit_request(h);
203 break;
204 }
205 }
206 }
207
208 if (rv == -EAGAIN)
209 cache_defer_req(rqstp, h);
210
4013edea 211 if (rv)
1da177e4
LT
212 detail->cache_put(h, detail);
213 return rv;
214}
215
216static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
217
218void cache_fresh(struct cache_detail *detail,
219 struct cache_head *head, time_t expiry)
220{
221
222 head->expiry_time = expiry;
223 head->last_refresh = get_seconds();
224 if (!test_and_set_bit(CACHE_VALID, &head->flags))
225 cache_revisit_request(head);
4013edea
N
226 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
227 cache_revisit_request(head);
1da177e4 228 queue_loose(detail, head);
4013edea 229 }
1da177e4
LT
230}
231
232/*
233 * caches need to be periodically cleaned.
234 * For this we maintain a list of cache_detail and
235 * a current pointer into that list and into the table
236 * for that entry.
237 *
238 * Each time clean_cache is called it finds the next non-empty entry
239 * in the current table and walks the list in that entry
240 * looking for entries that can be removed.
241 *
242 * An entry gets removed if:
243 * - The expiry is before current time
244 * - The last_refresh time is before the flush_time for that cache
245 *
246 * later we might drop old entries with non-NEVER expiry if that table
247 * is getting 'full' for some definition of 'full'
248 *
249 * The question of "how often to scan a table" is an interesting one
250 * and is answered in part by the use of the "nextcheck" field in the
251 * cache_detail.
252 * When a scan of a table begins, the nextcheck field is set to a time
253 * that is well into the future.
254 * While scanning, if an expiry time is found that is earlier than the
255 * current nextcheck time, nextcheck is set to that expiry time.
256 * If the flush_time is ever set to a time earlier than the nextcheck
257 * time, the nextcheck time is then set to that flush_time.
258 *
259 * A table is then only scanned if the current time is at least
260 * the nextcheck time.
261 *
262 */
263
264static LIST_HEAD(cache_list);
265static DEFINE_SPINLOCK(cache_list_lock);
266static struct cache_detail *current_detail;
267static int current_index;
268
269static struct file_operations cache_file_operations;
270static struct file_operations content_file_operations;
271static struct file_operations cache_flush_operations;
272
273static void do_cache_clean(void *data);
274static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
275
276void cache_register(struct cache_detail *cd)
277{
278 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
279 if (cd->proc_ent) {
280 struct proc_dir_entry *p;
f35279d3 281 cd->proc_ent->owner = cd->owner;
1da177e4
LT
282 cd->channel_ent = cd->content_ent = NULL;
283
284 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
285 cd->proc_ent);
286 cd->flush_ent = p;
287 if (p) {
288 p->proc_fops = &cache_flush_operations;
f35279d3 289 p->owner = cd->owner;
1da177e4
LT
290 p->data = cd;
291 }
292
293 if (cd->cache_request || cd->cache_parse) {
294 p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
295 cd->proc_ent);
296 cd->channel_ent = p;
297 if (p) {
298 p->proc_fops = &cache_file_operations;
f35279d3 299 p->owner = cd->owner;
1da177e4
LT
300 p->data = cd;
301 }
302 }
303 if (cd->cache_show) {
304 p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
305 cd->proc_ent);
306 cd->content_ent = p;
307 if (p) {
308 p->proc_fops = &content_file_operations;
f35279d3 309 p->owner = cd->owner;
1da177e4
LT
310 p->data = cd;
311 }
312 }
313 }
314 rwlock_init(&cd->hash_lock);
315 INIT_LIST_HEAD(&cd->queue);
316 spin_lock(&cache_list_lock);
