]> git.proxmox.com Git - mirror_ovs.git/blame - ofproto/ofproto-dpif-upcall.c
ofproto: New function ofproto_refresh_rule().
[mirror_ovs.git] / ofproto / ofproto-dpif-upcall.c
CommitLineData
73e141f9 1/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
e1ec7dd4
EJ
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15#include <config.h>
16#include "ofproto-dpif-upcall.h"
17
18#include <errno.h>
19#include <stdbool.h>
20#include <inttypes.h>
21
0fb7792a 22#include "connmgr.h"
e1ec7dd4 23#include "coverage.h"
e1ec7dd4 24#include "dpif.h"
e22d52ee 25#include "dynamic-string.h"
e1ec7dd4 26#include "fail-open.h"
05067881 27#include "guarded-list.h"
e1ec7dd4 28#include "latch.h"
e1ec7dd4
EJ
29#include "list.h"
30#include "netlink.h"
31#include "ofpbuf.h"
10e57640
EJ
32#include "ofproto-dpif-ipfix.h"
33#include "ofproto-dpif-sflow.h"
e79a6c83 34#include "ofproto-dpif-xlate.h"
0f2ea848 35#include "ovs-rcu.h"
e1ec7dd4
EJ
36#include "packets.h"
37#include "poll-loop.h"
e22d52ee
EJ
38#include "seq.h"
39#include "unixctl.h"
e1ec7dd4
EJ
40#include "vlog.h"
41
42#define MAX_QUEUE_LENGTH 512
e79a6c83
EJ
43#define FLOW_MISS_MAX_BATCH 50
44#define REVALIDATE_MAX_BATCH 50
e1ec7dd4
EJ
45
46VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
47
10e57640 48COVERAGE_DEFINE(upcall_queue_overflow);
e1ec7dd4
EJ
49
50/* A thread that processes each upcall handed to it by the dispatcher thread,
e79a6c83
EJ
51 * forwards the upcall's packet, and possibly sets up a kernel flow as a
52 * cache. */
e1ec7dd4
EJ
53struct handler {
54 struct udpif *udpif; /* Parent udpif. */
55 pthread_t thread; /* Thread ID. */
e22d52ee 56 char *name; /* Thread name. */
e1ec7dd4
EJ
57
58 struct ovs_mutex mutex; /* Mutex guarding the following. */
59
10e57640 60 /* Atomic queue of unprocessed upcalls. */
e1ec7dd4
EJ
61 struct list upcalls OVS_GUARDED;
62 size_t n_upcalls OVS_GUARDED;
63
9b32ece6 64 bool need_signal; /* Only changed by the dispatcher. */
caf6491f 65
e1ec7dd4
EJ
66 pthread_cond_t wake_cond; /* Wakes 'thread' while holding
67 'mutex'. */
68};
69
e79a6c83
EJ
70/* A thread that processes each kernel flow handed to it by the flow_dumper
71 * thread, updates OpenFlow statistics, and updates or removes the kernel flow
72 * as necessary. */
73struct revalidator {
74 struct udpif *udpif; /* Parent udpif. */
75 char *name; /* Thread name. */
76
77 pthread_t thread; /* Thread ID. */
78 struct hmap ukeys; /* Datapath flow keys. */
79
80 uint64_t dump_seq;
81
82 struct ovs_mutex mutex; /* Mutex guarding the following. */
83 pthread_cond_t wake_cond;
84 struct list udumps OVS_GUARDED; /* Unprocessed udumps. */
85 size_t n_udumps OVS_GUARDED; /* Number of unprocessed udumps. */
86};
87
e1ec7dd4
EJ
88/* An upcall handler for ofproto_dpif.
89 *
e79a6c83
EJ
90 * udpif has two logically separate pieces:
91 *
92 * - A "dispatcher" thread that reads upcalls from the kernel and dispatches
93 * them to one of several "handler" threads (see struct handler).
94 *
95 * - A "flow_dumper" thread that reads the kernel flow table and dispatches
96 * flows to one of several "revalidator" threads (see struct
97 * revalidator). */
e1ec7dd4 98struct udpif {
e22d52ee
EJ
99 struct list list_node; /* In all_udpifs list. */
100
e1ec7dd4
EJ
101 struct dpif *dpif; /* Datapath handle. */
102 struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
103
104 uint32_t secret; /* Random seed for upcall hash. */
105
106 pthread_t dispatcher; /* Dispatcher thread ID. */
e79a6c83 107 pthread_t flow_dumper; /* Flow dumper thread ID. */
e1ec7dd4 108
10e57640 109 struct handler *handlers; /* Upcall handlers. */
e1ec7dd4
EJ
110 size_t n_handlers;
111
e79a6c83
EJ
112 struct revalidator *revalidators; /* Flow revalidators. */
113 size_t n_revalidators;
114
115 uint64_t last_reval_seq; /* 'reval_seq' at last revalidation. */
116 struct seq *reval_seq; /* Incremented to force revalidation. */
117
118 struct seq *dump_seq; /* Increments each dump iteration. */
119
120 struct latch exit_latch; /* Tells child threads to exit. */
121
122 long long int dump_duration; /* Duration of the last flow dump. */
e1ec7dd4 123
e79a6c83
EJ
124 /* Datapath flow statistics. */
125 unsigned int max_n_flows;
126 unsigned int avg_n_flows;
e1ec7dd4 127
e79a6c83 128 /* Following fields are accessed and modified by different threads. */
e79a6c83 129 atomic_uint flow_limit; /* Datapath flow hard limit. */
64ca9472
JS
130
131 /* n_flows_mutex prevents multiple threads updating these concurrently. */
132 atomic_uint64_t n_flows; /* Number of flows in the datapath. */
133 atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
134 struct ovs_mutex n_flows_mutex;
e1ec7dd4
EJ
135};
136
10e57640
EJ
137enum upcall_type {
138 BAD_UPCALL, /* Some kind of bug somewhere. */
139 MISS_UPCALL, /* A flow miss. */
140 SFLOW_UPCALL, /* sFlow sample. */
141 FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
142 IPFIX_UPCALL /* Per-bridge sampling. */
143};
144
145struct upcall {
146 struct list list_node; /* For queuing upcalls. */
147 struct flow_miss *flow_miss; /* This upcall's flow_miss. */
148
149 /* Raw upcall plus data for keeping track of the memory backing it. */
150 struct dpif_upcall dpif_upcall; /* As returned by dpif_recv() */
151 struct ofpbuf upcall_buf; /* Owns some data in 'dpif_upcall'. */
152 uint64_t upcall_stub[512 / 8]; /* Buffer to reduce need for malloc(). */
153};
154
e79a6c83
EJ
155/* 'udpif_key's are responsible for tracking the little bit of state udpif
156 * needs to do flow expiration which can't be pulled directly from the
157 * datapath. They are owned, created by, maintained, and destroyed by a single
158 * revalidator making them easy to efficiently handle with multiple threads. */
159struct udpif_key {
160 struct hmap_node hmap_node; /* In parent revalidator 'ukeys' map. */
161
162 struct nlattr *key; /* Datapath flow key. */
163 size_t key_len; /* Length of 'key'. */
164
165 struct dpif_flow_stats stats; /* Stats at most recent flow dump. */
166 long long int created; /* Estimation of creation time. */
167
168 bool mark; /* Used by mark and sweep GC algorithm. */
169
170 struct odputil_keybuf key_buf; /* Memory for 'key'. */
171};
172
173/* 'udpif_flow_dump's hold the state associated with one iteration in a flow
174 * dump operation. This is created by the flow_dumper thread and handed to the
175 * appropriate revalidator thread to be processed. */
176struct udpif_flow_dump {
177 struct list list_node;
178
179 struct nlattr *key; /* Datapath flow key. */
180 size_t key_len; /* Length of 'key'. */
181 uint32_t key_hash; /* Hash of 'key'. */
182
183 struct odputil_keybuf mask_buf;
184 struct nlattr *mask; /* Datapath mask for 'key'. */
185 size_t mask_len; /* Length of 'mask'. */
186
187 struct dpif_flow_stats stats; /* Stats pulled from the datapath. */
188
189 bool need_revalidate; /* Key needs revalidation? */
190
191 struct odputil_keybuf key_buf;
192};
193
194/* Flow miss batching.
