]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/sunrpc/sched.c
SUNRPC: Give cloned RPC clients their own rpc_pipefs directory
[mirror_ubuntu-zesty-kernel.git] / net / sunrpc / sched.c
CommitLineData
1da177e4
LT
1/*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12#include <linux/module.h>
13
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mempool.h>
18#include <linux/smp.h>
19#include <linux/smp_lock.h>
20#include <linux/spinlock.h>
4a3e2f71 21#include <linux/mutex.h>
1da177e4
LT
22
23#include <linux/sunrpc/clnt.h>
1da177e4
LT
24
25#ifdef RPC_DEBUG
26#define RPCDBG_FACILITY RPCDBG_SCHED
27#define RPC_TASK_MAGIC_ID 0xf00baa
28static int rpc_task_id;
29#endif
30
31/*
32 * RPC slabs and memory pools
33 */
34#define RPC_BUFFER_MAXSIZE (2048)
35#define RPC_BUFFER_POOLSIZE (8)
36#define RPC_TASK_POOLSIZE (8)
ba89966c
ED
37static kmem_cache_t *rpc_task_slabp __read_mostly;
38static kmem_cache_t *rpc_buffer_slabp __read_mostly;
39static mempool_t *rpc_task_mempool __read_mostly;
40static mempool_t *rpc_buffer_mempool __read_mostly;
1da177e4
LT
41
42static void __rpc_default_timer(struct rpc_task *task);
43static void rpciod_killall(void);
1da177e4
LT
44static void rpc_async_schedule(void *);
45
1da177e4
LT
46/*
47 * RPC tasks sit here while waiting for conditions to improve.
48 */
49static RPC_WAITQ(delay_queue, "delayq");
50
51/*
52 * All RPC tasks are linked into this list
53 */
54static LIST_HEAD(all_tasks);
55
56/*
57 * rpciod-related stuff
58 */
4a3e2f71 59static DEFINE_MUTEX(rpciod_mutex);
1da177e4 60static unsigned int rpciod_users;
24c5d9d7 61struct workqueue_struct *rpciod_workqueue;
1da177e4
LT
62
63/*
64 * Spinlock for other critical sections of code.
65 */
66static DEFINE_SPINLOCK(rpc_sched_lock);
67
68/*
69 * Disable the timer for a given RPC task. Should be called with
70 * queue->lock and bh_disabled in order to avoid races within
71 * rpc_run_timer().
72 */
73static inline void
74__rpc_disable_timer(struct rpc_task *task)
75{
76 dprintk("RPC: %4d disabling timer\n", task->tk_pid);
77 task->tk_timeout_fn = NULL;
78 task->tk_timeout = 0;
79}
80
81/*
82 * Run a timeout function.
83 * We use the callback in order to allow __rpc_wake_up_task()
84 * and friends to disable the timer synchronously on SMP systems
85 * without calling del_timer_sync(). The latter could cause a
86 * deadlock if called while we're holding spinlocks...
87 */
88static void rpc_run_timer(struct rpc_task *task)
89{
90 void (*callback)(struct rpc_task *);
91
92 callback = task->tk_timeout_fn;
93 task->tk_timeout_fn = NULL;
94 if (callback && RPC_IS_QUEUED(task)) {
95 dprintk("RPC: %4d running timer\n", task->tk_pid);
96 callback(task);
97 }
98 smp_mb__before_clear_bit();
99 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
100 smp_mb__after_clear_bit();
101}
102
103/*
104 * Set up a timer for the current task.
105 */
106static inline void
107__rpc_add_timer(struct rpc_task *task, rpc_action timer)
108{
109 if (!task->tk_timeout)
110 return;
111
112 dprintk("RPC: %4d setting alarm for %lu ms\n",
113 task->tk_pid, task->tk_timeout * 1000 / HZ);
114
115 if (timer)
116 task->tk_timeout_fn = timer;
117 else
118 task->tk_timeout_fn = __rpc_default_timer;
119 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
120 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
121}
122
123/*
124 * Delete any timer for the current task. Because we use del_timer_sync(),
125 * this function should never be called while holding queue->lock.
126 */
127static void
128rpc_delete_timer(struct rpc_task *task)
129{
130 if (RPC_IS_QUEUED(task))
131 return;
132 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
133 del_singleshot_timer_sync(&task->tk_timer);
134 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
135 }
136}
137
138/*
139 * Add new request to a priority queue.
