]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - net/tls/tls_sw.c
net/tls: don't leak IV and record seq when offload fails
[mirror_ubuntu-jammy-kernel.git] / net / tls / tls_sw.c
CommitLineData
3c4d7559
DW
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
d3b18ad3 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
3c4d7559
DW
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
c46234eb 38#include <linux/sched/signal.h>
3c4d7559
DW
39#include <linux/module.h>
40#include <crypto/aead.h>
41
c46234eb 42#include <net/strparser.h>
3c4d7559
DW
43#include <net/tls.h>
44
b16520f7
KC
45#define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
46
0927f71d
DRK
47static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48 unsigned int recursion_level)
49{
50 int start = skb_headlen(skb);
51 int i, chunk = start - offset;
52 struct sk_buff *frag_iter;
53 int elt = 0;
54
55 if (unlikely(recursion_level >= 24))
56 return -EMSGSIZE;
57
58 if (chunk > 0) {
59 if (chunk > len)
60 chunk = len;
61 elt++;
62 len -= chunk;
63 if (len == 0)
64 return elt;
65 offset += chunk;
66 }
67
68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69 int end;
70
71 WARN_ON(start > offset + len);
72
73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74 chunk = end - offset;
75 if (chunk > 0) {
76 if (chunk > len)
77 chunk = len;
78 elt++;
79 len -= chunk;
80 if (len == 0)
81 return elt;
82 offset += chunk;
83 }
84 start = end;
85 }
86
87 if (unlikely(skb_has_frag_list(skb))) {
88 skb_walk_frags(skb, frag_iter) {
89 int end, ret;
90
91 WARN_ON(start > offset + len);
92
93 end = start + frag_iter->len;
94 chunk = end - offset;
95 if (chunk > 0) {
96 if (chunk > len)
97 chunk = len;
98 ret = __skb_nsg(frag_iter, offset - start, chunk,
99 recursion_level + 1);
100 if (unlikely(ret < 0))
101 return ret;
102 elt += ret;
103 len -= chunk;
104 if (len == 0)
105 return elt;
106 offset += chunk;
107 }
108 start = end;
109 }
110 }
111 BUG_ON(len);
112 return elt;
113}
114
115/* Return the number of scatterlist elements required to completely map the
116 * skb, or -EMSGSIZE if the recursion depth is exceeded.
117 */
118static int skb_nsg(struct sk_buff *skb, int offset, int len)
119{
120 return __skb_nsg(skb, offset, len, 0);
121}
122
130b392c
DW
123static int padding_length(struct tls_sw_context_rx *ctx,
124 struct tls_context *tls_ctx, struct sk_buff *skb)
125{
126 struct strp_msg *rxm = strp_msg(skb);
127 int sub = 0;
128
129 /* Determine zero-padding length */
4509de14 130 if (tls_ctx->prot_info.version == TLS_1_3_VERSION) {
130b392c
DW
131 char content_type = 0;
132 int err;
133 int back = 17;
134
135 while (content_type == 0) {
136 if (back > rxm->full_len)
137 return -EBADMSG;
138 err = skb_copy_bits(skb,
139 rxm->offset + rxm->full_len - back,
140 &content_type, 1);
141 if (content_type)
142 break;
143 sub++;
144 back++;
145 }
146 ctx->control = content_type;
147 }
148 return sub;
149}
150
94524d8f
VG
151static void tls_decrypt_done(struct crypto_async_request *req, int err)
152{
153 struct aead_request *aead_req = (struct aead_request *)req;
94524d8f 154 struct scatterlist *sgout = aead_req->dst;
692d7b5d 155 struct scatterlist *sgin = aead_req->src;
7a3dd8c8
JF
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
4509de14 158 struct tls_prot_info *prot;
94524d8f 159 struct scatterlist *sg;
7a3dd8c8 160 struct sk_buff *skb;
94524d8f 161 unsigned int pages;
7a3dd8c8
JF
162 int pending;
163
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 167 prot = &tls_ctx->prot_info;
94524d8f
VG
168
169 /* Propagate if there was an err */
170 if (err) {
171 ctx->async_wait.err = err;
7a3dd8c8 172 tls_err_abort(skb->sk, err);
692d7b5d
VG
173 } else {
174 struct strp_msg *rxm = strp_msg(skb);
130b392c 175 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
4509de14
VG
176 rxm->offset += prot->prepend_size;
177 rxm->full_len -= prot->overhead_size;
94524d8f
VG
178 }
179
7a3dd8c8
JF
180 /* After using skb->sk to propagate sk through crypto async callback
181 * we need to NULL it again.
182 */
183 skb->sk = NULL;
184
94524d8f 185
692d7b5d
VG
186 /* Free the destination pages if skb was not decrypted inplace */
187 if (sgout != sgin) {
188 /* Skip the first S/G entry as it points to AAD */
189 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
190 if (!sg)
191 break;
192 put_page(sg_page(sg));
193 }
94524d8f
VG
194 }
195
196 kfree(aead_req);
197
692d7b5d
VG
198 pending = atomic_dec_return(&ctx->decrypt_pending);
199
94524d8f
VG
200 if (!pending && READ_ONCE(ctx->async_notify))
201 complete(&ctx->async_wait.completion);
202}
203
c46234eb 204static int tls_do_decryption(struct sock *sk,
94524d8f 205 struct sk_buff *skb,
c46234eb
DW
206 struct scatterlist *sgin,
207 struct scatterlist *sgout,
208 char *iv_recv,
209 size_t data_len,
94524d8f
VG
210 struct aead_request *aead_req,
211 bool async)
c46234eb
DW
212{
213 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 214 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 215 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 216 int ret;
c46234eb 217
0b243d00 218 aead_request_set_tfm(aead_req, ctx->aead_recv);
4509de14 219 aead_request_set_ad(aead_req, prot->aad_size);
c46234eb 220 aead_request_set_crypt(aead_req, sgin, sgout,
4509de14 221 data_len + prot->tag_size,
c46234eb 222 (u8 *)iv_recv);
c46234eb 223
94524d8f 224 if (async) {
7a3dd8c8
JF
225 /* Using skb->sk to push sk through to crypto async callback
226 * handler. This allows propagating errors up to the socket
227 * if needed. It _must_ be cleared in the async handler
228 * before kfree_skb is called. We _know_ skb->sk is NULL
229 * because it is a clone from strparser.
230 */
231 skb->sk = sk;
94524d8f
VG
232 aead_request_set_callback(aead_req,
233 CRYPTO_TFM_REQ_MAY_BACKLOG,
234 tls_decrypt_done, skb);
235 atomic_inc(&ctx->decrypt_pending);
236 } else {
237 aead_request_set_callback(aead_req,
238 CRYPTO_TFM_REQ_MAY_BACKLOG,
239 crypto_req_done, &ctx->async_wait);
240 }
241
242 ret = crypto_aead_decrypt(aead_req);
243 if (ret == -EINPROGRESS) {
244 if (async)
245 return ret;
246
247 ret = crypto_wait_req(ret, &ctx->async_wait);
248 }
249
250 if (async)
251 atomic_dec(&ctx->decrypt_pending);
252
c46234eb
DW
253 return ret;
254}
255
d829e9c4 256static void tls_trim_both_msgs(struct sock *sk, int target_size)
3c4d7559
DW
257{
258 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 259 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 260 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 261 struct tls_rec *rec = ctx->open_rec;
3c4d7559 262
d829e9c4 263 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
3c4d7559 264 if (target_size > 0)
4509de14 265 target_size += prot->overhead_size;
d829e9c4 266 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
3c4d7559
DW
267}
268
d829e9c4 269static int tls_alloc_encrypted_msg(struct sock *sk, int len)
3c4d7559
DW
270{
271 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 272 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 273 struct tls_rec *rec = ctx->open_rec;
d829e9c4 274 struct sk_msg *msg_en = &rec->msg_encrypted;
3c4d7559 275
d829e9c4 276 return sk_msg_alloc(sk, msg_en, len, 0);
3c4d7559
DW
277}
278
d829e9c4 279static int tls_clone_plaintext_msg(struct sock *sk, int required)
3c4d7559
DW
280{
281 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 282 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8 284 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
285 struct sk_msg *msg_pl = &rec->msg_plaintext;
286 struct sk_msg *msg_en = &rec->msg_encrypted;
4e6d4720 287 int skip, len;
3c4d7559 288
d829e9c4
DB
289 /* We add page references worth len bytes from encrypted sg
290 * at the end of plaintext sg. It is guaranteed that msg_en
4e6d4720
VG
291 * has enough required room (ensured by caller).
292 */
d829e9c4 293 len = required - msg_pl->sg.size;
52ea992c 294
d829e9c4
DB
295 /* Skip initial bytes in msg_en's data to be able to use
296 * same offset of both plain and encrypted data.
4e6d4720 297 */
4509de14 298 skip = prot->prepend_size + msg_pl->sg.size;
4e6d4720 299
d829e9c4 300 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
3c4d7559
DW
301}
302
d3b18ad3 303static struct tls_rec *tls_get_rec(struct sock *sk)
3c4d7559
DW
304{
305 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 306 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 307 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
308 struct sk_msg *msg_pl, *msg_en;
309 struct tls_rec *rec;
310 int mem_size;
3c4d7559 311
d3b18ad3
JF
312 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
313
314 rec = kzalloc(mem_size, sk->sk_allocation);
a42055e8 315 if (!rec)
d3b18ad3
JF
316 return NULL;
317
318 msg_pl = &rec->msg_plaintext;
319 msg_en = &rec->msg_encrypted;
320
321 sk_msg_init(msg_pl);
322 sk_msg_init(msg_en);
323
324 sg_init_table(rec->sg_aead_in, 2);
4509de14 325 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
326 sg_unmark_end(&rec->sg_aead_in[1]);
327
328 sg_init_table(rec->sg_aead_out, 2);
4509de14 329 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
d3b18ad3
JF
330 sg_unmark_end(&rec->sg_aead_out[1]);
331
332 return rec;
333}
a42055e8 334
d3b18ad3
JF
335static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
336{
d829e9c4
DB
337 sk_msg_free(sk, &rec->msg_encrypted);
338 sk_msg_free(sk, &rec->msg_plaintext);
c774973e 339 kfree(rec);
a42055e8
VG
340}
341
d3b18ad3
JF
342static void tls_free_open_rec(struct sock *sk)
343{
344 struct tls_context *tls_ctx = tls_get_ctx(sk);
345 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
346 struct tls_rec *rec = ctx->open_rec;
347
348 if (rec) {
349 tls_free_rec(sk, rec);
350 ctx->open_rec = NULL;
351 }
352}
353
a42055e8
VG
354int tls_tx_records(struct sock *sk, int flags)
355{
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
358 struct tls_rec *rec, *tmp;
d829e9c4 359 struct sk_msg *msg_en;
a42055e8
VG
360 int tx_flags, rc = 0;
361
362 if (tls_is_partially_sent_record(tls_ctx)) {
9932a29a 363 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
364 struct tls_rec, list);
365
366 if (flags == -1)
367 tx_flags = rec->tx_flags;
368 else
369 tx_flags = flags;
370
371 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
372 if (rc)
373 goto tx_err;
374
375 /* Full record has been transmitted.
