]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - net/vmw_vsock/af_vsock.c
Merge tag 'nds32-for-linus-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / net / vmw_vsock / af_vsock.c
CommitLineData
d021c344
AK
1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16/* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
3b4477d2 39 * implementation because they are in the TCP_LISTEN state. When a
ea3803c1
SH
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
d021c344
AK
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
4192f672
SH
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
d021c344
AK
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
3b4477d2
SH
85 *
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
88 *
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
d021c344
AK
94 */
95
96#include <linux/types.h>
d021c344
AK
97#include <linux/bitops.h>
98#include <linux/cred.h>
99#include <linux/init.h>
100#include <linux/io.h>
101#include <linux/kernel.h>
174cd4b1 102#include <linux/sched/signal.h>
d021c344
AK
103#include <linux/kmod.h>
104#include <linux/list.h>
105#include <linux/miscdevice.h>
106#include <linux/module.h>
107#include <linux/mutex.h>
108#include <linux/net.h>
109#include <linux/poll.h>
8236b08c 110#include <linux/random.h>
d021c344
AK
111#include <linux/skbuff.h>
112#include <linux/smp.h>
113#include <linux/socket.h>
114#include <linux/stddef.h>
115#include <linux/unistd.h>
116#include <linux/wait.h>
117#include <linux/workqueue.h>
118#include <net/sock.h>
82a54d0e 119#include <net/af_vsock.h>
d021c344
AK
120
121static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122static void vsock_sk_destruct(struct sock *sk);
123static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124
125/* Protocol family. */
126static struct proto vsock_proto = {
127 .name = "AF_VSOCK",
128 .owner = THIS_MODULE,
129 .obj_size = sizeof(struct vsock_sock),
130};
131
132/* The default peer timeout indicates how long we will wait for a peer response
133 * to a control message.
134 */
135#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136
d021c344
AK
137static const struct vsock_transport *transport;
138static DEFINE_MUTEX(vsock_register_mutex);
139
140/**** EXPORTS ****/
141
142/* Get the ID of the local context. This is transport dependent. */
143
144int vm_sockets_get_local_cid(void)
145{
146 return transport->get_local_cid();
147}
148EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149
150/**** UTILS ****/
151
152/* Each bound VSocket is stored in the bind hash table and each connected
153 * VSocket is stored in the connected hash table.
154 *
155 * Unbound sockets are all put on the same list attached to the end of the hash
156 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
157 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158 * represents the list that addr hashes to).
159 *
160 * Specifically, we initialize the vsock_bind_table array to a size of
161 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
a49dd9dc 164 * mods with VSOCK_HASH_SIZE to ensure this.
d021c344 165 */
d021c344
AK
166#define MAX_PORT_RETRIES 24
167
a49dd9dc 168#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
d021c344
AK
169#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
171
172/* XXX This can probably be implemented in a better way. */
173#define VSOCK_CONN_HASH(src, dst) \
a49dd9dc 174 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
d021c344
AK
175#define vsock_connected_sockets(src, dst) \
176 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177#define vsock_connected_sockets_vsk(vsk) \
178 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179
44f20980
SH
180struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181EXPORT_SYMBOL_GPL(vsock_bind_table);
182struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183EXPORT_SYMBOL_GPL(vsock_connected_table);
184DEFINE_SPINLOCK(vsock_table_lock);
185EXPORT_SYMBOL_GPL(vsock_table_lock);
d021c344 186
b3a6dfe8
AH
187/* Autobind this socket to the local address if necessary. */
188static int vsock_auto_bind(struct vsock_sock *vsk)
189{
190 struct sock *sk = sk_vsock(vsk);
191 struct sockaddr_vm local_addr;
192
193 if (vsock_addr_bound(&vsk->local_addr))
194 return 0;
195 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196 return __vsock_bind(sk, &local_addr);
197}
198
c1eef220 199static int __init vsock_init_tables(void)
d021c344
AK
200{
201 int i;
202
203 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204 INIT_LIST_HEAD(&vsock_bind_table[i]);
205
206 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207 INIT_LIST_HEAD(&vsock_connected_table[i]);
c1eef220 208 return 0;
d021c344
AK
209}
210
211static void __vsock_insert_bound(struct list_head *list,
212 struct vsock_sock *vsk)
213{
214 sock_hold(&vsk->sk);
215 list_add(&vsk->bound_table, list);
216}
217
218static void __vsock_insert_connected(struct list_head *list,
219 struct vsock_sock *vsk)
220{
221 sock_hold(&vsk->sk);
222 list_add(&vsk->connected_table, list);
223}
224
225static void __vsock_remove_bound(struct vsock_sock *vsk)
226{
227 list_del_init(&vsk->bound_table);
228 sock_put(&vsk->sk);
229}
230
231static void __vsock_remove_connected(struct vsock_sock *vsk)
232{
233 list_del_init(&vsk->connected_table);
234 sock_put(&vsk->sk);
235}
236
237static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238{
239 struct vsock_sock *vsk;
240
241 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
990454b5 242 if (addr->svm_port == vsk->local_addr.svm_port)
d021c344
AK
243 return sk_vsock(vsk);
244
245 return NULL;
246}
247
248static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
249 struct sockaddr_vm *dst)
250{
251 struct vsock_sock *vsk;
252
253 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
254 connected_table) {
990454b5
RG
255 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
256 dst->svm_port == vsk->local_addr.svm_port) {
d021c344
AK
257 return sk_vsock(vsk);
258 }
259 }
260
261 return NULL;
262}
263
d021c344
AK
264static void vsock_insert_unbound(struct vsock_sock *vsk)
265{
266 spin_lock_bh(&vsock_table_lock);
267 __vsock_insert_bound(vsock_unbound_sockets, vsk);
268 spin_unlock_bh(&vsock_table_lock);
269}
270
271void vsock_insert_connected(struct vsock_sock *vsk)
272{
273 struct list_head *list = vsock_connected_sockets(
274 &vsk->remote_addr, &vsk->local_addr);
275
276 spin_lock_bh(&vsock_table_lock);
277 __vsock_insert_connected(list, vsk);
278 spin_unlock_bh(&vsock_table_lock);
279}
280EXPORT_SYMBOL_GPL(vsock_insert_connected);
281
282void vsock_remove_bound(struct vsock_sock *vsk)
283{
284 spin_lock_bh(&vsock_table_lock);
285 __vsock_remove_bound(vsk);
286 spin_unlock_bh(&vsock_table_lock);
287}
288EXPORT_SYMBOL_GPL(vsock_remove_bound);
289
290void vsock_remove_connected(struct vsock_sock *vsk)
291{
292 spin_lock_bh(&vsock_table_lock);
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295}
296EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
298struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299{
300 struct sock *sk;
301
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
306
