]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - net/wireless/reg.c
cfg80211: call reg_notifier() once
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
CommitLineData
8318d78a
JB
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
b2e1b302 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
8318d78a
JB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
b2e1b302
LR
12/**
13 * DOC: Wireless regulatory infrastructure
8318d78a
JB
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
b2e1b302
LR
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
8318d78a
JB
34 */
35#include <linux/kernel.h>
b2e1b302
LR
36#include <linux/list.h>
37#include <linux/random.h>
38#include <linux/nl80211.h>
39#include <linux/platform_device.h>
8318d78a 40#include <net/wireless.h>
b2e1b302 41#include <net/cfg80211.h>
8318d78a 42#include "core.h"
b2e1b302 43#include "reg.h"
8318d78a 44
5166ccd2
LR
45/**
46 * struct regulatory_request - receipt of last regulatory request
47 *
48 * @wiphy: this is set if this request's initiator is
49 * %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
50 * can be used by the wireless core to deal with conflicts
51 * and potentially inform users of which devices specifically
52 * cased the conflicts.
53 * @initiator: indicates who sent this request, could be any of
54 * of those set in reg_set_by, %REGDOM_SET_BY_*
55 * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
56 * regulatory domain. We have a few special codes:
57 * 00 - World regulatory domain
58 * 99 - built by driver but a specific alpha2 cannot be determined
59 * 98 - result of an intersection between two regulatory domains
60 * @intersect: indicates whether the wireless core should intersect
61 * the requested regulatory domain with the presently set regulatory
62 * domain.
3f2355cb
LR
63 * @country_ie_checksum: checksum of the last processed and accepted
64 * country IE
65 * @country_ie_env: lets us know if the AP is telling us we are outdoor,
66 * indoor, or if it doesn't matter
be3d4810 67 */
734366de 68struct regulatory_request {
734366de 69 struct wiphy *wiphy;
734366de
JB
70 enum reg_set_by initiator;
71 char alpha2[2];
9c96477d 72 bool intersect;
3f2355cb
LR
73 u32 country_ie_checksum;
74 enum environment_cap country_ie_env;
734366de
JB
75};
76
5166ccd2 77/* Receipt of information from last regulatory request */
f6037d09 78static struct regulatory_request *last_request;
734366de 79
b2e1b302
LR
80/* To trigger userspace events */
81static struct platform_device *reg_pdev;
8318d78a 82
b2e1b302
LR
83/* Keep the ordering from large to small */
84static u32 supported_bandwidths[] = {
85 MHZ_TO_KHZ(40),
86 MHZ_TO_KHZ(20),
8318d78a
JB
87};
88
734366de
JB
89/* Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2 */
a3d2eaf0 92static const struct ieee80211_regdomain *cfg80211_regdomain;
734366de 93
3f2355cb
LR
94/* We use this as a place for the rd structure built from the
95 * last parsed country IE to rest until CRDA gets back to us with
96 * what it thinks should apply for the same country */
97static const struct ieee80211_regdomain *country_ie_regdomain;
98
734366de
JB
99/* We keep a static world regulatory domain in case of the absence of CRDA */
100static const struct ieee80211_regdomain world_regdom = {
101 .n_reg_rules = 1,
102 .alpha2 = "00",
103 .reg_rules = {
104 REG_RULE(2412-10, 2462+10, 40, 6, 20,
105 NL80211_RRF_PASSIVE_SCAN |
106 NL80211_RRF_NO_IBSS),
107 }
108};
109
a3d2eaf0
JB
110static const struct ieee80211_regdomain *cfg80211_world_regdom =
111 &world_regdom;
734366de
JB
112
113#ifdef CONFIG_WIRELESS_OLD_REGULATORY
114static char *ieee80211_regdom = "US";
115module_param(ieee80211_regdom, charp, 0444);
116MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
117
118/* We assume 40 MHz bandwidth for the old regulatory work.
119 * We make emphasis we are using the exact same frequencies
120 * as before */
121
122static const struct ieee80211_regdomain us_regdom = {
123 .n_reg_rules = 6,
124 .alpha2 = "US",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
128 /* IEEE 802.11a, channel 36 */
129 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
130 /* IEEE 802.11a, channel 40 */
131 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
132 /* IEEE 802.11a, channel 44 */
133 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
134 /* IEEE 802.11a, channels 48..64 */
135 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
136 /* IEEE 802.11a, channels 149..165, outdoor */
137 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
138 }
139};
140
141static const struct ieee80211_regdomain jp_regdom = {
142 .n_reg_rules = 3,
143 .alpha2 = "JP",
144 .reg_rules = {
145 /* IEEE 802.11b/g, channels 1..14 */
146 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
147 /* IEEE 802.11a, channels 34..48 */
148 REG_RULE(5170-10, 5240+10, 40, 6, 20,
149 NL80211_RRF_PASSIVE_SCAN),
150 /* IEEE 802.11a, channels 52..64 */
151 REG_RULE(5260-10, 5320+10, 40, 6, 20,
152 NL80211_RRF_NO_IBSS |
153 NL80211_RRF_DFS),
154 }
155};
156
157static const struct ieee80211_regdomain eu_regdom = {
158 .n_reg_rules = 6,
159 /* This alpha2 is bogus, we leave it here just for stupid
160 * backward compatibility */
161 .alpha2 = "EU",
162 .reg_rules = {
163 /* IEEE 802.11b/g, channels 1..13 */
164 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
165 /* IEEE 802.11a, channel 36 */
166 REG_RULE(5180-10, 5180+10, 40, 6, 23,
167 NL80211_RRF_PASSIVE_SCAN),
168 /* IEEE 802.11a, channel 40 */
169 REG_RULE(5200-10, 5200+10, 40, 6, 23,
170 NL80211_RRF_PASSIVE_SCAN),
171 /* IEEE 802.11a, channel 44 */
172 REG_RULE(5220-10, 5220+10, 40, 6, 23,
173 NL80211_RRF_PASSIVE_SCAN),
174 /* IEEE 802.11a, channels 48..64 */
175 REG_RULE(5240-10, 5320+10, 40, 6, 20,
176 NL80211_RRF_NO_IBSS |
177 NL80211_RRF_DFS),
178 /* IEEE 802.11a, channels 100..140 */
179 REG_RULE(5500-10, 5700+10, 40, 6, 30,
180 NL80211_RRF_NO_IBSS |
181 NL80211_RRF_DFS),
182 }
183};
184
185static const struct ieee80211_regdomain *static_regdom(char *alpha2)
186{
187 if (alpha2[0] == 'U' && alpha2[1] == 'S')
188 return &us_regdom;
189 if (alpha2[0] == 'J' && alpha2[1] == 'P')
190 return &jp_regdom;
191 if (alpha2[0] == 'E' && alpha2[1] == 'U')
192 return &eu_regdom;
193 /* Default, as per the old rules */
194 return &us_regdom;
195}
196
a3d2eaf0 197static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
734366de
JB
198{
199 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
200 return true;
201 return false;
202}
942b25cf
JB
203#else
204static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
734366de 205{
942b25cf 206 return false;
734366de 207}
942b25cf
JB
208#endif
209
734366de
JB
210static void reset_regdomains(void)
211{
942b25cf
JB
212 /* avoid freeing static information or freeing something twice */