317 cd->nextcheck = 0;
318 cd->entries = 0;
319 atomic_set(&cd->readers, 0);
320 cd->last_close = 0;
321 cd->last_warn = -1;
322 list_add(&cd->others, &cache_list);
323 spin_unlock(&cache_list_lock);
324
325 /* start the cleaning process */
326 schedule_work(&cache_cleaner);
327}
328
329int cache_unregister(struct cache_detail *cd)
330{
331 cache_purge(cd);
332 spin_lock(&cache_list_lock);
333 write_lock(&cd->hash_lock);
334 if (cd->entries || atomic_read(&cd->inuse)) {
335 write_unlock(&cd->hash_lock);
336 spin_unlock(&cache_list_lock);
337 return -EBUSY;
338 }
339 if (current_detail == cd)
340 current_detail = NULL;
341 list_del_init(&cd->others);
342 write_unlock(&cd->hash_lock);
343 spin_unlock(&cache_list_lock);
344 if (cd->proc_ent) {
345 if (cd->flush_ent)
346 remove_proc_entry("flush", cd->proc_ent);
347 if (cd->channel_ent)
348 remove_proc_entry("channel", cd->proc_ent);
349 if (cd->content_ent)
350 remove_proc_entry("content", cd->proc_ent);
351
352 cd->proc_ent = NULL;
353 remove_proc_entry(cd->name, proc_net_rpc);
354 }
355 if (list_empty(&cache_list)) {
356 /* module must be being unloaded so its safe to kill the worker */
357 cancel_delayed_work(&cache_cleaner);
358 flush_scheduled_work();
359 }
360 return 0;
361}
362
363/* clean cache tries to find something to clean
364 * and cleans it.
365 * It returns 1 if it cleaned something,
366 * 0 if it didn't find anything this time
367 * -1 if it fell off the end of the list.
368 */
369static int cache_clean(void)
370{
371 int rv = 0;
372 struct list_head *next;
373
374 spin_lock(&cache_list_lock);
375
376 /* find a suitable table if we don't already have one */
377 while (current_detail == NULL ||
378 current_index >= current_detail->hash_size) {
379 if (current_detail)
380 next = current_detail->others.next;
381 else
382 next = cache_list.next;
383 if (next == &cache_list) {
384 current_detail = NULL;
385 spin_unlock(&cache_list_lock);
386 return -1;
387 }
388 current_detail = list_entry(next, struct cache_detail, others);
389 if (current_detail->nextcheck > get_seconds())
390 current_index = current_detail->hash_size;
391 else {
392 current_index = 0;
393 current_detail->nextcheck = get_seconds()+30*60;
394 }
395 }
396
397 /* find a non-empty bucket in the table */
398 while (current_detail &&
399 current_index < current_detail->hash_size &&
400 current_detail->hash_table[current_index] == NULL)
401 current_index++;
402
403 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
404
405 if (current_detail && current_index < current_detail->hash_size) {
406 struct cache_head *ch, **cp;
407 struct cache_detail *d;
408
409 write_lock(&current_detail->hash_lock);
410
411 /* Ok, now to clean this strand */
412
413 cp = & current_detail->hash_table[current_index];
414 ch = *cp;
415 for (; ch; cp= & ch->next, ch= *cp) {
416 if (current_detail->nextcheck > ch->expiry_time)
417 current_detail->nextcheck = ch->expiry_time+1;
418 if (ch->expiry_time >= get_seconds()
419 && ch->last_refresh >= current_detail->flush_time
420 )
421 continue;
422 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
423 queue_loose(current_detail, ch);
424
425 if (atomic_read(&ch->refcnt) == 1)
426 break;
427 }
428 if (ch) {
429 *cp = ch->next;
430 ch->next = NULL;
431 current_detail->entries--;
432 rv = 1;
433 }
434 write_unlock(&current_detail->hash_lock);
435 d = current_detail;
436 if (!ch)
437 current_index ++;
438 spin_unlock(&cache_list_lock);
439 if (ch)
440 d->cache_put(ch, d);
441 } else
442 spin_unlock(&cache_list_lock);
443
444 return rv;
445}
446
447/*
448 * We want to regularly clean the cache, so we need to schedule some work ...
