]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/vmw_vsock/af_vsock.c
vsock: correct removal of socket from the list
[mirror_ubuntu-bionic-kernel.git] / net / vmw_vsock / af_vsock.c
CommitLineData
d021c344
AK
1/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16/* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
3b4477d2 39 * implementation because they are in the TCP_LISTEN state. When a
ea3803c1
SH
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
d021c344
AK
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
4192f672
SH
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
d021c344
AK
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
3b4477d2
SH
85 *
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
88 *
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
d021c344
AK
94 */
95
96#include <linux/types.h>
d021c344
AK
97#include <linux/bitops.h>
98#include <linux/cred.h>
99#include <linux/init.h>
100#include <linux/io.h>
101#include <linux/kernel.h>
174cd4b1 102#include <linux/sched/signal.h>
d021c344
AK
103#include <linux/kmod.h>
104#include <linux/list.h>
105#include <linux/miscdevice.h>
106#include <linux/module.h>
107#include <linux/mutex.h>
108#include <linux/net.h>
109#include <linux/poll.h>
110#include <linux/skbuff.h>
111#include <linux/smp.h>
112#include <linux/socket.h>
113#include <linux/stddef.h>
114#include <linux/unistd.h>
115#include <linux/wait.h>
116#include <linux/workqueue.h>
117#include <net/sock.h>
82a54d0e 118#include <net/af_vsock.h>
d021c344
AK
119
120static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
121static void vsock_sk_destruct(struct sock *sk);
122static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
123
124/* Protocol family. */
125static struct proto vsock_proto = {
126 .name = "AF_VSOCK",
127 .owner = THIS_MODULE,
128 .obj_size = sizeof(struct vsock_sock),
129};
130
131/* The default peer timeout indicates how long we will wait for a peer response
132 * to a control message.
133 */
134#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
135
d021c344
AK
136static const struct vsock_transport *transport;
137static DEFINE_MUTEX(vsock_register_mutex);
138
139/**** EXPORTS ****/
140
141/* Get the ID of the local context. This is transport dependent. */
142
143int vm_sockets_get_local_cid(void)
144{
145 return transport->get_local_cid();
146}
147EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
148
149/**** UTILS ****/
150
151/* Each bound VSocket is stored in the bind hash table and each connected
152 * VSocket is stored in the connected hash table.
153 *
154 * Unbound sockets are all put on the same list attached to the end of the hash
155 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157 * represents the list that addr hashes to).
158 *
159 * Specifically, we initialize the vsock_bind_table array to a size of
160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
a49dd9dc 163 * mods with VSOCK_HASH_SIZE to ensure this.
d021c344 164 */
d021c344
AK
165#define MAX_PORT_RETRIES 24
166
a49dd9dc 167#define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
d021c344
AK
168#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169#define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
170
171/* XXX This can probably be implemented in a better way. */
172#define VSOCK_CONN_HASH(src, dst) \
a49dd9dc 173 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
d021c344
AK
174#define vsock_connected_sockets(src, dst) \
175 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176#define vsock_connected_sockets_vsk(vsk) \
177 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178
44f20980
SH
179struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180EXPORT_SYMBOL_GPL(vsock_bind_table);
181struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182EXPORT_SYMBOL_GPL(vsock_connected_table);
183DEFINE_SPINLOCK(vsock_table_lock);
184EXPORT_SYMBOL_GPL(vsock_table_lock);
d021c344 185
b3a6dfe8
AH
186/* Autobind this socket to the local address if necessary. */
187static int vsock_auto_bind(struct vsock_sock *vsk)
188{
189 struct sock *sk = sk_vsock(vsk);
190 struct sockaddr_vm local_addr;
191
192 if (vsock_addr_bound(&vsk->local_addr))
193 return 0;
194 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195 return __vsock_bind(sk, &local_addr);
196}
197
c1eef220 198static int __init vsock_init_tables(void)
d021c344
AK
199{
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203 INIT_LIST_HEAD(&vsock_bind_table[i]);
204
205 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206 INIT_LIST_HEAD(&vsock_connected_table[i]);
c1eef220 207 return 0;
d021c344
AK
208}
209
210static void __vsock_insert_bound(struct list_head *list,
211 struct vsock_sock *vsk)
212{
213 sock_hold(&vsk->sk);
214 list_add(&vsk->bound_table, list);
215}
216
217static void __vsock_insert_connected(struct list_head *list,
218 struct vsock_sock *vsk)
219{
220 sock_hold(&vsk->sk);
221 list_add(&vsk->connected_table, list);
222}
223
224static void __vsock_remove_bound(struct vsock_sock *vsk)
225{
226 list_del_init(&vsk->bound_table);
227 sock_put(&vsk->sk);
228}
229
230static void __vsock_remove_connected(struct vsock_sock *vsk)
231{
232 list_del_init(&vsk->connected_table);
233 sock_put(&vsk->sk);
234}
235
236static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237{
238 struct vsock_sock *vsk;
239
240 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
990454b5 241 if (addr->svm_port == vsk->local_addr.svm_port)
d021c344
AK
242 return sk_vsock(vsk);
243
244 return NULL;
245}
246
247static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248 struct sockaddr_vm *dst)
249{
250 struct vsock_sock *vsk;
251
252 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253 connected_table) {
990454b5
RG
254 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255 dst->svm_port == vsk->local_addr.svm_port) {
d021c344
AK
256 return sk_vsock(vsk);
257 }
258 }
259
260 return NULL;
261}
262
d021c344
AK
263static void vsock_insert_unbound(struct vsock_sock *vsk)
264{
265 spin_lock_bh(&vsock_table_lock);
266 __vsock_insert_bound(vsock_unbound_sockets, vsk);
267 spin_unlock_bh(&vsock_table_lock);
268}
269
270void vsock_insert_connected(struct vsock_sock *vsk)
271{
272 struct list_head *list = vsock_connected_sockets(
273 &vsk->remote_addr, &vsk->local_addr);
274
275 spin_lock_bh(&vsock_table_lock);
276 __vsock_insert_connected(list, vsk);
277 spin_unlock_bh(&vsock_table_lock);
278}
279EXPORT_SYMBOL_GPL(vsock_insert_connected);
280
281void vsock_remove_bound(struct vsock_sock *vsk)
282{
283 spin_lock_bh(&vsock_table_lock);
08adbfa0
SM
284 if (__vsock_in_bound_table(vsk))
285 __vsock_remove_bound(vsk);
d021c344
AK
286 spin_unlock_bh(&vsock_table_lock);
287}
288EXPORT_SYMBOL_GPL(vsock_remove_bound);
289
290void vsock_remove_connected(struct vsock_sock *vsk)
291{
292 spin_lock_bh(&vsock_table_lock);
08adbfa0
SM
293 if (__vsock_in_connected_table(vsk))