213 if (cfg80211_regdomain == cfg80211_world_regdom)
214 cfg80211_regdomain = NULL;
215 if (cfg80211_world_regdom == &world_regdom)
216 cfg80211_world_regdom = NULL;
217 if (cfg80211_regdomain == &world_regdom)
218 cfg80211_regdomain = NULL;
219 if (is_old_static_regdom(cfg80211_regdomain))
220 cfg80211_regdomain = NULL;
221
222 kfree(cfg80211_regdomain);
223 kfree(cfg80211_world_regdom);
734366de 224
a3d2eaf0 225 cfg80211_world_regdom = &world_regdom;
734366de
JB
226 cfg80211_regdomain = NULL;
227}
228
229/* Dynamic world regulatory domain requested by the wireless
230 * core upon initialization */
a3d2eaf0 231static void update_world_regdomain(const struct ieee80211_regdomain *rd)
734366de 232{
f6037d09 233 BUG_ON(!last_request);
734366de
JB
234
235 reset_regdomains();
236
237 cfg80211_world_regdom = rd;
238 cfg80211_regdomain = rd;
239}
734366de 240
a3d2eaf0 241bool is_world_regdom(const char *alpha2)
b2e1b302
LR
242{
243 if (!alpha2)
244 return false;
245 if (alpha2[0] == '0' && alpha2[1] == '0')
246 return true;
247 return false;
248}
8318d78a 249
a3d2eaf0 250static bool is_alpha2_set(const char *alpha2)
b2e1b302
LR
251{
252 if (!alpha2)
253 return false;
254 if (alpha2[0] != 0 && alpha2[1] != 0)
255 return true;
256 return false;
257}
8318d78a 258
b2e1b302
LR
259static bool is_alpha_upper(char letter)
260{
261 /* ASCII A - Z */
262 if (letter >= 65 && letter <= 90)
263 return true;
264 return false;
265}
8318d78a 266
a3d2eaf0 267static bool is_unknown_alpha2(const char *alpha2)
b2e1b302
LR
268{
269 if (!alpha2)
270 return false;
271 /* Special case where regulatory domain was built by driver
272 * but a specific alpha2 cannot be determined */
273 if (alpha2[0] == '9' && alpha2[1] == '9')
274 return true;
275 return false;
276}
8318d78a 277
3f2355cb
LR
278static bool is_intersected_alpha2(const char *alpha2)
279{
280 if (!alpha2)
281 return false;
282 /* Special case where regulatory domain is the
283 * result of an intersection between two regulatory domain
284 * structures */
285 if (alpha2[0] == '9' && alpha2[1] == '8')
286 return true;
287 return false;
288}
289
a3d2eaf0 290static bool is_an_alpha2(const char *alpha2)
b2e1b302
LR
291{
292 if (!alpha2)
293 return false;
294 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
295 return true;
296 return false;
297}
8318d78a 298
a3d2eaf0 299static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
b2e1b302
LR
300{
301 if (!alpha2_x || !alpha2_y)
302 return false;
303 if (alpha2_x[0] == alpha2_y[0] &&
304 alpha2_x[1] == alpha2_y[1])
305 return true;
306 return false;
307}
308
a3d2eaf0 309static bool regdom_changed(const char *alpha2)
b2e1b302
LR
310{
311 if (!cfg80211_regdomain)
312 return true;
313 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
314 return false;
315 return true;
316}
317
3f2355cb
LR
318/**
319 * country_ie_integrity_changes - tells us if the country IE has changed
320 * @checksum: checksum of country IE of fields we are interested in
321 *
322 * If the country IE has not changed you can ignore it safely. This is
323 * useful to determine if two devices are seeing two different country IEs
324 * even on the same alpha2. Note that this will return false if no IE has
325 * been set on the wireless core yet.
326 */
327static bool country_ie_integrity_changes(u32 checksum)
328{
329 /* If no IE has been set then the checksum doesn't change */
330 if (unlikely(!last_request->country_ie_checksum))
331 return false;
332 if (unlikely(last_request->country_ie_checksum != checksum))
333 return true;
334 return false;
335}
336
b2e1b302
LR
337/* This lets us keep regulatory code which is updated on a regulatory
338 * basis in userspace. */
339static int call_crda(const char *alpha2)
340{
341 char country_env[9 + 2] = "COUNTRY=";
342 char *envp[] = {
343 country_env,
344 NULL
345 };
346
347 if (!is_world_regdom((char *) alpha2))
348 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
349 alpha2[0], alpha2[1]);
350 else
b2e1b302
LR
351 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
352 "regulatory domain\n");
b2e1b302
LR
353
354 country_env[8] = alpha2[0];
355 country_env[9] = alpha2[1];
356
357 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
358}
359
b2e1b302 360/* Used by nl80211 before kmalloc'ing our regulatory domain */
a3d2eaf0 361bool reg_is_valid_request(const char *alpha2)
b2e1b302 362{
f6037d09
JB
363 if (!last_request)
364 return false;
365
366 return alpha2_equal(last_request->alpha2, alpha2);
b2e1b302 367}
8318d78a 368
b2e1b302 369/* Sanity check on a regulatory rule */
a3d2eaf0 370static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
8318d78a 371{
a3d2eaf0 372 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
b2e1b302
LR
373 u32 freq_diff;
374
91e99004 375 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
b2e1b302
LR
376 return false;
377
378 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
379 return false;
380
381 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
382
d71aaf60 383 if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
b2e1b302
LR
384 return false;
385
386 return true;
387}
388
a3d2eaf0 389static bool is_valid_rd(const struct ieee80211_regdomain *rd)
b2e1b302 390{
a3d2eaf0 391 const struct ieee80211_reg_rule *reg_rule = NULL;
b2e1b302 392 unsigned int i;
8318d78a 393
b2e1b302
LR
394 if (!rd->n_reg_rules)
395 return false;
8318d78a 396
88dc1c3f
LR
397 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
398 return false;
399
b2e1b302
LR
400 for (i = 0; i < rd->n_reg_rules; i++) {
401 reg_rule = &rd->reg_rules[i];
402 if (!is_valid_reg_rule(reg_rule))
403 return false;
404 }
405
406 return true;
8318d78a
JB
407}
408
b2e1b302
LR
409/* Returns value in KHz */
410static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
411 u32 freq)
412{
413 unsigned int i;
414 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
415 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
416 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
417 if (start_freq_khz >= freq_range->start_freq_khz &&
418 end_freq_khz <= freq_range->end_freq_khz)
419 return supported_bandwidths[i];
420 }
421 return 0;
422}
8318d78a 423
0c7dc45d
LR
424/**
425 * freq_in_rule_band - tells us if a frequency is in a frequency band
426 * @freq_range: frequency rule we want to query
427 * @freq_khz: frequency we are inquiring about
428 *
429 * This lets us know if a specific frequency rule is or is not relevant to
430 * a specific frequency's band. Bands are device specific and artificial
431 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
432 * safe for now to assume that a frequency rule should not be part of a
433 * frequency's band if the start freq or end freq are off by more than 2 GHz.