9932a29a 376 * Remove the head of tx_list
a42055e8 377 */
a42055e8 378 list_del(&rec->list);
d829e9c4 379 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
380 kfree(rec);
381 }
382
9932a29a
VG
383 /* Tx all ready records */
384 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
385 if (READ_ONCE(rec->tx_ready)) {
a42055e8
VG
386 if (flags == -1)
387 tx_flags = rec->tx_flags;
388 else
389 tx_flags = flags;
390
d829e9c4 391 msg_en = &rec->msg_encrypted;
a42055e8 392 rc = tls_push_sg(sk, tls_ctx,
d829e9c4 393 &msg_en->sg.data[msg_en->sg.curr],
a42055e8
VG
394 0, tx_flags);
395 if (rc)
396 goto tx_err;
397
a42055e8 398 list_del(&rec->list);
d829e9c4 399 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
400 kfree(rec);
401 } else {
402 break;
403 }
404 }
405
406tx_err:
407 if (rc < 0 && rc != -EAGAIN)
408 tls_err_abort(sk, EBADMSG);
409
410 return rc;
411}
412
413static void tls_encrypt_done(struct crypto_async_request *req, int err)
414{
415 struct aead_request *aead_req = (struct aead_request *)req;
416 struct sock *sk = req->data;
417 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 418 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 419 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d829e9c4
DB
420 struct scatterlist *sge;
421 struct sk_msg *msg_en;
a42055e8
VG
422 struct tls_rec *rec;
423 bool ready = false;
424 int pending;
425
426 rec = container_of(aead_req, struct tls_rec, aead_req);
d829e9c4 427 msg_en = &rec->msg_encrypted;
a42055e8 428
d829e9c4 429 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
4509de14
VG
430 sge->offset -= prot->prepend_size;
431 sge->length += prot->prepend_size;
a42055e8 432
80ece6a0 433 /* Check if error is previously set on socket */
a42055e8 434 if (err || sk->sk_err) {
a42055e8
VG
435 rec = NULL;
436
437 /* If err is already set on socket, return the same code */
438 if (sk->sk_err) {
439 ctx->async_wait.err = sk->sk_err;
440 } else {
441 ctx->async_wait.err = err;
442 tls_err_abort(sk, err);
443 }
444 }
445
9932a29a
VG
446 if (rec) {
447 struct tls_rec *first_rec;
448
449 /* Mark the record as ready for transmission */
450 smp_store_mb(rec->tx_ready, true);
451
452 /* If received record is at head of tx_list, schedule tx */
453 first_rec = list_first_entry(&ctx->tx_list,
454 struct tls_rec, list);
455 if (rec == first_rec)
456 ready = true;
457 }
a42055e8
VG
458
459 pending = atomic_dec_return(&ctx->encrypt_pending);
460
461 if (!pending && READ_ONCE(ctx->async_notify))
462 complete(&ctx->async_wait.completion);
463
464 if (!ready)
465 return;
466
467 /* Schedule the transmission */
468 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
d829e9c4 469 schedule_delayed_work(&ctx->tx_work.work, 1);
3c4d7559
DW
470}
471
a42055e8
VG
472static int tls_do_encryption(struct sock *sk,
473 struct tls_context *tls_ctx,
a447da7d
DB
474 struct tls_sw_context_tx *ctx,
475 struct aead_request *aead_req,
d829e9c4 476 size_t data_len, u32 start)
3c4d7559 477{
4509de14 478 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 479 struct tls_rec *rec = ctx->open_rec;
d829e9c4
DB
480 struct sk_msg *msg_en = &rec->msg_encrypted;
481 struct scatterlist *sge = sk_msg_elem(msg_en, start);
3c4d7559
DW
482 int rc;
483
32eb67b9 484 memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
4509de14 485 xor_iv_with_seq(prot->version, rec->iv_data,
130b392c 486 tls_ctx->tx.rec_seq);
32eb67b9 487
4509de14
VG
488 sge->offset += prot->prepend_size;
489 sge->length -= prot->prepend_size;
3c4d7559 490
d829e9c4 491 msg_en->sg.curr = start;
4e6d4720 492
3c4d7559 493 aead_request_set_tfm(aead_req, ctx->aead_send);
4509de14 494 aead_request_set_ad(aead_req, prot->aad_size);
d829e9c4
DB
495 aead_request_set_crypt(aead_req, rec->sg_aead_in,
496 rec->sg_aead_out,
32eb67b9 497 data_len, rec->iv_data);
a54667f6
VG
498
499 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
a42055e8
VG
500 tls_encrypt_done, sk);
501
9932a29a
VG
502 /* Add the record in tx_list */
503 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
a42055e8 504 atomic_inc(&ctx->encrypt_pending);
a54667f6 505
a42055e8
VG
506 rc = crypto_aead_encrypt(aead_req);
507 if (!rc || rc != -EINPROGRESS) {
508 atomic_dec(&ctx->encrypt_pending);
4509de14
VG
509 sge->offset -= prot->prepend_size;
510 sge->length += prot->prepend_size;
a42055e8 511 }
3c4d7559 512
9932a29a
VG
513 if (!rc) {
514 WRITE_ONCE(rec->tx_ready, true);
515 } else if (rc != -EINPROGRESS) {
516 list_del(&rec->list);
a42055e8 517 return rc;
9932a29a 518 }
3c4d7559 519
a42055e8
VG
520 /* Unhook the record from context if encryption is not failure */
521 ctx->open_rec = NULL;
4509de14 522 tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
3c4d7559
DW
523 return rc;
524}
525
d3b18ad3
JF
526static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
527 struct tls_rec **to, struct sk_msg *msg_opl,
528 struct sk_msg *msg_oen, u32 split_point,
529 u32 tx_overhead_size, u32 *orig_end)
530{
531 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
532 struct scatterlist *sge, *osge, *nsge;
533 u32 orig_size = msg_opl->sg.size;
534 struct scatterlist tmp = { };
535 struct sk_msg *msg_npl;
536 struct tls_rec *new;
537 int ret;
538
539 new = tls_get_rec(sk);
540 if (!new)
541 return -ENOMEM;
542 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
543 tx_overhead_size, 0);
544 if (ret < 0) {
545 tls_free_rec(sk, new);
546 return ret;
547 }
548
549 *orig_end = msg_opl->sg.end;
550 i = msg_opl->sg.start;
551 sge = sk_msg_elem(msg_opl, i);
552 while (apply && sge->length) {
553 if (sge->length > apply) {
554 u32 len = sge->length - apply;
555
556 get_page(sg_page(sge));
557 sg_set_page(&tmp, sg_page(sge), len,
558 sge->offset + apply);
559 sge->length = apply;
560 bytes += apply;
561 apply = 0;
562 } else {
563 apply -= sge->length;
564 bytes += sge->length;
565 }
566
567 sk_msg_iter_var_next(i);
568 if (i == msg_opl->sg.end)
569 break;
570 sge = sk_msg_elem(msg_opl, i);
571 }
572
573 msg_opl->sg.end = i;
574 msg_opl->sg.curr = i;
575 msg_opl->sg.copybreak = 0;
576 msg_opl->apply_bytes = 0;
577 msg_opl->sg.size = bytes;
578
579 msg_npl = &new->msg_plaintext;
580 msg_npl->apply_bytes = apply;
581 msg_npl->sg.size = orig_size - bytes;
582
583 j = msg_npl->sg.start;
584 nsge = sk_msg_elem(msg_npl, j);
585 if (tmp.length) {
586 memcpy(nsge, &tmp, sizeof(*nsge));
587 sk_msg_iter_var_next(j);
588 nsge = sk_msg_elem(msg_npl, j);
589 }
590
591 osge = sk_msg_elem(msg_opl, i);
592 while (osge->length) {
593 memcpy(nsge, osge, sizeof(*nsge));
594 sg_unmark_end(nsge);
595 sk_msg_iter_var_next(i);
596 sk_msg_iter_var_next(j);
597 if (i == *orig_end)
598 break;
599 osge = sk_msg_elem(msg_opl, i);
600 nsge = sk_msg_elem(msg_npl, j);
601 }
602
603 msg_npl->sg.end = j;
604 msg_npl->sg.curr = j;
605 msg_npl->sg.copybreak = 0;
606
607 *to = new;
608 return 0;
609}
610
611static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
612 struct tls_rec *from, u32 orig_end)
613{
614 struct sk_msg *msg_npl = &from->msg_plaintext;
615 struct sk_msg *msg_opl = &to->msg_plaintext;
616 struct scatterlist *osge, *nsge;
617 u32 i, j;
618
619 i = msg_opl->sg.end;
620 sk_msg_iter_var_prev(i);
621 j = msg_npl->sg.start;
622
623 osge = sk_msg_elem(msg_opl, i);
624 nsge = sk_msg_elem(msg_npl, j);
625
626 if (sg_page(osge) == sg_page(nsge) &&
627 osge->offset + osge->length == nsge->offset) {
628 osge->length += nsge->length;
629 put_page(sg_page(nsge));
630 }
631
632 msg_opl->sg.end = orig_end;
633 msg_opl->sg.curr = orig_end;
634 msg_opl->sg.copybreak = 0;
635 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
636 msg_opl->sg.size += msg_npl->sg.size;
637
638 sk_msg_free(sk, &to->msg_encrypted);
639 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
640
641 kfree(from);
642}
643
3c4d7559
DW
644static int tls_push_record(struct sock *sk, int flags,
645 unsigned char record_type)
646{
647 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 648 struct tls_prot_info *prot = &tls_ctx->prot_info;
f66de3ee 649 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
650 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
651 u32 i, split_point, uninitialized_var(orig_end);
d829e9c4 652 struct sk_msg *msg_pl, *msg_en;
a447da7d 653 struct aead_request *req;
d3b18ad3 654 bool split;
3c4d7559
DW
655 int rc;
656
a42055e8
VG
657 if (!rec)
658 return 0;
a447da7d 659
d829e9c4
DB
660 msg_pl = &rec->msg_plaintext;
661 msg_en = &rec->msg_encrypted;
662
d3b18ad3
JF
663 split_point = msg_pl->apply_bytes;
664 split = split_point && split_point < msg_pl->sg.size;
665 if (split) {
666 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
4509de14 667 split_point, prot->overhead_size,
d3b18ad3
JF
668 &orig_end);
669 if (rc < 0)
670 return rc;
671 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