449 */
450static void do_cache_clean(void *data)
451{
452 int delay = 5;
453 if (cache_clean() == -1)
454 delay = 30*HZ;
455
456 if (list_empty(&cache_list))
457 delay = 0;
458
459 if (delay)
460 schedule_delayed_work(&cache_cleaner, delay);
461}
462
463
464/*
465 * Clean all caches promptly. This just calls cache_clean
466 * repeatedly until we are sure that every cache has had a chance to
467 * be fully cleaned
468 */
469void cache_flush(void)
470{
471 while (cache_clean() != -1)
472 cond_resched();
473 while (cache_clean() != -1)
474 cond_resched();
475}
476
477void cache_purge(struct cache_detail *detail)
478{
479 detail->flush_time = LONG_MAX;
480 detail->nextcheck = get_seconds();
481 cache_flush();
482 detail->flush_time = 1;
483}
484
485
486
487/*
488 * Deferral and Revisiting of Requests.
489 *
490 * If a cache lookup finds a pending entry, we
491 * need to defer the request and revisit it later.
492 * All deferred requests are stored in a hash table,
493 * indexed by "struct cache_head *".
494 * As it may be wasteful to store a whole request
495 * structure, we allow the request to provide a
496 * deferred form, which must contain a
497 * 'struct cache_deferred_req'
498 * This cache_deferred_req contains a method to allow
499 * it to be revisited when cache info is available
500 */
501
502#define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
503#define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
504
505#define DFR_MAX 300 /* ??? */
506
507static DEFINE_SPINLOCK(cache_defer_lock);
508static LIST_HEAD(cache_defer_list);
509static struct list_head cache_defer_hash[DFR_HASHSIZE];
510static int cache_defer_cnt;
511
512static void cache_defer_req(struct cache_req *req, struct cache_head *item)
513{
514 struct cache_deferred_req *dreq;
515 int hash = DFR_HASH(item);
516
517 dreq = req->defer(req);
518 if (dreq == NULL)
519 return;
520
521 dreq->item = item;
522 dreq->recv_time = get_seconds();
523
524 spin_lock(&cache_defer_lock);
525
526 list_add(&dreq->recent, &cache_defer_list);
527
528 if (cache_defer_hash[hash].next == NULL)
529 INIT_LIST_HEAD(&cache_defer_hash[hash]);
530 list_add(&dreq->hash, &cache_defer_hash[hash]);
531
532 /* it is in, now maybe clean up */
533 dreq = NULL;
534 if (++cache_defer_cnt > DFR_MAX) {
535 /* too much in the cache, randomly drop
536 * first or last
537 */
538 if (net_random()&1)
539 dreq = list_entry(cache_defer_list.next,
540 struct cache_deferred_req,
541 recent);
542 else
543 dreq = list_entry(cache_defer_list.prev,
544 struct cache_deferred_req,
545 recent);
546 list_del(&dreq->recent);
547 list_del(&dreq->hash);
548 cache_defer_cnt--;
549 }
550 spin_unlock(&cache_defer_lock);
551
552 if (dreq) {
553 /* there was one too many */
554 dreq->revisit(dreq, 1);
555 }
4013edea 556 if (!test_bit(CACHE_PENDING, &item->flags)) {
1da177e4
LT
557 /* must have just been validated... */
558 cache_revisit_request(item);
559 }
560}
561
562static void cache_revisit_request(struct cache_head *item)
563{
564 struct cache_deferred_req *dreq;
565 struct list_head pending;
566
567 struct list_head *lp;
568 int hash = DFR_HASH(item);
569
570 INIT_LIST_HEAD(&pending);
571 spin_lock(&cache_defer_lock);
572
573 lp = cache_defer_hash[hash].next;
574 if (lp) {
575 while (lp != &cache_defer_hash[hash]) {
576 dreq = list_entry(lp, struct cache_deferred_req, hash);
577 lp = lp->next;
578 if (dreq->item == item) {
579 list_del(&dreq->hash);
580 list_move(&dreq->recent, &pending);
581 cache_defer_cnt--;
582 }
583 }
584 }
585 spin_unlock(&cache_defer_lock);
586
587 while (!list_empty(&pending)) {
588 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
589 list_del_init(&dreq->recent);
590 dreq->revisit(dreq, 0);
591 }
592}
593
594void cache_clean_deferred(void *owner)
595{
596 struct cache_deferred_req *dreq, *tmp;
597 struct list_head pending;
598
599
600 INIT_LIST_HEAD(&pending);
601 spin_lock(&cache_defer_lock);
602
603 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
604 if (dreq->owner == owner) {
605 list_del(&dreq->hash);
606 list_move(&dreq->recent, &pending);
607 cache_defer_cnt--;
608 }
609 }
610 spin_unlock(&cache_defer_lock);
611
612 while (!list_empty(&pending)) {
613 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
614 list_del_init(&dreq->recent);
615 dreq->revisit(dreq, 1);
616 }
617}
618
619/*
620 * communicate with user-space
621 *
622 * We have a magic /proc file - /proc/sunrpc/cache
623 * On read, you get a full request, or block
624 * On write, an update request is processed
625 * Poll works if anything to read, and always allows write
626 *
627 * Implemented by linked list of requests. Each open file has
628 * a ->private that also exists in this list. New request are added
629 * to the end and may wakeup and preceding readers.