434 * This resolution can be lowered and should be considered as we add
435 * regulatory rule support for other "bands".
436 **/
437static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
438 u32 freq_khz)
439{
440#define ONE_GHZ_IN_KHZ 1000000
441 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
442 return true;
443 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
444 return true;
445 return false;
446#undef ONE_GHZ_IN_KHZ
447}
448
3f2355cb
LR
449/* Converts a country IE to a regulatory domain. A regulatory domain
450 * structure has a lot of information which the IE doesn't yet have,
451 * so for the other values we use upper max values as we will intersect
452 * with our userspace regulatory agent to get lower bounds. */
453static struct ieee80211_regdomain *country_ie_2_rd(
454 u8 *country_ie,
455 u8 country_ie_len,
456 u32 *checksum)
457{
458 struct ieee80211_regdomain *rd = NULL;
459 unsigned int i = 0;
460 char alpha2[2];
461 u32 flags = 0;
462 u32 num_rules = 0, size_of_regd = 0;
463 u8 *triplets_start = NULL;
464 u8 len_at_triplet = 0;
465 /* the last channel we have registered in a subband (triplet) */
466 int last_sub_max_channel = 0;
467
468 *checksum = 0xDEADBEEF;
469
470 /* Country IE requirements */
471 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
472 country_ie_len & 0x01);
473
474 alpha2[0] = country_ie[0];
475 alpha2[1] = country_ie[1];
476
477 /*
478 * Third octet can be:
479 * 'I' - Indoor
480 * 'O' - Outdoor
481 *
482 * anything else we assume is no restrictions
483 */
484 if (country_ie[2] == 'I')
485 flags = NL80211_RRF_NO_OUTDOOR;
486 else if (country_ie[2] == 'O')
487 flags = NL80211_RRF_NO_INDOOR;
488
489 country_ie += 3;
490 country_ie_len -= 3;
491
492 triplets_start = country_ie;
493 len_at_triplet = country_ie_len;
494
495 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
496
497 /* We need to build a reg rule for each triplet, but first we must
498 * calculate the number of reg rules we will need. We will need one
499 * for each channel subband */
500 while (country_ie_len >= 3) {
501 struct ieee80211_country_ie_triplet *triplet =
502 (struct ieee80211_country_ie_triplet *) country_ie;
503 int cur_sub_max_channel = 0, cur_channel = 0;
504
505 if (triplet->ext.reg_extension_id >=
506 IEEE80211_COUNTRY_EXTENSION_ID) {
507 country_ie += 3;
508 country_ie_len -= 3;
509 continue;
510 }
511
512 cur_channel = triplet->chans.first_channel;
513 cur_sub_max_channel = ieee80211_channel_to_frequency(
514 cur_channel + triplet->chans.num_channels);
515
516 /* Basic sanity check */
517 if (cur_sub_max_channel < cur_channel)
518 return NULL;
519
520 /* Do not allow overlapping channels. Also channels
521 * passed in each subband must be monotonically
522 * increasing */
523 if (last_sub_max_channel) {
524 if (cur_channel <= last_sub_max_channel)
525 return NULL;
526 if (cur_sub_max_channel <= last_sub_max_channel)
527 return NULL;
528 }
529
530 /* When dot11RegulatoryClassesRequired is supported
531 * we can throw ext triplets as part of this soup,
532 * for now we don't care when those change as we
533 * don't support them */
534 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
535 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
536 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
537
538 last_sub_max_channel = cur_sub_max_channel;
539
540 country_ie += 3;
541 country_ie_len -= 3;
542 num_rules++;
543
544 /* Note: this is not a IEEE requirement but
545 * simply a memory requirement */
546 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
547 return NULL;
548 }
549
550 country_ie = triplets_start;
551 country_ie_len = len_at_triplet;
552
553 size_of_regd = sizeof(struct ieee80211_regdomain) +
554 (num_rules * sizeof(struct ieee80211_reg_rule));
555
556 rd = kzalloc(size_of_regd, GFP_KERNEL);
557 if (!rd)
558 return NULL;
559
560 rd->n_reg_rules = num_rules;
561 rd->alpha2[0] = alpha2[0];
562 rd->alpha2[1] = alpha2[1];
563
564 /* This time around we fill in the rd */
565 while (country_ie_len >= 3) {
02e68a3d 566 int end_channel = 0;
3f2355cb
LR
567 struct ieee80211_country_ie_triplet *triplet =
568 (struct ieee80211_country_ie_triplet *) country_ie;
569 struct ieee80211_reg_rule *reg_rule = NULL;
570 struct ieee80211_freq_range *freq_range = NULL;
571 struct ieee80211_power_rule *power_rule = NULL;
572
573 /* Must parse if dot11RegulatoryClassesRequired is true,
574 * we don't support this yet */
575 if (triplet->ext.reg_extension_id >=
576 IEEE80211_COUNTRY_EXTENSION_ID) {
577 country_ie += 3;
578 country_ie_len -= 3;
579 continue;
580 }
581
582 reg_rule = &rd->reg_rules[i];
583 freq_range = &reg_rule->freq_range;
584 power_rule = &reg_rule->power_rule;
585
586 reg_rule->flags = flags;
587
02e68a3d
LR
588 /* 2 GHz */
589 if (triplet->chans.first_channel <= 14)
590 end_channel = triplet->chans.first_channel +
591 triplet->chans.num_channels;
592 else
593 /*
594 * 5 GHz -- For example in country IEs if the first
595 * channel given is 36 and the number of channels is 4
596 * then the individual channel numbers defined for the
597 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
598 * and not 36, 37, 38, 39.