140 */
141static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
142{
143 struct list_head *q;
144 struct rpc_task *t;
145
146 INIT_LIST_HEAD(&task->u.tk_wait.links);
147 q = &queue->tasks[task->tk_priority];
148 if (unlikely(task->tk_priority > queue->maxpriority))
149 q = &queue->tasks[queue->maxpriority];
150 list_for_each_entry(t, q, u.tk_wait.list) {
151 if (t->tk_cookie == task->tk_cookie) {
152 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 return;
154 }
155 }
156 list_add_tail(&task->u.tk_wait.list, q);
157}
158
159/*
160 * Add new request to wait queue.
161 *
162 * Swapper tasks always get inserted at the head of the queue.
163 * This should avoid many nasty memory deadlocks and hopefully
164 * improve overall performance.
165 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166 */
167static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
168{
169 BUG_ON (RPC_IS_QUEUED(task));
170
171 if (RPC_IS_PRIORITY(queue))
172 __rpc_add_wait_queue_priority(queue, task);
173 else if (RPC_IS_SWAPPER(task))
174 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
175 else
176 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
177 task->u.tk_wait.rpc_waitq = queue;
e19b63da 178 queue->qlen++;
1da177e4
LT
179 rpc_set_queued(task);
180
181 dprintk("RPC: %4d added to queue %p \"%s\"\n",
182 task->tk_pid, queue, rpc_qname(queue));
183}
184
185/*
186 * Remove request from a priority queue.
187 */
188static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
189{
190 struct rpc_task *t;
191
192 if (!list_empty(&task->u.tk_wait.links)) {
193 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
194 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
195 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
196 }
197 list_del(&task->u.tk_wait.list);
198}
199
200/*
201 * Remove request from queue.
202 * Note: must be called with spin lock held.
203 */
204static void __rpc_remove_wait_queue(struct rpc_task *task)
205{
206 struct rpc_wait_queue *queue;
207 queue = task->u.tk_wait.rpc_waitq;
208
209 if (RPC_IS_PRIORITY(queue))
210 __rpc_remove_wait_queue_priority(task);
211 else
212 list_del(&task->u.tk_wait.list);
e19b63da 213 queue->qlen--;
1da177e4
LT
214 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
215 task->tk_pid, queue, rpc_qname(queue));
216}
217
218static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
219{
220 queue->priority = priority;
221 queue->count = 1 << (priority * 2);
222}
223
224static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
225{
226 queue->cookie = cookie;
227 queue->nr = RPC_BATCH_COUNT;
228}
229
230static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
231{
232 rpc_set_waitqueue_priority(queue, queue->maxpriority);
233 rpc_set_waitqueue_cookie(queue, 0);
234}
235
236static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
237{
238 int i;
239
240 spin_lock_init(&queue->lock);
241 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
242 INIT_LIST_HEAD(&queue->tasks[i]);
243 queue->maxpriority = maxprio;
244 rpc_reset_waitqueue_priority(queue);
245#ifdef RPC_DEBUG
246 queue->name = qname;
247#endif
248}
249
250void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
251{
252 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
253}
254
255void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
256{
257 __rpc_init_priority_wait_queue(queue, qname, 0);
258}
259EXPORT_SYMBOL(rpc_init_wait_queue);
260
44c28873
TM
261static int rpc_wait_bit_interruptible(void *word)
262{
263 if (signal_pending(current))
264 return -ERESTARTSYS;
265 schedule();
266 return 0;
267}
268
e6b3c4db
TM
269static void rpc_set_active(struct rpc_task *task)
270{
271 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
272 return;
273 spin_lock(&rpc_sched_lock);
274#ifdef RPC_DEBUG
275 task->tk_magic = RPC_TASK_MAGIC_ID;
276 task->tk_pid = rpc_task_id++;
277#endif
278 /* Add to global list of all tasks */
279 list_add_tail(&task->tk_task, &all_tasks);
280 spin_unlock(&rpc_sched_lock);
281}
282
44c28873
TM
283/*
284 * Mark an RPC call as having completed by clearing the 'active' bit
285 */
e6b3c4db 286static void rpc_mark_complete_task(struct rpc_task *task)
44c28873 287{
e6b3c4db
TM
288 smp_mb__before_clear_bit();
289 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
290 smp_mb__after_clear_bit();
44c28873
TM
291 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
292}
293
294/*
295 * Allow callers to wait for completion of an RPC call
296 */
297int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
298{
299 if (action == NULL)
300 action = rpc_wait_bit_interruptible;
301 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
302 action, TASK_INTERRUPTIBLE);
303}
304EXPORT_SYMBOL(__rpc_wait_for_completion_task);
305
1da177e4
LT
306/*
307 * Make an RPC task runnable.