307 spin_unlock_bh(&vsock_table_lock);
308
309 return sk;
310}
311EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
313struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
315{
316 struct sock *sk;
317
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
322
323 spin_unlock_bh(&vsock_table_lock);
324
325 return sk;
326}
327EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
329static bool vsock_in_bound_table(struct vsock_sock *vsk)
330{
331 bool ret;
332
333 spin_lock_bh(&vsock_table_lock);
334 ret = __vsock_in_bound_table(vsk);
335 spin_unlock_bh(&vsock_table_lock);
336
337 return ret;
338}
339
340static bool vsock_in_connected_table(struct vsock_sock *vsk)
341{
342 bool ret;
343
344 spin_lock_bh(&vsock_table_lock);
345 ret = __vsock_in_connected_table(vsk);
346 spin_unlock_bh(&vsock_table_lock);
347
348 return ret;
349}
350
6773b7dc
SH
351void vsock_remove_sock(struct vsock_sock *vsk)
352{
353 if (vsock_in_bound_table(vsk))
354 vsock_remove_bound(vsk);
355
356 if (vsock_in_connected_table(vsk))
357 vsock_remove_connected(vsk);
358}
359EXPORT_SYMBOL_GPL(vsock_remove_sock);
360
d021c344
AK
361void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
362{
363 int i;
364
365 spin_lock_bh(&vsock_table_lock);
366
367 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
368 struct vsock_sock *vsk;
369 list_for_each_entry(vsk, &vsock_connected_table[i],
d9af2d67 370 connected_table)
d021c344
AK
371 fn(sk_vsock(vsk));
372 }
373
374 spin_unlock_bh(&vsock_table_lock);
375}
376EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
377
378void vsock_add_pending(struct sock *listener, struct sock *pending)
379{
380 struct vsock_sock *vlistener;
381 struct vsock_sock *vpending;
382
383 vlistener = vsock_sk(listener);
384 vpending = vsock_sk(pending);
385
386 sock_hold(pending);
387 sock_hold(listener);
388 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
389}
390EXPORT_SYMBOL_GPL(vsock_add_pending);
391
392void vsock_remove_pending(struct sock *listener, struct sock *pending)
393{
394 struct vsock_sock *vpending = vsock_sk(pending);
395
396 list_del_init(&vpending->pending_links);
397 sock_put(listener);
398 sock_put(pending);
399}
400EXPORT_SYMBOL_GPL(vsock_remove_pending);
401
402void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
403{
404 struct vsock_sock *vlistener;
405 struct vsock_sock *vconnected;
406
407 vlistener = vsock_sk(listener);
408 vconnected = vsock_sk(connected);
409
410 sock_hold(connected);
411 sock_hold(listener);
412 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
413}
414EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
415
416static struct sock *vsock_dequeue_accept(struct sock *listener)
417{
418 struct vsock_sock *vlistener;
419 struct vsock_sock *vconnected;
420
421 vlistener = vsock_sk(listener);
422
423 if (list_empty(&vlistener->accept_queue))
424 return NULL;
425
426 vconnected = list_entry(vlistener->accept_queue.next,
427 struct vsock_sock, accept_queue);
428
429 list_del_init(&vconnected->accept_queue);
430 sock_put(listener);
431 /* The caller will need a reference on the connected socket so we let
432 * it call sock_put().
433 */
434
435 return sk_vsock(vconnected);
436}
437
438static bool vsock_is_accept_queue_empty(struct sock *sk)
439{
440 struct vsock_sock *vsk = vsock_sk(sk);
441 return list_empty(&vsk->accept_queue);
442}
443
444static bool vsock_is_pending(struct sock *sk)
445{
446 struct vsock_sock *vsk = vsock_sk(sk);
447 return !list_empty(&vsk->pending_links);
448}
449
450static int vsock_send_shutdown(struct sock *sk, int mode)
451{
452 return transport->shutdown(vsock_sk(sk), mode);
453}
454
455f05ec 455static void vsock_pending_work(struct work_struct *work)
d021c344
AK
456{
457 struct sock *sk;
458 struct sock *listener;
459 struct vsock_sock *vsk;
460 bool cleanup;
461
455f05ec 462 vsk = container_of(work, struct vsock_sock, pending_work.work);
d021c344
AK
463 sk = sk_vsock(vsk);
464 listener = vsk->listener;
465 cleanup = true;
466
467 lock_sock(listener);
4192f672 468 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
d021c344
AK
469
470 if (vsock_is_pending(sk)) {
471 vsock_remove_pending(listener, sk);
1190cfdb
JH
472
473 listener->sk_ack_backlog--;
d021c344
AK
474 } else if (!vsk->rejected) {
475 /* We are not on the pending list and accept() did not reject
476 * us, so we must have been accepted by our user process. We
477 * just need to drop our references to the sockets and be on
478 * our way.
479 */
480 cleanup = false;
481 goto out;
482 }
483
d021c344
AK
484 /* We need to remove ourself from the global connected sockets list so
485 * incoming packets can't find this socket, and to reduce the reference
486 * count.
487 */
488 if (vsock_in_connected_table(vsk))
489 vsock_remove_connected(vsk);
490
3b4477d2 491 sk->sk_state = TCP_CLOSE;
d021c344
AK
492
493out:
494 release_sock(sk);
495 release_sock(listener);
496 if (cleanup)
497 sock_put(sk);
498
499 sock_put(sk);
500 sock_put(listener);
501}
d021c344
AK
502
503/**** SOCKET OPERATIONS ****/
504
505static int __vsock_bind_stream(struct vsock_sock *vsk,
506 struct sockaddr_vm *addr)
507{
8236b08c 508 static u32 port = 0;
d021c344
AK
509 struct sockaddr_vm new_addr;
510
8236b08c
LW
511 if (!port)
512 port = LAST_RESERVED_PORT + 1 +
513 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
514
d021c344
AK
515 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
516
517 if (addr->svm_port == VMADDR_PORT_ANY) {
518 bool found = false;
519 unsigned int i;
520
521 for (i = 0; i < MAX_PORT_RETRIES; i++) {
522 if (port <= LAST_RESERVED_PORT)
523 port = LAST_RESERVED_PORT + 1;
524
525 new_addr.svm_port = port++;
526
527 if (!__vsock_find_bound_socket(&new_addr)) {
528 found = true;
529 break;
530 }
531 }
532
533 if (!found)
534 return -EADDRNOTAVAIL;
535 } else {
536 /* If port is in reserved range, ensure caller
537 * has necessary privileges.
538 */
539 if (addr->svm_port <= LAST_RESERVED_PORT &&
540 !capable(CAP_NET_BIND_SERVICE)) {
541 return -EACCES;
542 }
543
544 if (__vsock_find_bound_socket(&new_addr))
545 return -EADDRINUSE;
546 }
547
548 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
549
550 /* Remove stream sockets from the unbound list and add them to the hash
551 * table for easy lookup by its address. The unbound list is simply an
552 * extra entry at the end of the hash table, a trick used by AF_UNIX.
553 */
554 __vsock_remove_bound(vsk);
555 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
556
557 return 0;
558}
559
560static int __vsock_bind_dgram(struct vsock_sock *vsk,
561 struct sockaddr_vm *addr)
562{
563 return transport->dgram_bind(vsk, addr);
564}
565
566static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
567{
568 struct vsock_sock *vsk = vsock_sk(sk);
569 u32 cid;
570 int retval;
571
572 /* First ensure this socket isn't already bound. */
573 if (vsock_addr_bound(&vsk->local_addr))
574 return -EINVAL;
575
576 /* Now bind to the provided address or select appropriate values if
577 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
578 * like AF_INET prevents binding to a non-local IP address (in most
579 * cases), we only allow binding to the local CID.