294 __vsock_remove_connected(vsk);
d021c344
AK
295 spin_unlock_bh(&vsock_table_lock);
296}
297EXPORT_SYMBOL_GPL(vsock_remove_connected);
298
299struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300{
301 struct sock *sk;
302
303 spin_lock_bh(&vsock_table_lock);
304 sk = __vsock_find_bound_socket(addr);
305 if (sk)
306 sock_hold(sk);
307
308 spin_unlock_bh(&vsock_table_lock);
309
310 return sk;
311}
312EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313
314struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
315 struct sockaddr_vm *dst)
316{
317 struct sock *sk;
318
319 spin_lock_bh(&vsock_table_lock);
320 sk = __vsock_find_connected_socket(src, dst);
321 if (sk)
322 sock_hold(sk);
323
324 spin_unlock_bh(&vsock_table_lock);
325
326 return sk;
327}
328EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329
6773b7dc
SH
330void vsock_remove_sock(struct vsock_sock *vsk)
331{
08adbfa0
SM
332 vsock_remove_bound(vsk);
333 vsock_remove_connected(vsk);
6773b7dc
SH
334}
335EXPORT_SYMBOL_GPL(vsock_remove_sock);
336
d021c344
AK
337void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
338{
339 int i;
340
341 spin_lock_bh(&vsock_table_lock);
342
343 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
344 struct vsock_sock *vsk;
345 list_for_each_entry(vsk, &vsock_connected_table[i],
d9af2d67 346 connected_table)
d021c344
AK
347 fn(sk_vsock(vsk));
348 }
349
350 spin_unlock_bh(&vsock_table_lock);
351}
352EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
353
354void vsock_add_pending(struct sock *listener, struct sock *pending)
355{
356 struct vsock_sock *vlistener;
357 struct vsock_sock *vpending;
358
359 vlistener = vsock_sk(listener);
360 vpending = vsock_sk(pending);
361
362 sock_hold(pending);
363 sock_hold(listener);
364 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
365}
366EXPORT_SYMBOL_GPL(vsock_add_pending);
367
368void vsock_remove_pending(struct sock *listener, struct sock *pending)
369{
370 struct vsock_sock *vpending = vsock_sk(pending);
371
372 list_del_init(&vpending->pending_links);
373 sock_put(listener);
374 sock_put(pending);
375}
376EXPORT_SYMBOL_GPL(vsock_remove_pending);
377
378void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
379{
380 struct vsock_sock *vlistener;
381 struct vsock_sock *vconnected;
382
383 vlistener = vsock_sk(listener);
384 vconnected = vsock_sk(connected);
385
386 sock_hold(connected);
387 sock_hold(listener);
388 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
389}
390EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
391
392static struct sock *vsock_dequeue_accept(struct sock *listener)
393{
394 struct vsock_sock *vlistener;
395 struct vsock_sock *vconnected;
396
397 vlistener = vsock_sk(listener);
398
399 if (list_empty(&vlistener->accept_queue))
400 return NULL;
401
402 vconnected = list_entry(vlistener->accept_queue.next,
403 struct vsock_sock, accept_queue);
404
405 list_del_init(&vconnected->accept_queue);
406 sock_put(listener);
407 /* The caller will need a reference on the connected socket so we let
408 * it call sock_put().
409 */
410
411 return sk_vsock(vconnected);
412}
413
414static bool vsock_is_accept_queue_empty(struct sock *sk)
415{
416 struct vsock_sock *vsk = vsock_sk(sk);
417 return list_empty(&vsk->accept_queue);
418}
419
420static bool vsock_is_pending(struct sock *sk)
421{
422 struct vsock_sock *vsk = vsock_sk(sk);
423 return !list_empty(&vsk->pending_links);
424}
425
426static int vsock_send_shutdown(struct sock *sk, int mode)
427{
428 return transport->shutdown(vsock_sk(sk), mode);
429}
430
dfda3d1a 431static void vsock_pending_work(struct work_struct *work)
d021c344
AK
432{
433 struct sock *sk;
434 struct sock *listener;
435 struct vsock_sock *vsk;
436 bool cleanup;
437
dfda3d1a 438 vsk = container_of(work, struct vsock_sock, pending_work.work);
d021c344
AK
439 sk = sk_vsock(vsk);
440 listener = vsk->listener;
441 cleanup = true;
442
443 lock_sock(listener);
4192f672 444 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
d021c344
AK
445
446 if (vsock_is_pending(sk)) {
447 vsock_remove_pending(listener, sk);
1190cfdb
JH
448
449 listener->sk_ack_backlog--;
d021c344
AK
450 } else if (!vsk->rejected) {
451 /* We are not on the pending list and accept() did not reject
452 * us, so we must have been accepted by our user process. We
453 * just need to drop our references to the sockets and be on
454 * our way.
455 */
456 cleanup = false;
457 goto out;
458 }
459
d021c344
AK
460 /* We need to remove ourself from the global connected sockets list so
461 * incoming packets can't find this socket, and to reduce the reference
462 * count.
463 */
08adbfa0 464 vsock_remove_connected(vsk);
d021c344 465
3b4477d2 466 sk->sk_state = TCP_CLOSE;
d021c344
AK
467
468out:
469 release_sock(sk);
470 release_sock(listener);
471 if (cleanup)
472 sock_put(sk);
473
474 sock_put(sk);
475 sock_put(listener);
476}
d021c344
AK
477
478/**** SOCKET OPERATIONS ****/
479
480static int __vsock_bind_stream(struct vsock_sock *vsk,
481 struct sockaddr_vm *addr)
482{
483 static u32 port = LAST_RESERVED_PORT + 1;
484 struct sockaddr_vm new_addr;
485
486 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
487
488 if (addr->svm_port == VMADDR_PORT_ANY) {
489 bool found = false;
490 unsigned int i;
491
492 for (i = 0; i < MAX_PORT_RETRIES; i++) {
493 if (port <= LAST_RESERVED_PORT)
494 port = LAST_RESERVED_PORT + 1;
495
496 new_addr.svm_port = port++;
497
498 if (!__vsock_find_bound_socket(&new_addr)) {
499 found = true;
500 break;
501 }
502 }
503
504 if (!found)
505 return -EADDRNOTAVAIL;
506 } else {
507 /* If port is in reserved range, ensure caller
508 * has necessary privileges.
509 */
510 if (addr->svm_port <= LAST_RESERVED_PORT &&
511 !capable(CAP_NET_BIND_SERVICE)) {
512 return -EACCES;
513 }
514
515 if (__vsock_find_bound_socket(&new_addr))
516 return -EADDRINUSE;
517 }
518
519 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
520
521 /* Remove stream sockets from the unbound list and add them to the hash
522 * table for easy lookup by its address. The unbound list is simply an
523 * extra entry at the end of the hash table, a trick used by AF_UNIX.
524 */
525 __vsock_remove_bound(vsk);
526 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
527
528 return 0;
529}
530
531static int __vsock_bind_dgram(struct vsock_sock *vsk,
532 struct sockaddr_vm *addr)
533{
534 return transport->dgram_bind(vsk, addr);
535}
536
537static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
538{
539 struct vsock_sock *vsk = vsock_sk(sk);
540 u32 cid;
541 int retval;
542
543 /* First ensure this socket isn't already bound. */
544 if (vsock_addr_bound(&vsk->local_addr))
545 return -EINVAL;
546
547 /* Now bind to the provided address or select appropriate values if
548 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
549 * like AF_INET prevents binding to a non-local IP address (in most
550 * cases), we only allow binding to the local CID.