4509de14 672 prot->overhead_size);
d3b18ad3
JF
673 }
674
a42055e8
VG
675 rec->tx_flags = flags;
676 req = &rec->aead_req;
3c4d7559 677
d829e9c4
DB
678 i = msg_pl->sg.end;
679 sk_msg_iter_var_prev(i);
130b392c
DW
680
681 rec->content_type = record_type;
4509de14 682 if (prot->version == TLS_1_3_VERSION) {
130b392c
DW
683 /* Add content type to end of message. No padding added */
684 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
685 sg_mark_end(&rec->sg_content_type);
686 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
687 &rec->sg_content_type);
688 } else {
689 sg_mark_end(sk_msg_elem(msg_pl, i));
690 }
a42055e8 691
d829e9c4
DB
692 i = msg_pl->sg.start;
693 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
694 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
695
696 i = msg_en->sg.end;
697 sk_msg_iter_var_prev(i);
698 sg_mark_end(sk_msg_elem(msg_en, i));
699
700 i = msg_en->sg.start;
701 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
702
4509de14
VG
703 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
704 tls_ctx->tx.rec_seq, prot->rec_seq_size,
705 record_type, prot->version);
3c4d7559
DW
706
707 tls_fill_prepend(tls_ctx,
d829e9c4 708 page_address(sg_page(&msg_en->sg.data[i])) +
130b392c 709 msg_en->sg.data[i].offset,
4509de14
VG
710 msg_pl->sg.size + prot->tail_size,
711 record_type, prot->version);
3c4d7559 712
d829e9c4 713 tls_ctx->pending_open_record_frags = false;
3c4d7559 714
130b392c 715 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
4509de14 716 msg_pl->sg.size + prot->tail_size, i);
a42055e8 717 if (rc < 0) {
d3b18ad3 718 if (rc != -EINPROGRESS) {
d829e9c4 719 tls_err_abort(sk, EBADMSG);
d3b18ad3
JF
720 if (split) {
721 tls_ctx->pending_open_record_frags = true;
722 tls_merge_open_record(sk, rec, tmp, orig_end);
723 }
724 }
5b053e12 725 ctx->async_capable = 1;
a42055e8 726 return rc;
d3b18ad3
JF
727 } else if (split) {
728 msg_pl = &tmp->msg_plaintext;
729 msg_en = &tmp->msg_encrypted;
4509de14 730 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
d3b18ad3
JF
731 tls_ctx->pending_open_record_frags = true;
732 ctx->open_rec = tmp;
a42055e8 733 }
3c4d7559 734
9932a29a 735 return tls_tx_records(sk, flags);
3c4d7559
DW
736}
737
d3b18ad3
JF
738static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
739 bool full_record, u8 record_type,
740 size_t *copied, int flags)
3c4d7559
DW
741{
742 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 743 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
d3b18ad3
JF
744 struct sk_msg msg_redir = { };
745 struct sk_psock *psock;
746 struct sock *sk_redir;
a42055e8 747 struct tls_rec *rec;
0608c69c 748 bool enospc, policy;
d3b18ad3 749 int err = 0, send;
7246d8ed 750 u32 delta = 0;
d3b18ad3 751
0608c69c 752 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
d3b18ad3 753 psock = sk_psock_get(sk);
0608c69c 754 if (!psock || !policy)
d3b18ad3
JF
755 return tls_push_record(sk, flags, record_type);
756more_data:
757 enospc = sk_msg_full(msg);
7246d8ed
JF
758 if (psock->eval == __SK_NONE) {
759 delta = msg->sg.size;
d3b18ad3 760 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
7246d8ed
JF
761 if (delta < msg->sg.size)
762 delta -= msg->sg.size;
763 else
764 delta = 0;
765 }
d3b18ad3
JF
766 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
767 !enospc && !full_record) {
768 err = -ENOSPC;
769 goto out_err;
770 }
771 msg->cork_bytes = 0;
772 send = msg->sg.size;
773 if (msg->apply_bytes && msg->apply_bytes < send)
774 send = msg->apply_bytes;
775
776 switch (psock->eval) {
777 case __SK_PASS:
778 err = tls_push_record(sk, flags, record_type);
779 if (err < 0) {
780 *copied -= sk_msg_free(sk, msg);
781 tls_free_open_rec(sk);
782 goto out_err;
783 }
784 break;
785 case __SK_REDIRECT:
786 sk_redir = psock->sk_redir;
787 memcpy(&msg_redir, msg, sizeof(*msg));
788 if (msg->apply_bytes < send)
789 msg->apply_bytes = 0;
790 else
791 msg->apply_bytes -= send;
792 sk_msg_return_zero(sk, msg, send);
793 msg->sg.size -= send;
794 release_sock(sk);
795 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
796 lock_sock(sk);
797 if (err < 0) {
798 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
799 msg->sg.size = 0;
800 }
801 if (msg->sg.size == 0)
802 tls_free_open_rec(sk);
803 break;
804 case __SK_DROP:
805 default:
806 sk_msg_free_partial(sk, msg, send);
807 if (msg->apply_bytes < send)
808 msg->apply_bytes = 0;
809 else
810 msg->apply_bytes -= send;
811 if (msg->sg.size == 0)
812 tls_free_open_rec(sk);
7246d8ed 813 *copied -= (send + delta);
d3b18ad3
JF
814 err = -EACCES;
815 }
a42055e8 816
d3b18ad3
JF
817 if (likely(!err)) {
818 bool reset_eval = !ctx->open_rec;
a42055e8 819
d3b18ad3
JF
820 rec = ctx->open_rec;
821 if (rec) {
822 msg = &rec->msg_plaintext;
823 if (!msg->apply_bytes)
824 reset_eval = true;
825 }
826 if (reset_eval) {
827 psock->eval = __SK_NONE;
828 if (psock->sk_redir) {
829 sock_put(psock->sk_redir);
830 psock->sk_redir = NULL;
831 }
832 }
833 if (rec)
834 goto more_data;
835 }
836 out_err:
837 sk_psock_put(sk, psock);
838 return err;
839}
840
841static int tls_sw_push_pending_record(struct sock *sk, int flags)
842{
843 struct tls_context *tls_ctx = tls_get_ctx(sk);
844 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
845 struct tls_rec *rec = ctx->open_rec;
846 struct sk_msg *msg_pl;
847 size_t copied;
a42055e8 848
a42055e8 849 if (!rec)
d3b18ad3 850 return 0;
a42055e8 851
d829e9c4 852 msg_pl = &rec->msg_plaintext;
d3b18ad3
JF
853 copied = msg_pl->sg.size;
854 if (!copied)
855 return 0;
a42055e8 856
d3b18ad3
JF
857 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
858 &copied, flags);
a42055e8
VG
859}
860
861int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
862{
3c4d7559 863 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
a42055e8 864 struct tls_context *tls_ctx = tls_get_ctx(sk);
4509de14 865 struct tls_prot_info *prot = &tls_ctx->prot_info;
a42055e8 866 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
5b053e12 867 bool async_capable = ctx->async_capable;
a42055e8 868 unsigned char record_type = TLS_RECORD_TYPE_DATA;
00e23707 869 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
3c4d7559
DW
870 bool eor = !(msg->msg_flags & MSG_MORE);
871 size_t try_to_copy, copied = 0;
d829e9c4 872 struct sk_msg *msg_pl, *msg_en;
a42055e8
VG
873 struct tls_rec *rec;
874 int required_size;
875 int num_async = 0;
3c4d7559 876 bool full_record;
a42055e8
VG
877 int record_room;
878 int num_zc = 0;
3c4d7559 879 int orig_size;
4128c0cf 880 int ret = 0;
3c4d7559
DW
881
882 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
883 return -ENOTSUPP;
884
885 lock_sock(sk);
886
a42055e8
VG
887 /* Wait till there is any pending write on socket */
888 if (unlikely(sk->sk_write_pending)) {
889 ret = wait_on_pending_writer(sk, &timeo);
890 if (unlikely(ret))
891 goto send_end;
892 }
3c4d7559
DW
893
894 if (unlikely(msg->msg_controllen)) {
895 ret = tls_proccess_cmsg(sk, msg, &record_type);
a42055e8
VG
896 if (ret) {
897 if (ret == -EINPROGRESS)
898 num_async++;
899 else if (ret != -EAGAIN)
900 goto send_end;
901 }
3c4d7559
DW
902 }
903
904 while (msg_data_left(msg)) {
905 if (sk->sk_err) {
30be8f8d 906 ret = -sk->sk_err;
3c4d7559
DW
907 goto send_end;
908 }
909
d3b18ad3
JF
910 if (ctx->open_rec)
911 rec = ctx->open_rec;
912 else
913 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
914 if (!rec) {
915 ret = -ENOMEM;
916 goto send_end;
917 }
918
d829e9c4
DB
919 msg_pl = &rec->msg_plaintext;
920 msg_en = &rec->msg_encrypted;
921
922 orig_size = msg_pl->sg.size;
3c4d7559
DW
923 full_record = false;
924 try_to_copy = msg_data_left(msg);
d829e9c4 925 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
3c4d7559
DW
926 if (try_to_copy >= record_room) {
927 try_to_copy = record_room;
928 full_record = true;
929 }
930
d829e9c4 931 required_size = msg_pl->sg.size + try_to_copy +
4509de14 932 prot->overhead_size;
3c4d7559
DW
933
934 if (!sk_stream_memory_free(sk))
935 goto wait_for_sndbuf;
a42055e8 936
3c4d7559 937alloc_encrypted:
d829e9c4 938 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
939 if (ret) {
940 if (ret != -ENOSPC)
941 goto wait_for_memory;
942
943 /* Adjust try_to_copy according to the amount that was
944 * actually allocated. The difference is due
945 * to max sg elements limit
946 */
d829e9c4 947 try_to_copy -= required_size - msg_en->sg.size;
3c4d7559
DW
948 full_record = true;
949 }
a42055e8
VG
950
951 if (!is_kvec && (full_record || eor) && !async_capable) {
d3b18ad3
JF
952 u32 first = msg_pl->sg.end;
953
d829e9c4
DB
954 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
955 msg_pl, try_to_copy);
3c4d7559
DW
956 if (ret)
957 goto fallback_to_reg_send;
958
4e6d4720
VG
959 rec->inplace_crypto = 0;
960
a42055e8 961 num_zc++;
3c4d7559 962 copied += try_to_copy;
d3b18ad3