195 *
196 * Some dpifs implement operations faster when you hand them off in a batch.
197 * To allow batching, "struct flow_miss" queues the dpif-related work needed
198 * for a given flow. Each "struct flow_miss" corresponds to sending one or
199 * more packets, plus possibly installing the flow in the dpif. */
200struct flow_miss {
201 struct hmap_node hmap_node;
202 struct ofproto_dpif *ofproto;
203
204 struct flow flow;
e79a6c83
EJ
205 const struct nlattr *key;
206 size_t key_len;
207 enum dpif_upcall_type upcall_type;
208 struct dpif_flow_stats stats;
209 odp_port_t odp_in_port;
210
211 uint64_t slow_path_buf[128 / 8];
212 struct odputil_keybuf mask_buf;
213
214 struct xlate_out xout;
73e141f9
BP
215
216 bool put;
e79a6c83
EJ
217};
218
10e57640
EJ
219static void upcall_destroy(struct upcall *);
220
e1ec7dd4 221static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
e22d52ee 222static struct list all_udpifs = LIST_INITIALIZER(&all_udpifs);
e1ec7dd4
EJ
223
224static void recv_upcalls(struct udpif *);
e79a6c83
EJ
225static void handle_upcalls(struct handler *handler, struct list *upcalls);
226static void *udpif_flow_dumper(void *);
e1ec7dd4 227static void *udpif_dispatcher(void *);
10e57640 228static void *udpif_upcall_handler(void *);
e79a6c83 229static void *udpif_revalidator(void *);
64ca9472 230static uint64_t udpif_get_n_flows(struct udpif *);
e79a6c83
EJ
231static void revalidate_udumps(struct revalidator *, struct list *udumps);
232static void revalidator_sweep(struct revalidator *);
e96a5c24 233static void revalidator_purge(struct revalidator *);
e22d52ee
EJ
234static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
235 const char *argv[], void *aux);
e79a6c83
EJ
236static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
237 const char *argv[], void *aux);
238static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
239 const char *argv[], void *aux);
94b8c324
JS
240static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
241 const char *argv[], void *aux);
e79a6c83
EJ
242static void ukey_delete(struct revalidator *, struct udpif_key *);
243
244static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
e1ec7dd4
EJ
245
246struct udpif *
247udpif_create(struct dpif_backer *backer, struct dpif *dpif)
248{
e22d52ee 249 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
e1ec7dd4
EJ
250 struct udpif *udpif = xzalloc(sizeof *udpif);
251
e22d52ee
EJ
252 if (ovsthread_once_start(&once)) {
253 unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
254 NULL);
e79a6c83
EJ
255 unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
256 upcall_unixctl_disable_megaflows, NULL);
257 unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
258 upcall_unixctl_enable_megaflows, NULL);
94b8c324
JS
259 unixctl_command_register("upcall/set-flow-limit", "", 1, 1,
260 upcall_unixctl_set_flow_limit, NULL);
e22d52ee
EJ
261 ovsthread_once_done(&once);
262 }
263
e1ec7dd4
EJ
264 udpif->dpif = dpif;
265 udpif->backer = backer;
e79a6c83 266 atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
e1ec7dd4 267 udpif->secret = random_uint32();
d7285d74 268 udpif->reval_seq = seq_create();
e79a6c83 269 udpif->dump_seq = seq_create();
e1ec7dd4 270 latch_init(&udpif->exit_latch);
e22d52ee 271 list_push_back(&all_udpifs, &udpif->list_node);
64ca9472
JS
272 atomic_init(&udpif->n_flows, 0);
273 atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
274 ovs_mutex_init(&udpif->n_flows_mutex);
e1ec7dd4
EJ
275
276 return udpif;
277}
278
279void
280udpif_destroy(struct udpif *udpif)
281{
e79a6c83 282 udpif_set_threads(udpif, 0, 0);
1b5b5071 283 udpif_flush(udpif);
e1ec7dd4 284
e22d52ee 285 list_remove(&udpif->list_node);
e1ec7dd4 286 latch_destroy(&udpif->exit_latch);
d7285d74 287 seq_destroy(udpif->reval_seq);
e79a6c83 288 seq_destroy(udpif->dump_seq);
64ca9472 289 ovs_mutex_destroy(&udpif->n_flows_mutex);
e1ec7dd4
EJ
290 free(udpif);
291}
292
6567010f 293/* Tells 'udpif' how many threads it should use to handle upcalls. Disables
e79a6c83
EJ
294 * all threads if 'n_handlers' and 'n_revalidators' is zero. 'udpif''s
295 * datapath handle must have packet reception enabled before starting threads.
296 */
e1ec7dd4 297void
e79a6c83
EJ
298udpif_set_threads(struct udpif *udpif, size_t n_handlers,
299 size_t n_revalidators)
e1ec7dd4 300{
1954e6bb 301 int error;
0f2ea848 302
1954e6bb 303 ovsrcu_quiesce_start();
e1ec7dd4 304 /* Stop the old threads (if any). */
e79a6c83
EJ
305 if (udpif->handlers &&
306 (udpif->n_handlers != n_handlers
307 || udpif->n_revalidators != n_revalidators)) {
e1ec7dd4
EJ
308 size_t i;
309
310 latch_set(&udpif->exit_latch);
311
e1ec7dd4
EJ
312 for (i = 0; i < udpif->n_handlers; i++) {
313 struct handler *handler = &udpif->handlers[i];
314
315 ovs_mutex_lock(&handler->mutex);
316 xpthread_cond_signal(&handler->wake_cond);
317 ovs_mutex_unlock(&handler->mutex);
e79a6c83
EJ
318 xpthread_join(handler->thread, NULL);
319 }
320
321 for (i = 0; i < udpif->n_revalidators; i++) {
322 struct revalidator *revalidator = &udpif->revalidators[i];
323
324 ovs_mutex_lock(&revalidator->mutex);
325 xpthread_cond_signal(&revalidator->wake_cond);
326 ovs_mutex_unlock(&revalidator->mutex);
327 xpthread_join(revalidator->thread, NULL);
e1ec7dd4
EJ
328 }
329
e79a6c83 330 xpthread_join(udpif->flow_dumper, NULL);
e1ec7dd4 331 xpthread_join(udpif->dispatcher, NULL);
e79a6c83
EJ
332
333 for (i = 0; i < udpif->n_revalidators; i++) {
334 struct revalidator *revalidator = &udpif->revalidators[i];
335 struct udpif_flow_dump *udump, *next_udump;
e79a6c83
EJ
336
337 LIST_FOR_EACH_SAFE (udump, next_udump, list_node,
338 &revalidator->udumps) {
339 list_remove(&udump->list_node);
340 free(udump);
341 }
342
e96a5c24
JS
343 /* Delete ukeys, and delete all flows from the datapath to prevent
344 * double-counting stats. */
345 revalidator_purge(revalidator);
e79a6c83
EJ
346 hmap_destroy(&revalidator->ukeys);
347 ovs_mutex_destroy(&revalidator->mutex);
348
349 free(revalidator->name);
350 }
351
e1ec7dd4
EJ
352 for (i = 0; i < udpif->n_handlers; i++) {
353 struct handler *handler = &udpif->handlers[i];
354 struct upcall *miss, *next;
355
e1ec7dd4
EJ