630 * New readers are added to the head. If, on read, an item is found with
631 * CACHE_UPCALLING clear, we free it from the list.
632 *
633 */
634
635static DEFINE_SPINLOCK(queue_lock);
4a3e2f71 636static DEFINE_MUTEX(queue_io_mutex);
1da177e4
LT
637
638struct cache_queue {
639 struct list_head list;
640 int reader; /* if 0, then request */
641};
642struct cache_request {
643 struct cache_queue q;
644 struct cache_head *item;
645 char * buf;
646 int len;
647 int readers;
648};
649struct cache_reader {
650 struct cache_queue q;
651 int offset; /* if non-0, we have a refcnt on next request */
652};
653
654static ssize_t
655cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
656{
657 struct cache_reader *rp = filp->private_data;
658 struct cache_request *rq;
659 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
660 int err;
661
662 if (count == 0)
663 return 0;
664
4a3e2f71 665 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
1da177e4
LT
666 * readers on this file */
667 again:
668 spin_lock(&queue_lock);
669 /* need to find next request */
670 while (rp->q.list.next != &cd->queue &&
671 list_entry(rp->q.list.next, struct cache_queue, list)
672 ->reader) {
673 struct list_head *next = rp->q.list.next;
674 list_move(&rp->q.list, next);
675 }
676 if (rp->q.list.next == &cd->queue) {
677 spin_unlock(&queue_lock);
4a3e2f71 678 mutex_unlock(&queue_io_mutex);
09a62660 679 BUG_ON(rp->offset);
1da177e4
LT
680 return 0;
681 }
682 rq = container_of(rp->q.list.next, struct cache_request, q.list);
09a62660 683 BUG_ON(rq->q.reader);
1da177e4
LT
684 if (rp->offset == 0)
685 rq->readers++;
686 spin_unlock(&queue_lock);
687
688 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
689 err = -EAGAIN;
690 spin_lock(&queue_lock);
691 list_move(&rp->q.list, &rq->q.list);
692 spin_unlock(&queue_lock);
693 } else {
694 if (rp->offset + count > rq->len)
695 count = rq->len - rp->offset;
696 err = -EFAULT;
697 if (copy_to_user(buf, rq->buf + rp->offset, count))
698 goto out;
699 rp->offset += count;
700 if (rp->offset >= rq->len) {
701 rp->offset = 0;
702 spin_lock(&queue_lock);
703 list_move(&rp->q.list, &rq->q.list);
704 spin_unlock(&queue_lock);
705 }
706 err = 0;
707 }
708 out:
709 if (rp->offset == 0) {
710 /* need to release rq */
711 spin_lock(&queue_lock);
712 rq->readers--;
713 if (rq->readers == 0 &&
714 !test_bit(CACHE_PENDING, &rq->item->flags)) {
715 list_del(&rq->q.list);
716 spin_unlock(&queue_lock);
717 cd->cache_put(rq->item, cd);
718 kfree(rq->buf);
719 kfree(rq);
720 } else
721 spin_unlock(&queue_lock);
722 }
723 if (err == -EAGAIN)
724 goto again;
4a3e2f71 725 mutex_unlock(&queue_io_mutex);
1da177e4
LT
726 return err ? err : count;
727}
728
4a3e2f71 729static char write_buf[8192]; /* protected by queue_io_mutex */
1da177e4
LT
730
731static ssize_t
732cache_write(struct file *filp, const char __user *buf, size_t count,
733 loff_t *ppos)
734{
735 int err;
736 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