308 *
309 * Note: If the task is ASYNC, this must be called with
310 * the spinlock held to protect the wait queue operation.
311 */
312static void rpc_make_runnable(struct rpc_task *task)
313{
1da177e4 314 BUG_ON(task->tk_timeout_fn);
1da177e4 315 rpc_clear_queued(task);
cc4dc59e
CS
316 if (rpc_test_and_set_running(task))
317 return;
318 /* We might have raced */
319 if (RPC_IS_QUEUED(task)) {
320 rpc_clear_running(task);
1da177e4 321 return;
cc4dc59e 322 }
1da177e4
LT
323 if (RPC_IS_ASYNC(task)) {
324 int status;
325
326 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
327 status = queue_work(task->tk_workqueue, &task->u.tk_work);
328 if (status < 0) {
329 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
330 task->tk_status = status;
331 return;
332 }
333 } else
96651ab3 334 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
1da177e4
LT
335}
336
1da177e4
LT
337/*
338 * Prepare for sleeping on a wait queue.
339 * By always appending tasks to the list we ensure FIFO behavior.
340 * NB: An RPC task will only receive interrupt-driven events as long
341 * as it's on a wait queue.
342 */
343static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
344 rpc_action action, rpc_action timer)
345{
346 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
347 rpc_qname(q), jiffies);
348
349 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
350 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
351 return;
352 }
353
1da177e4
LT
354 __rpc_add_wait_queue(q, task);
355
356 BUG_ON(task->tk_callback != NULL);
357 task->tk_callback = action;
358 __rpc_add_timer(task, timer);
359}
360
361void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
362 rpc_action action, rpc_action timer)
363{
e6b3c4db
TM
364 /* Mark the task as being activated if so needed */
365 rpc_set_active(task);
366
1da177e4
LT
367 /*
368 * Protect the queue operations.
369 */
370 spin_lock_bh(&q->lock);
371 __rpc_sleep_on(q, task, action, timer);
372 spin_unlock_bh(&q->lock);
373}
374
375/**
376 * __rpc_do_wake_up_task - wake up a single rpc_task
377 * @task: task to be woken up
378 *
379 * Caller must hold queue->lock, and have cleared the task queued flag.
380 */
381static void __rpc_do_wake_up_task(struct rpc_task *task)
382{
383 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
384
385#ifdef RPC_DEBUG
386 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
387#endif
388 /* Has the task been executed yet? If not, we cannot wake it up! */
389 if (!RPC_IS_ACTIVATED(task)) {
390 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
391 return;
392 }
393
394 __rpc_disable_timer(task);
395 __rpc_remove_wait_queue(task);
396
397 rpc_make_runnable(task);
398
399 dprintk("RPC: __rpc_wake_up_task done\n");
400}
401
402/*
403 * Wake up the specified task
404 */
405static void __rpc_wake_up_task(struct rpc_task *task)
406{
407 if (rpc_start_wakeup(task)) {
408 if (RPC_IS_QUEUED(task))
409 __rpc_do_wake_up_task(task);
410 rpc_finish_wakeup(task);
411 }
412}
413
414/*
415 * Default timeout handler if none specified by user
416 */
417static void
418__rpc_default_timer(struct rpc_task *task)
419{
420 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
421 task->tk_status = -ETIMEDOUT;
422 rpc_wake_up_task(task);
423}
424
425/*
426 * Wake up the specified task
427 */
428void rpc_wake_up_task(struct rpc_task *task)
429{
8aca67f0 430 rcu_read_lock_bh();
1da177e4
LT
431 if (rpc_start_wakeup(task)) {
432 if (RPC_IS_QUEUED(task)) {
433 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
434
8aca67f0
TM
435 /* Note: we're already in a bh-safe context */
436 spin_lock(&queue->lock);
1da177e4 437 __rpc_do_wake_up_task(task);
8aca67f0 438 spin_unlock(&queue->lock);
1da177e4
LT
439 }
440 rpc_finish_wakeup(task);
441 }
8aca67f0 442 rcu_read_unlock_bh();
1da177e4
LT
443}
444
445/*
446 * Wake up the next task on a priority queue.
447 */
448static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
449{
450 struct list_head *q;
451 struct rpc_task *task;
452
453 /*
454 * Service a batch of tasks from a single cookie.