580 */
581 cid = transport->get_local_cid();
582 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
583 return -EADDRNOTAVAIL;
584
585 switch (sk->sk_socket->type) {
586 case SOCK_STREAM:
587 spin_lock_bh(&vsock_table_lock);
588 retval = __vsock_bind_stream(vsk, addr);
589 spin_unlock_bh(&vsock_table_lock);
590 break;
591
592 case SOCK_DGRAM:
593 retval = __vsock_bind_dgram(vsk, addr);
594 break;
595
596 default:
597 retval = -EINVAL;
598 break;
599 }
600
601 return retval;
602}
603
455f05ec
CW
604static void vsock_connect_timeout(struct work_struct *work);
605
d021c344
AK
606struct sock *__vsock_create(struct net *net,
607 struct socket *sock,
608 struct sock *parent,
609 gfp_t priority,
11aa9c28
EB
610 unsigned short type,
611 int kern)
d021c344
AK
612{
613 struct sock *sk;
614 struct vsock_sock *psk;
615 struct vsock_sock *vsk;
616
11aa9c28 617 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
d021c344
AK
618 if (!sk)
619 return NULL;
620
621 sock_init_data(sock, sk);
622
623 /* sk->sk_type is normally set in sock_init_data, but only if sock is
624 * non-NULL. We make sure that our sockets always have a type by
625 * setting it here if needed.
626 */
627 if (!sock)
628 sk->sk_type = type;
629
630 vsk = vsock_sk(sk);
631 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
632 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
633
634 sk->sk_destruct = vsock_sk_destruct;
635 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
d021c344
AK
636 sock_reset_flag(sk, SOCK_DONE);
637
638 INIT_LIST_HEAD(&vsk->bound_table);
639 INIT_LIST_HEAD(&vsk->connected_table);
640 vsk->listener = NULL;
641 INIT_LIST_HEAD(&vsk->pending_links);
642 INIT_LIST_HEAD(&vsk->accept_queue);
643 vsk->rejected = false;
644 vsk->sent_request = false;
645 vsk->ignore_connecting_rst = false;
646 vsk->peer_shutdown = 0;
455f05ec
CW
647 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
648 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
d021c344
AK
649
650 psk = parent ? vsock_sk(parent) : NULL;
651 if (parent) {
652 vsk->trusted = psk->trusted;
653 vsk->owner = get_cred(psk->owner);
654 vsk->connect_timeout = psk->connect_timeout;
655 } else {
656 vsk->trusted = capable(CAP_NET_ADMIN);
657 vsk->owner = get_current_cred();
658 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
659 }
660
661 if (transport->init(vsk, psk) < 0) {
662 sk_free(sk);
663 return NULL;
664 }
665
666 if (sock)
667 vsock_insert_unbound(vsk);
668
669 return sk;
670}
671EXPORT_SYMBOL_GPL(__vsock_create);
672
673static void __vsock_release(struct sock *sk)
674{
675 if (sk) {
676 struct sk_buff *skb;
677 struct sock *pending;
678 struct vsock_sock *vsk;
679
680 vsk = vsock_sk(sk);
681 pending = NULL; /* Compiler warning. */
682
d021c344
AK
683 transport->release(vsk);
684
685 lock_sock(sk);
686 sock_orphan(sk);
687 sk->sk_shutdown = SHUTDOWN_MASK;
688
689 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
690 kfree_skb(skb);
691
692 /* Clean up any sockets that never were accepted. */
693 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
694 __vsock_release(pending);
695 sock_put(pending);
696 }
697
698 release_sock(sk);
699 sock_put(sk);
700 }
701}
702
703static void vsock_sk_destruct(struct sock *sk)
704{
705 struct vsock_sock *vsk = vsock_sk(sk);
706
707 transport->destruct(vsk);
708
709 /* When clearing these addresses, there's no need to set the family and
710 * possibly register the address family with the kernel.
711 */
712 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
713 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
714
715 put_cred(vsk->owner);
716}
717
718static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
719{
720 int err;
721
722 err = sock_queue_rcv_skb(sk, skb);
723 if (err)
724 kfree_skb(skb);
725
726 return err;
727}
728
729s64 vsock_stream_has_data(struct vsock_sock *vsk)
730{
731 return transport->stream_has_data(vsk);
732}
733EXPORT_SYMBOL_GPL(vsock_stream_has_data);
734
735s64 vsock_stream_has_space(struct vsock_sock *vsk)
736{
737 return transport->stream_has_space(vsk);
738}
739EXPORT_SYMBOL_GPL(vsock_stream_has_space);
740
741static int vsock_release(struct socket *sock)
742{
743 __vsock_release(sock->sk);
744 sock->sk = NULL;
745 sock->state = SS_FREE;
746
747 return 0;
748}
749
750static int
751vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
752{
753 int err;
754 struct sock *sk;
755 struct sockaddr_vm *vm_addr;
756
757 sk = sock->sk;
758
759 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
760 return -EINVAL;
761
762 lock_sock(sk);
763 err = __vsock_bind(sk, vm_addr);
764 release_sock(sk);
765
766 return err;
767}
768
769static int vsock_getname(struct socket *sock,
9b2c45d4 770 struct sockaddr *addr, int peer)
d021c344
AK
771{
772 int err;
773 struct sock *sk;
774 struct vsock_sock *vsk;
775 struct sockaddr_vm *vm_addr;
776
777 sk = sock->sk;
778 vsk = vsock_sk(sk);
779 err = 0;
780
781 lock_sock(sk);
782
783 if (peer) {
784 if (sock->state != SS_CONNECTED) {
785 err = -ENOTCONN;
786 goto out;
787 }
788 vm_addr = &vsk->remote_addr;
789 } else {
790 vm_addr = &vsk->local_addr;
791 }
792
793 if (!vm_addr) {
794 err = -EINVAL;
795 goto out;
796 }
797
798 /* sys_getsockname() and sys_getpeername() pass us a
799 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
800 * that macro is defined in socket.c instead of .h, so we hardcode its
801 * value here.
802 */
803 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
804 memcpy(addr, vm_addr, sizeof(*vm_addr));
9b2c45d4 805 err = sizeof(*vm_addr);
d021c344
AK
806
807out:
808 release_sock(sk);
809 return err;
810}
811
812static int vsock_shutdown(struct socket *sock, int mode)
813{
814 int err;
815 struct sock *sk;
816
817 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
818 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
819 * here like the other address families do. Note also that the
820 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
821 * which is what we want.
822 */
823 mode++;
824
825 if ((mode & ~SHUTDOWN_MASK) || !mode)
826 return -EINVAL;
827
828 /* If this is a STREAM socket and it is not connected then bail out
829 * immediately. If it is a DGRAM socket then we must first kick the
830 * socket so that it wakes up from any sleeping calls, for example
831 * recv(), and then afterwards return the error.