737
738 if (count == 0)
739 return 0;
740 if (count >= sizeof(write_buf))
741 return -EINVAL;
742
4a3e2f71 743 mutex_lock(&queue_io_mutex);
1da177e4
LT
744
745 if (copy_from_user(write_buf, buf, count)) {
4a3e2f71 746 mutex_unlock(&queue_io_mutex);
1da177e4
LT
747 return -EFAULT;
748 }
749 write_buf[count] = '\0';
750 if (cd->cache_parse)
751 err = cd->cache_parse(cd, write_buf, count);
752 else
753 err = -EINVAL;
754
4a3e2f71 755 mutex_unlock(&queue_io_mutex);
1da177e4
LT
756 return err ? err : count;
757}
758
759static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
760
761static unsigned int
762cache_poll(struct file *filp, poll_table *wait)
763{
764 unsigned int mask;
765 struct cache_reader *rp = filp->private_data;
766 struct cache_queue *cq;
767 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
768
769 poll_wait(filp, &queue_wait, wait);
770
771 /* alway allow write */
772 mask = POLL_OUT | POLLWRNORM;
773
774 if (!rp)
775 return mask;
776
777 spin_lock(&queue_lock);
778
779 for (cq= &rp->q; &cq->list != &cd->queue;
780 cq = list_entry(cq->list.next, struct cache_queue, list))
781 if (!cq->reader) {
782 mask |= POLLIN | POLLRDNORM;
783 break;
784 }
785 spin_unlock(&queue_lock);
786 return mask;
787}
788
789static int
790cache_ioctl(struct inode *ino, struct file *filp,
791 unsigned int cmd, unsigned long arg)
792{
793 int len = 0;
794 struct cache_reader *rp = filp->private_data;
795 struct cache_queue *cq;
796 struct cache_detail *cd = PDE(ino)->data;
797
798 if (cmd != FIONREAD || !rp)
799 return -EINVAL;
800
801 spin_lock(&queue_lock);
802
803 /* only find the length remaining in current request,
804 * or the length of the next request
805 */
806 for (cq= &rp->q; &cq->list != &cd->queue;
807 cq = list_entry(cq->list.next, struct cache_queue, list))
808 if (!cq->reader) {
809 struct cache_request *cr =
810 container_of(cq, struct cache_request, q);
811 len = cr->len - rp->offset;
812 break;
813 }
814 spin_unlock(&queue_lock);
815
816 return put_user(len, (int __user *)arg);
817}
818
819static int
820cache_open(struct inode *inode, struct file *filp)
821{
822 struct cache_reader *rp = NULL;
823
824 nonseekable_open(inode, filp);
825 if (filp->f_mode & FMODE_READ) {
826 struct cache_detail *cd = PDE(inode)->data;
827
828 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
829 if (!rp)
830 return -ENOMEM;
831 rp->offset = 0;
832 rp->q.reader = 1;
833 atomic_inc(&cd->readers);
834 spin_lock(&queue_lock);
835 list_add(&rp->q.list, &cd->queue);
836 spin_unlock(&queue_lock);
837 }
838 filp->private_data = rp;
839 return 0;
840}
841
842static int
843cache_release(struct inode *inode, struct file *filp)
844{
845 struct cache_reader *rp = filp->private_data;
846 struct cache_detail *cd = PDE(inode)->data;
847
848 if (rp) {
849 spin_lock(&queue_lock);
850 if (rp->offset) {
851 struct cache_queue *cq;
852 for (cq= &rp->q; &cq->list != &cd->queue;
853 cq = list_entry(cq->list.next, struct cache_queue, list))