455 */
456 q = &queue->tasks[queue->priority];
457 if (!list_empty(q)) {
458 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
459 if (queue->cookie == task->tk_cookie) {
460 if (--queue->nr)
461 goto out;
462 list_move_tail(&task->u.tk_wait.list, q);
463 }
464 /*
465 * Check if we need to switch queues.
466 */
467 if (--queue->count)
468 goto new_cookie;
469 }
470
471 /*
472 * Service the next queue.
473 */
474 do {
475 if (q == &queue->tasks[0])
476 q = &queue->tasks[queue->maxpriority];
477 else
478 q = q - 1;
479 if (!list_empty(q)) {
480 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
481 goto new_queue;
482 }
483 } while (q != &queue->tasks[queue->priority]);
484
485 rpc_reset_waitqueue_priority(queue);
486 return NULL;
487
488new_queue:
489 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
490new_cookie:
491 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
492out:
493 __rpc_wake_up_task(task);
494 return task;
495}
496
497/*
498 * Wake up the next task on the wait queue.
499 */
500struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
501{
502 struct rpc_task *task = NULL;
503
504 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
8aca67f0
TM
505 rcu_read_lock_bh();
506 spin_lock(&queue->lock);
1da177e4
LT
507 if (RPC_IS_PRIORITY(queue))
508 task = __rpc_wake_up_next_priority(queue);
509 else {
510 task_for_first(task, &queue->tasks[0])
511 __rpc_wake_up_task(task);
512 }
8aca67f0
TM
513 spin_unlock(&queue->lock);
514 rcu_read_unlock_bh();
1da177e4
LT
515
516 return task;
517}
518
519/**
520 * rpc_wake_up - wake up all rpc_tasks
521 * @queue: rpc_wait_queue on which the tasks are sleeping
522 *
523 * Grabs queue->lock
524 */
525void rpc_wake_up(struct rpc_wait_queue *queue)
526{
e6d83d55 527 struct rpc_task *task, *next;
1da177e4 528 struct list_head *head;
e6d83d55 529
8aca67f0
TM
530 rcu_read_lock_bh();
531 spin_lock(&queue->lock);
1da177e4
LT
532 head = &queue->tasks[queue->maxpriority];
533 for (;;) {
e6d83d55 534 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
1da177e4 535 __rpc_wake_up_task(task);
1da177e4
LT
536 if (head == &queue->tasks[0])
537 break;
538 head--;
539 }
8aca67f0
TM
540 spin_unlock(&queue->lock);
541 rcu_read_unlock_bh();
1da177e4
LT
542}
543
544/**
545 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
546 * @queue: rpc_wait_queue on which the tasks are sleeping
547 * @status: status value to set
548 *
549 * Grabs queue->lock
550 */
551void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
552{
e6d83d55 553 struct rpc_task *task, *next;
1da177e4 554 struct list_head *head;
1da177e4 555
8aca67f0
TM
556 rcu_read_lock_bh();
557 spin_lock(&queue->lock);
1da177e4
LT
558 head = &queue->tasks[queue->maxpriority];
559 for (;;) {
e6d83d55 560 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
1da177e4
LT
561 task->tk_status = status;
562 __rpc_wake_up_task(task);
563 }
564 if (head == &queue->tasks[0])
565 break;
566 head--;
567 }
8aca67f0
TM
568 spin_unlock(&queue->lock);
569 rcu_read_unlock_bh();
1da177e4
LT
570}
571
8014793b
TM
572static void __rpc_atrun(struct rpc_task *task)
573{
574 rpc_wake_up_task(task);
575}
576
1da177e4
LT
577/*
578 * Run a task at a later time
579 */
8014793b 580void rpc_delay(struct rpc_task *task, unsigned long delay)
1da177e4
LT
581{
582 task->tk_timeout = delay;
583 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
584}
585
4ce70ada
TM
586/*
587 * Helper to call task->tk_ops->rpc_call_prepare
588 */
589static void rpc_prepare_task(struct rpc_task *task)
590{
591 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
592}
593
d05fdb0c 594/*
963d8fe5 595 * Helper that calls task->tk_ops->rpc_call_done if it exists
d05fdb0c 596 */
abbcf28f 597void rpc_exit_task(struct rpc_task *task)
d05fdb0c 598{
abbcf28f 599 task->tk_action = NULL;
963d8fe5
TM
600 if (task->tk_ops->rpc_call_done != NULL) {
601 task->tk_ops->rpc_call_done(task, task->tk_calldata);
d05fdb0c 602 if (task->tk_action != NULL) {
abbcf28f
TM
603 WARN_ON(RPC_ASSASSINATED(task));
604 /* Always release the RPC slot and buffer memory */
605 xprt_release(task);
d05fdb0c
TM
606 }
607 }
d05fdb0c 608}
abbcf28f 609EXPORT_SYMBOL(rpc_exit_task);
d05fdb0c 610
1da177e4
LT
611/*
612 * This is the RPC `scheduler' (or rather, the finite state machine).