551 */
552 cid = transport->get_local_cid();
553 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
554 return -EADDRNOTAVAIL;
555
556 switch (sk->sk_socket->type) {
557 case SOCK_STREAM:
558 spin_lock_bh(&vsock_table_lock);
559 retval = __vsock_bind_stream(vsk, addr);
560 spin_unlock_bh(&vsock_table_lock);
561 break;
562
563 case SOCK_DGRAM:
564 retval = __vsock_bind_dgram(vsk, addr);
565 break;
566
567 default:
568 retval = -EINVAL;
569 break;
570 }
571
572 return retval;
573}
574
dfda3d1a
CW
575static void vsock_connect_timeout(struct work_struct *work);
576
d021c344
AK
577struct sock *__vsock_create(struct net *net,
578 struct socket *sock,
579 struct sock *parent,
580 gfp_t priority,
11aa9c28
EB
581 unsigned short type,
582 int kern)
d021c344
AK
583{
584 struct sock *sk;
585 struct vsock_sock *psk;
586 struct vsock_sock *vsk;
587
11aa9c28 588 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
d021c344
AK
589 if (!sk)
590 return NULL;
591
592 sock_init_data(sock, sk);
593
594 /* sk->sk_type is normally set in sock_init_data, but only if sock is
595 * non-NULL. We make sure that our sockets always have a type by
596 * setting it here if needed.
597 */
598 if (!sock)
599 sk->sk_type = type;
600
601 vsk = vsock_sk(sk);
602 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
603 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
604
605 sk->sk_destruct = vsock_sk_destruct;
606 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
d021c344
AK
607 sock_reset_flag(sk, SOCK_DONE);
608
609 INIT_LIST_HEAD(&vsk->bound_table);
610 INIT_LIST_HEAD(&vsk->connected_table);
611 vsk->listener = NULL;
612 INIT_LIST_HEAD(&vsk->pending_links);
613 INIT_LIST_HEAD(&vsk->accept_queue);
614 vsk->rejected = false;
615 vsk->sent_request = false;
616 vsk->ignore_connecting_rst = false;
617 vsk->peer_shutdown = 0;
dfda3d1a
CW
618 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
619 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
d021c344
AK
620
621 psk = parent ? vsock_sk(parent) : NULL;
622 if (parent) {
623 vsk->trusted = psk->trusted;
624 vsk->owner = get_cred(psk->owner);
625 vsk->connect_timeout = psk->connect_timeout;
626 } else {
627 vsk->trusted = capable(CAP_NET_ADMIN);
628 vsk->owner = get_current_cred();
629 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
630 }
631
632 if (transport->init(vsk, psk) < 0) {
633 sk_free(sk);
634 return NULL;
635 }
636
637 if (sock)
638 vsock_insert_unbound(vsk);
639
640 return sk;
641}
642EXPORT_SYMBOL_GPL(__vsock_create);
643
644static void __vsock_release(struct sock *sk)
645{
646 if (sk) {
647 struct sk_buff *skb;
648 struct sock *pending;
649 struct vsock_sock *vsk;
650
651 vsk = vsock_sk(sk);
652 pending = NULL; /* Compiler warning. */
653
d021c344
AK
654 transport->release(vsk);
655
656 lock_sock(sk);
657 sock_orphan(sk);
658 sk->sk_shutdown = SHUTDOWN_MASK;
659
660 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
661 kfree_skb(skb);
662
663 /* Clean up any sockets that never were accepted. */
664 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
665 __vsock_release(pending);
666 sock_put(pending);
667 }
668
669 release_sock(sk);
670 sock_put(sk);
671 }
672}
673
674static void vsock_sk_destruct(struct sock *sk)
675{
676 struct vsock_sock *vsk = vsock_sk(sk);
677
678 transport->destruct(vsk);
679
680 /* When clearing these addresses, there's no need to set the family and
681 * possibly register the address family with the kernel.
682 */
683 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
684 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
685
686 put_cred(vsk->owner);
687}
688
689static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
690{
691 int err;
692
693 err = sock_queue_rcv_skb(sk, skb);
694 if (err)
695 kfree_skb(skb);
696
697 return err;
698}
699
700s64 vsock_stream_has_data(struct vsock_sock *vsk)
701{
702 return transport->stream_has_data(vsk);
703}
704EXPORT_SYMBOL_GPL(vsock_stream_has_data);
705
706s64 vsock_stream_has_space(struct vsock_sock *vsk)
707{
708 return transport->stream_has_space(vsk);
709}
710EXPORT_SYMBOL_GPL(vsock_stream_has_space);
711
712static int vsock_release(struct socket *sock)
713{
714 __vsock_release(sock->sk);
715 sock->sk = NULL;
716 sock->state = SS_FREE;
717
718 return 0;
719}
720
721static int
722vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
723{
724 int err;
725 struct sock *sk;
726 struct sockaddr_vm *vm_addr;
727
728 sk = sock->sk;
729
730 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
731 return -EINVAL;
732
733 lock_sock(sk);
734 err = __vsock_bind(sk, vm_addr);
735 release_sock(sk);
736
737 return err;
738}
739
740static int vsock_getname(struct socket *sock,
741 struct sockaddr *addr, int *addr_len, int peer)
742{
743 int err;
744 struct sock *sk;
745 struct vsock_sock *vsk;
746 struct sockaddr_vm *vm_addr;
747
748 sk = sock->sk;
749 vsk = vsock_sk(sk);
750 err = 0;
751
752 lock_sock(sk);
753
754 if (peer) {
755 if (sock->state != SS_CONNECTED) {
756 err = -ENOTCONN;
757 goto out;
758 }
759 vm_addr = &vsk->remote_addr;
760 } else {
761 vm_addr = &vsk->local_addr;
762 }
763
764 if (!vm_addr) {
765 err = -EINVAL;
766 goto out;
767 }
768
769 /* sys_getsockname() and sys_getpeername() pass us a
770 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
771 * that macro is defined in socket.c instead of .h, so we hardcode its
772 * value here.
773 */
774 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
775 memcpy(addr, vm_addr, sizeof(*vm_addr));
776 *addr_len = sizeof(*vm_addr);
777
778out:
779 release_sock(sk);
780 return err;
781}
782
783static int vsock_shutdown(struct socket *sock, int mode)
784{
785 int err;
786 struct sock *sk;
787
788 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
789 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
790 * here like the other address families do. Note also that the
791 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
792 * which is what we want.
793 */
794 mode++;
795
796 if ((mode & ~SHUTDOWN_MASK) || !mode)
797 return -EINVAL;
798
799 /* If this is a STREAM socket and it is not connected then bail out
800 * immediately. If it is a DGRAM socket then we must first kick the
801 * socket so that it wakes up from any sleeping calls, for example
802 * recv(), and then afterwards return the error.
803 */
804
805 sk = sock->sk;
806 if (sock->state == SS_UNCONNECTED) {
807 err = -ENOTCONN;
808 if (sk->sk_type == SOCK_STREAM)
809 return err;
810 } else {
811 sock->state = SS_DISCONNECTING;
812 err = 0;
813 }
814
815 /* Receive and send shutdowns are treated alike. */
816 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
817 if (mode) {
818 lock_sock(sk);
819 sk->sk_shutdown |= mode;
820 sk->sk_state_change(sk);
821 release_sock(sk);
822
823 if (sk->sk_type == SOCK_STREAM) {
824 sock_reset_flag(sk, SOCK_DONE);
825 vsock_send_shutdown(sk, mode);
826 }
827 }
828
829 return err;
830}
831
832static unsigned int vsock_poll(struct file *file, struct socket *sock,
833 poll_table *wait)
834{
835 struct sock *sk;
836 unsigned int mask;
837 struct vsock_sock *vsk;
838
839 sk = sock->sk;
840 vsk = vsock_sk(sk);
841
842 poll_wait(file, sk_sleep(sk), wait);
843 mask = 0;
844
845 if (sk->sk_err)
846 /* Signify that there has been an error on this socket. */
847 mask |= POLLERR;
848
849 /* INET sockets treat local write shutdown and peer write shutdown as a
850 * case of POLLHUP set.