JF
963
964 sk_msg_sg_copy_set(msg_pl, first);
965 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
966 record_type, &copied,
967 msg->msg_flags);
a42055e8
VG
968 if (ret) {
969 if (ret == -EINPROGRESS)
970 num_async++;
d3b18ad3
JF
971 else if (ret == -ENOMEM)
972 goto wait_for_memory;
973 else if (ret == -ENOSPC)
974 goto rollback_iter;
a42055e8
VG
975 else if (ret != -EAGAIN)
976 goto send_end;
977 }
5a3611ef 978 continue;
d3b18ad3
JF
979rollback_iter:
980 copied -= try_to_copy;
981 sk_msg_sg_copy_clear(msg_pl, first);
982 iov_iter_revert(&msg->msg_iter,
983 msg_pl->sg.size - orig_size);
3c4d7559 984fallback_to_reg_send:
d829e9c4 985 sk_msg_trim(sk, msg_pl, orig_size);
3c4d7559
DW
986 }
987
d829e9c4 988 required_size = msg_pl->sg.size + try_to_copy;
4e6d4720 989
d829e9c4 990 ret = tls_clone_plaintext_msg(sk, required_size);
3c4d7559
DW
991 if (ret) {
992 if (ret != -ENOSPC)
4e6d4720 993 goto send_end;
3c4d7559
DW
994
995 /* Adjust try_to_copy according to the amount that was
996 * actually allocated. The difference is due
997 * to max sg elements limit
998 */
d829e9c4 999 try_to_copy -= required_size - msg_pl->sg.size;
3c4d7559 1000 full_record = true;
4509de14
VG
1001 sk_msg_trim(sk, msg_en,
1002 msg_pl->sg.size + prot->overhead_size);
3c4d7559
DW
1003 }
1004
65a10e28
VG
1005 if (try_to_copy) {
1006 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1007 msg_pl, try_to_copy);
1008 if (ret < 0)
1009 goto trim_sgl;
1010 }
3c4d7559 1011
d829e9c4
DB
1012 /* Open records defined only if successfully copied, otherwise
1013 * we would trim the sg but not reset the open record frags.
1014 */
1015 tls_ctx->pending_open_record_frags = true;
3c4d7559
DW
1016 copied += try_to_copy;
1017 if (full_record || eor) {
d3b18ad3
JF
1018 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1019 record_type, &copied,
1020 msg->msg_flags);
3c4d7559 1021 if (ret) {
a42055e8
VG
1022 if (ret == -EINPROGRESS)
1023 num_async++;
d3b18ad3
JF
1024 else if (ret == -ENOMEM)
1025 goto wait_for_memory;
1026 else if (ret != -EAGAIN) {
1027 if (ret == -ENOSPC)
1028 ret = 0;
a42055e8 1029 goto send_end;
d3b18ad3 1030 }
3c4d7559
DW
1031 }
1032 }
1033
1034 continue;
1035
1036wait_for_sndbuf:
1037 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1038wait_for_memory:
1039 ret = sk_stream_wait_memory(sk, &timeo);
1040 if (ret) {
1041trim_sgl:
d829e9c4 1042 tls_trim_both_msgs(sk, orig_size);
3c4d7559
DW
1043 goto send_end;
1044 }
1045
d829e9c4 1046 if (msg_en->sg.size < required_size)
3c4d7559 1047 goto alloc_encrypted;
3c4d7559
DW
1048 }
1049
a42055e8
VG
1050 if (!num_async) {
1051 goto send_end;
1052 } else if (num_zc) {
1053 /* Wait for pending encryptions to get completed */
1054 smp_store_mb(ctx->async_notify, true);
1055
1056 if (atomic_read(&ctx->encrypt_pending))
1057 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1058 else
1059 reinit_completion(&ctx->async_wait.completion);
1060
1061 WRITE_ONCE(ctx->async_notify, false);
1062
1063 if (ctx->async_wait.err) {
1064 ret = ctx->async_wait.err;
1065 copied = 0;
1066 }
1067 }
1068
1069 /* Transmit if any encryptions have completed */
1070 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1071 cancel_delayed_work(&ctx->tx_work.work);
1072 tls_tx_records(sk, msg->msg_flags);
1073 }
1074
3c4d7559
DW
1075send_end:
1076 ret = sk_stream_error(sk, msg->msg_flags, ret);
1077
1078 release_sock(sk);
1079 return copied ? copied : ret;
1080}
1081
01cb8a1a
Y
1082static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1083 int offset, size_t size, int flags)
3c4d7559 1084{
a42055e8 1085 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
3c4d7559 1086 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1087 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
4509de14 1088 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559 1089 unsigned char record_type = TLS_RECORD_TYPE_DATA;
d829e9c4 1090 struct sk_msg *msg_pl;
a42055e8
VG
1091 struct tls_rec *rec;
1092 int num_async = 0;
d3b18ad3 1093 size_t copied = 0;
3c4d7559
DW
1094 bool full_record;
1095 int record_room;
4128c0cf 1096 int ret = 0;
a42055e8 1097 bool eor;
3c4d7559 1098
3c4d7559 1099 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
3c4d7559
DW
1100 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1101
a42055e8
VG
1102 /* Wait till there is any pending write on socket */
1103 if (unlikely(sk->sk_write_pending)) {
1104 ret = wait_on_pending_writer(sk, &timeo);
1105 if (unlikely(ret))
1106 goto sendpage_end;
1107 }
3c4d7559
DW
1108
1109 /* Call the sk_stream functions to manage the sndbuf mem. */
1110 while (size > 0) {
1111 size_t copy, required_size;
1112
1113 if (sk->sk_err) {
30be8f8d 1114 ret = -sk->sk_err;
3c4d7559
DW
1115 goto sendpage_end;
1116 }
1117
d3b18ad3
JF
1118 if (ctx->open_rec)
1119 rec = ctx->open_rec;
1120 else
1121 rec = ctx->open_rec = tls_get_rec(sk);
a42055e8
VG
1122 if (!rec) {
1123 ret = -ENOMEM;
1124 goto sendpage_end;
1125 }
1126
d829e9c4
DB
1127 msg_pl = &rec->msg_plaintext;
1128
3c4d7559 1129 full_record = false;
d829e9c4 1130 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
d3b18ad3 1131 copied = 0;
3c4d7559
DW
1132 copy = size;
1133 if (copy >= record_room) {
1134 copy = record_room;
1135 full_record = true;
1136 }
d829e9c4 1137
4509de14 1138 required_size = msg_pl->sg.size + copy + prot->overhead_size;
3c4d7559
DW
1139
1140 if (!sk_stream_memory_free(sk))
1141 goto wait_for_sndbuf;
1142alloc_payload:
d829e9c4 1143 ret = tls_alloc_encrypted_msg(sk, required_size);
3c4d7559
DW
1144 if (ret) {
1145 if (ret != -ENOSPC)
1146 goto wait_for_memory;
1147
1148 /* Adjust copy according to the amount that was
1149 * actually allocated. The difference is due
1150 * to max sg elements limit
1151 */
d829e9c4 1152 copy -= required_size - msg_pl->sg.size;
3c4d7559
DW
1153 full_record = true;
1154 }
1155
d829e9c4 1156 sk_msg_page_add(msg_pl, page, copy, offset);
3c4d7559 1157 sk_mem_charge(sk, copy);
d829e9c4 1158
3c4d7559
DW
1159 offset += copy;
1160 size -= copy;
d3b18ad3 1161 copied += copy;
3c4d7559 1162
d829e9c4
DB
1163 tls_ctx->pending_open_record_frags = true;
1164 if (full_record || eor || sk_msg_full(msg_pl)) {
4e6d4720 1165 rec->inplace_crypto = 0;
d3b18ad3
JF
1166 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1167 record_type, &copied, flags);
3c4d7559 1168 if (ret) {
a42055e8
VG
1169 if (ret == -EINPROGRESS)
1170 num_async++;
d3b18ad3
JF
1171 else if (ret == -ENOMEM)
1172 goto wait_for_memory;
1173 else if (ret != -EAGAIN) {
1174 if (ret == -ENOSPC)
1175 ret = 0;
a42055e8 1176 goto sendpage_end;
d3b18ad3 1177 }
3c4d7559
DW
1178 }
1179 }
1180 continue;
1181wait_for_sndbuf:
1182 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1183wait_for_memory:
1184 ret = sk_stream_wait_memory(sk, &timeo);
1185 if (ret) {
d829e9c4 1186 tls_trim_both_msgs(sk, msg_pl->sg.size);
3c4d7559
DW
1187 goto sendpage_end;
1188 }
1189
3c4d7559
DW
1190 goto alloc_payload;
1191 }
1192
a42055e8
VG
1193 if (num_async) {
1194 /* Transmit if any encryptions have completed */
1195 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1196 cancel_delayed_work(&ctx->tx_work.work);
1197 tls_tx_records(sk, flags);
1198 }
1199 }
3c4d7559 1200sendpage_end:
d3b18ad3 1201 ret = sk_stream_error(sk, flags, ret);
d3b18ad3 1202 return copied ? copied : ret;
3c4d7559
DW
1203}
1204
0608c69c
JF
1205int tls_sw_sendpage(struct sock *sk, struct page *page,
1206 int offset, size_t size, int flags)
1207{
1208 int ret;
1209
1210 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1211 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1212 return -ENOTSUPP;
1213
1214 lock_sock(sk);
1215 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1216 release_sock(sk);
1217 return ret;
1218}
1219
d3b18ad3
JF
1220static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1221 int flags, long timeo, int *err)
c46234eb
DW
1222{
1223 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1225 struct sk_buff *skb;
1226 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1227
d3b18ad3 1228 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
c46234eb
DW
1229 if (sk->sk_err) {
1230 *err = sock_error(sk);
1231 return NULL;
1232 }
1233
fcf4793e
DRK
1234 if (sk->sk_shutdown & RCV_SHUTDOWN)
1235 return NULL;
1236
c46234eb
DW
1237 if (sock_flag(sk, SOCK_DONE))
1238 return NULL;
1239
1240 if ((flags & MSG_DONTWAIT) || !timeo) {
1241 *err = -EAGAIN;
1242 return NULL;
1243 }
1244
1245 add_wait_queue(sk_sleep(sk), &wait);
1246 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
d3b18ad3
JF
1247 sk_wait_event(sk, &timeo,
1248 ctx->recv_pkt != skb ||
1249 !sk_psock_queue_empty(psock),
1250 &wait);
c46234eb
DW
1251 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1252 remove_wait_queue(sk_sleep(sk), &wait);
1253
1254 /* Handle signals */