613 */
614static int __rpc_execute(struct rpc_task *task)
615{
616 int status = 0;
617
618 dprintk("RPC: %4d rpc_execute flgs %x\n",
619 task->tk_pid, task->tk_flags);
620
621 BUG_ON(RPC_IS_QUEUED(task));
622
d05fdb0c 623 for (;;) {
1da177e4
LT
624 /*
625 * Garbage collection of pending timers...
626 */
627 rpc_delete_timer(task);
628
629 /*
630 * Execute any pending callback.
631 */
632 if (RPC_DO_CALLBACK(task)) {
633 /* Define a callback save pointer */
634 void (*save_callback)(struct rpc_task *);
635
636 /*
637 * If a callback exists, save it, reset it,
638 * call it.
639 * The save is needed to stop from resetting
640 * another callback set within the callback handler
641 * - Dave
642 */
643 save_callback=task->tk_callback;
644 task->tk_callback=NULL;
645 lock_kernel();
646 save_callback(task);
647 unlock_kernel();
648 }
649
650 /*
651 * Perform the next FSM step.
652 * tk_action may be NULL when the task has been killed
653 * by someone else.
654 */
655 if (!RPC_IS_QUEUED(task)) {
abbcf28f 656 if (task->tk_action == NULL)
1da177e4 657 break;
abbcf28f
TM
658 lock_kernel();
659 task->tk_action(task);
660 unlock_kernel();
1da177e4
LT
661 }
662
663 /*
664 * Lockless check for whether task is sleeping or not.
665 */
666 if (!RPC_IS_QUEUED(task))
667 continue;
668 rpc_clear_running(task);
669 if (RPC_IS_ASYNC(task)) {
670 /* Careful! we may have raced... */
671 if (RPC_IS_QUEUED(task))
672 return 0;
673 if (rpc_test_and_set_running(task))
674 return 0;
675 continue;
676 }
677
678 /* sync task: sleep here */
679 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
96651ab3
TM
680 /* Note: Caller should be using rpc_clnt_sigmask() */
681 status = out_of_line_wait_on_bit(&task->tk_runstate,
682 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
683 TASK_INTERRUPTIBLE);
684 if (status == -ERESTARTSYS) {
1da177e4
LT
685 /*
686 * When a sync task receives a signal, it exits with
687 * -ERESTARTSYS. In order to catch any callbacks that
688 * clean up after sleeping on some queue, we don't
689 * break the loop here, but go around once more.
690 */
96651ab3
TM
691 dprintk("RPC: %4d got signal\n", task->tk_pid);
692 task->tk_flags |= RPC_TASK_KILLED;
693 rpc_exit(task, -ERESTARTSYS);
694 rpc_wake_up_task(task);
1da177e4
LT
695 }
696 rpc_set_running(task);
697 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
698 }
699
e60859ac 700 dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
1da177e4
LT
701 /* Release all resources associated with the task */
702 rpc_release_task(task);
703 return status;
704}
705
706/*
707 * User-visible entry point to the scheduler.
708 *
709 * This may be called recursively if e.g. an async NFS task updates
710 * the attributes and finds that dirty pages must be flushed.
711 * NOTE: Upon exit of this function the task is guaranteed to be
712 * released. In particular note that tk_release() will have
713 * been called, so your task memory may have been freed.
714 */
715int
716rpc_execute(struct rpc_task *task)
717{
44c28873 718 rpc_set_active(task);
1da177e4
LT
719 rpc_set_running(task);
720 return __rpc_execute(task);
721}
722
723static void rpc_async_schedule(void *arg)
724{
725 __rpc_execute((struct rpc_task *)arg);
726}
727
02107148
CL
728/**
729 * rpc_malloc - allocate an RPC buffer
730 * @task: RPC task that will use this buffer
731 * @size: requested byte size
1da177e4
LT
732 *
733 * We try to ensure that some NFS reads and writes can always proceed
734 * by using a mempool when allocating 'small' buffers.