854 if (!cq->reader) {
855 container_of(cq, struct cache_request, q)
856 ->readers--;
857 break;
858 }
859 rp->offset = 0;
860 }
861 list_del(&rp->q.list);
862 spin_unlock(&queue_lock);
863
864 filp->private_data = NULL;
865 kfree(rp);
866
867 cd->last_close = get_seconds();
868 atomic_dec(&cd->readers);
869 }
870 return 0;
871}
872
873
874
875static struct file_operations cache_file_operations = {
876 .owner = THIS_MODULE,
877 .llseek = no_llseek,
878 .read = cache_read,
879 .write = cache_write,
880 .poll = cache_poll,
881 .ioctl = cache_ioctl, /* for FIONREAD */
882 .open = cache_open,
883 .release = cache_release,
884};
885
886
887static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
888{
889 struct cache_queue *cq;
890 spin_lock(&queue_lock);
891 list_for_each_entry(cq, &detail->queue, list)
892 if (!cq->reader) {
893 struct cache_request *cr = container_of(cq, struct cache_request, q);
894 if (cr->item != ch)
895 continue;
896 if (cr->readers != 0)
4013edea 897 continue;
1da177e4
LT
898 list_del(&cr->q.list);
899 spin_unlock(&queue_lock);
900 detail->cache_put(cr->item, detail);
901 kfree(cr->buf);
902 kfree(cr);
903 return;
904 }
905 spin_unlock(&queue_lock);
906}
907
908/*
909 * Support routines for text-based upcalls.
910 * Fields are separated by spaces.
911 * Fields are either mangled to quote space tab newline slosh with slosh
912 * or a hexified with a leading \x
913 * Record is terminated with newline.
914 *
915 */
916
917void qword_add(char **bpp, int *lp, char *str)
918{
919 char *bp = *bpp;
920 int len = *lp;
921 char c;
922
923 if (len < 0) return;
924
925 while ((c=*str++) && len)
926 switch(c) {
927 case ' ':
928 case '\t':
929 case '\n':
930 case '\\':
931 if (len >= 4) {
932 *bp++ = '\\';
933 *bp++ = '0' + ((c & 0300)>>6);
934 *bp++ = '0' + ((c & 0070)>>3);
935 *bp++ = '0' + ((c & 0007)>>0);
936 }
937 len -= 4;
938 break;
939 default:
940 *bp++ = c;
941 len--;
942 }
943 if (c || len <1) len = -1;
944 else {
945 *bp++ = ' ';
946 len--;
947 }
948 *bpp = bp;
949 *lp = len;
950}
951
952void qword_addhex(char **bpp, int *lp, char *buf, int blen)
953{
954 char *bp = *bpp;
955 int len = *lp;
956
957 if (len < 0) return;
958
959 if (len > 2) {
960 *bp++ = '\\';
961 *bp++ = 'x';
962 len -= 2;
963 while (blen && len >= 2) {
964 unsigned char c = *buf++;
965 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
966 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
967 len -= 2;
968 blen--;
969 }
970 }
971 if (blen || len<1) len = -1;
972 else {
973 *bp++ = ' ';
974 len--;
975 }
976 *bpp = bp;
977 *lp = len;
978}
979
980static void warn_no_listener(struct cache_detail *detail)
981{
982 if (detail->last_warn != detail->last_close) {
983 detail->last_warn = detail->last_close;
984 if (detail->warn_no_listener)
985 detail->warn_no_listener(detail);
986 }
987}
988
989/*
990 * register an upcall request to user-space.
991 * Each request is at most one page long.