1255 if (signal_pending(current)) {
1256 *err = sock_intr_errno(timeo);
1257 return NULL;
1258 }
1259 }
1260
1261 return skb;
1262}
1263
d829e9c4
DB
1264static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1265 int length, int *pages_used,
1266 unsigned int *size_used,
1267 struct scatterlist *to,
1268 int to_max_pages)
1269{
1270 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1271 struct page *pages[MAX_SKB_FRAGS];
1272 unsigned int size = *size_used;
1273 ssize_t copied, use;
1274 size_t offset;
1275
1276 while (length > 0) {
1277 i = 0;
1278 maxpages = to_max_pages - num_elem;
1279 if (maxpages == 0) {
1280 rc = -EFAULT;
1281 goto out;
1282 }
1283 copied = iov_iter_get_pages(from, pages,
1284 length,
1285 maxpages, &offset);
1286 if (copied <= 0) {
1287 rc = -EFAULT;
1288 goto out;
1289 }
1290
1291 iov_iter_advance(from, copied);
1292
1293 length -= copied;
1294 size += copied;
1295 while (copied) {
1296 use = min_t(int, copied, PAGE_SIZE - offset);
1297
1298 sg_set_page(&to[num_elem],
1299 pages[i], use, offset);
1300 sg_unmark_end(&to[num_elem]);
1301 /* We do not uncharge memory from this API */
1302
1303 offset = 0;
1304 copied -= use;
1305
1306 i++;
1307 num_elem++;
1308 }
1309 }
1310 /* Mark the end in the last sg entry if newly added */
1311 if (num_elem > *pages_used)
1312 sg_mark_end(&to[num_elem - 1]);
1313out:
1314 if (rc)
1315 iov_iter_revert(from, size - *size_used);
1316 *size_used = size;
1317 *pages_used = num_elem;
1318
1319 return rc;
1320}
1321
0b243d00
VG
1322/* This function decrypts the input skb into either out_iov or in out_sg
1323 * or in skb buffers itself. The input parameter 'zc' indicates if
1324 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1325 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1326 * NULL, then the decryption happens inside skb buffers itself, i.e.
1327 * zero-copy gets disabled and 'zc' is updated.
1328 */
1329
1330static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1331 struct iov_iter *out_iov,
1332 struct scatterlist *out_sg,
692d7b5d 1333 int *chunk, bool *zc, bool async)
0b243d00
VG
1334{
1335 struct tls_context *tls_ctx = tls_get_ctx(sk);
1336 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1337 struct tls_prot_info *prot = &tls_ctx->prot_info;
0b243d00
VG
1338 struct strp_msg *rxm = strp_msg(skb);
1339 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1340 struct aead_request *aead_req;
1341 struct sk_buff *unused;
1342 u8 *aad, *iv, *mem = NULL;
1343 struct scatterlist *sgin = NULL;
1344 struct scatterlist *sgout = NULL;
4509de14
VG
1345 const int data_len = rxm->full_len - prot->overhead_size +
1346 prot->tail_size;
0b243d00
VG
1347
1348 if (*zc && (out_iov || out_sg)) {
1349 if (out_iov)
1350 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1351 else
1352 n_sgout = sg_nents(out_sg);
4509de14
VG
1353 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1354 rxm->full_len - prot->prepend_size);
0b243d00
VG
1355 } else {
1356 n_sgout = 0;
1357 *zc = false;
0927f71d 1358 n_sgin = skb_cow_data(skb, 0, &unused);
0b243d00
VG
1359 }
1360
0b243d00
VG
1361 if (n_sgin < 1)
1362 return -EBADMSG;
1363
1364 /* Increment to accommodate AAD */
1365 n_sgin = n_sgin + 1;
1366
1367 nsg = n_sgin + n_sgout;
1368
1369 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1370 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
4509de14 1371 mem_size = mem_size + prot->aad_size;
0b243d00
VG
1372 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1373
1374 /* Allocate a single block of memory which contains
1375 * aead_req || sgin[] || sgout[] || aad || iv.
1376 * This order achieves correct alignment for aead_req, sgin, sgout.
1377 */
1378 mem = kmalloc(mem_size, sk->sk_allocation);
1379 if (!mem)
1380 return -ENOMEM;
1381
1382 /* Segment the allocated memory */
1383 aead_req = (struct aead_request *)mem;
1384 sgin = (struct scatterlist *)(mem + aead_size);
1385 sgout = sgin + n_sgin;
1386 aad = (u8 *)(sgout + n_sgout);
4509de14 1387 iv = aad + prot->aad_size;
0b243d00
VG
1388
1389 /* Prepare IV */
1390 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1391 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
4509de14 1392 prot->iv_size);
0b243d00
VG
1393 if (err < 0) {
1394 kfree(mem);
1395 return err;
1396 }
4509de14 1397 if (prot->version == TLS_1_3_VERSION)
130b392c
DW
1398 memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv));
1399 else
1400 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1401
4509de14 1402 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
0b243d00
VG
1403
1404 /* Prepare AAD */
4509de14
VG
1405 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1406 prot->tail_size,
1407 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1408 ctx->control, prot->version);
0b243d00
VG
1409
1410 /* Prepare sgin */
1411 sg_init_table(sgin, n_sgin);
4509de14 1412 sg_set_buf(&sgin[0], aad, prot->aad_size);
0b243d00 1413 err = skb_to_sgvec(skb, &sgin[1],
4509de14
VG
1414 rxm->offset + prot->prepend_size,
1415 rxm->full_len - prot->prepend_size);
0b243d00
VG
1416 if (err < 0) {
1417 kfree(mem);
1418 return err;
1419 }
1420
1421 if (n_sgout) {
1422 if (out_iov) {
1423 sg_init_table(sgout, n_sgout);
4509de14 1424 sg_set_buf(&sgout[0], aad, prot->aad_size);
0b243d00
VG
1425
1426 *chunk = 0;
d829e9c4
DB
1427 err = tls_setup_from_iter(sk, out_iov, data_len,
1428 &pages, chunk, &sgout[1],
1429 (n_sgout - 1));
0b243d00
VG
1430 if (err < 0)
1431 goto fallback_to_reg_recv;
1432 } else if (out_sg) {
1433 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1434 } else {
1435 goto fallback_to_reg_recv;
1436 }
1437 } else {
1438fallback_to_reg_recv:
1439 sgout = sgin;
1440 pages = 0;
692d7b5d 1441 *chunk = data_len;
0b243d00
VG
1442 *zc = false;
1443 }
1444
1445 /* Prepare and submit AEAD request */
94524d8f 1446 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
692d7b5d 1447 data_len, aead_req, async);
94524d8f
VG
1448 if (err == -EINPROGRESS)
1449 return err;
0b243d00
VG
1450
1451 /* Release the pages in case iov was mapped to pages */
1452 for (; pages > 0; pages--)
1453 put_page(sg_page(&sgout[pages]));
1454
1455 kfree(mem);
1456 return err;
1457}
1458
dafb67f3 1459static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
692d7b5d
VG
1460 struct iov_iter *dest, int *chunk, bool *zc,
1461 bool async)
dafb67f3
BP
1462{
1463 struct tls_context *tls_ctx = tls_get_ctx(sk);
1464 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14
VG
1465 struct tls_prot_info *prot = &tls_ctx->prot_info;
1466 int version = prot->version;
dafb67f3
BP
1467 struct strp_msg *rxm = strp_msg(skb);
1468 int err = 0;
1469
4799ac81 1470 if (!ctx->decrypted) {
d069b780
BP
1471#ifdef CONFIG_TLS_DEVICE
1472 err = tls_device_decrypted(sk, skb);
1473 if (err < 0)
4799ac81 1474 return err;
d069b780
BP
1475#endif
1476 /* Still not decrypted after tls_device */
1477 if (!ctx->decrypted) {
1478 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1479 async);
1480 if (err < 0) {
1481 if (err == -EINPROGRESS)
1482 tls_advance_record_sn(sk, &tls_ctx->rx,
1483 version);
1484
1485 return err;
1486 }
c43ac97b
JK
1487 } else {
1488 *zc = false;
94524d8f 1489 }
130b392c
DW
1490
1491 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
4509de14
VG
1492 rxm->offset += prot->prepend_size;
1493 rxm->full_len -= prot->overhead_size;
130b392c 1494 tls_advance_record_sn(sk, &tls_ctx->rx, version);
fedf201e
DW
1495 ctx->decrypted = true;
1496 ctx->saved_data_ready(sk);
4799ac81
BP
1497 } else {
1498 *zc = false;
1499 }
dafb67f3 1500
dafb67f3
BP
1501 return err;
1502}
1503
1504int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1505 struct scatterlist *sgout)
c46234eb 1506{
0b243d00
VG
1507 bool zc = true;
1508 int chunk;
c46234eb 1509
692d7b5d 1510 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
c46234eb
DW
1511}
1512
1513static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1514 unsigned int len)
1515{
1516 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1517 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb 1518
94524d8f
VG
1519 if (skb) {
1520 struct strp_msg *rxm = strp_msg(skb);
c46234eb 1521
94524d8f
VG
1522 if (len < rxm->full_len) {
1523 rxm->offset += len;
1524 rxm->full_len -= len;
1525 return false;
1526 }
1527 kfree_skb(skb);
c46234eb
DW
1528 }
1529
1530 /* Finished with message */
1531 ctx->recv_pkt = NULL;
7170e604 1532 __strp_unpause(&ctx->strp);
c46234eb
DW
1533
1534 return true;
1535}
1536
692d7b5d 1537/* This function traverses the rx_list in tls receive context to copies the
2b794c40 1538 * decrypted records into the buffer provided by caller zero copy is not
692d7b5d
VG
1539 * true. Further, the records are removed from the rx_list if it is not a peek
1540 * case and the record has been consumed completely.