735 * In order to avoid memory starvation triggering more writebacks of
736 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
737 */
02107148 738void * rpc_malloc(struct rpc_task *task, size_t size)
1da177e4 739{
02107148 740 struct rpc_rqst *req = task->tk_rqstp;
dd0fc66f 741 gfp_t gfp;
1da177e4
LT
742
743 if (task->tk_flags & RPC_TASK_SWAPPER)
744 gfp = GFP_ATOMIC;
745 else
746 gfp = GFP_NOFS;
747
748 if (size > RPC_BUFFER_MAXSIZE) {
02107148
CL
749 req->rq_buffer = kmalloc(size, gfp);
750 if (req->rq_buffer)
751 req->rq_bufsize = size;
1da177e4 752 } else {
02107148
CL
753 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
754 if (req->rq_buffer)
755 req->rq_bufsize = RPC_BUFFER_MAXSIZE;
1da177e4 756 }
02107148 757 return req->rq_buffer;
1da177e4
LT
758}
759
02107148
CL
760/**
761 * rpc_free - free buffer allocated via rpc_malloc
762 * @task: RPC task with a buffer to be freed
763 *
764 */
765void rpc_free(struct rpc_task *task)
1da177e4 766{
02107148
CL
767 struct rpc_rqst *req = task->tk_rqstp;
768
769 if (req->rq_buffer) {
770 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
771 mempool_free(req->rq_buffer, rpc_buffer_mempool);
1da177e4 772 else
02107148
CL
773 kfree(req->rq_buffer);
774 req->rq_buffer = NULL;
775 req->rq_bufsize = 0;
1da177e4
LT
776 }
777}
778
779/*
780 * Creation and deletion of RPC task structures
781 */
963d8fe5 782void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
1da177e4
LT
783{
784 memset(task, 0, sizeof(*task));
785 init_timer(&task->tk_timer);
786 task->tk_timer.data = (unsigned long) task;
787 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
44c28873 788 atomic_set(&task->tk_count, 1);
1da177e4
LT
789 task->tk_client = clnt;
790 task->tk_flags = flags;
963d8fe5 791 task->tk_ops = tk_ops;
4ce70ada
TM
792 if (tk_ops->rpc_call_prepare != NULL)
793 task->tk_action = rpc_prepare_task;
963d8fe5 794 task->tk_calldata = calldata;
1da177e4
LT
795
796 /* Initialize retry counters */
797 task->tk_garb_retry = 2;
798 task->tk_cred_retry = 2;
799
800 task->tk_priority = RPC_PRIORITY_NORMAL;
801 task->tk_cookie = (unsigned long)current;
802
803 /* Initialize workqueue for async tasks */
804 task->tk_workqueue = rpciod_workqueue;
1da177e4
LT
805
806 if (clnt) {
807 atomic_inc(&clnt->cl_users);
808 if (clnt->cl_softrtry)
809 task->tk_flags |= RPC_TASK_SOFT;
810 if (!clnt->cl_intr)
811 task->tk_flags |= RPC_TASK_NOINTR;
812 }
813
963d8fe5
TM
814 BUG_ON(task->tk_ops == NULL);
815
ef759a2e
CL
816 /* starting timestamp */
817 task->tk_start = jiffies;
818
1da177e4
LT
819 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
820 current->pid);
821}
822
823static struct rpc_task *
824rpc_alloc_task(void)
825{
826 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
827}
828
8aca67f0 829static void rpc_free_task(struct rcu_head *rcu)
1da177e4 830{
8aca67f0 831 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
1da177e4
LT
832 dprintk("RPC: %4d freeing task\n", task->tk_pid);
833 mempool_free(task, rpc_task_mempool);
834}
835
836/*
837 * Create a new task for the specified client. We have to
838 * clean up after an allocation failure, as the client may
839 * have specified "oneshot".