992 */
993static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
994{
995
996 char *buf;
997 struct cache_request *crq;
998 char *bp;
999 int len;
1000
1001 if (detail->cache_request == NULL)
1002 return -EINVAL;
1003
1004 if (atomic_read(&detail->readers) == 0 &&
1005 detail->last_close < get_seconds() - 30) {
1006 warn_no_listener(detail);
1007 return -EINVAL;
1008 }
1009
1010 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1011 if (!buf)
1012 return -EAGAIN;
1013
1014 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1015 if (!crq) {
1016 kfree(buf);
1017 return -EAGAIN;
1018 }
1019
1020 bp = buf; len = PAGE_SIZE;
1021
1022 detail->cache_request(detail, h, &bp, &len);
1023
1024 if (len < 0) {
1025 kfree(buf);
1026 kfree(crq);
1027 return -EAGAIN;
1028 }
1029 crq->q.reader = 0;
1030 crq->item = cache_get(h);
1031 crq->buf = buf;
1032 crq->len = PAGE_SIZE - len;
1033 crq->readers = 0;
1034 spin_lock(&queue_lock);
1035 list_add_tail(&crq->q.list, &detail->queue);
1036 spin_unlock(&queue_lock);
1037 wake_up(&queue_wait);
1038 return 0;
1039}
1040
1041/*
1042 * parse a message from user-space and pass it
1043 * to an appropriate cache
1044 * Messages are, like requests, separated into fields by
1045 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1046 *
1047 * Message is
1048 * reply cachename expiry key ... content....
1049 *
1050 * key and content are both parsed by cache
1051 */
1052
1053#define isodigit(c) (isdigit(c) && c <= '7')
1054int qword_get(char **bpp, char *dest, int bufsize)
1055{
1056 /* return bytes copied, or -1 on error */
1057 char *bp = *bpp;
1058 int len = 0;
1059
1060 while (*bp == ' ') bp++;
1061
1062 if (bp[0] == '\\' && bp[1] == 'x') {
1063 /* HEX STRING */
1064 bp += 2;
1065 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1066 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1067 bp++;
1068 byte <<= 4;
1069 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1070 *dest++ = byte;
1071 bp++;
1072 len++;
1073 }
1074 } else {
1075 /* text with \nnn octal quoting */
1076 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1077 if (*bp == '\\' &&
1078 isodigit(bp[1]) && (bp[1] <= '3') &&
1079 isodigit(bp[2]) &&
1080 isodigit(bp[3])) {
1081 int byte = (*++bp -'0');
1082 bp++;
1083 byte = (byte << 3) | (*bp++ - '0');
1084 byte = (byte << 3) | (*bp++ - '0');
1085 *dest++ = byte;
1086 len++;
1087 } else {
1088 *dest++ = *bp++;
1089 len++;
1090 }
1091 }
1092 }
1093
1094 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1095 return -1;
1096 while (*bp == ' ') bp++;
1097 *bpp = bp;
1098 *dest = '\0';
1099 return len;
1100}
1101
1102
1103/*
1104 * support /proc/sunrpc/cache/$CACHENAME/content
1105 * as a seqfile.
1106 * We call ->cache_show passing NULL for the item to
1107 * get a header, then pass each real item in the cache
1108 */
1109
1110struct handle {
1111 struct cache_detail *cd;
1112};
1113
1114static void *c_start(struct seq_file *m, loff_t *pos)
1115{
1116 loff_t n = *pos;
1117 unsigned hash, entry;
1118 struct cache_head *ch;
1119 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1120
1121
1122 read_lock(&cd->hash_lock);
1123 if (!n--)
1124 return SEQ_START_TOKEN;
1125 hash = n >> 32;
1126 entry = n & ((1LL<<32) - 1);
1127
1128 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1129 if (!entry--)
1130 return ch;
1131 n &= ~((1LL<<32) - 1);
1132 do {
1133 hash++;
1134 n += 1LL<<32;
1135 } while(hash < cd->hash_size &&
1136 cd->hash_table[hash]==NULL);
1137 if (hash >= cd->hash_size)
1138 return NULL;
1139 *pos = n+1;
1140 return cd->hash_table[hash];
1141}
1142
1143static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1144{