1541 */
1542static int process_rx_list(struct tls_sw_context_rx *ctx,
1543 struct msghdr *msg,
2b794c40
VG
1544 u8 *control,
1545 bool *cmsg,
692d7b5d
VG
1546 size_t skip,
1547 size_t len,
1548 bool zc,
1549 bool is_peek)
1550{
1551 struct sk_buff *skb = skb_peek(&ctx->rx_list);
2b794c40
VG
1552 u8 ctrl = *control;
1553 u8 msgc = *cmsg;
1554 struct tls_msg *tlm;
692d7b5d
VG
1555 ssize_t copied = 0;
1556
2b794c40
VG
1557 /* Set the record type in 'control' if caller didn't pass it */
1558 if (!ctrl && skb) {
1559 tlm = tls_msg(skb);
1560 ctrl = tlm->control;
1561 }
1562
692d7b5d
VG
1563 while (skip && skb) {
1564 struct strp_msg *rxm = strp_msg(skb);
2b794c40
VG
1565 tlm = tls_msg(skb);
1566
1567 /* Cannot process a record of different type */
1568 if (ctrl != tlm->control)
1569 return 0;
692d7b5d
VG
1570
1571 if (skip < rxm->full_len)
1572 break;
1573
1574 skip = skip - rxm->full_len;
1575 skb = skb_peek_next(skb, &ctx->rx_list);
1576 }
1577
1578 while (len && skb) {
1579 struct sk_buff *next_skb;
1580 struct strp_msg *rxm = strp_msg(skb);
1581 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1582
2b794c40
VG
1583 tlm = tls_msg(skb);
1584
1585 /* Cannot process a record of different type */
1586 if (ctrl != tlm->control)
1587 return 0;
1588
1589 /* Set record type if not already done. For a non-data record,
1590 * do not proceed if record type could not be copied.
1591 */
1592 if (!msgc) {
1593 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1594 sizeof(ctrl), &ctrl);
1595 msgc = true;
1596 if (ctrl != TLS_RECORD_TYPE_DATA) {
1597 if (cerr || msg->msg_flags & MSG_CTRUNC)
1598 return -EIO;
1599
1600 *cmsg = msgc;
1601 }
1602 }
1603
692d7b5d
VG
1604 if (!zc || (rxm->full_len - skip) > len) {
1605 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1606 msg, chunk);
1607 if (err < 0)
1608 return err;
1609 }
1610
1611 len = len - chunk;
1612 copied = copied + chunk;
1613
1614 /* Consume the data from record if it is non-peek case*/
1615 if (!is_peek) {
1616 rxm->offset = rxm->offset + chunk;
1617 rxm->full_len = rxm->full_len - chunk;
1618
1619 /* Return if there is unconsumed data in the record */
1620 if (rxm->full_len - skip)
1621 break;
1622 }
1623
1624 /* The remaining skip-bytes must lie in 1st record in rx_list.
1625 * So from the 2nd record, 'skip' should be 0.
1626 */
1627 skip = 0;
1628
1629 if (msg)
1630 msg->msg_flags |= MSG_EOR;
1631
1632 next_skb = skb_peek_next(skb, &ctx->rx_list);
1633
1634 if (!is_peek) {
1635 skb_unlink(skb, &ctx->rx_list);
1636 kfree_skb(skb);
1637 }
1638
1639 skb = next_skb;
1640 }
1641
2b794c40 1642 *control = ctrl;
692d7b5d
VG
1643 return copied;
1644}
1645
c46234eb
DW
1646int tls_sw_recvmsg(struct sock *sk,
1647 struct msghdr *msg,
1648 size_t len,
1649 int nonblock,
1650 int flags,
1651 int *addr_len)
1652{
1653 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1654 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1655 struct tls_prot_info *prot = &tls_ctx->prot_info;
d3b18ad3 1656 struct sk_psock *psock;
692d7b5d
VG
1657 unsigned char control = 0;
1658 ssize_t decrypted = 0;
c46234eb 1659 struct strp_msg *rxm;
2b794c40 1660 struct tls_msg *tlm;
c46234eb
DW
1661 struct sk_buff *skb;
1662 ssize_t copied = 0;
1663 bool cmsg = false;
06030dba 1664 int target, err = 0;
c46234eb 1665 long timeo;
00e23707 1666 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
692d7b5d 1667 bool is_peek = flags & MSG_PEEK;
94524d8f 1668 int num_async = 0;
c46234eb
DW
1669
1670 flags |= nonblock;
1671
1672 if (unlikely(flags & MSG_ERRQUEUE))
1673 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1674
d3b18ad3 1675 psock = sk_psock_get(sk);
c46234eb
DW
1676 lock_sock(sk);
1677
692d7b5d 1678 /* Process pending decrypted records. It must be non-zero-copy */
2b794c40
VG
1679 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1680 is_peek);
692d7b5d
VG
1681 if (err < 0) {
1682 tls_err_abort(sk, err);
1683 goto end;
1684 } else {
1685 copied = err;
1686 }
1687
1688 len = len - copied;
1689 if (len) {
1690 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1691 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1692 } else {
1693 goto recv_end;
1694 }
1695
c46234eb 1696 do {
692d7b5d 1697 bool retain_skb = false;
692d7b5d
VG
1698 bool zc = false;
1699 int to_decrypt;
c46234eb 1700 int chunk = 0;
7754bd63
EBE
1701 bool async_capable;
1702 bool async = false;
c46234eb 1703
d3b18ad3
JF
1704 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1705 if (!skb) {
1706 if (psock) {
02c558b2
JF
1707 int ret = __tcp_bpf_recvmsg(sk, psock,
1708 msg, len, flags);
d3b18ad3
JF
1709
1710 if (ret > 0) {
692d7b5d 1711 decrypted += ret;
d3b18ad3
JF
1712 len -= ret;
1713 continue;
1714 }
1715 }
c46234eb 1716 goto recv_end;
2b794c40
VG
1717 } else {
1718 tlm = tls_msg(skb);
1719 if (prot->version == TLS_1_3_VERSION)
1720 tlm->control = 0;
1721 else
1722 tlm->control = ctx->control;
d3b18ad3 1723 }
c46234eb
DW
1724
1725 rxm = strp_msg(skb);
94524d8f 1726
4509de14 1727 to_decrypt = rxm->full_len - prot->overhead_size;
fedf201e
DW
1728
1729 if (to_decrypt <= len && !is_kvec && !is_peek &&
130b392c 1730 ctx->control == TLS_RECORD_TYPE_DATA &&
4509de14 1731 prot->version != TLS_1_3_VERSION)
fedf201e
DW
1732 zc = true;
1733
c0ab4732
VG
1734 /* Do not use async mode if record is non-data */
1735 if (ctx->control == TLS_RECORD_TYPE_DATA)
7754bd63 1736 async_capable = ctx->async_capable;
c0ab4732 1737 else
7754bd63 1738 async_capable = false;
c0ab4732 1739
fedf201e 1740 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
7754bd63 1741 &chunk, &zc, async_capable);
fedf201e
DW
1742 if (err < 0 && err != -EINPROGRESS) {
1743 tls_err_abort(sk, EBADMSG);
1744 goto recv_end;
1745 }
1746
7754bd63
EBE
1747 if (err == -EINPROGRESS) {
1748 async = true;
fedf201e 1749 num_async++;
7754bd63 1750 } else if (prot->version == TLS_1_3_VERSION) {
2b794c40 1751 tlm->control = ctx->control;
7754bd63 1752 }
2b794c40
VG
1753
1754 /* If the type of records being processed is not known yet,
1755 * set it to record type just dequeued. If it is already known,
1756 * but does not match the record type just dequeued, go to end.
1757 * We always get record type here since for tls1.2, record type
1758 * is known just after record is dequeued from stream parser.
1759 * For tls1.3, we disable async.