851 */
852 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
853 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
854 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
855 mask |= POLLHUP;
856 }
857
858 if (sk->sk_shutdown & RCV_SHUTDOWN ||
859 vsk->peer_shutdown & SEND_SHUTDOWN) {
860 mask |= POLLRDHUP;
861 }
862
863 if (sock->type == SOCK_DGRAM) {
864 /* For datagram sockets we can read if there is something in
865 * the queue and write as long as the socket isn't shutdown for
866 * sending.
867 */
868 if (!skb_queue_empty(&sk->sk_receive_queue) ||
869 (sk->sk_shutdown & RCV_SHUTDOWN)) {
870 mask |= POLLIN | POLLRDNORM;
871 }
872
873 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
874 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
875
876 } else if (sock->type == SOCK_STREAM) {
877 lock_sock(sk);
878
879 /* Listening sockets that have connections in their accept
880 * queue can be read.
881 */
3b4477d2 882 if (sk->sk_state == TCP_LISTEN
d021c344
AK
883 && !vsock_is_accept_queue_empty(sk))
884 mask |= POLLIN | POLLRDNORM;
885
886 /* If there is something in the queue then we can read. */
887 if (transport->stream_is_active(vsk) &&
888 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
889 bool data_ready_now = false;
890 int ret = transport->notify_poll_in(
891 vsk, 1, &data_ready_now);
892 if (ret < 0) {
893 mask |= POLLERR;
894 } else {
895 if (data_ready_now)
896 mask |= POLLIN | POLLRDNORM;
897
898 }
899 }
900
901 /* Sockets whose connections have been closed, reset, or
902 * terminated should also be considered read, and we check the
903 * shutdown flag for that.
904 */
905 if (sk->sk_shutdown & RCV_SHUTDOWN ||
906 vsk->peer_shutdown & SEND_SHUTDOWN) {
907 mask |= POLLIN | POLLRDNORM;
908 }
909
910 /* Connected sockets that can produce data can be written. */
3b4477d2 911 if (sk->sk_state == TCP_ESTABLISHED) {
d021c344
AK
912 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
913 bool space_avail_now = false;
914 int ret = transport->notify_poll_out(
915 vsk, 1, &space_avail_now);
916 if (ret < 0) {
917 mask |= POLLERR;
918 } else {
919 if (space_avail_now)
920 /* Remove POLLWRBAND since INET
921 * sockets are not setting it.
922 */
923 mask |= POLLOUT | POLLWRNORM;
924
925 }
926 }
927 }
928
929 /* Simulate INET socket poll behaviors, which sets
930 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
931 * but local send is not shutdown.
932 */
ba3169fc 933 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
d021c344
AK
934 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
935 mask |= POLLOUT | POLLWRNORM;
936
937 }
938
939 release_sock(sk);
940 }
941
942 return mask;
943}
944
1b784140
YX
945static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
946 size_t len)
d021c344
AK
947{
948 int err;
949 struct sock *sk;
950 struct vsock_sock *vsk;
951 struct sockaddr_vm *remote_addr;
952
953 if (msg->msg_flags & MSG_OOB)
954 return -EOPNOTSUPP;
955
956 /* For now, MSG_DONTWAIT is always assumed... */
957 err = 0;
958 sk = sock->sk;
959 vsk = vsock_sk(sk);
960
961 lock_sock(sk);
962
b3a6dfe8
AH
963 err = vsock_auto_bind(vsk);
964 if (err)
965 goto out;
d021c344 966
d021c344
AK
967
968 /* If the provided message contains an address, use that. Otherwise
969 * fall back on the socket's remote handle (if it has been connected).
970 */
971 if (msg->msg_name &&
972 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
973 &remote_addr) == 0) {
974 /* Ensure this address is of the right type and is a valid
975 * destination.
976 */
977
978 if (remote_addr->svm_cid == VMADDR_CID_ANY)
979 remote_addr->svm_cid = transport->get_local_cid();
980
981 if (!vsock_addr_bound(remote_addr)) {
982 err = -EINVAL;
983 goto out;
984 }
985 } else if (sock->state == SS_CONNECTED) {
986 remote_addr = &vsk->remote_addr;
987
988 if (remote_addr->svm_cid == VMADDR_CID_ANY)
989 remote_addr->svm_cid = transport->get_local_cid();
990
991 /* XXX Should connect() or this function ensure remote_addr is
992 * bound?
993 */
994 if (!vsock_addr_bound(&vsk->remote_addr)) {
995 err = -EINVAL;
996 goto out;
997 }
998 } else {
999 err = -EINVAL;
1000 goto out;
1001 }
1002
1003 if (!transport->dgram_allow(remote_addr->svm_cid,
1004 remote_addr->svm_port)) {
1005 err = -EINVAL;
1006 goto out;
1007 }
1008
0f7db23a 1009 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
d021c344
AK
1010
1011out:
1012 release_sock(sk);
1013 return err;
1014}
1015
1016static int vsock_dgram_connect(struct socket *sock,
1017 struct sockaddr *addr, int addr_len, int flags)
1018{
1019 int err;
1020 struct sock *sk;
1021 struct vsock_sock *vsk;
1022 struct sockaddr_vm *remote_addr;
1023
1024 sk = sock->sk;
1025 vsk = vsock_sk(sk);
1026
1027 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1028 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1029 lock_sock(sk);
1030 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1031 VMADDR_PORT_ANY);
1032 sock->state = SS_UNCONNECTED;
1033 release_sock(sk);
1034 return 0;
1035 } else if (err != 0)
1036 return -EINVAL;
1037
1038 lock_sock(sk);
1039
b3a6dfe8
AH
1040 err = vsock_auto_bind(vsk);
1041 if (err)
1042 goto out;
d021c344
AK
1043
1044 if (!transport->dgram_allow(remote_addr->svm_cid,
1045 remote_addr->svm_port)) {
1046 err = -EINVAL;
1047 goto out;
1048 }
1049
1050 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1051 sock->state = SS_CONNECTED;
1052
1053out:
1054 release_sock(sk);
1055 return err;
1056}
1057
1b784140
YX
1058static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1059 size_t len, int flags)
d021c344 1060{
1b784140 1061 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
d021c344
AK
1062}
1063
1064static const struct proto_ops vsock_dgram_ops = {
1065 .family = PF_VSOCK,
1066 .owner = THIS_MODULE,
1067 .release = vsock_release,
1068 .bind = vsock_bind,
1069 .connect = vsock_dgram_connect,
1070 .socketpair = sock_no_socketpair,
1071 .accept = sock_no_accept,
1072 .getname = vsock_getname,
1073 .poll = vsock_poll,
1074 .ioctl = sock_no_ioctl,
1075 .listen = sock_no_listen,
1076 .shutdown = vsock_shutdown,
1077 .setsockopt = sock_no_setsockopt,
1078 .getsockopt = sock_no_getsockopt,
1079 .sendmsg = vsock_dgram_sendmsg,
1080 .recvmsg = vsock_dgram_recvmsg,
1081 .mmap = sock_no_mmap,
1082 .sendpage = sock_no_sendpage,
1083};
1084
380feae0
PT
1085static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1086{
1087 if (!transport->cancel_pkt)
1088 return -EOPNOTSUPP;
1089