832 */
833
834 sk = sock->sk;
835 if (sock->state == SS_UNCONNECTED) {
836 err = -ENOTCONN;
837 if (sk->sk_type == SOCK_STREAM)
838 return err;
839 } else {
840 sock->state = SS_DISCONNECTING;
841 err = 0;
842 }
843
844 /* Receive and send shutdowns are treated alike. */
845 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
846 if (mode) {
847 lock_sock(sk);
848 sk->sk_shutdown |= mode;
849 sk->sk_state_change(sk);
850 release_sock(sk);
851
852 if (sk->sk_type == SOCK_STREAM) {
853 sock_reset_flag(sk, SOCK_DONE);
854 vsock_send_shutdown(sk, mode);
855 }
856 }
857
858 return err;
859}
860
a11e1d43
LT
861static __poll_t vsock_poll(struct file *file, struct socket *sock,
862 poll_table *wait)
d021c344 863{
a11e1d43
LT
864 struct sock *sk;
865 __poll_t mask;
866 struct vsock_sock *vsk;
867
868 sk = sock->sk;
869 vsk = vsock_sk(sk);
870
871 poll_wait(file, sk_sleep(sk), wait);
872 mask = 0;
d021c344
AK
873
874 if (sk->sk_err)
875 /* Signify that there has been an error on this socket. */
a9a08845 876 mask |= EPOLLERR;
d021c344
AK
877
878 /* INET sockets treat local write shutdown and peer write shutdown as a
a9a08845 879 * case of EPOLLHUP set.
d021c344
AK
880 */
881 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
882 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
883 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
a9a08845 884 mask |= EPOLLHUP;
d021c344
AK
885 }
886
887 if (sk->sk_shutdown & RCV_SHUTDOWN ||
888 vsk->peer_shutdown & SEND_SHUTDOWN) {
a9a08845 889 mask |= EPOLLRDHUP;
d021c344
AK
890 }
891
892 if (sock->type == SOCK_DGRAM) {
893 /* For datagram sockets we can read if there is something in
894 * the queue and write as long as the socket isn't shutdown for
895 * sending.
896 */
897 if (!skb_queue_empty(&sk->sk_receive_queue) ||
898 (sk->sk_shutdown & RCV_SHUTDOWN)) {
a9a08845 899 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
900 }
901
902 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
a9a08845 903 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
d021c344
AK
904
905 } else if (sock->type == SOCK_STREAM) {
906 lock_sock(sk);
907
908 /* Listening sockets that have connections in their accept
909 * queue can be read.
910 */
3b4477d2 911 if (sk->sk_state == TCP_LISTEN
d021c344 912 && !vsock_is_accept_queue_empty(sk))
a9a08845 913 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
914
915 /* If there is something in the queue then we can read. */
916 if (transport->stream_is_active(vsk) &&
917 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
918 bool data_ready_now = false;
919 int ret = transport->notify_poll_in(
920 vsk, 1, &data_ready_now);
921 if (ret < 0) {
a9a08845 922 mask |= EPOLLERR;
d021c344
AK
923 } else {
924 if (data_ready_now)
a9a08845 925 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
926
927 }
928 }
929
930 /* Sockets whose connections have been closed, reset, or
931 * terminated should also be considered read, and we check the
932 * shutdown flag for that.
933 */
934 if (sk->sk_shutdown & RCV_SHUTDOWN ||
935 vsk->peer_shutdown & SEND_SHUTDOWN) {
a9a08845 936 mask |= EPOLLIN | EPOLLRDNORM;
d021c344
AK
937 }
938
939 /* Connected sockets that can produce data can be written. */
3b4477d2 940 if (sk->sk_state == TCP_ESTABLISHED) {
d021c344
AK
941 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
942 bool space_avail_now = false;
943 int ret = transport->notify_poll_out(
944 vsk, 1, &space_avail_now);
945 if (ret < 0) {
a9a08845 946 mask |= EPOLLERR;
d021c344
AK
947 } else {
948 if (space_avail_now)
a9a08845 949 /* Remove EPOLLWRBAND since INET
d021c344
AK
950 * sockets are not setting it.
951 */
a9a08845 952 mask |= EPOLLOUT | EPOLLWRNORM;
d021c344
AK
953
954 }
955 }
956 }
957
958 /* Simulate INET socket poll behaviors, which sets
a9a08845 959 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
d021c344
AK
960 * but local send is not shutdown.
961 */
ba3169fc 962 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
d021c344 963 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
a9a08845 964 mask |= EPOLLOUT | EPOLLWRNORM;
d021c344
AK
965
966 }
967
968 release_sock(sk);
969 }
970
971 return mask;
972}
973
1b784140
YX
974static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
975 size_t len)
d021c344
AK
976{
977 int err;
978 struct sock *sk;
979 struct vsock_sock *vsk;
980 struct sockaddr_vm *remote_addr;
981
982 if (msg->msg_flags & MSG_OOB)
983 return -EOPNOTSUPP;
984
985 /* For now, MSG_DONTWAIT is always assumed... */
986 err = 0;
987 sk = sock->sk;
988 vsk = vsock_sk(sk);
989
990 lock_sock(sk);
991
b3a6dfe8
AH
992 err = vsock_auto_bind(vsk);
993 if (err)
994 goto out;
d021c344 995
d021c344
AK
996
997 /* If the provided message contains an address, use that. Otherwise
998 * fall back on the socket's remote handle (if it has been connected).
999 */
1000 if (msg->msg_name &&
1001 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1002 &remote_addr) == 0) {
1003 /* Ensure this address is of the right type and is a valid
1004 * destination.
1005 */
1006
1007 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1008 remote_addr->svm_cid = transport->get_local_cid();
1009
1010 if (!vsock_addr_bound(remote_addr)) {
1011 err = -EINVAL;
1012 goto out;
1013 }
1014 } else if (sock->state == SS_CONNECTED) {
1015 remote_addr = &vsk->remote_addr;
1016
1017 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1018 remote_addr->svm_cid = transport->get_local_cid();
1019
1020 /* XXX Should connect() or this function ensure remote_addr is
1021 * bound?
1022 */
1023 if (!vsock_addr_bound(&vsk->remote_addr)) {
1024 err = -EINVAL;
1025 goto out;
1026 }
1027 } else {
1028 err = -EINVAL;
1029 goto out;
1030 }
1031
1032 if (!transport->dgram_allow(remote_addr->svm_cid,
1033 remote_addr->svm_port)) {
1034 err = -EINVAL;
1035 goto out;
1036 }
1037
0f7db23a 1038 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
d021c344
AK
1039
1040out:
1041 release_sock(sk);
1042 return err;
1043}
1044
1045static int vsock_dgram_connect(struct socket *sock,
1046 struct sockaddr *addr, int addr_len, int flags)
1047{
1048 int err;
1049 struct sock *sk;
1050 struct vsock_sock *vsk;
1051 struct sockaddr_vm *remote_addr;
1052
1053 sk = sock->sk;
1054 vsk = vsock_sk(sk);
1055
1056 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1057 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1058 lock_sock(sk);
1059 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1060 VMADDR_PORT_ANY);
1061 sock->state = SS_UNCONNECTED;
1062 release_sock(sk);
1063 return 0;
1064 } else if (err != 0)
1065 return -EINVAL;