356 LIST_FOR_EACH_SAFE (miss, next, list_node, &handler->upcalls) {
357 list_remove(&miss->list_node);
358 upcall_destroy(miss);
359 }
e1ec7dd4
EJ
360 ovs_mutex_destroy(&handler->mutex);
361
362 xpthread_cond_destroy(&handler->wake_cond);
e22d52ee 363 free(handler->name);
e1ec7dd4
EJ
364 }
365 latch_poll(&udpif->exit_latch);
366
e79a6c83
EJ
367 free(udpif->revalidators);
368 udpif->revalidators = NULL;
369 udpif->n_revalidators = 0;
370
e1ec7dd4
EJ
371 free(udpif->handlers);
372 udpif->handlers = NULL;
373 udpif->n_handlers = 0;
374 }
375
1954e6bb
AW
376 error = dpif_handlers_set(udpif->dpif, 1);
377 if (error) {
378 VLOG_ERR("failed to configure handlers in dpif %s: %s",
379 dpif_name(udpif->dpif), ovs_strerror(error));
380 return;
381 }
382
e1ec7dd4
EJ
383 /* Start new threads (if necessary). */
384 if (!udpif->handlers && n_handlers) {
385 size_t i;
386
387 udpif->n_handlers = n_handlers;
e79a6c83
EJ
388 udpif->n_revalidators = n_revalidators;
389
e1ec7dd4
EJ
390 udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
391 for (i = 0; i < udpif->n_handlers; i++) {
392 struct handler *handler = &udpif->handlers[i];
393
394 handler->udpif = udpif;
395 list_init(&handler->upcalls);
9b32ece6 396 handler->need_signal = false;
e1ec7dd4 397 xpthread_cond_init(&handler->wake_cond, NULL);
834d6caf 398 ovs_mutex_init(&handler->mutex);
10e57640
EJ
399 xpthread_create(&handler->thread, NULL, udpif_upcall_handler,
400 handler);
e1ec7dd4 401 }
e1ec7dd4 402
e79a6c83
EJ
403 udpif->revalidators = xzalloc(udpif->n_revalidators
404 * sizeof *udpif->revalidators);
405 for (i = 0; i < udpif->n_revalidators; i++) {
406 struct revalidator *revalidator = &udpif->revalidators[i];
407
408 revalidator->udpif = udpif;
409 list_init(&revalidator->udumps);
410 hmap_init(&revalidator->ukeys);
411 ovs_mutex_init(&revalidator->mutex);
412 xpthread_cond_init(&revalidator->wake_cond, NULL);
413 xpthread_create(&revalidator->thread, NULL, udpif_revalidator,
414 revalidator);
415 }
416 xpthread_create(&udpif->dispatcher, NULL, udpif_dispatcher, udpif);
417 xpthread_create(&udpif->flow_dumper, NULL, udpif_flow_dumper, udpif);
e1ec7dd4 418 }
0f2ea848
BP
419
420 ovsrcu_quiesce_end();
e1ec7dd4
EJ
421}
422
3f142f59
BP
423/* Waits for all ongoing upcall translations to complete. This ensures that
424 * there are no transient references to any removed ofprotos (or other
425 * objects). In particular, this should be called after an ofproto is removed
426 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
427void
428udpif_synchronize(struct udpif *udpif)
429{
430 /* This is stronger than necessary. It would be sufficient to ensure
431 * (somehow) that each handler and revalidator thread had passed through
432 * its main loop once. */
433 size_t n_handlers = udpif->n_handlers;
434 size_t n_revalidators = udpif->n_revalidators;
435 udpif_set_threads(udpif, 0, 0);
436 udpif_set_threads(udpif, n_handlers, n_revalidators);
437}
438
e1ec7dd4
EJ
439/* Notifies 'udpif' that something changed which may render previous
440 * xlate_actions() results invalid. */
441void
442udpif_revalidate(struct udpif *udpif)
443{
d7285d74 444 seq_change(udpif->reval_seq);
e79a6c83 445}
05067881 446
e79a6c83
EJ
447/* Returns a seq which increments every time 'udpif' pulls stats from the
448 * datapath. Callers can use this to get a sense of when might be a good time
449 * to do periodic work which relies on relatively up to date statistics. */
450struct seq *
451udpif_dump_seq(struct udpif *udpif)
452{
453 return udpif->dump_seq;
e1ec7dd4
EJ
454}
455
1c030aa5
EJ
456void
457udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
458{
459 size_t i;
460
461 simap_increase(usage, "dispatchers", 1);
462 simap_increase(usage, "flow_dumpers", 1);
463
464 simap_increase(usage, "handlers", udpif->n_handlers);
465 for (i = 0; i < udpif->n_handlers; i++) {
466 struct handler *handler = &udpif->handlers[i];
467 ovs_mutex_lock(&handler->mutex);
468 simap_increase(usage, "handler upcalls", handler->n_upcalls);
469 ovs_mutex_unlock(&handler->mutex);
470 }
e79a6c83
EJ
471
472 simap_increase(usage, "revalidators", udpif->n_revalidators);
473 for (i = 0; i < udpif->n_revalidators; i++) {
474 struct revalidator *revalidator = &udpif->revalidators[i];
475 ovs_mutex_lock(&revalidator->mutex);
476 simap_increase(usage, "revalidator dumps", revalidator->n_udumps);
477
478 /* XXX: This isn't technically thread safe because the revalidator
479 * ukeys maps isn't protected by a mutex since it's per thread. */
480 simap_increase(usage, "revalidator keys",
481 hmap_count(&revalidator->ukeys));
482 ovs_mutex_unlock(&revalidator->mutex);
483 }
1c030aa5
EJ
484}
485
1b5b5071 486/* Remove flows from a single datapath. */
e79a6c83 487void
1b5b5071
AZ
488udpif_flush(struct udpif *udpif)
489{
490 size_t n_handlers, n_revalidators;
491
492 n_handlers = udpif->n_handlers;
493 n_revalidators = udpif->n_revalidators;
494
495 udpif_set_threads(udpif, 0, 0);
496 dpif_flow_flush(udpif->dpif);
497 udpif_set_threads(udpif, n_handlers, n_revalidators);
498}
499
500/* Removes all flows from all datapaths. */
501static void
502udpif_flush_all_datapaths(void)
e79a6c83
EJ
503{
504 struct udpif *udpif;
505
506 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
1b5b5071 507 udpif_flush(udpif);
e79a6c83
EJ
508 }
509}
1b5b5071 510
e79a6c83 511\f
e1ec7dd4 512/* Destroys and deallocates 'upcall'. */
10e57640 513static void
e1ec7dd4
EJ
514upcall_destroy(struct upcall *upcall)
515{
516 if (upcall) {
da546e07 517 ofpbuf_uninit(&upcall->dpif_upcall.packet);
e1ec7dd4
EJ
518 ofpbuf_uninit(&upcall->upcall_buf);
519 free(upcall);
520 }
521}
522
e79a6c83 523static uint64_t
64ca9472 524udpif_get_n_flows(struct udpif *udpif)
e1ec7dd4 525{
64ca9472
JS
526 long long int time, now;
527 uint64_t flow_count;
528
529 now = time_msec();
530 atomic_read(&udpif->n_flows_timestamp, &time);
531 if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
532 struct dpif_dp_stats stats;
533
534 atomic_store(&udpif->n_flows_timestamp, now);
535 dpif_get_dp_stats(udpif->dpif, &stats);
536 flow_count = stats.n_flows;
537 atomic_store(&udpif->n_flows, flow_count);
538 ovs_mutex_unlock(&udpif->n_flows_mutex);