1090 return transport->cancel_pkt(vsk);
1091}
1092
d021c344
AK
1093static void vsock_connect_timeout(struct work_struct *work)
1094{
1095 struct sock *sk;
1096 struct vsock_sock *vsk;
380feae0 1097 int cancel = 0;
d021c344 1098
dfda3d1a 1099 vsk = container_of(work, struct vsock_sock, connect_work.work);
d021c344
AK
1100 sk = sk_vsock(vsk);
1101
1102 lock_sock(sk);
3b4477d2 1103 if (sk->sk_state == TCP_SYN_SENT &&
d021c344 1104 (sk->sk_shutdown != SHUTDOWN_MASK)) {
3b4477d2 1105 sk->sk_state = TCP_CLOSE;
d021c344
AK
1106 sk->sk_err = ETIMEDOUT;
1107 sk->sk_error_report(sk);
380feae0 1108 cancel = 1;
d021c344
AK
1109 }
1110 release_sock(sk);
380feae0
PT
1111 if (cancel)
1112 vsock_transport_cancel_pkt(vsk);
d021c344
AK
1113
1114 sock_put(sk);
1115}
1116
1117static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1118 int addr_len, int flags)
1119{
1120 int err;
1121 struct sock *sk;
1122 struct vsock_sock *vsk;
1123 struct sockaddr_vm *remote_addr;
1124 long timeout;
1125 DEFINE_WAIT(wait);
1126
1127 err = 0;
1128 sk = sock->sk;
1129 vsk = vsock_sk(sk);
1130
1131 lock_sock(sk);
1132
1133 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1134 switch (sock->state) {
1135 case SS_CONNECTED:
1136 err = -EISCONN;
1137 goto out;
1138 case SS_DISCONNECTING:
1139 err = -EINVAL;
1140 goto out;
1141 case SS_CONNECTING:
1142 /* This continues on so we can move sock into the SS_CONNECTED
1143 * state once the connection has completed (at which point err
1144 * will be set to zero also). Otherwise, we will either wait
1145 * for the connection or return -EALREADY should this be a
1146 * non-blocking call.
1147 */
1148 err = -EALREADY;
1149 break;
1150 default:
3b4477d2 1151 if ((sk->sk_state == TCP_LISTEN) ||
d021c344
AK
1152 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1153 err = -EINVAL;
1154 goto out;
1155 }
1156
1157 /* The hypervisor and well-known contexts do not have socket
1158 * endpoints.
1159 */
1160 if (!transport->stream_allow(remote_addr->svm_cid,
1161 remote_addr->svm_port)) {
1162 err = -ENETUNREACH;
1163 goto out;
1164 }
1165
1166 /* Set the remote address that we are connecting to. */
1167 memcpy(&vsk->remote_addr, remote_addr,
1168 sizeof(vsk->remote_addr));
1169
b3a6dfe8
AH
1170 err = vsock_auto_bind(vsk);
1171 if (err)
1172 goto out;
d021c344 1173
3b4477d2 1174 sk->sk_state = TCP_SYN_SENT;
d021c344
AK
1175
1176 err = transport->connect(vsk);
1177 if (err < 0)
1178 goto out;
1179
1180 /* Mark sock as connecting and set the error code to in
1181 * progress in case this is a non-blocking connect.
1182 */
1183 sock->state = SS_CONNECTING;
1184 err = -EINPROGRESS;
1185 }
1186
1187 /* The receive path will handle all communication until we are able to
1188 * enter the connected state. Here we wait for the connection to be
1189 * completed or a notification of an error.
1190 */
1191 timeout = vsk->connect_timeout;
1192 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1193
3b4477d2 1194 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
d021c344
AK
1195 if (flags & O_NONBLOCK) {
1196 /* If we're not going to block, we schedule a timeout
1197 * function to generate a timeout on the connection
1198 * attempt, in case the peer doesn't respond in a
1199 * timely manner. We hold on to the socket until the
1200 * timeout fires.
1201 */
1202 sock_hold(sk);
dfda3d1a 1203 schedule_delayed_work(&vsk->connect_work, timeout);
d021c344
AK
1204
1205 /* Skip ahead to preserve error code set above. */
1206 goto out_wait;
1207 }
1208
1209 release_sock(sk);
1210 timeout = schedule_timeout(timeout);
1211 lock_sock(sk);
1212
1213 if (signal_pending(current)) {
1214 err = sock_intr_errno(timeout);
3b4477d2 1215 sk->sk_state = TCP_CLOSE;
f7f9b5e7 1216 sock->state = SS_UNCONNECTED;
380feae0 1217 vsock_transport_cancel_pkt(vsk);
f7f9b5e7 1218 goto out_wait;
d021c344
AK
1219 } else if (timeout == 0) {
1220 err = -ETIMEDOUT;
3b4477d2 1221 sk->sk_state = TCP_CLOSE;
f7f9b5e7 1222 sock->state = SS_UNCONNECTED;
380feae0 1223 vsock_transport_cancel_pkt(vsk);
f7f9b5e7 1224 goto out_wait;
d021c344
AK
1225 }
1226
1227 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1228 }
1229
1230 if (sk->sk_err) {
1231 err = -sk->sk_err;
3b4477d2 1232 sk->sk_state = TCP_CLOSE;
f7f9b5e7
CI
1233 sock->state = SS_UNCONNECTED;
1234 } else {
d021c344 1235 err = 0;
f7f9b5e7 1236 }
d021c344
AK
1237
1238out_wait:
1239 finish_wait(sk_sleep(sk), &wait);
1240out:
1241 release_sock(sk);
1242 return err;
d021c344
AK
1243}
1244
cdfbabfb
DH
1245static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1246 bool kern)
d021c344
AK
1247{
1248 struct sock *listener;
1249 int err;
1250 struct sock *connected;
1251 struct vsock_sock *vconnected;
1252 long timeout;
1253 DEFINE_WAIT(wait);
1254
1255 err = 0;
1256 listener = sock->sk;
1257
1258 lock_sock(listener);
1259
1260 if (sock->type != SOCK_STREAM) {
1261 err = -EOPNOTSUPP;
1262 goto out;
1263 }
1264
3b4477d2 1265 if (listener->sk_state != TCP_LISTEN) {
d021c344
AK
1266 err = -EINVAL;
1267 goto out;
1268 }
1269
1270 /* Wait for children sockets to appear; these are the new sockets
1271 * created upon connection establishment.
1272 */
1273 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1274 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1275
1276 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1277 listener->sk_err == 0) {
1278 release_sock(listener);
1279 timeout = schedule_timeout(timeout);
f7f9b5e7 1280 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1281 lock_sock(listener);
1282
1283 if (signal_pending(current)) {
1284 err = sock_intr_errno(timeout);
f7f9b5e7 1285 goto out;
d021c344
AK
1286 } else if (timeout == 0) {
1287 err = -EAGAIN;
f7f9b5e7 1288 goto out;
d021c344
AK
1289 }
1290
1291 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1292 }
f7f9b5e7 1293 finish_wait(sk_sleep(listener), &wait);
d021c344
AK
1294
1295 if (listener->sk_err)
1296 err = -listener->sk_err;
1297
1298 if (connected) {
1299 listener->sk_ack_backlog--;
1300
4192f672 1301 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
d021c344
AK
1302 vconnected = vsock_sk(connected);
1303
1304 /* If the listener socket has received an error, then we should
1305 * reject this socket and return. Note that we simply mark the
1306 * socket rejected, drop our reference, and let the cleanup
1307 * function handle the cleanup; the fact that we found it in
1308 * the listener's accept queue guarantees that the cleanup
1309 * function hasn't run yet.