840 */
963d8fe5 841struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
1da177e4
LT
842{
843 struct rpc_task *task;
844
845 task = rpc_alloc_task();
846 if (!task)
847 goto cleanup;
848
963d8fe5 849 rpc_init_task(task, clnt, flags, tk_ops, calldata);
1da177e4
LT
850
851 dprintk("RPC: %4d allocated task\n", task->tk_pid);
852 task->tk_flags |= RPC_TASK_DYNAMIC;
853out:
854 return task;
855
856cleanup:
857 /* Check whether to release the client */
858 if (clnt) {
859 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
860 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
861 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
862 rpc_release_client(clnt);
863 }
864 goto out;
865}
866
e6b3c4db
TM
867
868void rpc_put_task(struct rpc_task *task)
1da177e4 869{
963d8fe5
TM
870 const struct rpc_call_ops *tk_ops = task->tk_ops;
871 void *calldata = task->tk_calldata;
1da177e4 872
e6b3c4db
TM
873 if (!atomic_dec_and_test(&task->tk_count))
874 return;
875 /* Release resources */
876 if (task->tk_rqstp)
877 xprt_release(task);
878 if (task->tk_msg.rpc_cred)
879 rpcauth_unbindcred(task);
880 if (task->tk_client) {
881 rpc_release_client(task->tk_client);
882 task->tk_client = NULL;
883 }
884 if (task->tk_flags & RPC_TASK_DYNAMIC)
8aca67f0 885 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
e6b3c4db
TM
886 if (tk_ops->rpc_release)
887 tk_ops->rpc_release(calldata);
888}
889EXPORT_SYMBOL(rpc_put_task);
890
891void rpc_release_task(struct rpc_task *task)
892{
1da177e4
LT
893#ifdef RPC_DEBUG
894 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
895#endif
44c28873 896 dprintk("RPC: %4d release task\n", task->tk_pid);
1da177e4
LT
897
898 /* Remove from global task list */
899 spin_lock(&rpc_sched_lock);
900 list_del(&task->tk_task);
901 spin_unlock(&rpc_sched_lock);
902
903 BUG_ON (RPC_IS_QUEUED(task));
1da177e4
LT
904
905 /* Synchronously delete any running timer */
906 rpc_delete_timer(task);
907
1da177e4
LT
908#ifdef RPC_DEBUG
909 task->tk_magic = 0;
910#endif
e6b3c4db
TM
911 /* Wake up anyone who is waiting for task completion */
912 rpc_mark_complete_task(task);
913
914 rpc_put_task(task);
1da177e4
LT
915}
916
44c28873
TM
917/**
918 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
99acf044
MW
919 * @clnt: pointer to RPC client
920 * @flags: RPC flags
921 * @ops: RPC call ops
922 * @data: user call data
44c28873
TM
923 */
924struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
925 const struct rpc_call_ops *ops,
926 void *data)
927{
928 struct rpc_task *task;
929 task = rpc_new_task(clnt, flags, ops, data);
7a1218a2
TM
930 if (task == NULL) {
931 if (ops->rpc_release != NULL)
932 ops->rpc_release(data);
44c28873 933 return ERR_PTR(-ENOMEM);
7a1218a2 934 }
44c28873
TM
935 atomic_inc(&task->tk_count);
936 rpc_execute(task);
937 return task;
938}
939EXPORT_SYMBOL(rpc_run_task);
940
1da177e4
LT
941/*
942 * Kill all tasks for the given client.
943 * XXX: kill their descendants as well?
944 */
945void rpc_killall_tasks(struct rpc_clnt *clnt)
946{
947 struct rpc_task *rovr;
948 struct list_head *le;
949
950 dprintk("RPC: killing all tasks for client %p\n", clnt);
951
952 /*
953 * Spin lock all_tasks to prevent changes...
954 */
955 spin_lock(&rpc_sched_lock);
956 alltask_for_each(rovr, le, &all_tasks) {
957 if (! RPC_IS_ACTIVATED(rovr))
958 continue;
959 if (!clnt || rovr->tk_client == clnt) {
960 rovr->tk_flags |= RPC_TASK_KILLED;
961 rpc_exit(rovr, -EIO);
962 rpc_wake_up_task(rovr);
963 }
964 }
965 spin_unlock(&rpc_sched_lock);
966}
967
968static DECLARE_MUTEX_LOCKED(rpciod_running);
969
970static void rpciod_killall(void)
971{
972 unsigned long flags;
973
974 while (!list_empty(&all_tasks)) {
975 clear_thread_flag(TIF_SIGPENDING);
976 rpc_killall_tasks(NULL);
977 flush_workqueue(rpciod_workqueue);
978 if (!list_empty(&all_tasks)) {
979 dprintk("rpciod_killall: waiting for tasks to exit\n");
980 yield();
981 }
982 }
983
984 spin_lock_irqsave(&current->sighand->siglock, flags);
985 recalc_sigpending();
986 spin_unlock_irqrestore(&current->sighand->siglock, flags);
987}
988
989/*
990 * Start up the rpciod process if it's not already running.