539 } else {
540 atomic_read(&udpif->n_flows, &flow_count);
541 }
542 return flow_count;
e79a6c83 543}
e1ec7dd4 544
e79a6c83
EJ
545/* The dispatcher thread is responsible for receiving upcalls from the kernel,
546 * assigning them to a upcall_handler thread. */
547static void *
548udpif_dispatcher(void *arg)
549{
550 struct udpif *udpif = arg;
05067881 551
e79a6c83
EJ
552 set_subprogram_name("dispatcher");
553 while (!latch_is_set(&udpif->exit_latch)) {
554 recv_upcalls(udpif);
1954e6bb 555 dpif_recv_wait(udpif->dpif, 0);
e79a6c83
EJ
556 latch_wait(&udpif->exit_latch);
557 poll_block();
e1ec7dd4 558 }
05067881
BP
559
560 return NULL;
e1ec7dd4
EJ
561}
562
e79a6c83
EJ
563static void *
564udpif_flow_dumper(void *arg)
e1ec7dd4 565{
e79a6c83 566 struct udpif *udpif = arg;
ddeca9a4 567
e79a6c83
EJ
568 set_subprogram_name("flow_dumper");
569 while (!latch_is_set(&udpif->exit_latch)) {
570 const struct dpif_flow_stats *stats;
571 long long int start_time, duration;
572 const struct nlattr *key, *mask;
573 struct dpif_flow_dump dump;
574 size_t key_len, mask_len;
575 unsigned int flow_limit;
e79a6c83
EJ
576 bool need_revalidate;
577 uint64_t reval_seq;
578 size_t n_flows, i;
938eaa50 579 int error;
d2ad7ef1 580 void *state = NULL;
e79a6c83
EJ
581
582 reval_seq = seq_read(udpif->reval_seq);
583 need_revalidate = udpif->last_reval_seq != reval_seq;
584 udpif->last_reval_seq = reval_seq;
585
586 n_flows = udpif_get_n_flows(udpif);
587 udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
588 udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
589
e79a6c83 590 start_time = time_msec();
938eaa50
JS
591 error = dpif_flow_dump_start(&dump, udpif->dpif);
592 if (error) {
593 VLOG_INFO("Failed to start flow dump (%s)", ovs_strerror(error));
594 goto skip;
595 }
d2ad7ef1
JS
596 dpif_flow_dump_state_init(udpif->dpif, &state);
597 while (dpif_flow_dump_next(&dump, state, &key, &key_len,
598 &mask, &mask_len, NULL, NULL, &stats)
e79a6c83
EJ
599 && !latch_is_set(&udpif->exit_latch)) {
600 struct udpif_flow_dump *udump = xmalloc(sizeof *udump);
601 struct revalidator *revalidator;
602
603 udump->key_hash = hash_bytes(key, key_len, udpif->secret);
604 memcpy(&udump->key_buf, key, key_len);
605 udump->key = (struct nlattr *) &udump->key_buf;
606 udump->key_len = key_len;
607
608 memcpy(&udump->mask_buf, mask, mask_len);
609 udump->mask = (struct nlattr *) &udump->mask_buf;
610 udump->mask_len = mask_len;
611
612 udump->stats = *stats;
613 udump->need_revalidate = need_revalidate;
614
615 revalidator = &udpif->revalidators[udump->key_hash
616 % udpif->n_revalidators];
617
618 ovs_mutex_lock(&revalidator->mutex);
619 while (revalidator->n_udumps >= REVALIDATE_MAX_BATCH * 3
620 && !latch_is_set(&udpif->exit_latch)) {
621 ovs_mutex_cond_wait(&revalidator->wake_cond,
622 &revalidator->mutex);
623 }
624 list_push_back(&revalidator->udumps, &udump->list_node);
625 revalidator->n_udumps++;
626 xpthread_cond_signal(&revalidator->wake_cond);
627 ovs_mutex_unlock(&revalidator->mutex);
628 }
d2ad7ef1 629 dpif_flow_dump_state_uninit(udpif->dpif, state);
e79a6c83
EJ
630 dpif_flow_dump_done(&dump);
631
632 /* Let all the revalidators finish and garbage collect. */
633 seq_change(udpif->dump_seq);
634 for (i = 0; i < udpif->n_revalidators; i++) {
635 struct revalidator *revalidator = &udpif->revalidators[i];
636 ovs_mutex_lock(&revalidator->mutex);
637 xpthread_cond_signal(&revalidator->wake_cond);
638 ovs_mutex_unlock(&revalidator->mutex);
639 }
e1ec7dd4 640
e79a6c83
EJ
641 for (i = 0; i < udpif->n_revalidators; i++) {
642 struct revalidator *revalidator = &udpif->revalidators[i];
e1ec7dd4 643
e79a6c83
EJ
644 ovs_mutex_lock(&revalidator->mutex);
645 while (revalidator->dump_seq != seq_read(udpif->dump_seq)
646 && !latch_is_set(&udpif->exit_latch)) {
647 ovs_mutex_cond_wait(&revalidator->wake_cond,
648 &revalidator->mutex);
649 }
650 ovs_mutex_unlock(&revalidator->mutex);
651 }
e1ec7dd4 652
08d74a96 653 duration = MAX(time_msec() - start_time, 1);
e79a6c83 654 udpif->dump_duration = duration;
0a8763fc 655 atomic_read(&udpif->flow_limit, &flow_limit);
e79a6c83
EJ
656 if (duration > 2000) {
657 flow_limit /= duration / 1000;
658 } else if (duration > 1300) {
659 flow_limit = flow_limit * 3 / 4;
660 } else if (duration < 1000 && n_flows > 2000
661 && flow_limit < n_flows * 1000 / duration) {
662 flow_limit += 1000;
663 }
664 flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
665 atomic_store(&udpif->flow_limit, flow_limit);
e1ec7dd4 666
e79a6c83 667 if (duration > 2000) {
f8b92eb8 668 VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
e79a6c83
EJ
669 duration);
670 }
e1ec7dd4 671
938eaa50 672skip:
72310b04 673 poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
e79a6c83 674 seq_wait(udpif->reval_seq, udpif->last_reval_seq);
e1ec7dd4
EJ
675 latch_wait(&udpif->exit_latch);
676 poll_block();
677 }
678
679 return NULL;
680}
681
5f37b938 682/* The miss handler thread is responsible for processing miss upcalls retrieved
e1ec7dd4
EJ
683 * by the dispatcher thread. Once finished it passes the processed miss
684 * upcalls to ofproto-dpif where they're installed in the datapath. */
685static void *
10e57640 686udpif_upcall_handler(void *arg)
e1ec7dd4 687{
e1ec7dd4
EJ
688 struct handler *handler = arg;
689
e22d52ee
EJ
690 handler->name = xasprintf("handler_%u", ovsthread_id_self());
691 set_subprogram_name("%s", handler->name);
692
61057e88 693 while (!latch_is_set(&handler->udpif->exit_latch)) {
04a19fb8 694 struct list misses = LIST_INITIALIZER(&misses);
e1ec7dd4
EJ
695 size_t i;
696
697 ovs_mutex_lock(&handler->mutex);
5878877a
AW
698 /* Must check the 'exit_latch' again to make sure the main thread is
699 * not joining on the handler thread. */
700 if (!handler->n_upcalls
701 && !latch_is_set(&handler->udpif->exit_latch)) {
e1ec7dd4
EJ
702 ovs_mutex_cond_wait(&handler->wake_cond, &handler->mutex);
703 }
704
705 for (i = 0; i < FLOW_MISS_MAX_BATCH; i++) {
706 if (handler->n_upcalls) {
707 handler->n_upcalls--;
708 list_push_back(&misses, list_pop_front(&handler->upcalls));
709 } else {
710 break;
711 }
712 }
713 ovs_mutex_unlock(&handler->mutex);
714
e79a6c83 715 handle_upcalls(handler, &misses);