1066
1067 lock_sock(sk);
1068
b3a6dfe8
AH
1069 err = vsock_auto_bind(vsk);
1070 if (err)
1071 goto out;
d021c344
AK
1072
1073 if (!transport->dgram_allow(remote_addr->svm_cid,
1074 remote_addr->svm_port)) {
1075 err = -EINVAL;
1076 goto out;
1077 }
1078
1079 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1080 sock->state = SS_CONNECTED;
1081
1082out:
1083 release_sock(sk);
1084 return err;
1085}
1086
1b784140
YX
1087static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1088 size_t len, int flags)
d021c344 1089{
1b784140 1090 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
d021c344
AK
1091}
1092
1093static const struct proto_ops vsock_dgram_ops = {
1094 .family = PF_VSOCK,
1095 .owner = THIS_MODULE,
1096 .release = vsock_release,
1097 .bind = vsock_bind,
1098 .connect = vsock_dgram_connect,
1099 .socketpair = sock_no_socketpair,
1100 .accept = sock_no_accept,
1101 .getname = vsock_getname,
a11e1d43 1102 .poll = vsock_poll,
d021c344
AK
1103 .ioctl = sock_no_ioctl,
1104 .listen = sock_no_listen,
1105 .shutdown = vsock_shutdown,
1106 .setsockopt = sock_no_setsockopt,
1107 .getsockopt = sock_no_getsockopt,
1108 .sendmsg = vsock_dgram_sendmsg,
1109 .recvmsg = vsock_dgram_recvmsg,
1110 .mmap = sock_no_mmap,
1111 .sendpage = sock_no_sendpage,
1112};
1113
380feae0
PT
1114static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1115{
1116 if (!transport->cancel_pkt)
1117 return -EOPNOTSUPP;
1118
1119 return transport->cancel_pkt(vsk);
1120}
1121
d021c344
AK
1122static void vsock_connect_timeout(struct work_struct *work)
1123{
1124 struct sock *sk;
1125 struct vsock_sock *vsk;
380feae0 1126 int cancel = 0;
d021c344 1127
455f05ec 1128 vsk = container_of(work, struct vsock_sock, connect_work.work);
d021c344
AK
1129 sk = sk_vsock(vsk);
1130
1131 lock_sock(sk);
3b4477d2 1132 if (sk->sk_state == TCP_SYN_SENT &&
d021c344 1133 (sk->sk_shutdown != SHUTDOWN_MASK)) {
3b4477d2 1134 sk->sk_state = TCP_CLOSE;
d021c344
AK
1135 sk->sk_err = ETIMEDOUT;
1136 sk->sk_error_report(sk);
380feae0 1137 cancel = 1;
d021c344
AK
1138 }
1139 release_sock(sk);
380feae0
PT
1140 if (cancel)
1141 vsock_transport_cancel_pkt(vsk);
d021c344
AK
1142
1143 sock_put(sk);
1144}
1145
1146static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1147 int addr_len, int flags)
1148{
1149 int err;
1150 struct sock *sk;
1151 struct vsock_sock *vsk;
1152 struct sockaddr_vm *remote_addr;
1153 long timeout;
1154 DEFINE_WAIT(wait);
1155
1156 err = 0;
1157 sk = sock->sk;
1158 vsk = vsock_sk(sk);
1159
1160 lock_sock(sk);
1161
1162 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1163 switch (sock->state) {
1164 case SS_CONNECTED:
1165 err = -EISCONN;
1166 goto out;
1167 case SS_DISCONNECTING:
1168 err = -EINVAL;
1169 goto out;
1170 case SS_CONNECTING:
1171 /* This continues on so we can move sock into the SS_CONNECTED
1172 * state once the connection has completed (at which point err
1173 * will be set to zero also). Otherwise, we will either wait
1174 * for the connection or return -EALREADY should this be a
1175 * non-blocking call.
1176 */
1177 err = -EALREADY;
1178 break;
1179 default:
3b4477d2 1180 if ((sk->sk_state == TCP_LISTEN) ||
d021c344
AK
1181 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1182 err = -EINVAL;
1183 goto out;
1184 }
1185
1186 /* The hypervisor and well-known contexts do not have socket
1187 * endpoints.
1188 */
1189 if (!transport->stream_allow(remote_addr->svm_cid,
1190 remote_addr->svm_port)) {
1191 err = -ENETUNREACH;
1192 goto out;
1193 }
1194
1195 /* Set the remote address that we are connecting to. */
1196 memcpy(&vsk->remote_addr, remote_addr,
1197 sizeof(vsk->remote_addr));
1198
b3a6dfe8
AH
1199 err = vsock_auto_bind(vsk);
1200 if (err)
1201 goto out;
d021c344 1202
3b4477d2 1203 sk->sk_state = TCP_SYN_SENT;
d021c344
AK
1204
1205 err = transport->connect(vsk);
1206 if (err < 0)
1207 goto out;
1208
1209 /* Mark sock as connecting and set the error code to in
1210 * progress in case this is a non-blocking connect.
1211 */
1212 sock->state = SS_CONNECTING;
1213 err = -EINPROGRESS;
1214 }
1215
1216 /* The receive path will handle all communication until we are able to
1217 * enter the connected state. Here we wait for the connection to be
1218 * completed or a notification of an error.
1219 */
1220 timeout = vsk->connect_timeout;
1221 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1222
3b4477d2 1223 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
d021c344
AK
1224 if (flags & O_NONBLOCK) {
1225 /* If we're not going to block, we schedule a timeout
1226 * function to generate a timeout on the connection
1227 * attempt, in case the peer doesn't respond in a
1228 * timely manner. We hold on to the socket until the
1229 * timeout fires.
1230 */
1231 sock_hold(sk);
455f05ec 1232 schedule_delayed_work(&vsk->connect_work, timeout);
d021c344
AK
1233
1234 /* Skip ahead to preserve error code set above. */
1235 goto out_wait;
1236 }
1237
1238 release_sock(sk);
1239 timeout = schedule_timeout(timeout);
1240 lock_sock(sk);
1241
1242 if (signal_pending(current)) {
1243 err = sock_intr_errno(timeout);
3b4477d2 1244 sk->sk_state = TCP_CLOSE;
f7f9b5e7 1245 sock->state = SS_UNCONNECTED;
380feae0 1246 vsock_transport_cancel_pkt(vsk);
f7f9b5e7 1247 goto out_wait;
d021c344
AK
1248 } else if (timeout == 0) {
1249 err = -ETIMEDOUT;
3b4477d2 1250 sk->sk_state = TCP_CLOSE;
f7f9b5e7 1251 sock->state = SS_UNCONNECTED;
380feae0 1252 vsock_transport_cancel_pkt(vsk);
f7f9b5e7 1253 goto out_wait;
d021c344
AK
1254 }
1255
1256 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1257 }
1258
1259 if (sk->sk_err) {
1260 err = -sk->sk_err;
3b4477d2 1261 sk->sk_state = TCP_CLOSE;
f7f9b5e7
CI
1262 sock->state = SS_UNCONNECTED;
1263 } else {
d021c344 1264 err = 0;
f7f9b5e7 1265 }
d021c344
AK
1266
1267out_wait:
1268 finish_wait(sk_sleep(sk), &wait);
1269out:
1270 release_sock(sk);
1271 return err;
d021c344
AK
1272}
1273
cdfbabfb
DH
1274static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1275 bool kern)
d021c344
AK
1276{
1277 struct sock *listener;
1278 int err;
1279 struct sock *connected;
1280 struct vsock_sock *vconnected;
1281 long timeout;
1282 DEFINE_WAIT(wait);
1283
1284 err = 0;
1285 listener = sock->sk;
1286
1287 lock_sock(listener);
1288
1289 if (sock->type != SOCK_STREAM) {
1290 err = -EOPNOTSUPP;
1291 goto out;
1292 }
1293
3b4477d2 1294 if (listener->sk_state != TCP_LISTEN) {
d021c344
AK
1295 err = -EINVAL;
1296 goto out;
1297 }
1298
1299 /* Wait for children sockets to appear; these are the new sockets
1300 * created upon connection establishment.