1145 struct cache_head *ch = p;
1146 int hash = (*pos >> 32);
1147 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1148
1149 if (p == SEQ_START_TOKEN)
1150 hash = 0;
1151 else if (ch->next == NULL) {
1152 hash++;
1153 *pos += 1LL<<32;
1154 } else {
1155 ++*pos;
1156 return ch->next;
1157 }
1158 *pos &= ~((1LL<<32) - 1);
1159 while (hash < cd->hash_size &&
1160 cd->hash_table[hash] == NULL) {
1161 hash++;
1162 *pos += 1LL<<32;
1163 }
1164 if (hash >= cd->hash_size)
1165 return NULL;
1166 ++*pos;
1167 return cd->hash_table[hash];
1168}
1169
1170static void c_stop(struct seq_file *m, void *p)
1171{
1172 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1173 read_unlock(&cd->hash_lock);
1174}
1175
1176static int c_show(struct seq_file *m, void *p)
1177{
1178 struct cache_head *cp = p;
1179 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1180
1181 if (p == SEQ_START_TOKEN)
1182 return cd->cache_show(m, cd, NULL);
1183
1184 ifdebug(CACHE)
4013edea
N
1185 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1186 cp->expiry_time, atomic_read(&cp->refcnt), cp->flags);
1da177e4
LT
1187 cache_get(cp);
1188 if (cache_check(cd, cp, NULL))
1189 /* cache_check does a cache_put on failure */
1190 seq_printf(m, "# ");
1191 else
1192 cache_put(cp, cd);
1193
1194 return cd->cache_show(m, cd, cp);
1195}
1196
1197static struct seq_operations cache_content_op = {
1198 .start = c_start,
1199 .next = c_next,
1200 .stop = c_stop,
1201 .show = c_show,
1202};
1203
1204static int content_open(struct inode *inode, struct file *file)
1205{
1206 int res;
1207 struct handle *han;
1208 struct cache_detail *cd = PDE(inode)->data;
1209
1210 han = kmalloc(sizeof(*han), GFP_KERNEL);
1211 if (han == NULL)
1212 return -ENOMEM;
1213
1214 han->cd = cd;
1215
1216 res = seq_open(file, &cache_content_op);
1217 if (res)
1218 kfree(han);
1219 else
1220 ((struct seq_file *)file->private_data)->private = han;
1221
1222 return res;
1223}
1224static int content_release(struct inode *inode, struct file *file)
1225{
1226 struct seq_file *m = (struct seq_file *)file->private_data;
1227 struct handle *han = m->private;
1228 kfree(han);
1229 m->private = NULL;
1230 return seq_release(inode, file);
1231}
1232
1233static struct file_operations content_file_operations = {
1234 .open = content_open,
1235 .read = seq_read,
1236 .llseek = seq_lseek,
1237 .release = content_release,
1238};
1239
1240static ssize_t read_flush(struct file *file, char __user *buf,
1241 size_t count, loff_t *ppos)
1242{
1243 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1244 char tbuf[20];
1245 unsigned long p = *ppos;
1246 int len;
1247
1248 sprintf(tbuf, "%lu\n", cd->flush_time);
1249 len = strlen(tbuf);
1250 if (p >= len)
1251 return 0;
1252 len -= p;
1253 if (len > count) len = count;
1254 if (copy_to_user(buf, (void*)(tbuf+p), len))
1255 len = -EFAULT;
1256 else
1257 *ppos += len;
1258 return len;
1259}
1260
1261static ssize_t write_flush(struct file * file, const char __user * buf,
1262 size_t count, loff_t *ppos)
1263{
1264 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1265 char tbuf[20];
1266 char *ep;
1267 long flushtime;
1268 if (*ppos || count > sizeof(tbuf)-1)
1269 return -EINVAL;
1270 if (copy_from_user(tbuf, buf, count))
1271 return -EFAULT;
1272 tbuf[count] = 0;
1273 flushtime = simple_strtoul(tbuf, &ep, 0);
1274 if (*ep && *ep != '\n')
1275 return -EINVAL;
1276
1277 cd->flush_time = flushtime;
1278 cd->nextcheck = get_seconds();
1279 cache_flush();
1280
1281 *ppos += count;
1282 return count;
1283}
1284
1285static struct file_operations cache_flush_operations = {
1286 .open = nonseekable_open,
1287 .read = read_flush,
1288 .write = write_flush,
1289};