de80e4b6
BP
716
717 coverage_clear();
e1ec7dd4 718 }
61057e88
BP
719
720 return NULL;
e1ec7dd4 721}
e79a6c83
EJ
722
723static void *
724udpif_revalidator(void *arg)
e1ec7dd4 725{
e79a6c83 726 struct revalidator *revalidator = arg;
e1ec7dd4 727
e79a6c83
EJ
728 revalidator->name = xasprintf("revalidator_%u", ovsthread_id_self());
729 set_subprogram_name("%s", revalidator->name);
730 for (;;) {
731 struct list udumps = LIST_INITIALIZER(&udumps);
732 struct udpif *udpif = revalidator->udpif;
733 size_t i;
734
735 ovs_mutex_lock(&revalidator->mutex);
736 if (latch_is_set(&udpif->exit_latch)) {
737 ovs_mutex_unlock(&revalidator->mutex);
738 return NULL;
739 }
740
741 if (!revalidator->n_udumps) {
742 if (revalidator->dump_seq != seq_read(udpif->dump_seq)) {
743 revalidator->dump_seq = seq_read(udpif->dump_seq);
744 revalidator_sweep(revalidator);
745 } else {
746 ovs_mutex_cond_wait(&revalidator->wake_cond,
747 &revalidator->mutex);
748 }
749 }
750
751 for (i = 0; i < REVALIDATE_MAX_BATCH && revalidator->n_udumps; i++) {
752 list_push_back(&udumps, list_pop_front(&revalidator->udumps));
753 revalidator->n_udumps--;
754 }
755
756 /* Wake up the flow dumper. */
757 xpthread_cond_signal(&revalidator->wake_cond);
758 ovs_mutex_unlock(&revalidator->mutex);
759
760 if (!list_is_empty(&udumps)) {
761 revalidate_udumps(revalidator, &udumps);
762 }
763 }
764
765 return NULL;
766}
767\f
e1ec7dd4
EJ
768static enum upcall_type
769classify_upcall(const struct upcall *upcall)
770{
771 const struct dpif_upcall *dpif_upcall = &upcall->dpif_upcall;
772 union user_action_cookie cookie;
773 size_t userdata_len;
774
775 /* First look at the upcall type. */
776 switch (dpif_upcall->type) {
777 case DPIF_UC_ACTION:
778 break;
779
780 case DPIF_UC_MISS:
781 return MISS_UPCALL;
782
783 case DPIF_N_UC_TYPES:
784 default:
785 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32,
786 dpif_upcall->type);
787 return BAD_UPCALL;
788 }
789
790 /* "action" upcalls need a closer look. */
791 if (!dpif_upcall->userdata) {
792 VLOG_WARN_RL(&rl, "action upcall missing cookie");
793 return BAD_UPCALL;
794 }
795 userdata_len = nl_attr_get_size(dpif_upcall->userdata);
796 if (userdata_len < sizeof cookie.type
797 || userdata_len > sizeof cookie) {
34582733 798 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
e1ec7dd4
EJ
799 userdata_len);
800 return BAD_UPCALL;
801 }
802 memset(&cookie, 0, sizeof cookie);
803 memcpy(&cookie, nl_attr_get(dpif_upcall->userdata), userdata_len);
f5790bf6 804 if (userdata_len == MAX(8, sizeof cookie.sflow)
e1ec7dd4
EJ
805 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
806 return SFLOW_UPCALL;
f5790bf6 807 } else if (userdata_len == MAX(8, sizeof cookie.slow_path)
e1ec7dd4
EJ
808 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
809 return MISS_UPCALL;
f5790bf6 810 } else if (userdata_len == MAX(8, sizeof cookie.flow_sample)
e1ec7dd4
EJ
811 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
812 return FLOW_SAMPLE_UPCALL;
f5790bf6 813 } else if (userdata_len == MAX(8, sizeof cookie.ipfix)
e1ec7dd4
EJ
814 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
815 return IPFIX_UPCALL;
816 } else {
817 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
34582733 818 " and size %"PRIuSIZE, cookie.type, userdata_len);
e1ec7dd4
EJ
819 return BAD_UPCALL;
820 }
821}
822
823static void
824recv_upcalls(struct udpif *udpif)
825{
caf6491f
JR
826 int n;
827
e1ec7dd4 828 for (;;) {
10e57640
EJ
829 uint32_t hash = udpif->secret;
830 struct handler *handler;
e1ec7dd4 831 struct upcall *upcall;
10e57640
EJ
832 size_t n_bytes, left;
833 struct nlattr *nla;
e1ec7dd4
EJ
834 int error;
835
836 upcall = xmalloc(sizeof *upcall);
837 ofpbuf_use_stub(&upcall->upcall_buf, upcall->upcall_stub,
838 sizeof upcall->upcall_stub);
1954e6bb 839 error = dpif_recv(udpif->dpif, 0, &upcall->dpif_upcall,
e1ec7dd4
EJ
840 &upcall->upcall_buf);
841 if (error) {
837a88dc
JR
842 /* upcall_destroy() can only be called on successfully received
843 * upcalls. */
844 ofpbuf_uninit(&upcall->upcall_buf);
845 free(upcall);
e1ec7dd4
EJ
846 break;
847 }
848
10e57640
EJ
849 n_bytes = 0;
850 NL_ATTR_FOR_EACH (nla, left, upcall->dpif_upcall.key,
851 upcall->dpif_upcall.key_len) {
852 enum ovs_key_attr type = nl_attr_type(nla);
853 if (type == OVS_KEY_ATTR_IN_PORT
854 || type == OVS_KEY_ATTR_TCP
855 || type == OVS_KEY_ATTR_UDP) {
856 if (nl_attr_get_size(nla) == 4) {
be58eabb 857 hash = mhash_add(hash, nl_attr_get_u32(nla));
10e57640
EJ
858 n_bytes += 4;
859 } else {
860 VLOG_WARN_RL(&rl,
861 "Netlink attribute with incorrect size.");
e1ec7dd4
EJ
862 }
863 }
10e57640
EJ
864 }
865 hash = mhash_finish(hash, n_bytes);
dfbdea46 866
10e57640 867 handler = &udpif->handlers[hash % udpif->n_handlers];
dfbdea46 868
10e57640
EJ
869 ovs_mutex_lock(&handler->mutex);
870 if (handler->n_upcalls < MAX_QUEUE_LENGTH) {
871 list_push_back(&handler->upcalls, &upcall->list_node);
9b32ece6
YT
872 if (handler->n_upcalls == 0) {
873 handler->need_signal = true;
874 }
875 handler->n_upcalls++;
876 if (handler->need_signal &&
877 handler->n_upcalls >= FLOW_MISS_MAX_BATCH) {
878 handler->need_signal = false;
10e57640 879 xpthread_cond_signal(&handler->wake_cond);
dfbdea46 880 }
10e57640
EJ
881 ovs_mutex_unlock(&handler->mutex);
882 if (!VLOG_DROP_DBG(&rl)) {
883 struct ds ds = DS_EMPTY_INITIALIZER;
884
885 odp_flow_key_format(upcall->dpif_upcall.key,
886 upcall->dpif_upcall.key_len,
887 &ds);
888 VLOG_DBG("dispatcher: enqueue (%s)", ds_cstr(&ds));
889 ds_destroy(&ds);
e1ec7dd4 890 }
10e57640
EJ
891 } else {
892 ovs_mutex_unlock(&handler->mutex);
893 COVERAGE_INC(upcall_queue_overflow);
894 upcall_destroy(upcall);
e1ec7dd4
EJ
895 }
896 }
10e57640 897
caf6491f 898 for (n = 0; n < udpif->n_handlers; ++n) {
10e57640
EJ
899 struct handler *handler = &udpif->handlers[n];
900
9b32ece6
YT
901 if (handler->need_signal) {
902 handler->need_signal = false;
caf6491f
JR
903 ovs_mutex_lock(&handler->mutex);
904 xpthread_cond_signal(&handler->wake_cond);
905 ovs_mutex_unlock(&handler->mutex);
906 }
907 }
e1ec7dd4
EJ
908}
909
e79a6c83
EJ
910/* Calculates slow path actions for 'xout'. 'buf' must statically be