599 *
600 * See: http://tinyurl.com/11d-clarification
601 */
602 end_channel = triplet->chans.first_channel +
603 (4 * (triplet->chans.num_channels - 1));
604
3f2355cb
LR
605 /* The +10 is since the regulatory domain expects
606 * the actual band edge, not the center of freq for
607 * its start and end freqs, assuming 20 MHz bandwidth on
608 * the channels passed */
609 freq_range->start_freq_khz =
610 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
611 triplet->chans.first_channel) - 10);
612 freq_range->end_freq_khz =
613 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
02e68a3d 614 end_channel) + 10);
3f2355cb
LR
615
616 /* Large arbitrary values, we intersect later */
617 /* Increment this if we ever support >= 40 MHz channels
618 * in IEEE 802.11 */
619 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
620 power_rule->max_antenna_gain = DBI_TO_MBI(100);
621 power_rule->max_eirp = DBM_TO_MBM(100);
622
623 country_ie += 3;
624 country_ie_len -= 3;
625 i++;
626
627 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
628 }
629
630 return rd;
631}
632
633
9c96477d
LR
634/* Helper for regdom_intersect(), this does the real
635 * mathematical intersection fun */
636static int reg_rules_intersect(
637 const struct ieee80211_reg_rule *rule1,
638 const struct ieee80211_reg_rule *rule2,
639 struct ieee80211_reg_rule *intersected_rule)
640{
641 const struct ieee80211_freq_range *freq_range1, *freq_range2;
642 struct ieee80211_freq_range *freq_range;
643 const struct ieee80211_power_rule *power_rule1, *power_rule2;
644 struct ieee80211_power_rule *power_rule;
645 u32 freq_diff;
646
647 freq_range1 = &rule1->freq_range;
648 freq_range2 = &rule2->freq_range;
649 freq_range = &intersected_rule->freq_range;
650
651 power_rule1 = &rule1->power_rule;
652 power_rule2 = &rule2->power_rule;
653 power_rule = &intersected_rule->power_rule;
654
655 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
656 freq_range2->start_freq_khz);
657 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
658 freq_range2->end_freq_khz);
659 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
660 freq_range2->max_bandwidth_khz);
661
662 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
663 if (freq_range->max_bandwidth_khz > freq_diff)
664 freq_range->max_bandwidth_khz = freq_diff;
665
666 power_rule->max_eirp = min(power_rule1->max_eirp,
667 power_rule2->max_eirp);
668 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
669 power_rule2->max_antenna_gain);
670
671 intersected_rule->flags = (rule1->flags | rule2->flags);
672
673 if (!is_valid_reg_rule(intersected_rule))
674 return -EINVAL;
675
676 return 0;
677}
678
679/**
680 * regdom_intersect - do the intersection between two regulatory domains
681 * @rd1: first regulatory domain
682 * @rd2: second regulatory domain
683 *
684 * Use this function to get the intersection between two regulatory domains.
685 * Once completed we will mark the alpha2 for the rd as intersected, "98",
686 * as no one single alpha2 can represent this regulatory domain.
687 *
688 * Returns a pointer to the regulatory domain structure which will hold the
689 * resulting intersection of rules between rd1 and rd2. We will
690 * kzalloc() this structure for you.
691 */
692static struct ieee80211_regdomain *regdom_intersect(
693 const struct ieee80211_regdomain *rd1,
694 const struct ieee80211_regdomain *rd2)
695{
696 int r, size_of_regd;
697 unsigned int x, y;
698 unsigned int num_rules = 0, rule_idx = 0;
699 const struct ieee80211_reg_rule *rule1, *rule2;
700 struct ieee80211_reg_rule *intersected_rule;
701 struct ieee80211_regdomain *rd;
702 /* This is just a dummy holder to help us count */
703 struct ieee80211_reg_rule irule;
704
705 /* Uses the stack temporarily for counter arithmetic */
706 intersected_rule = &irule;
707
708 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
709
710 if (!rd1 || !rd2)
711 return NULL;
712
713 /* First we get a count of the rules we'll need, then we actually
714 * build them. This is to so we can malloc() and free() a
715 * regdomain once. The reason we use reg_rules_intersect() here
716 * is it will return -EINVAL if the rule computed makes no sense.
717 * All rules that do check out OK are valid. */
718
719 for (x = 0; x < rd1->n_reg_rules; x++) {
720 rule1 = &rd1->reg_rules[x];
721 for (y = 0; y < rd2->n_reg_rules; y++) {
722 rule2 = &rd2->reg_rules[y];
723 if (!reg_rules_intersect(rule1, rule2,
724 intersected_rule))
725 num_rules++;
726 memset(intersected_rule, 0,
727 sizeof(struct ieee80211_reg_rule));
728 }
729 }
730
731 if (!num_rules)
732 return NULL;
733
734 size_of_regd = sizeof(struct ieee80211_regdomain) +
735 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
736
737 rd = kzalloc(size_of_regd, GFP_KERNEL);
738 if (!rd)
739 return NULL;
740
741 for (x = 0; x < rd1->n_reg_rules; x++) {
742 rule1 = &rd1->reg_rules[x];
743 for (y = 0; y < rd2->n_reg_rules; y++) {
744 rule2 = &rd2->reg_rules[y];
745 /* This time around instead of using the stack lets
746 * write to the target rule directly saving ourselves
747 * a memcpy() */
748 intersected_rule = &rd->reg_rules[rule_idx];
749 r = reg_rules_intersect(rule1, rule2,
750 intersected_rule);
751 /* No need to memset here the intersected rule here as
752 * we're not using the stack anymore */
753 if (r)
754 continue;
755 rule_idx++;
756 }
757 }
758
759 if (rule_idx != num_rules) {
760 kfree(rd);
761 return NULL;
762 }
763
764 rd->n_reg_rules = num_rules;
765 rd->alpha2[0] = '9';
766 rd->alpha2[1] = '8';
767
768 return rd;
769}
770
b2e1b302
LR
771/* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
772 * want to just have the channel structure use these */
773static u32 map_regdom_flags(u32 rd_flags)
774{
775 u32 channel_flags = 0;
776 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
777 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
778 if (rd_flags & NL80211_RRF_NO_IBSS)
779 channel_flags |= IEEE80211_CHAN_NO_IBSS;
780 if (rd_flags & NL80211_RRF_DFS)
781 channel_flags |= IEEE80211_CHAN_RADAR;
782 return channel_flags;
783}
784
785/**
786 * freq_reg_info - get regulatory information for the given frequency
787 * @center_freq: Frequency in KHz for which we want regulatory information for
788 * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
789 * you can set this to 0. If this frequency is allowed we then set
790 * this value to the maximum allowed bandwidth.