1310 */
1311 if (err) {
1312 vconnected->rejected = true;
f7f9b5e7
CI
1313 } else {
1314 newsock->state = SS_CONNECTED;
1315 sock_graft(connected, newsock);
d021c344
AK
1316 }
1317
d021c344
AK
1318 release_sock(connected);
1319 sock_put(connected);
1320 }
1321
d021c344
AK
1322out:
1323 release_sock(listener);
1324 return err;
1325}
1326
1327static int vsock_listen(struct socket *sock, int backlog)
1328{
1329 int err;
1330 struct sock *sk;
1331 struct vsock_sock *vsk;
1332
1333 sk = sock->sk;
1334
1335 lock_sock(sk);
1336
1337 if (sock->type != SOCK_STREAM) {
1338 err = -EOPNOTSUPP;
1339 goto out;
1340 }
1341
1342 if (sock->state != SS_UNCONNECTED) {
1343 err = -EINVAL;
1344 goto out;
1345 }
1346
1347 vsk = vsock_sk(sk);
1348
1349 if (!vsock_addr_bound(&vsk->local_addr)) {
1350 err = -EINVAL;
1351 goto out;
1352 }
1353
1354 sk->sk_max_ack_backlog = backlog;
3b4477d2 1355 sk->sk_state = TCP_LISTEN;
d021c344
AK
1356
1357 err = 0;
1358
1359out:
1360 release_sock(sk);
1361 return err;
1362}
1363
1364static int vsock_stream_setsockopt(struct socket *sock,
1365 int level,
1366 int optname,
1367 char __user *optval,
1368 unsigned int optlen)
1369{
1370 int err;
1371 struct sock *sk;
1372 struct vsock_sock *vsk;
1373 u64 val;
1374
1375 if (level != AF_VSOCK)
1376 return -ENOPROTOOPT;
1377
1378#define COPY_IN(_v) \
1379 do { \
1380 if (optlen < sizeof(_v)) { \
1381 err = -EINVAL; \
1382 goto exit; \
1383 } \
1384 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1385 err = -EFAULT; \
1386 goto exit; \
1387 } \
1388 } while (0)
1389
1390 err = 0;
1391 sk = sock->sk;
1392 vsk = vsock_sk(sk);
1393
1394 lock_sock(sk);
1395
1396 switch (optname) {
1397 case SO_VM_SOCKETS_BUFFER_SIZE:
1398 COPY_IN(val);
1399 transport->set_buffer_size(vsk, val);
1400 break;
1401
1402 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1403 COPY_IN(val);
1404 transport->set_max_buffer_size(vsk, val);
1405 break;
1406
1407 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1408 COPY_IN(val);
1409 transport->set_min_buffer_size(vsk, val);
1410 break;
1411
1412 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1413 struct timeval tv;
1414 COPY_IN(tv);
1415 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1416 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1417 vsk->connect_timeout = tv.tv_sec * HZ +
1418 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1419 if (vsk->connect_timeout == 0)
1420 vsk->connect_timeout =
1421 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1422
1423 } else {
1424 err = -ERANGE;
1425 }
1426 break;
1427 }
1428
1429 default:
1430 err = -ENOPROTOOPT;
1431 break;
1432 }
1433
1434#undef COPY_IN
1435
1436exit:
1437 release_sock(sk);
1438 return err;
1439}
1440
1441static int vsock_stream_getsockopt(struct socket *sock,
1442 int level, int optname,
1443 char __user *optval,
1444 int __user *optlen)
1445{
1446 int err;
1447 int len;
1448 struct sock *sk;
1449 struct vsock_sock *vsk;
1450 u64 val;
1451
1452 if (level != AF_VSOCK)
1453 return -ENOPROTOOPT;
1454
1455 err = get_user(len, optlen);
1456 if (err != 0)
1457 return err;
1458
1459#define COPY_OUT(_v) \
1460 do { \
1461 if (len < sizeof(_v)) \
1462 return -EINVAL; \
1463 \
1464 len = sizeof(_v); \
1465 if (copy_to_user(optval, &_v, len) != 0) \
1466 return -EFAULT; \
1467 \
1468 } while (0)
1469
1470 err = 0;
1471 sk = sock->sk;
1472 vsk = vsock_sk(sk);
1473
1474 switch (optname) {
1475 case SO_VM_SOCKETS_BUFFER_SIZE:
1476 val = transport->get_buffer_size(vsk);
1477 COPY_OUT(val);
1478 break;
1479
1480 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1481 val = transport->get_max_buffer_size(vsk);
1482 COPY_OUT(val);
1483 break;
1484
1485 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1486 val = transport->get_min_buffer_size(vsk);
1487 COPY_OUT(val);
1488 break;
1489
1490 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1491 struct timeval tv;
1492 tv.tv_sec = vsk->connect_timeout / HZ;
1493 tv.tv_usec =
1494 (vsk->connect_timeout -
1495 tv.tv_sec * HZ) * (1000000 / HZ);
1496 COPY_OUT(tv);
1497 break;
1498 }
1499 default:
1500 return -ENOPROTOOPT;
1501 }
1502
1503 err = put_user(len, optlen);
1504 if (err != 0)
1505 return -EFAULT;
1506
1507#undef COPY_OUT
1508
1509 return 0;
1510}
1511
1b784140
YX
1512static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1513 size_t len)
d021c344
AK
1514{
1515 struct sock *sk;
1516 struct vsock_sock *vsk;
1517 ssize_t total_written;
1518 long timeout;
1519 int err;
1520 struct vsock_transport_send_notify_data send_data;
499fde66 1521 DEFINE_WAIT_FUNC(wait, woken_wake_function);
d021c344
AK
1522
1523 sk = sock->sk;
1524 vsk = vsock_sk(sk);
1525 total_written = 0;
1526 err = 0;
1527
1528 if (msg->msg_flags & MSG_OOB)
1529 return -EOPNOTSUPP;
1530
1531 lock_sock(sk);
1532
1533 /* Callers should not provide a destination with stream sockets. */
1534 if (msg->msg_namelen) {
3b4477d2 1535 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
d021c344
AK
1536 goto out;
1537 }
1538
1539 /* Send data only if both sides are not shutdown in the direction. */
1540 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1541 vsk->peer_shutdown & RCV_SHUTDOWN) {
1542 err = -EPIPE;
1543 goto out;
1544 }
1545
3b4477d2 1546 if (sk->sk_state != TCP_ESTABLISHED ||
d021c344
AK
1547 !vsock_addr_bound(&vsk->local_addr)) {
1548 err = -ENOTCONN;
1549 goto out;
1550 }
1551
1552 if (!vsock_addr_bound(&vsk->remote_addr)) {
1553 err = -EDESTADDRREQ;
1554 goto out;
1555 }
1556
1557 /* Wait for room in the produce queue to enqueue our user's data. */
1558 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1559
1560 err = transport->notify_send_init(vsk, &send_data);
1561 if (err < 0)
1562 goto out;
1563
d021c344
AK
1564 while (total_written < len) {
1565 ssize_t written;
1566
499fde66 1567 add_wait_queue(sk_sleep(sk), &wait);
d021c344
AK
1568 while (vsock_stream_has_space(vsk) == 0 &&
1569 sk->sk_err == 0 &&
1570 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1571 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1572
1573 /* Don't wait for non-blocking sockets. */
1574 if (timeout == 0) {
1575 err = -EAGAIN;
499fde66 1576 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1577 goto out_err;
d021c344
AK
1578 }
1579
1580 err = transport->notify_send_pre_block(vsk, &send_data);
f7f9b5e7 1581 if (err < 0) {
499fde66 1582 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7
CI
1583 goto out_err;
1584 }
d021c344
AK
1585
1586 release_sock(sk);
499fde66 1587 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
d021c344
AK
1588 lock_sock(sk);
1589 if (signal_pending(current)) {
1590 err = sock_intr_errno(timeout);
499fde66 1591 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1592 goto out_err;
d021c344
AK
1593 } else if (timeout == 0) {
1594 err = -EAGAIN;
499fde66 1595 remove_wait_queue(sk_sleep(sk), &wait);
f7f9b5e7 1596 goto out_err;
d021c344 1597 }
d021c344 1598 }
499fde66 1599 remove_wait_queue(sk_sleep(sk), &wait);
d021c344
AK
1600
1601 /* These checks occur both as part of and after the loop
1602 * conditional since we need to check before and after
1603 * sleeping.