1301 */
1302 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1303 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1304
1305 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1306 listener->sk_err == 0) {
1307 release_sock(listener);
1308 timeout = schedule_timeout(timeout);
f7f9b5e7 1309 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1310 lock_sock(listener);
1311
1312 if (signal_pending(current)) {
1313 err = sock_intr_errno(timeout);
f7f9b5e7 1314 goto out;
d021c344
AK
1315 } else if (timeout == 0) {
1316 err = -EAGAIN;
f7f9b5e7 1317 goto out;
d021c344
AK
1318 }
1319
1320 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1321 }
f7f9b5e7 1322 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1323
1324 if (listener->sk_err)
1325 err = -listener->sk_err;
1326
1327 if (connected) {
1328 listener->sk_ack_backlog--;
1329
4192f672 1330 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
d021c344
AK
1331 vconnected = vsock_sk(connected);
1332
1333 /* If the listener socket has received an error, then we should
1334 * reject this socket and return. Note that we simply mark the
1335 * socket rejected, drop our reference, and let the cleanup
1336 * function handle the cleanup; the fact that we found it in
1337 * the listener's accept queue guarantees that the cleanup
1338 * function hasn't run yet.
1339 */
1340 if (err) {
1341 vconnected->rejected = true;
f7f9b5e7
CI
1342 } else {
1343 newsock->state = SS_CONNECTED;
1344 sock_graft(connected, newsock);
d021c344
AK
1345 }
1346
d021c344
AK
1347 release_sock(connected);
1348 sock_put(connected);
1349 }
1350
d021c344
AK
1351out:
1352 release_sock(listener);
1353 return err;
1354}
1355
1356static int vsock_listen(struct socket *sock, int backlog)
1357{
1358 int err;
1359 struct sock *sk;
1360 struct vsock_sock *vsk;
1361
1362 sk = sock->sk;
1363
1364 lock_sock(sk);
1365
1366 if (sock->type != SOCK_STREAM) {
1367 err = -EOPNOTSUPP;
1368 goto out;
1369 }
1370
1371 if (sock->state != SS_UNCONNECTED) {
1372 err = -EINVAL;
1373 goto out;
1374 }
1375
1376 vsk = vsock_sk(sk);
1377
1378 if (!vsock_addr_bound(&vsk->local_addr)) {
1379 err = -EINVAL;
1380 goto out;
1381 }
1382
1383 sk->sk_max_ack_backlog = backlog;
3b4477d2 1384 sk->sk_state = TCP_LISTEN;
d021c344
AK
1385
1386 err = 0;
1387
1388out:
1389 release_sock(sk);
1390 return err;
1391}
1392
1393static int vsock_stream_setsockopt(struct socket *sock,
1394 int level,
1395 int optname,
1396 char __user *optval,
1397 unsigned int optlen)
1398{
1399 int err;
1400 struct sock *sk;
1401 struct vsock_sock *vsk;
1402 u64 val;
1403
1404 if (level != AF_VSOCK)
1405 return -ENOPROTOOPT;
1406
1407#define COPY_IN(_v) \
1408 do { \
1409 if (optlen < sizeof(_v)) { \
1410 err = -EINVAL; \
1411 goto exit; \
1412 } \
1413 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1414 err = -EFAULT; \
1415 goto exit; \
1416 } \
1417 } while (0)
1418
1419 err = 0;
1420 sk = sock->sk;
1421 vsk = vsock_sk(sk);
1422
1423 lock_sock(sk);
1424
1425 switch (optname) {
1426 case SO_VM_SOCKETS_BUFFER_SIZE:
1427 COPY_IN(val);
1428 transport->set_buffer_size(vsk, val);
1429 break;
1430
1431 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1432 COPY_IN(val);
1433 transport->set_max_buffer_size(vsk, val);
1434 break;
1435
1436 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1437 COPY_IN(val);
1438 transport->set_min_buffer_size(vsk, val);
1439 break;
1440
1441 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1442 struct timeval tv;
1443 COPY_IN(tv);
1444 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1445 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1446 vsk->connect_timeout = tv.tv_sec * HZ +
1447 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1448 if (vsk->connect_timeout == 0)
1449 vsk->connect_timeout =
1450 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1451
1452 } else {
1453 err = -ERANGE;
1454 }
1455 break;
1456 }
1457
1458 default:
1459 err = -ENOPROTOOPT;
1460 break;
1461 }
1462
1463#undef COPY_IN
1464
1465exit:
1466 release_sock(sk);
1467 return err;
1468}
1469
1470static int vsock_stream_getsockopt(struct socket *sock,
1471 int level, int optname,
1472 char __user *optval,
1473 int __user *optlen)
1474{
1475 int err;
1476 int len;
1477 struct sock *sk;
1478 struct vsock_sock *vsk;
1479 u64 val;
1480
1481 if (level != AF_VSOCK)
1482 return -ENOPROTOOPT;
1483
1484 err = get_user(len, optlen);
1485 if (err != 0)
1486 return err;
1487
1488#define COPY_OUT(_v) \
1489 do { \
1490 if (len < sizeof(_v)) \
1491 return -EINVAL; \
1492 \
1493 len = sizeof(_v); \
1494 if (copy_to_user(optval, &_v, len) != 0) \
1495 return -EFAULT; \
1496 \
1497 } while (0)
1498
1499 err = 0;
1500 sk = sock->sk;
1501 vsk = vsock_sk(sk);
1502
1503 switch (optname) {
1504 case SO_VM_SOCKETS_BUFFER_SIZE:
1505 val = transport->get_buffer_size(vsk);
1506 COPY_OUT(val);
1507 break;
1508
1509 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1510 val = transport->get_max_buffer_size(vsk);
1511 COPY_OUT(val);
1512 break;
1513
1514 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1515 val = transport->get_min_buffer_size(vsk);
1516 COPY_OUT(val);
1517 break;
1518
1519 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1520 struct timeval tv;
1521 tv.tv_sec = vsk->connect_timeout / HZ;
1522 tv.tv_usec =
1523 (vsk->connect_timeout -
1524 tv.tv_sec * HZ) * (1000000 / HZ);
1525 COPY_OUT(tv);
1526 break;
1527 }
1528 default:
1529 return -ENOPROTOOPT;
1530 }
1531
1532 err = put_user(len, optlen);
1533 if (err != 0)
1534 return -EFAULT;
1535
1536#undef COPY_OUT
1537
1538 return 0;
1539}
1540
1b784140
YX
1541static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1542 size_t len)
d021c344
AK
1543{
1544 struct sock *sk;
1545 struct vsock_sock *vsk;
1546 ssize_t total_written;
1547 long timeout;
1548 int err;
1549 struct vsock_transport_send_notify_data send_data;
499fde66 1550 DEFINE_WAIT_FUNC(wait, woken_wake_function);
d021c344
AK
1551
1552 sk = sock->sk;
1553 vsk = vsock_sk(sk);
1554 total_written = 0;
1555 err = 0;
1556
1557 if (msg->msg_flags & MSG_OOB)
1558 return -EOPNOTSUPP;
1559
1560 lock_sock(sk);
1561
1562 /* Callers should not provide a destination with stream sockets. */
1563 if (msg->msg_namelen) {
3b4477d2 1564 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
d021c344
AK
1565 goto out;
1566 }
1567
1568 /* Send data only if both sides are not shutdown in the direction. */
1569 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1570 vsk->peer_shutdown & RCV_SHUTDOWN) {
1571 err = -EPIPE;
1572 goto out;
1573 }
1574
3b4477d2 1575 if (sk->sk_state != TCP_ESTABLISHED ||
d021c344
AK
1576 !vsock_addr_bound(&vsk->local_addr)) {
1577 err = -ENOTCONN;
1578 goto out;
1579 }
1580
1581 if (!vsock_addr_bound(&vsk->remote_addr)) {
1582 err = -EDESTADDRREQ;
1583 goto out;
1584 }
1585
1586 /* Wait for room in the produce queue to enqueue our user's data. */
1587 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1588
1589 err = transport->notify_send_init(vsk, &send_data);
1590 if (err < 0)
1591 goto out;
1592
d021c344
AK
1593 while (total_written < len) {
1594 ssize_t written;
1595
499fde66 1596 add_wait_queue(sk_sleep(sk), &wait);
d021c344
AK
1597 while (vsock_stream_has_space(vsk) == 0 &&
1598 sk->sk_err == 0 &&
1599 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1600 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1601
1602 /* Don't wait for non-blocking sockets. */
1603 if (timeout == 0) {
1604 err = -EAGAIN;
499fde66 1605 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1606 goto out_err;
d021c344
AK
1607 }
1608
1609 err = transport->notify_send_pre_block(vsk, &send_data);
f7f9b5e7 1610 if (err < 0) {
499fde66 1611 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7
CI
1612 goto out_err;
1613 }
d021c344
AK
1614
1615 release_sock(sk);
499fde66 1616 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
d021c344
AK
1617 lock_sock(sk);
1618 if (signal_pending(current)) {
1619 err = sock_intr_errno(timeout);
499fde66 1620 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1621 goto out_err;
d021c344
AK
1622 } else if (timeout == 0) {
1623 err = -EAGAIN;
499fde66 1624 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1625 goto out_err;
d021c344 1626 }
d021c344 1627 }
499fde66 1628 remove_wait_queue(sk_sleep(sk), &wait);
d021c344
AK
1629
1630 /* These checks occur both as part of and after the loop
1631 * conditional since we need to check before and after
1632 * sleeping.