791 * @reg_rule: the regulatory rule which we have for this frequency
792 *
0c7dc45d
LR
793 * Use this function to get the regulatory rule for a specific frequency on
794 * a given wireless device. If the device has a specific regulatory domain
795 * it wants to follow we respect that unless a country IE has been received
796 * and processed already.
797 *
798 * Returns 0 if it was able to find a valid regulatory rule which does
799 * apply to the given center_freq otherwise it returns non-zero. It will
800 * also return -ERANGE if we determine the given center_freq does not even have
801 * a regulatory rule for a frequency range in the center_freq's band. See
802 * freq_in_rule_band() for our current definition of a band -- this is purely
803 * subjective and right now its 802.11 specific.
b2e1b302
LR
804 */
805static int freq_reg_info(u32 center_freq, u32 *bandwidth,
806 const struct ieee80211_reg_rule **reg_rule)
8318d78a
JB
807{
808 int i;
0c7dc45d 809 bool band_rule_found = false;
b2e1b302 810 u32 max_bandwidth = 0;
8318d78a 811
b2e1b302
LR
812 if (!cfg80211_regdomain)
813 return -EINVAL;
814
815 for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
816 const struct ieee80211_reg_rule *rr;
817 const struct ieee80211_freq_range *fr = NULL;
818 const struct ieee80211_power_rule *pr = NULL;
819
820 rr = &cfg80211_regdomain->reg_rules[i];
821 fr = &rr->freq_range;
822 pr = &rr->power_rule;
0c7dc45d
LR
823
824 /* We only need to know if one frequency rule was
825 * was in center_freq's band, that's enough, so lets
826 * not overwrite it once found */
827 if (!band_rule_found)
828 band_rule_found = freq_in_rule_band(fr, center_freq);
829
b2e1b302 830 max_bandwidth = freq_max_bandwidth(fr, center_freq);
0c7dc45d 831
b2e1b302
LR
832 if (max_bandwidth && *bandwidth <= max_bandwidth) {
833 *reg_rule = rr;
834 *bandwidth = max_bandwidth;
8318d78a
JB
835 break;
836 }
837 }
838
0c7dc45d
LR
839 if (!band_rule_found)
840 return -ERANGE;
841
b2e1b302
LR
842 return !max_bandwidth;
843}
844
a92a3ce7
LR
845static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
846 unsigned int chan_idx)
b2e1b302
LR
847{
848 int r;
a92a3ce7 849 u32 flags;
b2e1b302
LR
850 u32 max_bandwidth = 0;
851 const struct ieee80211_reg_rule *reg_rule = NULL;
852 const struct ieee80211_power_rule *power_rule = NULL;
a92a3ce7
LR
853 struct ieee80211_supported_band *sband;
854 struct ieee80211_channel *chan;
855
856 sband = wiphy->bands[band];
857 BUG_ON(chan_idx >= sband->n_channels);
858 chan = &sband->channels[chan_idx];
859
860 flags = chan->orig_flags;
b2e1b302
LR
861
862 r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq),
863 &max_bandwidth, &reg_rule);
864
865 if (r) {
0c7dc45d
LR
866 /* This means no regulatory rule was found in the country IE
867 * with a frequency range on the center_freq's band, since
868 * IEEE-802.11 allows for a country IE to have a subset of the
869 * regulatory information provided in a country we ignore
870 * disabling the channel unless at least one reg rule was
871 * found on the center_freq's band. For details see this
872 * clarification:
873 *
874 * http://tinyurl.com/11d-clarification
875 */
876 if (r == -ERANGE &&
877 last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
878#ifdef CONFIG_CFG80211_REG_DEBUG
879 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
880 "intact on %s - no rule found in band on "
881 "Country IE\n",
882 chan->center_freq, wiphy_name(wiphy));
883#endif
884 } else {
885 /* In this case we know the country IE has at least one reg rule
886 * for the band so we respect its band definitions */
887#ifdef CONFIG_CFG80211_REG_DEBUG
888 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
889 printk(KERN_DEBUG "cfg80211: Disabling "
890 "channel %d MHz on %s due to "
891 "Country IE\n",
892 chan->center_freq, wiphy_name(wiphy));
893#endif
894 flags |= IEEE80211_CHAN_DISABLED;
895 chan->flags = flags;
896 }
8318d78a
JB
897 return;
898 }
899
b2e1b302
LR
900 power_rule = &reg_rule->power_rule;
901
902 chan->flags = flags | map_regdom_flags(reg_rule->flags);
8318d78a 903 chan->max_antenna_gain = min(chan->orig_mag,
b2e1b302
LR
904 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
905 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
253898c4 906 if (chan->orig_mpwr)
b2e1b302
LR
907 chan->max_power = min(chan->orig_mpwr,
908 (int) MBM_TO_DBM(power_rule->max_eirp));
253898c4 909 else
b2e1b302 910 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
8318d78a
JB
911}
912
a92a3ce7 913static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
8318d78a 914{
a92a3ce7
LR
915 unsigned int i;
916 struct ieee80211_supported_band *sband;
917
918 BUG_ON(!wiphy->bands[band]);
919 sband = wiphy->bands[band];
8318d78a
JB
920
921 for (i = 0; i < sband->n_channels; i++)
a92a3ce7 922 handle_channel(wiphy, band, i);
8318d78a
JB
923}
924
14b9815a
LR
925static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
926{
927 if (!last_request)
928 return true;
929 if (setby == REGDOM_SET_BY_CORE &&
930 wiphy->fw_handles_regulatory)
931 return true;
932 return false;
933}
934
b2e1b302 935static void update_all_wiphy_regulatory(enum reg_set_by setby)
8318d78a 936{
b2e1b302 937 struct cfg80211_registered_device *drv;
8318d78a 938
b2e1b302 939 list_for_each_entry(drv, &cfg80211_drv_list, list)
14b9815a
LR
940 if (!ignore_reg_update(&drv->wiphy, setby))
941 wiphy_update_regulatory(&drv->wiphy, setby);
b2e1b302
LR
942}
943
944void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
945{
946 enum ieee80211_band band;
947 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
8318d78a 948 if (wiphy->bands[band])
a92a3ce7 949 handle_band(wiphy, band);
b2e1b302 950 }
560e28e1
LR
951 if (wiphy->reg_notifier)
952 wiphy->reg_notifier(wiphy, setby);
b2e1b302
LR
953}
954
9c96477d
LR
955/* Return value which can be used by ignore_request() to indicate
956 * it has been determined we should intersect two regulatory domains */
957#define REG_INTERSECT 1
958
84fa4f43
JB
959/* This has the logic which determines when a new request
960 * should be ignored. */
961static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
962 const char *alpha2)
963{
964 /* All initial requests are respected */
965 if (!last_request)
966 return 0;
967
968 switch (set_by) {
969 case REGDOM_SET_BY_INIT:
970 return -EINVAL;
971 case REGDOM_SET_BY_CORE:
972 /*
973 * Always respect new wireless core hints, should only happen
974 * when updating the world regulatory domain at init.