911 * initialized with at least 128 bytes of space. */
912static void
913compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
914 odp_port_t odp_in_port, struct ofpbuf *buf)
915{
916 union user_action_cookie cookie;
917 odp_port_t port;
918 uint32_t pid;
919
920 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
921 cookie.slow_path.unused = 0;
922 cookie.slow_path.reason = xout->slow;
923
924 port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
925 ? ODPP_NONE
926 : odp_in_port;
1954e6bb 927 pid = dpif_port_get_pid(udpif->dpif, port, 0);
e79a6c83
EJ
928 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, buf);
929}
930
e1ec7dd4
EJ
931static struct flow_miss *
932flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
933 const struct flow *flow, uint32_t hash)
934{
935 struct flow_miss *miss;
936
937 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
938 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
939 return miss;
940 }
941 }
942
943 return NULL;
944}
945
e1ec7dd4 946static void
e79a6c83 947handle_upcalls(struct handler *handler, struct list *upcalls)
e1ec7dd4 948{
e79a6c83
EJ
949 struct hmap misses = HMAP_INITIALIZER(&misses);
950 struct udpif *udpif = handler->udpif;
951
952 struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH];
953 struct dpif_op *opsp[FLOW_MISS_MAX_BATCH * 2];
954 struct dpif_op ops[FLOW_MISS_MAX_BATCH * 2];
955 struct flow_miss *miss, *next_miss;
e1ec7dd4 956 struct upcall *upcall, *next;
ddeca9a4 957 size_t n_misses, n_ops, i;
e79a6c83
EJ
958 unsigned int flow_limit;
959 bool fail_open, may_put;
10e57640 960 enum upcall_type type;
e1ec7dd4 961
e79a6c83
EJ
962 atomic_read(&udpif->flow_limit, &flow_limit);
963 may_put = udpif_get_n_flows(udpif) < flow_limit;
964
965 /* Extract the flow from each upcall. Construct in 'misses' a hash table
966 * that maps each unique flow to a 'struct flow_miss'.
04a19fb8
BP
967 *
968 * Most commonly there is a single packet per flow_miss, but there are
969 * several reasons why there might be more than one, e.g.:
970 *
971 * - The dpif packet interface does not support TSO (or UFO, etc.), so a
972 * large packet sent to userspace is split into a sequence of smaller
973 * ones.
e1ec7dd4 974 *
04a19fb8
BP
975 * - A stream of quickly arriving packets in an established "slow-pathed"
976 * flow.
977 *
978 * - Rarely, a stream of quickly arriving packets in a flow not yet
979 * established. (This is rare because most protocols do not send
980 * multiple back-to-back packets before receiving a reply from the
981 * other end of the connection, which gives OVS a chance to set up a
982 * datapath flow.)
983 */
ddeca9a4 984 n_misses = 0;
e1ec7dd4
EJ
985 LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) {
986 struct dpif_upcall *dupcall = &upcall->dpif_upcall;
e79a6c83 987 struct flow_miss *miss = &miss_buf[n_misses];
da546e07 988 struct ofpbuf *packet = &dupcall->packet;
e1ec7dd4
EJ
989 struct flow_miss *existing_miss;
990 struct ofproto_dpif *ofproto;
10e57640
EJ
991 struct dpif_sflow *sflow;
992 struct dpif_ipfix *ipfix;
e1ec7dd4
EJ
993 odp_port_t odp_in_port;
994 struct flow flow;
e1ec7dd4
EJ
995 int error;
996
04a19fb8 997 error = xlate_receive(udpif->backer, packet, dupcall->key,
836fbda7 998 dupcall->key_len, &flow,
1dfdb9b3 999 &ofproto, &ipfix, &sflow, NULL, &odp_in_port);
10e57640
EJ
1000 if (error) {
1001 if (error == ENODEV) {
10e57640
EJ
1002 /* Received packet on datapath port for which we couldn't
1003 * associate an ofproto. This can happen if a port is removed
1004 * while traffic is being received. Print a rate-limited
1005 * message in case it happens frequently. Install a drop flow
1006 * so that future packets of the flow are inexpensively dropped
1007 * in the kernel. */
1008 VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
1009 "port %"PRIu32, odp_in_port);
e79a6c83
EJ
1010 dpif_flow_put(udpif->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
1011 dupcall->key, dupcall->key_len, NULL, 0, NULL, 0,
1012 NULL);
10e57640
EJ
1013 }
1014 list_remove(&upcall->list_node);
1015 upcall_destroy(upcall);
1016 continue;
1017 }
1018
1019 type = classify_upcall(upcall);
1020 if (type == MISS_UPCALL) {
04a19fb8 1021 uint32_t hash;
fc3431c6 1022 struct pkt_metadata md = pkt_metadata_from_flow(&flow);
04a19fb8 1023
b5e7e61a 1024 flow_extract(packet, &md, &miss->flow);
04a19fb8 1025 hash = flow_hash(&miss->flow, 0);
e79a6c83 1026 existing_miss = flow_miss_find(&misses, ofproto, &miss->flow,
04a19fb8
BP
1027 hash);
1028 if (!existing_miss) {
e79a6c83 1029 hmap_insert(&misses, &miss->hmap_node, hash);
04a19fb8
BP
1030 miss->ofproto = ofproto;
1031 miss->key = dupcall->key;
1032 miss->key_len = dupcall->key_len;
1033 miss->upcall_type = dupcall->type;
1034 miss->stats.n_packets = 0;
1035 miss->stats.n_bytes = 0;
1036 miss->stats.used = time_msec();
1037 miss->stats.tcp_flags = 0;
e79a6c83 1038 miss->odp_in_port = odp_in_port;
73e141f9 1039 miss->put = false;
04a19fb8 1040
ddeca9a4 1041 n_misses++;
e1ec7dd4 1042 } else {
04a19fb8 1043 miss = existing_miss;
e1ec7dd4 1044 }
e0eecb1c 1045 miss->stats.tcp_flags |= ntohs(miss->flow.tcp_flags);
1f317cb5 1046 miss->stats.n_bytes += ofpbuf_size(packet);
04a19fb8 1047 miss->stats.n_packets++;
e1ec7dd4 1048
04a19fb8 1049 upcall->flow_miss = miss;
10e57640
EJ
1050 continue;
1051 }
04a19fb8 1052
10e57640
EJ
1053 switch (type) {
1054 case SFLOW_UPCALL:
10e57640
EJ
1055 if (sflow) {
1056 union user_action_cookie cookie;
1057
1058 memset(&cookie, 0, sizeof cookie);
1059 memcpy(&cookie, nl_attr_get(dupcall->userdata),
1060 sizeof cookie.sflow);
da546e07 1061 dpif_sflow_received(sflow, packet, &flow, odp_in_port,
10e57640 1062 &cookie);
04a19fb8 1063 }
10e57640
EJ
1064 break;
1065 case IPFIX_UPCALL:
10e57640 1066 if (ipfix) {
da546e07 1067 dpif_ipfix_bridge_sample(ipfix, packet, &flow);
10e57640
EJ
1068 }
1069 break;
1070 case FLOW_SAMPLE_UPCALL:
10e57640
EJ
1071 if (ipfix) {
1072 union user_action_cookie cookie;
1073
1074 memset(&cookie, 0, sizeof cookie);
1075 memcpy(&cookie, nl_attr_get(dupcall->userdata),
1076 sizeof cookie.flow_sample);
1077
1078 /* The flow reflects exactly the contents of the packet.