1604 */
1605 if (sk->sk_err) {
1606 err = -sk->sk_err;
f7f9b5e7 1607 goto out_err;
d021c344
AK
1608 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1609 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1610 err = -EPIPE;
f7f9b5e7 1611 goto out_err;
d021c344
AK
1612 }
1613
1614 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1615 if (err < 0)
f7f9b5e7 1616 goto out_err;
d021c344
AK
1617
1618 /* Note that enqueue will only write as many bytes as are free
1619 * in the produce queue, so we don't need to ensure len is
1620 * smaller than the queue size. It is the caller's
1621 * responsibility to check how many bytes we were able to send.
1622 */
1623
1624 written = transport->stream_enqueue(
0f7db23a 1625 vsk, msg,
d021c344
AK
1626 len - total_written);
1627 if (written < 0) {
1628 err = -ENOMEM;
f7f9b5e7 1629 goto out_err;
d021c344
AK
1630 }
1631
1632 total_written += written;
1633
1634 err = transport->notify_send_post_enqueue(
1635 vsk, written, &send_data);
1636 if (err < 0)
f7f9b5e7 1637 goto out_err;
d021c344
AK
1638
1639 }
1640
f7f9b5e7 1641out_err:
d021c344
AK
1642 if (total_written > 0)
1643 err = total_written;
d021c344
AK
1644out:
1645 release_sock(sk);
1646 return err;
1647}
1648
1649
1650static int
1b784140
YX
1651vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1652 int flags)
d021c344
AK
1653{
1654 struct sock *sk;
1655 struct vsock_sock *vsk;
1656 int err;
1657 size_t target;
1658 ssize_t copied;
1659 long timeout;
1660 struct vsock_transport_recv_notify_data recv_data;
1661
1662 DEFINE_WAIT(wait);
1663
1664 sk = sock->sk;
1665 vsk = vsock_sk(sk);
1666 err = 0;
1667
1668 lock_sock(sk);
1669
3b4477d2 1670 if (sk->sk_state != TCP_ESTABLISHED) {
d021c344
AK
1671 /* Recvmsg is supposed to return 0 if a peer performs an
1672 * orderly shutdown. Differentiate between that case and when a
1673 * peer has not connected or a local shutdown occured with the
1674 * SOCK_DONE flag.
1675 */
1676 if (sock_flag(sk, SOCK_DONE))
1677 err = 0;
1678 else
1679 err = -ENOTCONN;
1680
1681 goto out;
1682 }
1683
1684 if (flags & MSG_OOB) {
1685 err = -EOPNOTSUPP;
1686 goto out;
1687 }
1688
1689 /* We don't check peer_shutdown flag here since peer may actually shut
1690 * down, but there can be data in the queue that a local socket can
1691 * receive.
1692 */
1693 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1694 err = 0;
1695 goto out;
1696 }
1697
1698 /* It is valid on Linux to pass in a zero-length receive buffer. This
1699 * is not an error. We may as well bail out now.
1700 */
1701 if (!len) {
1702 err = 0;
1703 goto out;
1704 }
1705
1706 /* We must not copy less than target bytes into the user's buffer
1707 * before returning successfully, so we wait for the consume queue to
1708 * have that much data to consume before dequeueing. Note that this
1709 * makes it impossible to handle cases where target is greater than the
1710 * queue size.
1711 */
1712 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1713 if (target >= transport->stream_rcvhiwat(vsk)) {
1714 err = -ENOMEM;
1715 goto out;
1716 }
1717 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1718 copied = 0;
1719
1720 err = transport->notify_recv_init(vsk, target, &recv_data);
1721 if (err < 0)
1722 goto out;
1723
d021c344
AK
1724
1725 while (1) {
f7f9b5e7 1726 s64 ready;
d021c344 1727
f7f9b5e7
CI
1728 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1729 ready = vsock_stream_has_data(vsk);
d021c344 1730
f7f9b5e7
CI
1731 if (ready == 0) {
1732 if (sk->sk_err != 0 ||
1733 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1734 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1735 finish_wait(sk_sleep(sk), &wait);
1736 break;
1737 }
1738 /* Don't wait for non-blocking sockets. */
1739 if (timeout == 0) {
1740 err = -EAGAIN;
1741 finish_wait(sk_sleep(sk), &wait);
1742 break;
1743 }
1744
1745 err = transport->notify_recv_pre_block(
1746 vsk, target, &recv_data);
1747 if (err < 0) {
1748 finish_wait(sk_sleep(sk), &wait);
1749 break;
1750 }
1751 release_sock(sk);
1752 timeout = schedule_timeout(timeout);
1753 lock_sock(sk);
1754
1755 if (signal_pending(current)) {
1756 err = sock_intr_errno(timeout);
1757 finish_wait(sk_sleep(sk), &wait);
1758 break;
1759 } else if (timeout == 0) {
1760 err = -EAGAIN;
1761 finish_wait(sk_sleep(sk), &wait);
1762 break;
1763 }
1764 } else {
d021c344
AK
1765 ssize_t read;
1766
f7f9b5e7
CI
1767 finish_wait(sk_sleep(sk), &wait);
1768
1769 if (ready < 0) {
1770 /* Invalid queue pair content. XXX This should
1771 * be changed to a connection reset in a later
1772 * change.