975 */
976 return 0;
977 case REGDOM_SET_BY_COUNTRY_IE:
978 if (unlikely(!is_an_alpha2(alpha2)))
979 return -EINVAL;
980 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
981 if (last_request->wiphy != wiphy) {
982 /*
983 * Two cards with two APs claiming different
984 * different Country IE alpha2s. We could
985 * intersect them, but that seems unlikely
986 * to be correct. Reject second one for now.
987 */
988 if (!alpha2_equal(alpha2,
989 cfg80211_regdomain->alpha2))
990 return -EOPNOTSUPP;
991 return -EALREADY;
992 }
3f2355cb
LR
993 /* Two consecutive Country IE hints on the same wiphy.
994 * This should be picked up early by the driver/stack */
995 if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2,
996 alpha2)))
84fa4f43
JB
997 return 0;
998 return -EALREADY;
999 }
3f2355cb 1000 return REG_INTERSECT;
84fa4f43
JB
1001 case REGDOM_SET_BY_DRIVER:
1002 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1003 return -EALREADY;
1004 return 0;
1005 case REGDOM_SET_BY_USER:
84fa4f43 1006 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
9c96477d 1007 return REG_INTERSECT;
3f2355cb
LR
1008 /* If the user knows better the user should set the regdom
1009 * to their country before the IE is picked up */
1010 if (last_request->initiator == REGDOM_SET_BY_USER &&
1011 last_request->intersect)
1012 return -EOPNOTSUPP;
84fa4f43
JB
1013 return 0;
1014 }
1015
1016 return -EINVAL;
1017}
1018
b2e1b302
LR
1019/* Caller must hold &cfg80211_drv_mutex */
1020int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
3f2355cb
LR
1021 const char *alpha2,
1022 u32 country_ie_checksum,
1023 enum environment_cap env)
b2e1b302
LR
1024{
1025 struct regulatory_request *request;
9c96477d 1026 bool intersect = false;
b2e1b302
LR
1027 int r = 0;
1028
be3d4810 1029 r = ignore_request(wiphy, set_by, alpha2);
9c96477d
LR
1030
1031 if (r == REG_INTERSECT)
1032 intersect = true;
1033 else if (r)
b2e1b302
LR
1034 return r;
1035
5203cdb6
LR
1036 request = kzalloc(sizeof(struct regulatory_request),
1037 GFP_KERNEL);
1038 if (!request)
1039 return -ENOMEM;
1040
1041 request->alpha2[0] = alpha2[0];
1042 request->alpha2[1] = alpha2[1];
1043 request->initiator = set_by;
1044 request->wiphy = wiphy;
1045 request->intersect = intersect;
3f2355cb
LR
1046 request->country_ie_checksum = country_ie_checksum;
1047 request->country_ie_env = env;
5203cdb6
LR
1048
1049 kfree(last_request);
1050 last_request = request;
3f2355cb
LR
1051 /*
1052 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1053 * AND if CRDA is NOT present nothing will happen, if someone
1054 * wants to bother with 11d with OLD_REG you can add a timer.
1055 * If after x amount of time nothing happens you can call:
1056 *
1057 * return set_regdom(country_ie_regdomain);
1058 *
1059 * to intersect with the static rd
1060 */
02ba0b32 1061 return call_crda(alpha2);
b2e1b302
LR
1062}
1063
be3d4810 1064void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
b2e1b302 1065{
be3d4810 1066 BUG_ON(!alpha2);
b2e1b302
LR
1067
1068 mutex_lock(&cfg80211_drv_mutex);
3f2355cb 1069 __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2, 0, ENVIRON_ANY);
b2e1b302 1070 mutex_unlock(&cfg80211_drv_mutex);
b2e1b302
LR
1071}
1072EXPORT_SYMBOL(regulatory_hint);
1073
3f2355cb
LR
1074static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1075 u32 country_ie_checksum)
1076{
1077 if (!last_request->wiphy)
1078 return false;
1079 if (likely(last_request->wiphy != wiphy))
1080 return !country_ie_integrity_changes(country_ie_checksum);
1081 /* We should not have let these through at this point, they
1082 * should have been picked up earlier by the first alpha2 check
1083 * on the device */
1084 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1085 return true;
1086 return false;
1087}
1088
1089void regulatory_hint_11d(struct wiphy *wiphy,
1090 u8 *country_ie,
1091 u8 country_ie_len)
1092{
1093 struct ieee80211_regdomain *rd = NULL;
1094 char alpha2[2];
1095 u32 checksum = 0;
1096 enum environment_cap env = ENVIRON_ANY;
1097
0f70f398
JB
1098 if (!last_request)
1099 return;
1100
3f2355cb
LR
1101 mutex_lock(&cfg80211_drv_mutex);
1102
1103 /* IE len must be evenly divisible by 2 */
1104 if (country_ie_len & 0x01)
1105 goto out;
1106
1107 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1108 goto out;
1109
1110 /* Pending country IE processing, this can happen after we
1111 * call CRDA and wait for a response if a beacon was received before
1112 * we were able to process the last regulatory_hint_11d() call */
1113 if (country_ie_regdomain)
1114 goto out;
1115
1116 alpha2[0] = country_ie[0];
1117 alpha2[1] = country_ie[1];
1118
1119 if (country_ie[2] == 'I')
1120 env = ENVIRON_INDOOR;
1121 else if (country_ie[2] == 'O')
1122 env = ENVIRON_OUTDOOR;
1123
1124 /* We will run this for *every* beacon processed for the BSSID, so
1125 * we optimize an early check to exit out early if we don't have to
1126 * do anything */
1127 if (likely(last_request->wiphy)) {
1128 struct cfg80211_registered_device *drv_last_ie;
1129
1130 drv_last_ie = wiphy_to_dev(last_request->wiphy);
1131
1132 /* Lets keep this simple -- we trust the first AP
1133 * after we intersect with CRDA */
1134 if (likely(last_request->wiphy == wiphy)) {
1135 /* Ignore IEs coming in on this wiphy with
1136 * the same alpha2 and environment cap */
1137 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1138 alpha2) &&
1139 env == drv_last_ie->env)) {
1140 goto out;
1141 }
1142 /* the wiphy moved on to another BSSID or the AP
1143 * was reconfigured. XXX: We need to deal with the
1144 * case where the user suspends and goes to goes
1145 * to another country, and then gets IEs from an
1146 * AP with different settings */
1147 goto out;
1148 } else {
1149 /* Ignore IEs coming in on two separate wiphys with
1150 * the same alpha2 and environment cap */