1633 */
1634 if (sk->sk_err) {
1635 err = -sk->sk_err;
f7f9b5e7 1636 goto out_err;
d021c344
AK
1637 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1638 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1639 err = -EPIPE;
f7f9b5e7 1640 goto out_err;
d021c344
AK
1641 }
1642
1643 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1644 if (err < 0)
f7f9b5e7 1645 goto out_err;
d021c344
AK
1646
1647 /* Note that enqueue will only write as many bytes as are free
1648 * in the produce queue, so we don't need to ensure len is
1649 * smaller than the queue size. It is the caller's
1650 * responsibility to check how many bytes we were able to send.
1651 */
1652
1653 written = transport->stream_enqueue(
0f7db23a 1654 vsk, msg,
d021c344
AK
1655 len - total_written);
1656 if (written < 0) {
1657 err = -ENOMEM;
f7f9b5e7 1658 goto out_err;
d021c344
AK
1659 }
1660
1661 total_written += written;
1662
1663 err = transport->notify_send_post_enqueue(
1664 vsk, written, &send_data);
1665 if (err < 0)
f7f9b5e7 1666 goto out_err;
d021c344
AK
1667
1668 }
1669
f7f9b5e7 1670out_err:
d021c344
AK
1671 if (total_written > 0)
1672 err = total_written;
d021c344
AK
1673out:
1674 release_sock(sk);
1675 return err;
1676}
1677
1678
1679static int
1b784140
YX
1680vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1681 int flags)
d021c344
AK
1682{
1683 struct sock *sk;
1684 struct vsock_sock *vsk;
1685 int err;
1686 size_t target;
1687 ssize_t copied;
1688 long timeout;
1689 struct vsock_transport_recv_notify_data recv_data;
1690
1691 DEFINE_WAIT(wait);
1692
1693 sk = sock->sk;
1694 vsk = vsock_sk(sk);
1695 err = 0;
1696
1697 lock_sock(sk);
1698
3b4477d2 1699 if (sk->sk_state != TCP_ESTABLISHED) {
d021c344
AK
1700 /* Recvmsg is supposed to return 0 if a peer performs an
1701 * orderly shutdown. Differentiate between that case and when a
1702 * peer has not connected or a local shutdown occured with the
1703 * SOCK_DONE flag.
1704 */
1705 if (sock_flag(sk, SOCK_DONE))
1706 err = 0;
1707 else
1708 err = -ENOTCONN;
1709
1710 goto out;
1711 }
1712
1713 if (flags & MSG_OOB) {
1714 err = -EOPNOTSUPP;
1715 goto out;
1716 }
1717
1718 /* We don't check peer_shutdown flag here since peer may actually shut
1719 * down, but there can be data in the queue that a local socket can
1720 * receive.
1721 */
1722 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1723 err = 0;
1724 goto out;
1725 }
1726
1727 /* It is valid on Linux to pass in a zero-length receive buffer. This
1728 * is not an error. We may as well bail out now.
1729 */
1730 if (!len) {
1731 err = 0;
1732 goto out;
1733 }
1734
1735 /* We must not copy less than target bytes into the user's buffer
1736 * before returning successfully, so we wait for the consume queue to
1737 * have that much data to consume before dequeueing. Note that this
1738 * makes it impossible to handle cases where target is greater than the
1739 * queue size.
1740 */
1741 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1742 if (target >= transport->stream_rcvhiwat(vsk)) {
1743 err = -ENOMEM;
1744 goto out;
1745 }
1746 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1747 copied = 0;
1748
1749 err = transport->notify_recv_init(vsk, target, &recv_data);
1750 if (err < 0)
1751 goto out;
1752
d021c344
AK
1753
1754 while (1) {
f7f9b5e7 1755 s64 ready;
d021c344 1756
f7f9b5e7
CI
1757 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1758 ready = vsock_stream_has_data(vsk);
d021c344 1759
f7f9b5e7
CI
1760 if (ready == 0) {
1761 if (sk->sk_err != 0 ||
1762 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1763 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1764 finish_wait(sk_sleep(sk), &wait);
1765 break;
1766 }
1767 /* Don't wait for non-blocking sockets. */
1768 if (timeout == 0) {
1769 err = -EAGAIN;
1770 finish_wait(sk_sleep(sk), &wait);
1771 break;
1772 }
1773
1774 err = transport->notify_recv_pre_block(
1775 vsk, target, &recv_data);
1776 if (err < 0) {
1777 finish_wait(sk_sleep(sk), &wait);
1778 break;
1779 }
1780 release_sock(sk);
1781 timeout = schedule_timeout(timeout);
1782 lock_sock(sk);
1783
1784 if (signal_pending(current)) {
1785 err = sock_intr_errno(timeout);
1786 finish_wait(sk_sleep(sk), &wait);
1787 break;
1788 } else if (timeout == 0) {
1789 err = -EAGAIN;
1790 finish_wait(sk_sleep(sk), &wait);
1791 break;
1792 }
1793 } else {
d021c344
AK
1794 ssize_t read;
1795
f7f9b5e7
CI
1796 finish_wait(sk_sleep(sk), &wait);
1797
1798 if (ready < 0) {
1799 /* Invalid queue pair content. XXX This should
1800 * be changed to a connection reset in a later
1801 * change.