1079 * Sample the packet using it. */
da546e07 1080 dpif_ipfix_flow_sample(ipfix, packet, &flow,
10e57640
EJ
1081 cookie.flow_sample.collector_set_id,
1082 cookie.flow_sample.probability,
1083 cookie.flow_sample.obs_domain_id,
1084 cookie.flow_sample.obs_point_id);
10e57640
EJ
1085 }
1086 break;
1087 case BAD_UPCALL:
1088 break;
1089 case MISS_UPCALL:
428b2edd 1090 OVS_NOT_REACHED();
e1ec7dd4 1091 }
10e57640 1092
1dfdb9b3
EJ
1093 dpif_ipfix_unref(ipfix);
1094 dpif_sflow_unref(sflow);
1095
10e57640
EJ
1096 list_remove(&upcall->list_node);
1097 upcall_destroy(upcall);
e1ec7dd4
EJ
1098 }
1099
04a19fb8
BP
1100 /* Initialize each 'struct flow_miss's ->xout.
1101 *
1102 * We do this per-flow_miss rather than per-packet because, most commonly,
1103 * all the packets in a flow can use the same translation.
1104 *
1105 * We can't do this in the previous loop because we need the TCP flags for
1106 * all the packets in each miss. */
1107 fail_open = false;
e79a6c83 1108 HMAP_FOR_EACH (miss, hmap_node, &misses) {
04a19fb8
BP
1109 struct xlate_in xin;
1110
10c44245 1111 xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL,
04a19fb8
BP
1112 miss->stats.tcp_flags, NULL);
1113 xin.may_learn = true;
e79a6c83
EJ
1114
1115 if (miss->upcall_type == DPIF_UC_MISS) {
1116 xin.resubmit_stats = &miss->stats;
1117 } else {
1118 /* For non-miss upcalls, there's a flow in the datapath which this
1119 * packet was accounted to. Presumably the revalidators will deal
1120 * with pushing its stats eventually. */
1121 }
1122
04a19fb8 1123 xlate_actions(&xin, &miss->xout);
10c44245 1124 fail_open = fail_open || miss->xout.fail_open;
04a19fb8
BP
1125 }
1126
1127 /* Now handle the packets individually in order of arrival. In the common
1128 * case each packet of a miss can share the same actions, but slow-pathed
1129 * packets need to be translated individually:
1130 *
1131 * - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
1132 * processes received packets for these protocols.
1133 *
1134 * - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
1135 * controller.
1136 *
1137 * The loop fills 'ops' with an array of operations to execute in the
1138 * datapath. */
1139 n_ops = 0;
1140 LIST_FOR_EACH (upcall, list_node, upcalls) {
1141 struct flow_miss *miss = upcall->flow_miss;
da546e07 1142 struct ofpbuf *packet = &upcall->dpif_upcall.packet;
e79a6c83 1143 struct dpif_op *op;
d02c42bf
AZ
1144 ovs_be16 flow_vlan_tci;
1145
1146 /* Save a copy of flow.vlan_tci in case it is changed to
1147 * generate proper mega flow masks for VLAN splinter flows. */
1148 flow_vlan_tci = miss->flow.vlan_tci;
04a19fb8
BP
1149
1150 if (miss->xout.slow) {
04a19fb8
BP
1151 struct xlate_in xin;
1152
10c44245 1153 xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL, 0, packet);
04a19fb8 1154 xlate_actions_for_side_effects(&xin);
04a19fb8
BP
1155 }
1156
d02c42bf
AZ
1157 if (miss->flow.in_port.ofp_port
1158 != vsp_realdev_to_vlandev(miss->ofproto,
1159 miss->flow.in_port.ofp_port,
1160 miss->flow.vlan_tci)) {
1161 /* This packet was received on a VLAN splinter port. We
1162 * added a VLAN to the packet to make the packet resemble
1163 * the flow, but the actions were composed assuming that
1164 * the packet contained no VLAN. So, we must remove the
1165 * VLAN header from the packet before trying to execute the
1166 * actions. */
1f317cb5 1167 if (ofpbuf_size(&miss->xout.odp_actions)) {
d02c42bf
AZ
1168 eth_pop_vlan(packet);
1169 }
1170
1171 /* Remove the flow vlan tags inserted by vlan splinter logic
1172 * to ensure megaflow masks generated match the data path flow. */
1173 miss->flow.vlan_tci = 0;
e79a6c83 1174 }
04a19fb8 1175
73e141f9
BP
1176 /* Do not install a flow into the datapath if:
1177 *
1178 * - The datapath already has too many flows.
1179 *
1180 * - An earlier iteration of this loop already put the same flow.
1181 *
1182 * - We received this packet via some flow installed in the kernel
1183 * already. */
1184 if (may_put
1185 && !miss->put
1186 && upcall->dpif_upcall.type == DPIF_UC_MISS) {
d02c42bf
AZ
1187 struct ofpbuf mask;
1188 bool megaflow;
1189
73e141f9
BP
1190 miss->put = true;
1191
d02c42bf
AZ
1192 atomic_read(&enable_megaflows, &megaflow);
1193 ofpbuf_use_stack(&mask, &miss->mask_buf, sizeof miss->mask_buf);
1194 if (megaflow) {
8bfd0fda
BP
1195 size_t max_mpls;
1196
1197 max_mpls = ofproto_dpif_get_max_mpls_depth(miss->ofproto);
d02c42bf 1198 odp_flow_key_from_mask(&mask, &miss->xout.wc.masks,
8bfd0fda 1199 &miss->flow, UINT32_MAX, max_mpls);
d02c42bf
AZ
1200 }
1201
e79a6c83
EJ
1202 op = &ops[n_ops++];
1203 op->type = DPIF_OP_FLOW_PUT;
1204 op->u.flow_put.flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
1205 op->u.flow_put.key = miss->key;
1206 op->u.flow_put.key_len = miss->key_len;
1f317cb5
PS
1207 op->u.flow_put.mask = ofpbuf_data(&mask);
1208 op->u.flow_put.mask_len = ofpbuf_size(&mask);
e79a6c83
EJ
1209 op->u.flow_put.stats = NULL;
1210
1211 if (!miss->xout.slow) {
1f317cb5
PS
1212 op->u.flow_put.actions = ofpbuf_data(&miss->xout.odp_actions);
1213 op->u.flow_put.actions_len = ofpbuf_size(&miss->xout.odp_actions);
e79a6c83
EJ
1214 } else {
1215 struct ofpbuf buf;
1216
1217 ofpbuf_use_stack(&buf, miss->slow_path_buf,
1218 sizeof miss->slow_path_buf);
1219 compose_slow_path(udpif, &miss->xout, miss->odp_in_port, &buf);
1f317cb5
PS
1220 op->u.flow_put.actions = ofpbuf_data(&buf);
1221 op->u.flow_put.actions_len = ofpbuf_size(&buf);
e79a6c83
EJ
1222 }
1223 }
1224
d02c42bf
AZ
1225 /*
1226 * The 'miss' may be shared by multiple upcalls. Restore
1227 * the saved flow vlan_tci field before processing the next
1228 * upcall. */
1229 miss->flow.vlan_tci = flow_vlan_tci;
1230
1f317cb5 1231 if (ofpbuf_size(&miss->xout.odp_actions)) {
04a19fb8
BP
1232
1233 op = &ops[n_ops++];
1234 op->type = DPIF_OP_EXECUTE;
04a19fb8 1235 op->u.execute.packet = packet;
758c456d
JR
1236 odp_key_to_pkt_metadata(miss->key, miss->key_len,
1237 &op->u.execute.md);
1f317cb5
PS
1238 op->u.execute.actions = ofpbuf_data(&miss->xout.odp_actions);
1239 op->u.execute.actions_len = ofpbuf_size(&miss->xout.odp_actions);
7fd91025 1240 op->u.execute.needs_help = (miss->xout.slow & SLOW_ACTION) != 0;
04a19fb8 1241 }
e1ec7dd4 1242 }
e1ec7dd4 1243
04a19fb8
BP
1244 /* Special case for fail-open mode.