1151 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1152 alpha2) &&
1153 env == drv_last_ie->env)) {
1154 goto out;
1155 }
1156 /* We could potentially intersect though */
1157 goto out;
1158 }
1159 }
1160
1161 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1162 if (!rd)
1163 goto out;
1164
1165 /* This will not happen right now but we leave it here for the
1166 * the future when we want to add suspend/resume support and having
1167 * the user move to another country after doing so, or having the user
1168 * move to another AP. Right now we just trust the first AP. This is why
1169 * this is marked as likley(). If we hit this before we add this support
1170 * we want to be informed of it as it would indicate a mistake in the
1171 * current design */
1172 if (likely(WARN_ON(reg_same_country_ie_hint(wiphy, checksum))))
1173 goto out;
1174
1175 /* We keep this around for when CRDA comes back with a response so
1176 * we can intersect with that */
1177 country_ie_regdomain = rd;
1178
1179 __regulatory_hint(wiphy, REGDOM_SET_BY_COUNTRY_IE,
1180 country_ie_regdomain->alpha2, checksum, env);
1181
1182out:
1183 mutex_unlock(&cfg80211_drv_mutex);
1184}
1185EXPORT_SYMBOL(regulatory_hint_11d);
b2e1b302 1186
a3d2eaf0 1187static void print_rd_rules(const struct ieee80211_regdomain *rd)
b2e1b302
LR
1188{
1189 unsigned int i;
a3d2eaf0
JB
1190 const struct ieee80211_reg_rule *reg_rule = NULL;
1191 const struct ieee80211_freq_range *freq_range = NULL;
1192 const struct ieee80211_power_rule *power_rule = NULL;
b2e1b302
LR
1193
1194 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1195 "(max_antenna_gain, max_eirp)\n");
1196
1197 for (i = 0; i < rd->n_reg_rules; i++) {
1198 reg_rule = &rd->reg_rules[i];
1199 freq_range = &reg_rule->freq_range;
1200 power_rule = &reg_rule->power_rule;
1201
1202 /* There may not be documentation for max antenna gain
1203 * in certain regions */
1204 if (power_rule->max_antenna_gain)
1205 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1206 "(%d mBi, %d mBm)\n",
1207 freq_range->start_freq_khz,
1208 freq_range->end_freq_khz,
1209 freq_range->max_bandwidth_khz,
1210 power_rule->max_antenna_gain,
1211 power_rule->max_eirp);
1212 else
1213 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1214 "(N/A, %d mBm)\n",
1215 freq_range->start_freq_khz,
1216 freq_range->end_freq_khz,
1217 freq_range->max_bandwidth_khz,
1218 power_rule->max_eirp);
1219 }
1220}
1221
a3d2eaf0 1222static void print_regdomain(const struct ieee80211_regdomain *rd)
b2e1b302
LR
1223{
1224
3f2355cb
LR
1225 if (is_intersected_alpha2(rd->alpha2)) {
1226 struct wiphy *wiphy = NULL;
1227 struct cfg80211_registered_device *drv;
1228
1229 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1230 if (last_request->wiphy) {
1231 wiphy = last_request->wiphy;
1232 drv = wiphy_to_dev(wiphy);
1233 printk(KERN_INFO "cfg80211: Current regulatory "
1234 "domain updated by AP to: %c%c\n",
1235 drv->country_ie_alpha2[0],
1236 drv->country_ie_alpha2[1]);
1237 } else
1238 printk(KERN_INFO "cfg80211: Current regulatory "
1239 "domain intersected: \n");
1240 } else
1241 printk(KERN_INFO "cfg80211: Current regulatory "
1242 "intersected: \n");
1243 } else if (is_world_regdom(rd->alpha2))
b2e1b302
LR
1244 printk(KERN_INFO "cfg80211: World regulatory "
1245 "domain updated:\n");
1246 else {
1247 if (is_unknown_alpha2(rd->alpha2))
1248 printk(KERN_INFO "cfg80211: Regulatory domain "
1249 "changed to driver built-in settings "
1250 "(unknown country)\n");
1251 else
1252 printk(KERN_INFO "cfg80211: Regulatory domain "
1253 "changed to country: %c%c\n",
1254 rd->alpha2[0], rd->alpha2[1]);
1255 }
1256 print_rd_rules(rd);
1257}
1258
2df78167 1259static void print_regdomain_info(const struct ieee80211_regdomain *rd)
b2e1b302
LR
1260{
1261 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1262 rd->alpha2[0], rd->alpha2[1]);
1263 print_rd_rules(rd);
1264}
1265
3f2355cb
LR
1266#ifdef CONFIG_CFG80211_REG_DEBUG
1267static void reg_country_ie_process_debug(
1268 const struct ieee80211_regdomain *rd,
1269 const struct ieee80211_regdomain *country_ie_regdomain,
1270 const struct ieee80211_regdomain *intersected_rd)
1271{
1272 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1273 print_regdomain_info(country_ie_regdomain);
1274 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1275 print_regdomain_info(rd);
1276 if (intersected_rd) {
1277 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1278 "and get:\n");
1279 print_regdomain_info(rd);
1280 return;
1281 }
1282 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1283}
1284#else
1285static inline void reg_country_ie_process_debug(
1286 const struct ieee80211_regdomain *rd,
1287 const struct ieee80211_regdomain *country_ie_regdomain,
1288 const struct ieee80211_regdomain *intersected_rd)
1289{
1290}
1291#endif
1292
d2372b31 1293/* Takes ownership of rd only if it doesn't fail */
a3d2eaf0 1294static int __set_regdom(const struct ieee80211_regdomain *rd)
b2e1b302 1295{
9c96477d 1296 const struct ieee80211_regdomain *intersected_rd = NULL;
3f2355cb
LR
1297 struct cfg80211_registered_device *drv = NULL;
1298 struct wiphy *wiphy = NULL;
b2e1b302
LR
1299 /* Some basic sanity checks first */
1300
b2e1b302 1301 if (is_world_regdom(rd->alpha2)) {
f6037d09 1302 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
b2e1b302
LR
1303 return -EINVAL;
1304 update_world_regdomain(rd);
1305 return 0;
1306 }
b2e1b302
LR
1307
1308 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1309 !is_unknown_alpha2(rd->alpha2))
1310 return -EINVAL;
1311
f6037d09 1312 if (!last_request)
b2e1b302
LR
1313 return -EINVAL;
1314
3f2355cb
LR
1315 /* Lets only bother proceeding on the same alpha2 if the current
1316 * rd is non static (it means CRDA was present and was used last)