1802 */
1803
1804 err = -ENOMEM;
1805 goto out;
1806 }
1807
d021c344
AK
1808 err = transport->notify_recv_pre_dequeue(
1809 vsk, target, &recv_data);
1810 if (err < 0)
1811 break;
1812
1813 read = transport->stream_dequeue(
0f7db23a 1814 vsk, msg,
d021c344
AK
1815 len - copied, flags);
1816 if (read < 0) {
1817 err = -ENOMEM;
1818 break;
1819 }
1820
1821 copied += read;
1822
1823 err = transport->notify_recv_post_dequeue(
1824 vsk, target, read,
1825 !(flags & MSG_PEEK), &recv_data);
1826 if (err < 0)
f7f9b5e7 1827 goto out;
d021c344
AK
1828
1829 if (read >= target || flags & MSG_PEEK)
1830 break;
1831
1832 target -= read;
d021c344
AK
1833 }
1834 }
1835
1836 if (sk->sk_err)
1837 err = -sk->sk_err;
1838 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1839 err = 0;
1840
dedc58e0 1841 if (copied > 0)
d021c344 1842 err = copied;
d021c344 1843
d021c344
AK
1844out:
1845 release_sock(sk);
1846 return err;
1847}
1848
1849static const struct proto_ops vsock_stream_ops = {
1850 .family = PF_VSOCK,
1851 .owner = THIS_MODULE,
1852 .release = vsock_release,
1853 .bind = vsock_bind,
1854 .connect = vsock_stream_connect,
1855 .socketpair = sock_no_socketpair,
1856 .accept = vsock_accept,
1857 .getname = vsock_getname,
a11e1d43 1858 .poll = vsock_poll,
d021c344
AK
1859 .ioctl = sock_no_ioctl,
1860 .listen = vsock_listen,
1861 .shutdown = vsock_shutdown,
1862 .setsockopt = vsock_stream_setsockopt,
1863 .getsockopt = vsock_stream_getsockopt,
1864 .sendmsg = vsock_stream_sendmsg,
1865 .recvmsg = vsock_stream_recvmsg,
1866 .mmap = sock_no_mmap,
1867 .sendpage = sock_no_sendpage,
1868};
1869
1870static int vsock_create(struct net *net, struct socket *sock,
1871 int protocol, int kern)
1872{
1873 if (!sock)
1874 return -EINVAL;
1875
6cf1c5fc 1876 if (protocol && protocol != PF_VSOCK)
d021c344
AK
1877 return -EPROTONOSUPPORT;
1878
1879 switch (sock->type) {
1880 case SOCK_DGRAM:
1881 sock->ops = &vsock_dgram_ops;
1882 break;
1883 case SOCK_STREAM:
1884 sock->ops = &vsock_stream_ops;
1885 break;
1886 default:
1887 return -ESOCKTNOSUPPORT;
1888 }
1889
1890 sock->state = SS_UNCONNECTED;
1891
11aa9c28 1892 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
d021c344
AK
1893}
1894
1895static const struct net_proto_family vsock_family_ops = {
1896 .family = AF_VSOCK,
1897 .create = vsock_create,
1898 .owner = THIS_MODULE,
1899};
1900
1901static long vsock_dev_do_ioctl(struct file *filp,
1902 unsigned int cmd, void __user *ptr)
1903{
1904 u32 __user *p = ptr;
1905 int retval = 0;
1906
1907 switch (cmd) {
1908 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1909 if (put_user(transport->get_local_cid(), p) != 0)
1910 retval = -EFAULT;
1911 break;
1912
1913 default:
1914 pr_err("Unknown ioctl %d\n", cmd);
1915 retval = -EINVAL;
1916 }
1917
1918 return retval;
1919}
1920
1921static long vsock_dev_ioctl(struct file *filp,
1922 unsigned int cmd, unsigned long arg)
1923{
1924 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1925}
1926
1927#ifdef CONFIG_COMPAT
1928static long vsock_dev_compat_ioctl(struct file *filp,
1929 unsigned int cmd, unsigned long arg)
1930{
1931 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1932}
1933#endif
1934
1935static const struct file_operations vsock_device_ops = {
1936 .owner = THIS_MODULE,
1937 .unlocked_ioctl = vsock_dev_ioctl,
1938#ifdef CONFIG_COMPAT
1939 .compat_ioctl = vsock_dev_compat_ioctl,
1940#endif
1941 .open = nonseekable_open,
1942};
1943
1944static struct miscdevice vsock_device = {
1945 .name = "vsock",
d021c344
AK
1946 .fops = &vsock_device_ops,
1947};
1948
2c4a336e 1949int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
d021c344 1950{
2c4a336e
AK
1951 int err = mutex_lock_interruptible(&vsock_register_mutex);
1952
1953 if (err)
1954 return err;
1955
1956 if (transport) {
1957 err = -EBUSY;
1958 goto err_busy;
1959 }
1960
1961 /* Transport must be the owner of the protocol so that it can't
1962 * unload while there are open sockets.
1963 */
1964 vsock_proto.owner = owner;
1965 transport = t;
d021c344 1966
6ad0b2f7 1967 vsock_device.minor = MISC_DYNAMIC_MINOR;
d021c344
AK
1968 err = misc_register(&vsock_device);
1969 if (err) {
1970 pr_err("Failed to register misc device\n");
f6a835bb 1971 goto err_reset_transport;
d021c344
AK
1972 }
1973
1974 err = proto_register(&vsock_proto, 1); /* we want our slab */
1975 if (err) {
1976 pr_err("Cannot register vsock protocol\n");
f6a835bb 1977 goto err_deregister_misc;
d021c344
AK
1978 }
1979
1980 err = sock_register(&vsock_family_ops);
1981 if (err) {
1982 pr_err("could not register af_vsock (%d) address family: %d\n",
1983 AF_VSOCK, err);
1984 goto err_unregister_proto;
1985 }
1986
2c4a336e 1987 mutex_unlock(&vsock_register_mutex);
d021c344
AK
1988 return 0;
1989
1990err_unregister_proto:
1991 proto_unregister(&vsock_proto);
f6a835bb 1992err_deregister_misc:
d021c344 1993 misc_deregister(&vsock_device);
f6a835bb 1994err_reset_transport:
2c4a336e
AK
1995 transport = NULL;
1996err_busy:
d021c344 1997 mutex_unlock(&vsock_register_mutex);
2c4a336e 1998 return err;
d021c344 1999}
2c4a336e 2000EXPORT_SYMBOL_GPL(__vsock_core_init);
d021c344
AK
2001
2002void vsock_core_exit(void)
2003{
2004 mutex_lock(&vsock_register_mutex);
2005
2006 misc_deregister(&vsock_device);
2007 sock_unregister(AF_VSOCK);
2008 proto_unregister(&vsock_proto);
2009
2010 /* We do not want the assignment below re-ordered. */
2011 mb();
2012 transport = NULL;
2013
2014 mutex_unlock(&vsock_register_mutex);
2015}
2016EXPORT_SYMBOL_GPL(vsock_core_exit);
2017
0b01aeb3
SH
2018const struct vsock_transport *vsock_core_get_transport(void)
2019{
2020 /* vsock_register_mutex not taken since only the transport uses this
2021 * function and only while registered.
2022 */
2023 return transport;
2024}
2025EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2026
05e489b1
SH
2027static void __exit vsock_exit(void)
2028{
2029 /* Do nothing. This function makes this module removable. */
2030}
2031
c1eef220 2032module_init(vsock_init_tables);
05e489b1 2033module_exit(vsock_exit);
c1eef220 2034
d021c344
AK
2035MODULE_AUTHOR("VMware, Inc.");
2036MODULE_DESCRIPTION("VMware Virtual Socket Family");
1190cfdb 2037MODULE_VERSION("1.0.2.0-k");
d021c344 2038MODULE_LICENSE("GPL v2");