1760 */
1761
1762 if (!control)
1763 control = tlm->control;
1764 else if (control != tlm->control)
1765 goto recv_end;
fedf201e 1766
c46234eb
DW
1767 if (!cmsg) {
1768 int cerr;
1769
1770 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
2b794c40 1771 sizeof(control), &control);
c46234eb 1772 cmsg = true;
2b794c40 1773 if (control != TLS_RECORD_TYPE_DATA) {
c46234eb
DW
1774 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1775 err = -EIO;
1776 goto recv_end;
1777 }
1778 }
c46234eb
DW
1779 }
1780
c0ab4732
VG
1781 if (async)
1782 goto pick_next_record;
1783
fedf201e
DW
1784 if (!zc) {
1785 if (rxm->full_len > len) {
1786 retain_skb = true;
1787 chunk = len;
1788 } else {
1789 chunk = rxm->full_len;
1790 }
692d7b5d 1791
fedf201e
DW
1792 err = skb_copy_datagram_msg(skb, rxm->offset,
1793 msg, chunk);
1794 if (err < 0)
1795 goto recv_end;
94524d8f 1796
fedf201e
DW
1797 if (!is_peek) {
1798 rxm->offset = rxm->offset + chunk;
1799 rxm->full_len = rxm->full_len - chunk;
692d7b5d 1800 }
c46234eb
DW
1801 }
1802
94524d8f 1803pick_next_record:
692d7b5d
VG
1804 if (chunk > len)
1805 chunk = len;
1806
1807 decrypted += chunk;
c46234eb 1808 len -= chunk;
692d7b5d
VG
1809
1810 /* For async or peek case, queue the current skb */
1811 if (async || is_peek || retain_skb) {
1812 skb_queue_tail(&ctx->rx_list, skb);
1813 skb = NULL;
1814 }
1815
1816 if (tls_sw_advance_skb(sk, skb, chunk)) {
1817 /* Return full control message to
1818 * userspace before trying to parse
1819 * another message type
50c6b58a 1820 */
692d7b5d
VG
1821 msg->msg_flags |= MSG_EOR;
1822 if (ctx->control != TLS_RECORD_TYPE_DATA)
1823 goto recv_end;
1824 } else {
50c6b58a 1825 break;
c46234eb 1826 }
94524d8f 1827
06030dba 1828 /* If we have a new message from strparser, continue now. */
692d7b5d 1829 if (decrypted >= target && !ctx->recv_pkt)
06030dba 1830 break;
c46234eb
DW
1831 } while (len);
1832
1833recv_end:
94524d8f
VG
1834 if (num_async) {
1835 /* Wait for all previously submitted records to be decrypted */
1836 smp_store_mb(ctx->async_notify, true);
1837 if (atomic_read(&ctx->decrypt_pending)) {
1838 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1839 if (err) {
1840 /* one of async decrypt failed */
1841 tls_err_abort(sk, err);
1842 copied = 0;
692d7b5d
VG
1843 decrypted = 0;
1844 goto end;
94524d8f
VG
1845 }
1846 } else {
1847 reinit_completion(&ctx->async_wait.completion);
1848 }
1849 WRITE_ONCE(ctx->async_notify, false);
692d7b5d
VG
1850
1851 /* Drain records from the rx_list & copy if required */
1852 if (is_peek || is_kvec)
2b794c40 1853 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
692d7b5d
VG
1854 decrypted, false, is_peek);
1855 else
2b794c40 1856 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
692d7b5d
VG
1857 decrypted, true, is_peek);
1858 if (err < 0) {
1859 tls_err_abort(sk, err);
1860 copied = 0;
1861 goto end;
1862 }
94524d8f
VG
1863 }
1864
692d7b5d
VG
1865 copied += decrypted;
1866
1867end:
c46234eb 1868 release_sock(sk);
d3b18ad3
JF
1869 if (psock)
1870 sk_psock_put(sk, psock);
c46234eb
DW
1871 return copied ? : err;
1872}
1873
1874ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1875 struct pipe_inode_info *pipe,
1876 size_t len, unsigned int flags)
1877{
1878 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
f66de3ee 1879 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
1880 struct strp_msg *rxm = NULL;
1881 struct sock *sk = sock->sk;
1882 struct sk_buff *skb;
1883 ssize_t copied = 0;
1884 int err = 0;
1885 long timeo;
1886 int chunk;
0b243d00 1887 bool zc = false;
c46234eb
DW
1888
1889 lock_sock(sk);
1890
1891 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1892
d3b18ad3 1893 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
c46234eb
DW
1894 if (!skb)
1895 goto splice_read_end;
1896
c46234eb 1897 if (!ctx->decrypted) {
692d7b5d 1898 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
c46234eb 1899
fedf201e
DW
1900 /* splice does not support reading control messages */
1901 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1902 err = -ENOTSUPP;
1903 goto splice_read_end;
1904 }
1905
c46234eb
DW
1906 if (err < 0) {
1907 tls_err_abort(sk, EBADMSG);
1908 goto splice_read_end;
1909 }
1910 ctx->decrypted = true;
1911 }
1912 rxm = strp_msg(skb);
1913
1914 chunk = min_t(unsigned int, rxm->full_len, len);
1915 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1916 if (copied < 0)
1917 goto splice_read_end;
1918
1919 if (likely(!(flags & MSG_PEEK)))
1920 tls_sw_advance_skb(sk, skb, copied);
1921
1922splice_read_end:
1923 release_sock(sk);
1924 return copied ? : err;
1925}
1926
924ad65e 1927bool tls_sw_stream_read(const struct sock *sk)
c46234eb 1928{
c46234eb 1929 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 1930 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3
JF
1931 bool ingress_empty = true;
1932 struct sk_psock *psock;
c46234eb 1933
d3b18ad3
JF
1934 rcu_read_lock();
1935 psock = sk_psock(sk);
1936 if (psock)
1937 ingress_empty = list_empty(&psock->ingress_msg);
1938 rcu_read_unlock();
c46234eb 1939
d3b18ad3 1940 return !ingress_empty || ctx->recv_pkt;
c46234eb
DW
1941}
1942
1943static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1944{
1945 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 1946 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
4509de14 1947 struct tls_prot_info *prot = &tls_ctx->prot_info;
3463e51d 1948 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
c46234eb
DW
1949 struct strp_msg *rxm = strp_msg(skb);
1950 size_t cipher_overhead;
1951 size_t data_len = 0;
1952 int ret;
1953
1954 /* Verify that we have a full TLS header, or wait for more data */
4509de14 1955 if (rxm->offset + prot->prepend_size > skb->len)
c46234eb
DW
1956 return 0;
1957
3463e51d 1958 /* Sanity-check size of on-stack buffer. */
4509de14 1959 if (WARN_ON(prot->prepend_size > sizeof(header))) {
3463e51d
KC
1960 ret = -EINVAL;
1961 goto read_failure;
1962 }
1963
c46234eb 1964 /* Linearize header to local buffer */
4509de14 1965 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
c46234eb
DW
1966
1967 if (ret < 0)
1968 goto read_failure;
1969
1970 ctx->control = header[0];
1971
1972 data_len = ((header[4] & 0xFF) | (header[3] << 8));
1973
4509de14
VG
1974 cipher_overhead = prot->tag_size;
1975 if (prot->version != TLS_1_3_VERSION)
1976 cipher_overhead += prot->iv_size;
c46234eb 1977
130b392c 1978 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
4509de14 1979 prot->tail_size) {
c46234eb
DW
1980 ret = -EMSGSIZE;
1981 goto read_failure;
1982 }
1983 if (data_len < cipher_overhead) {
1984 ret = -EBADMSG;
1985 goto read_failure;
1986 }
1987
130b392c
DW
1988 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
1989 if (header[1] != TLS_1_2_VERSION_MINOR ||
1990 header[2] != TLS_1_2_VERSION_MAJOR) {
c46234eb
DW
1991 ret = -EINVAL;
1992 goto read_failure;
1993 }
4799ac81
BP
1994#ifdef CONFIG_TLS_DEVICE
1995 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1996 *(u64*)tls_ctx->rx.rec_seq);
1997#endif
c46234eb
DW
1998 return data_len + TLS_HEADER_SIZE;
1999
2000read_failure:
2001 tls_err_abort(strp->sk, ret);
2002
2003 return ret;
2004}
2005
2006static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2007{
2008 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
f66de3ee 2009 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
c46234eb
DW
2010
2011 ctx->decrypted = false;
2012
2013 ctx->recv_pkt = skb;
2014 strp_pause(strp);
2015
ad13acce 2016 ctx->saved_data_ready(strp->sk);
c46234eb
DW
2017}
2018
2019static void tls_data_ready(struct sock *sk)
2020{
2021 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2022 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
d3b18ad3 2023 struct sk_psock *psock;
c46234eb
DW
2024
2025 strp_data_ready(&ctx->strp);
d3b18ad3
JF
2026
2027 psock = sk_psock_get(sk);
2028 if (psock && !list_empty(&psock->ingress_msg)) {
2029 ctx->saved_data_ready(sk);
2030 sk_psock_put(sk, psock);
2031 }
c46234eb
DW
2032}
2033
f66de3ee 2034void tls_sw_free_resources_tx(struct sock *sk)
3c4d7559
DW
2035{
2036 struct tls_context *tls_ctx = tls_get_ctx(sk);
f66de3ee 2037 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
a42055e8
VG
2038 struct tls_rec *rec, *tmp;
2039
2040 /* Wait for any pending async encryptions to complete */
2041 smp_store_mb(ctx->async_notify, true);
2042 if (atomic_read(&ctx->encrypt_pending))
2043 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2044
10231213 2045 release_sock(sk);
a42055e8 2046 cancel_delayed_work_sync(&ctx->tx_work.work);
10231213 2047 lock_sock(sk);
a42055e8
VG
2048
2049 /* Tx whatever records we can transmit and abandon the rest */
2050 tls_tx_records(sk, -1);
2051
9932a29a 2052 /* Free up un-sent records in tx_list. First, free
a42055e8
VG
2053 * the partially sent record if any at head of tx_list.