991 */
992int
993rpciod_up(void)
994{
995 struct workqueue_struct *wq;
996 int error = 0;
997
4a3e2f71 998 mutex_lock(&rpciod_mutex);
1da177e4
LT
999 dprintk("rpciod_up: users %d\n", rpciod_users);
1000 rpciod_users++;
1001 if (rpciod_workqueue)
1002 goto out;
1003 /*
1004 * If there's no pid, we should be the first user.
1005 */
1006 if (rpciod_users > 1)
1007 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1008 /*
1009 * Create the rpciod thread and wait for it to start.
1010 */
1011 error = -ENOMEM;
1012 wq = create_workqueue("rpciod");
1013 if (wq == NULL) {
1014 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1015 rpciod_users--;
1016 goto out;
1017 }
1018 rpciod_workqueue = wq;
1019 error = 0;
1020out:
4a3e2f71 1021 mutex_unlock(&rpciod_mutex);
1da177e4
LT
1022 return error;
1023}
1024
1025void
1026rpciod_down(void)
1027{
4a3e2f71 1028 mutex_lock(&rpciod_mutex);
1da177e4
LT
1029 dprintk("rpciod_down sema %d\n", rpciod_users);
1030 if (rpciod_users) {
1031 if (--rpciod_users)
1032 goto out;
1033 } else
1034 printk(KERN_WARNING "rpciod_down: no users??\n");
1035
1036 if (!rpciod_workqueue) {
1037 dprintk("rpciod_down: Nothing to do!\n");
1038 goto out;
1039 }
1040 rpciod_killall();
1041
1042 destroy_workqueue(rpciod_workqueue);
1043 rpciod_workqueue = NULL;
1044 out:
4a3e2f71 1045 mutex_unlock(&rpciod_mutex);
1da177e4
LT
1046}
1047
1048#ifdef RPC_DEBUG
1049void rpc_show_tasks(void)
1050{
1051 struct list_head *le;
1052 struct rpc_task *t;
1053
1054 spin_lock(&rpc_sched_lock);
1055 if (list_empty(&all_tasks)) {
1056 spin_unlock(&rpc_sched_lock);
1057 return;
1058 }
1059 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
963d8fe5 1060 "-rpcwait -action- ---ops--\n");
1da177e4
LT
1061 alltask_for_each(t, le, &all_tasks) {
1062 const char *rpc_waitq = "none";
1063
1064 if (RPC_IS_QUEUED(t))
1065 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1066
1067 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1068 t->tk_pid,
1069 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1070 t->tk_flags, t->tk_status,
1071 t->tk_client,
1072 (t->tk_client ? t->tk_client->cl_prog : 0),
1073 t->tk_rqstp, t->tk_timeout,
1074 rpc_waitq,
963d8fe5 1075 t->tk_action, t->tk_ops);
1da177e4
LT
1076 }
1077 spin_unlock(&rpc_sched_lock);
1078}
1079#endif
1080
1081void
1082rpc_destroy_mempool(void)
1083{
1084 if (rpc_buffer_mempool)
1085 mempool_destroy(rpc_buffer_mempool);
1086 if (rpc_task_mempool)
1087 mempool_destroy(rpc_task_mempool);
1a1d92c1
AD
1088 if (rpc_task_slabp)
1089 kmem_cache_destroy(rpc_task_slabp);
1090 if (rpc_buffer_slabp)
1091 kmem_cache_destroy(rpc_buffer_slabp);
1da177e4
LT
1092}
1093
1094int
1095rpc_init_mempool(void)
1096{
1097 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1098 sizeof(struct rpc_task),
1099 0, SLAB_HWCACHE_ALIGN,
1100 NULL, NULL);
1101 if (!rpc_task_slabp)
1102 goto err_nomem;
1103 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1104 RPC_BUFFER_MAXSIZE,
1105 0, SLAB_HWCACHE_ALIGN,
1106 NULL, NULL);
1107 if (!rpc_buffer_slabp)
1108 goto err_nomem;
93d2341c
MD
1109 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1110 rpc_task_slabp);
1da177e4
LT
1111 if (!rpc_task_mempool)
1112 goto err_nomem;
93d2341c
MD
1113 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1114 rpc_buffer_slabp);
1da177e4
LT
1115 if (!rpc_buffer_mempool)
1116 goto err_nomem;
1117 return 0;
1118err_nomem:
1119 rpc_destroy_mempool();
1120 return -ENOMEM;
1121}