1317 * and the pending request came in from a country IE */
1318 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1319 /* If someone else asked us to change the rd lets only bother
1320 * checking if the alpha2 changes if CRDA was already called */
1321 if (!is_old_static_regdom(cfg80211_regdomain) &&
1322 !regdom_changed(rd->alpha2))
1323 return -EINVAL;
1324 }
1325
1326 wiphy = last_request->wiphy;
b2e1b302
LR
1327
1328 /* Now lets set the regulatory domain, update all driver channels
1329 * and finally inform them of what we have done, in case they want
1330 * to review or adjust their own settings based on their own
1331 * internal EEPROM data */
1332
f6037d09 1333 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
b2e1b302
LR
1334 return -EINVAL;
1335
8375af3b
LR
1336 if (!is_valid_rd(rd)) {
1337 printk(KERN_ERR "cfg80211: Invalid "
1338 "regulatory domain detected:\n");
1339 print_regdomain_info(rd);
1340 return -EINVAL;
b2e1b302
LR
1341 }
1342
b8295acd
LR
1343 if (!last_request->intersect) {
1344 reset_regdomains();
1345 cfg80211_regdomain = rd;
1346 return 0;
1347 }
1348
1349 /* Intersection requires a bit more work */
1350
1351 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1352
9c96477d
LR
1353 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1354 if (!intersected_rd)
1355 return -EINVAL;
b8295acd
LR
1356
1357 /* We can trash what CRDA provided now */
9c96477d 1358 kfree(rd);
b8295acd
LR
1359 rd = NULL;
1360
1361 reset_regdomains();
1362 cfg80211_regdomain = intersected_rd;
1363
1364 return 0;
9c96477d
LR
1365 }
1366
3f2355cb
LR
1367 /*
1368 * Country IE requests are handled a bit differently, we intersect
1369 * the country IE rd with what CRDA believes that country should have
1370 */
1371
1372 BUG_ON(!country_ie_regdomain);
1373
1374 if (rd != country_ie_regdomain) {
1375 /* Intersect what CRDA returned and our what we
1376 * had built from the Country IE received */
1377
1378 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
1379
1380 reg_country_ie_process_debug(rd, country_ie_regdomain,
1381 intersected_rd);
1382
1383 kfree(country_ie_regdomain);
1384 country_ie_regdomain = NULL;
1385 } else {
1386 /* This would happen when CRDA was not present and
1387 * OLD_REGULATORY was enabled. We intersect our Country
1388 * IE rd and what was set on cfg80211 originally */
1389 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1390 }
1391
1392 if (!intersected_rd)
1393 return -EINVAL;
1394
1395 drv = wiphy_to_dev(wiphy);
1396
1397 drv->country_ie_alpha2[0] = rd->alpha2[0];
1398 drv->country_ie_alpha2[1] = rd->alpha2[1];
1399 drv->env = last_request->country_ie_env;
1400
1401 BUG_ON(intersected_rd == rd);
1402
1403 kfree(rd);
1404 rd = NULL;
1405
b8295acd 1406 reset_regdomains();
3f2355cb 1407 cfg80211_regdomain = intersected_rd;
b2e1b302
LR
1408
1409 return 0;
1410}
1411
1412
1413/* Use this call to set the current regulatory domain. Conflicts with
1414 * multiple drivers can be ironed out later. Caller must've already
d2372b31 1415 * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
a3d2eaf0 1416int set_regdom(const struct ieee80211_regdomain *rd)
b2e1b302 1417{
b2e1b302
LR
1418 int r;
1419
b2e1b302
LR
1420 /* Note that this doesn't update the wiphys, this is done below */
1421 r = __set_regdom(rd);
d2372b31
JB
1422 if (r) {
1423 kfree(rd);
b2e1b302 1424 return r;
d2372b31 1425 }
b2e1b302 1426
b2e1b302 1427 /* This would make this whole thing pointless */
a01ddafd
LR
1428 if (!last_request->intersect)
1429 BUG_ON(rd != cfg80211_regdomain);
b2e1b302
LR
1430
1431 /* update all wiphys now with the new established regulatory domain */
f6037d09 1432 update_all_wiphy_regulatory(last_request->initiator);
b2e1b302 1433
a01ddafd 1434 print_regdomain(cfg80211_regdomain);
b2e1b302
LR
1435
1436 return r;
1437}
1438
3f2355cb
LR
1439/* Caller must hold cfg80211_drv_mutex */
1440void reg_device_remove(struct wiphy *wiphy)
1441{
4a4f4d80 1442 if (!last_request || !last_request->wiphy)
3f2355cb
LR
1443 return;
1444 if (last_request->wiphy != wiphy)
1445 return;
1446 last_request->wiphy = NULL;
1447 last_request->country_ie_env = ENVIRON_ANY;
1448}
1449
b2e1b302
LR
1450int regulatory_init(void)
1451{
734366de
JB
1452 int err;
1453
b2e1b302
LR
1454 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1455 if (IS_ERR(reg_pdev))
1456 return PTR_ERR(reg_pdev);
734366de
JB
1457
1458#ifdef CONFIG_WIRELESS_OLD_REGULATORY
a3d2eaf0 1459 cfg80211_regdomain = static_regdom(ieee80211_regdom);
734366de 1460
942b25cf 1461 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
734366de
JB
1462 print_regdomain_info(cfg80211_regdomain);
1463 /* The old code still requests for a new regdomain and if
1464 * you have CRDA you get it updated, otherwise you get
1465 * stuck with the static values. We ignore "EU" code as
1466 * that is not a valid ISO / IEC 3166 alpha2 */
ac9440a4 1467 if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
734366de 1468 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
3f2355cb 1469 ieee80211_regdom, 0, ENVIRON_ANY);
734366de 1470#else
a3d2eaf0 1471 cfg80211_regdomain = cfg80211_world_regdom;
734366de 1472
3f2355cb 1473 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00", 0, ENVIRON_ANY);
734366de
JB
1474 if (err)
1475 printk(KERN_ERR "cfg80211: calling CRDA failed - "
1476 "unable to update world regulatory domain, "
1477 "using static definition\n");
1478#endif
1479
b2e1b302
LR
1480 return 0;
1481}
1482
1483void regulatory_exit(void)
1484{
b2e1b302 1485 mutex_lock(&cfg80211_drv_mutex);
734366de 1486
b2e1b302 1487 reset_regdomains();
734366de 1488
3f2355cb
LR
1489 kfree(country_ie_regdomain);
1490 country_ie_regdomain = NULL;
1491
f6037d09
JB
1492 kfree(last_request);
1493
b2e1b302 1494 platform_device_unregister(reg_pdev);
734366de 1495
b2e1b302 1496 mutex_unlock(&cfg80211_drv_mutex);
8318d78a 1497}