1773 */
1774
1775 err = -ENOMEM;
1776 goto out;
1777 }
1778
d021c344
AK
1779 err = transport->notify_recv_pre_dequeue(
1780 vsk, target, &recv_data);
1781 if (err < 0)
1782 break;
1783
1784 read = transport->stream_dequeue(
0f7db23a 1785 vsk, msg,
d021c344
AK
1786 len - copied, flags);
1787 if (read < 0) {
1788 err = -ENOMEM;
1789 break;
1790 }
1791
1792 copied += read;
1793
1794 err = transport->notify_recv_post_dequeue(
1795 vsk, target, read,
1796 !(flags & MSG_PEEK), &recv_data);
1797 if (err < 0)
f7f9b5e7 1798 goto out;
d021c344
AK
1799
1800 if (read >= target || flags & MSG_PEEK)
1801 break;
1802
1803 target -= read;
d021c344
AK
1804 }
1805 }
1806
1807 if (sk->sk_err)
1808 err = -sk->sk_err;
1809 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1810 err = 0;
1811
dedc58e0 1812 if (copied > 0)
d021c344 1813 err = copied;
d021c344 1814
d021c344
AK
1815out:
1816 release_sock(sk);
1817 return err;
1818}
1819
1820static const struct proto_ops vsock_stream_ops = {
1821 .family = PF_VSOCK,
1822 .owner = THIS_MODULE,
1823 .release = vsock_release,
1824 .bind = vsock_bind,
1825 .connect = vsock_stream_connect,
1826 .socketpair = sock_no_socketpair,
1827 .accept = vsock_accept,
1828 .getname = vsock_getname,
1829 .poll = vsock_poll,
1830 .ioctl = sock_no_ioctl,
1831 .listen = vsock_listen,
1832 .shutdown = vsock_shutdown,
1833 .setsockopt = vsock_stream_setsockopt,
1834 .getsockopt = vsock_stream_getsockopt,
1835 .sendmsg = vsock_stream_sendmsg,
1836 .recvmsg = vsock_stream_recvmsg,
1837 .mmap = sock_no_mmap,
1838 .sendpage = sock_no_sendpage,
1839};
1840
1841static int vsock_create(struct net *net, struct socket *sock,
1842 int protocol, int kern)
1843{
1844 if (!sock)
1845 return -EINVAL;
1846
6cf1c5fc 1847 if (protocol && protocol != PF_VSOCK)
d021c344
AK
1848 return -EPROTONOSUPPORT;
1849
1850 switch (sock->type) {
1851 case SOCK_DGRAM:
1852 sock->ops = &vsock_dgram_ops;
1853 break;
1854 case SOCK_STREAM:
1855 sock->ops = &vsock_stream_ops;
1856 break;
1857 default:
1858 return -ESOCKTNOSUPPORT;
1859 }
1860
1861 sock->state = SS_UNCONNECTED;
1862
11aa9c28 1863 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
d021c344
AK
1864}
1865
1866static const struct net_proto_family vsock_family_ops = {
1867 .family = AF_VSOCK,
1868 .create = vsock_create,
1869 .owner = THIS_MODULE,
1870};
1871
1872static long vsock_dev_do_ioctl(struct file *filp,
1873 unsigned int cmd, void __user *ptr)
1874{
1875 u32 __user *p = ptr;
1876 int retval = 0;
1877
1878 switch (cmd) {
1879 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1880 if (put_user(transport->get_local_cid(), p) != 0)
1881 retval = -EFAULT;
1882 break;
1883
1884 default:
1885 pr_err("Unknown ioctl %d\n", cmd);
1886 retval = -EINVAL;
1887 }
1888
1889 return retval;
1890}
1891
1892static long vsock_dev_ioctl(struct file *filp,
1893 unsigned int cmd, unsigned long arg)
1894{
1895 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1896}
1897
1898#ifdef CONFIG_COMPAT
1899static long vsock_dev_compat_ioctl(struct file *filp,
1900 unsigned int cmd, unsigned long arg)
1901{
1902 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1903}
1904#endif
1905
1906static const struct file_operations vsock_device_ops = {
1907 .owner = THIS_MODULE,
1908 .unlocked_ioctl = vsock_dev_ioctl,
1909#ifdef CONFIG_COMPAT
1910 .compat_ioctl = vsock_dev_compat_ioctl,
1911#endif
1912 .open = nonseekable_open,
1913};
1914
1915static struct miscdevice vsock_device = {
1916 .name = "vsock",
d021c344
AK
1917 .fops = &vsock_device_ops,
1918};
1919
2c4a336e 1920int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
d021c344 1921{
2c4a336e
AK
1922 int err = mutex_lock_interruptible(&vsock_register_mutex);
1923
1924 if (err)
1925 return err;
1926
1927 if (transport) {
1928 err = -EBUSY;
1929 goto err_busy;
1930 }
1931
1932 /* Transport must be the owner of the protocol so that it can't
1933 * unload while there are open sockets.
1934 */
1935 vsock_proto.owner = owner;
1936 transport = t;
d021c344 1937
6ad0b2f7 1938 vsock_device.minor = MISC_DYNAMIC_MINOR;
d021c344
AK
1939 err = misc_register(&vsock_device);
1940 if (err) {
1941 pr_err("Failed to register misc device\n");
f6a835bb 1942 goto err_reset_transport;
d021c344
AK
1943 }
1944
1945 err = proto_register(&vsock_proto, 1); /* we want our slab */
1946 if (err) {
1947 pr_err("Cannot register vsock protocol\n");
f6a835bb 1948 goto err_deregister_misc;
d021c344
AK
1949 }
1950
1951 err = sock_register(&vsock_family_ops);
1952 if (err) {
1953 pr_err("could not register af_vsock (%d) address family: %d\n",
1954 AF_VSOCK, err);
1955 goto err_unregister_proto;
1956 }
1957
2c4a336e 1958 mutex_unlock(&vsock_register_mutex);
d021c344
AK
1959 return 0;
1960
1961err_unregister_proto:
1962 proto_unregister(&vsock_proto);
f6a835bb 1963err_deregister_misc:
d021c344 1964 misc_deregister(&vsock_device);
f6a835bb 1965err_reset_transport:
2c4a336e
AK
1966 transport = NULL;
1967err_busy:
d021c344 1968 mutex_unlock(&vsock_register_mutex);
2c4a336e 1969 return err;
d021c344 1970}
2c4a336e 1971EXPORT_SYMBOL_GPL(__vsock_core_init);
d021c344
AK
1972
1973void vsock_core_exit(void)
1974{
1975 mutex_lock(&vsock_register_mutex);
1976
1977 misc_deregister(&vsock_device);
1978 sock_unregister(AF_VSOCK);
1979 proto_unregister(&vsock_proto);
1980
1981 /* We do not want the assignment below re-ordered. */
1982 mb();
1983 transport = NULL;
1984
1985 mutex_unlock(&vsock_register_mutex);
1986}
1987EXPORT_SYMBOL_GPL(vsock_core_exit);
1988
0b01aeb3
SH
1989const struct vsock_transport *vsock_core_get_transport(void)
1990{
1991 /* vsock_register_mutex not taken since only the transport uses this
1992 * function and only while registered.
1993 */
1994 return transport;
1995}
1996EXPORT_SYMBOL_GPL(vsock_core_get_transport);
1997
c21f1cb9
SH
1998static void __exit vsock_exit(void)
1999{
2000 /* Do nothing. This function makes this module removable. */
2001}
2002
c1eef220 2003module_init(vsock_init_tables);
c21f1cb9 2004module_exit(vsock_exit);
c1eef220 2005
d021c344
AK
2006MODULE_AUTHOR("VMware, Inc.");
2007MODULE_DESCRIPTION("VMware Virtual Socket Family");
1190cfdb 2008MODULE_VERSION("1.0.2.0-k");
d021c344 2009MODULE_LICENSE("GPL v2");