2054 */
35b71a34 2055 if (tls_free_partial_record(sk, tls_ctx)) {
9932a29a 2056 rec = list_first_entry(&ctx->tx_list,
a42055e8
VG
2057 struct tls_rec, list);
2058 list_del(&rec->list);
d829e9c4 2059 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2060 kfree(rec);
2061 }
2062
9932a29a 2063 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
a42055e8 2064 list_del(&rec->list);
d829e9c4
DB
2065 sk_msg_free(sk, &rec->msg_encrypted);
2066 sk_msg_free(sk, &rec->msg_plaintext);
a42055e8
VG
2067 kfree(rec);
2068 }
3c4d7559 2069
201876b3 2070 crypto_free_aead(ctx->aead_send);
c774973e 2071 tls_free_open_rec(sk);
f66de3ee
BP
2072
2073 kfree(ctx);
2074}
2075
39f56e1a 2076void tls_sw_release_resources_rx(struct sock *sk)
f66de3ee
BP
2077{
2078 struct tls_context *tls_ctx = tls_get_ctx(sk);
2079 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2080
12c76861
JK
2081 kfree(tls_ctx->rx.rec_seq);
2082 kfree(tls_ctx->rx.iv);
2083
c46234eb 2084 if (ctx->aead_recv) {
201876b3
VG
2085 kfree_skb(ctx->recv_pkt);
2086 ctx->recv_pkt = NULL;
692d7b5d 2087 skb_queue_purge(&ctx->rx_list);
c46234eb
DW
2088 crypto_free_aead(ctx->aead_recv);
2089 strp_stop(&ctx->strp);
2090 write_lock_bh(&sk->sk_callback_lock);
2091 sk->sk_data_ready = ctx->saved_data_ready;
2092 write_unlock_bh(&sk->sk_callback_lock);
2093 release_sock(sk);
2094 strp_done(&ctx->strp);
2095 lock_sock(sk);
2096 }
39f56e1a
BP
2097}
2098
2099void tls_sw_free_resources_rx(struct sock *sk)
2100{
2101 struct tls_context *tls_ctx = tls_get_ctx(sk);
2102 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2103
2104 tls_sw_release_resources_rx(sk);
3c4d7559 2105
3c4d7559
DW
2106 kfree(ctx);
2107}
2108
9932a29a 2109/* The work handler to transmitt the encrypted records in tx_list */
a42055e8
VG
2110static void tx_work_handler(struct work_struct *work)
2111{
2112 struct delayed_work *delayed_work = to_delayed_work(work);
2113 struct tx_work *tx_work = container_of(delayed_work,
2114 struct tx_work, work);
2115 struct sock *sk = tx_work->sk;
2116 struct tls_context *tls_ctx = tls_get_ctx(sk);
2117 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2118
2119 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2120 return;
2121
2122 lock_sock(sk);
2123 tls_tx_records(sk, -1);
2124 release_sock(sk);
2125}
2126
7463d3a2
BP
2127void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2128{
2129 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2130
2131 /* Schedule the transmission if tx list is ready */
2132 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2133 /* Schedule the transmission */
2134 if (!test_and_set_bit(BIT_TX_SCHEDULED,
2135 &tx_ctx->tx_bitmask))
2136 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2137 }
2138}
2139
c46234eb 2140int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
3c4d7559 2141{
4509de14
VG
2142 struct tls_context *tls_ctx = tls_get_ctx(sk);
2143 struct tls_prot_info *prot = &tls_ctx->prot_info;
3c4d7559
DW
2144 struct tls_crypto_info *crypto_info;
2145 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
fb99bce7 2146 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
f66de3ee
BP
2147 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2148 struct tls_sw_context_rx *sw_ctx_rx = NULL;
c46234eb
DW
2149 struct cipher_context *cctx;
2150 struct crypto_aead **aead;
2151 struct strp_callbacks cb;
3c4d7559 2152 u16 nonce_size, tag_size, iv_size, rec_seq_size;
692d7b5d 2153 struct crypto_tfm *tfm;
fb99bce7
DW
2154 char *iv, *rec_seq, *key, *salt;
2155 size_t keysize;
3c4d7559
DW
2156 int rc = 0;
2157
2158 if (!ctx) {
2159 rc = -EINVAL;
2160 goto out;
2161 }
2162
f66de3ee 2163 if (tx) {
b190a587
BP
2164 if (!ctx->priv_ctx_tx) {
2165 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2166 if (!sw_ctx_tx) {
2167 rc = -ENOMEM;
2168 goto out;
2169 }
2170 ctx->priv_ctx_tx = sw_ctx_tx;
2171 } else {
2172 sw_ctx_tx =
2173 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
c46234eb 2174 }
c46234eb 2175 } else {
b190a587
BP
2176 if (!ctx->priv_ctx_rx) {
2177 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2178 if (!sw_ctx_rx) {
2179 rc = -ENOMEM;
2180 goto out;
2181 }
2182 ctx->priv_ctx_rx = sw_ctx_rx;
2183 } else {
2184 sw_ctx_rx =
2185 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
f66de3ee 2186 }
3c4d7559
DW
2187 }
2188
c46234eb 2189 if (tx) {
b190a587 2190 crypto_init_wait(&sw_ctx_tx->async_wait);
86029d10 2191 crypto_info = &ctx->crypto_send.info;
c46234eb 2192 cctx = &ctx->tx;
f66de3ee 2193 aead = &sw_ctx_tx->aead_send;
9932a29a 2194 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
a42055e8
VG
2195 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2196 sw_ctx_tx->tx_work.sk = sk;
c46234eb 2197 } else {
b190a587 2198 crypto_init_wait(&sw_ctx_rx->async_wait);
86029d10 2199 crypto_info = &ctx->crypto_recv.info;
c46234eb 2200 cctx = &ctx->rx;
692d7b5d 2201 skb_queue_head_init(&sw_ctx_rx->rx_list);
f66de3ee 2202 aead = &sw_ctx_rx->aead_recv;
c46234eb
DW
2203 }
2204
3c4d7559
DW
2205 switch (crypto_info->cipher_type) {
2206 case TLS_CIPHER_AES_GCM_128: {
2207 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2208 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2209 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2210 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2211 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2212 rec_seq =
2213 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2214 gcm_128_info =
2215 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
fb99bce7
DW
2216 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2217 key = gcm_128_info->key;
2218 salt = gcm_128_info->salt;
2219 break;
2220 }
2221 case TLS_CIPHER_AES_GCM_256: {
2222 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2223 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2224 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2225 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2226 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2227 rec_seq =
2228 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2229 gcm_256_info =
2230 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2231 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2232 key = gcm_256_info->key;
2233 salt = gcm_256_info->salt;
3c4d7559
DW
2234 break;
2235 }
2236 default:
2237 rc = -EINVAL;
cf6d43ef 2238 goto free_priv;
3c4d7559
DW
2239 }
2240
b16520f7 2241 /* Sanity-check the IV size for stack allocations. */
3463e51d 2242 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
b16520f7
KC
2243 rc = -EINVAL;
2244 goto free_priv;
2245 }
2246
130b392c
DW
2247 if (crypto_info->version == TLS_1_3_VERSION) {
2248 nonce_size = 0;
4509de14
VG
2249 prot->aad_size = TLS_HEADER_SIZE;
2250 prot->tail_size = 1;
130b392c 2251 } else {
4509de14
VG
2252 prot->aad_size = TLS_AAD_SPACE_SIZE;
2253 prot->tail_size = 0;
130b392c
DW
2254 }
2255
4509de14
VG
2256 prot->version = crypto_info->version;
2257 prot->cipher_type = crypto_info->cipher_type;
2258 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2259 prot->tag_size = tag_size;
2260 prot->overhead_size = prot->prepend_size +
2261 prot->tag_size + prot->tail_size;
2262 prot->iv_size = iv_size;
c46234eb
DW
2263 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
2264 GFP_KERNEL);
2265 if (!cctx->iv) {
3c4d7559 2266 rc = -ENOMEM;
cf6d43ef 2267 goto free_priv;
3c4d7559 2268 }
fb99bce7
DW
2269 /* Note: 128 & 256 bit salt are the same size */
2270 memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
c46234eb 2271 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
4509de14 2272 prot->rec_seq_size = rec_seq_size;
969d5090 2273 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
c46234eb 2274 if (!cctx->rec_seq) {
3c4d7559
DW
2275 rc = -ENOMEM;
2276 goto free_iv;
2277 }
c46234eb 2278
c46234eb
DW
2279 if (!*aead) {
2280 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
2281 if (IS_ERR(*aead)) {
2282 rc = PTR_ERR(*aead);
2283 *aead = NULL;
3c4d7559
DW
2284 goto free_rec_seq;
2285 }
2286 }
2287
2288 ctx->push_pending_record = tls_sw_push_pending_record;
2289
fb99bce7
DW
2290 rc = crypto_aead_setkey(*aead, key, keysize);
2291
3c4d7559
DW
2292 if (rc)
2293 goto free_aead;
2294
4509de14 2295 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
c46234eb
DW
2296 if (rc)
2297 goto free_aead;
2298
f66de3ee 2299 if (sw_ctx_rx) {
692d7b5d 2300 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
8497ded2
VG
2301
2302 if (crypto_info->version == TLS_1_3_VERSION)
2303 sw_ctx_rx->async_capable = false;
2304 else
2305 sw_ctx_rx->async_capable =
2306 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
692d7b5d 2307
c46234eb
DW
2308 /* Set up strparser */
2309 memset(&cb, 0, sizeof(cb));
2310 cb.rcv_msg = tls_queue;
2311 cb.parse_msg = tls_read_size;
2312
f66de3ee 2313 strp_init(&sw_ctx_rx->strp, sk, &cb);
c46234eb
DW
2314
2315 write_lock_bh(&sk->sk_callback_lock);
f66de3ee 2316 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
c46234eb
DW
2317 sk->sk_data_ready = tls_data_ready;
2318 write_unlock_bh(&sk->sk_callback_lock);
2319
f66de3ee 2320 strp_check_rcv(&sw_ctx_rx->strp);
c46234eb
DW
2321 }
2322
2323 goto out;
3c4d7559
DW
2324
2325free_aead:
c46234eb
DW
2326 crypto_free_aead(*aead);
2327 *aead = NULL;
3c4d7559 2328free_rec_seq:
c46234eb
DW
2329 kfree(cctx->rec_seq);
2330 cctx->rec_seq = NULL;
3c4d7559 2331free_iv:
f66de3ee
BP
2332 kfree(cctx->iv);
2333 cctx->iv = NULL;
cf6d43ef 2334free_priv:
f66de3ee
BP
2335 if (tx) {
2336 kfree(ctx->priv_ctx_tx);
2337 ctx->priv_ctx_tx = NULL;
2338 } else {
2339 kfree(ctx->priv_ctx_rx);
2340 ctx->priv_ctx_rx = NULL;
2341 }
3c4d7559
DW
2342out:
2343 return rc;
2344}