1245 *
1246 * If we are in fail-open mode, but we are connected to a controller too,
1247 * then we should send the packet up to the controller in the hope that it
1248 * will try to set up a flow and thereby allow us to exit fail-open.
1249 *
da546e07
JR
1250 * See the top-level comment in fail-open.c for more information.
1251 *
1252 * Copy packets before they are modified by execution. */
04a19fb8
BP
1253 if (fail_open) {
1254 LIST_FOR_EACH (upcall, list_node, upcalls) {
1255 struct flow_miss *miss = upcall->flow_miss;
da546e07 1256 struct ofpbuf *packet = &upcall->dpif_upcall.packet;
0fb7792a 1257 struct ofproto_packet_in *pin;
04a19fb8
BP
1258
1259 pin = xmalloc(sizeof *pin);
1f317cb5
PS
1260 pin->up.packet = xmemdup(ofpbuf_data(packet), ofpbuf_size(packet));
1261 pin->up.packet_len = ofpbuf_size(packet);
0fb7792a 1262 pin->up.reason = OFPR_NO_MATCH;
0fb7792a 1263 pin->up.table_id = 0;
d4fa4e79 1264 pin->up.cookie = OVS_BE64_MAX;
0fb7792a 1265 flow_get_metadata(&miss->flow, &pin->up.fmd);
d38a3c7b 1266 pin->send_len = 0; /* Not used for flow table misses. */
32260212 1267 pin->miss_type = OFPROTO_PACKET_IN_NO_MISS;
04a19fb8
BP
1268 ofproto_dpif_send_packet_in(miss->ofproto, pin);
1269 }
1270 }
1271
da546e07
JR
1272 /* Execute batch. */
1273 for (i = 0; i < n_ops; i++) {
1274 opsp[i] = &ops[i];
1275 }
1276 dpif_operate(udpif->dpif, opsp, n_ops);
1277
e79a6c83
EJ
1278 HMAP_FOR_EACH_SAFE (miss, next_miss, hmap_node, &misses) {
1279 hmap_remove(&misses, &miss->hmap_node);
1280 xlate_out_uninit(&miss->xout);
1281 }
1282 hmap_destroy(&misses);
1283
1284 LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) {
1285 list_remove(&upcall->list_node);
1286 upcall_destroy(upcall);
1287 }
1288}
1289
1290static struct udpif_key *
1291ukey_lookup(struct revalidator *revalidator, struct udpif_flow_dump *udump)
1292{
1293 struct udpif_key *ukey;
1294
1295 HMAP_FOR_EACH_WITH_HASH (ukey, hmap_node, udump->key_hash,
1296 &revalidator->ukeys) {
1297 if (ukey->key_len == udump->key_len
1298 && !memcmp(ukey->key, udump->key, udump->key_len)) {
1299 return ukey;
1300 }
1301 }
1302 return NULL;
1303}
1304
13bb6ed0
JS
1305static struct udpif_key *
1306ukey_create(const struct nlattr *key, size_t key_len, long long int used)
1307{
1308 struct udpif_key *ukey = xmalloc(sizeof *ukey);
1309
1310 ukey->key = (struct nlattr *) &ukey->key_buf;
1311 memcpy(&ukey->key_buf, key, key_len);
1312 ukey->key_len = key_len;
1313
1314 ukey->mark = false;
1315 ukey->created = used ? used : time_msec();
1316 memset(&ukey->stats, 0, sizeof ukey->stats);
1317
1318 return ukey;
1319}
1320
e79a6c83
EJ
1321static void
1322ukey_delete(struct revalidator *revalidator, struct udpif_key *ukey)
1323{
1324 hmap_remove(&revalidator->ukeys, &ukey->hmap_node);
1325 free(ukey);
1326}
1327
1328static bool
1329revalidate_ukey(struct udpif *udpif, struct udpif_flow_dump *udump,
1330 struct udpif_key *ukey)
1331{
1332 struct ofpbuf xout_actions, *actions;
1333 uint64_t slow_path_buf[128 / 8];
1334 struct xlate_out xout, *xoutp;
42f3baca 1335 struct netflow *netflow;
e79a6c83
EJ
1336 struct flow flow, udump_mask;
1337 struct ofproto_dpif *ofproto;
1338 struct dpif_flow_stats push;
1339 uint32_t *udump32, *xout32;
1340 odp_port_t odp_in_port;
1341 struct xlate_in xin;
1342 int error;
1343 size_t i;
1344 bool ok;
1345
1346 ok = false;
1347 xoutp = NULL;
1348 actions = NULL;
42f3baca 1349 netflow = NULL;
e79a6c83
EJ
1350
1351 /* If we don't need to revalidate, we can simply push the stats contained
1352 * in the udump, otherwise we'll have to get the actions so we can check
1353 * them. */
1354 if (udump->need_revalidate) {
1355 if (dpif_flow_get(udpif->dpif, ukey->key, ukey->key_len, &actions,
1356 &udump->stats)) {
1357 goto exit;
1358 }
1359 }
1360
1361 push.used = udump->stats.used;
1362 push.tcp_flags = udump->stats.tcp_flags;
1363 push.n_packets = udump->stats.n_packets > ukey->stats.n_packets
1364 ? udump->stats.n_packets - ukey->stats.n_packets
1365 : 0;
1366 push.n_bytes = udump->stats.n_bytes > ukey->stats.n_bytes
1367 ? udump->stats.n_bytes - ukey->stats.n_bytes
1368 : 0;
1369 ukey->stats = udump->stats;
1370
1371 if (!push.n_packets && !udump->need_revalidate) {
1372 ok = true;
1373 goto exit;
1374 }
1375
1376 error = xlate_receive(udpif->backer, NULL, ukey->key, ukey->key_len, &flow,
42f3baca 1377 &ofproto, NULL, NULL, &netflow, &odp_in_port);
e79a6c83
EJ
1378 if (error) {
1379 goto exit;
1380 }
1381
1382 xlate_in_init(&xin, ofproto, &flow, NULL, push.tcp_flags, NULL);
1383 xin.resubmit_stats = push.n_packets ? &push : NULL;
1384 xin.may_learn = push.n_packets > 0;
1385 xin.skip_wildcards = !udump->need_revalidate;
1386 xlate_actions(&xin, &xout);
1387 xoutp = &xout;
ddeca9a4 1388
e79a6c83
EJ
1389 if (!udump->need_revalidate) {
1390 ok = true;
1391 goto exit;
1392 }
1393
1394 if (!xout.slow) {
1f317cb5
PS
1395 ofpbuf_use_const(&xout_actions, ofpbuf_data(&xout.odp_actions),
1396 ofpbuf_size(&xout.odp_actions));
05067881 1397 } else {
e79a6c83
EJ
1398 ofpbuf_use_stack(&xout_actions, slow_path_buf, sizeof slow_path_buf);
1399 compose_slow_path(udpif, &xout, odp_in_port, &xout_actions);
1400 }
1401
1402 if (!ofpbuf_equal(&xout_actions, actions)) {
1403 goto exit;
1404 }
1405
1406 if (odp_flow_key_to_mask(udump->mask, udump->mask_len, &udump_mask, &flow)
1407 == ODP_FIT_ERROR) {
1408 goto exit;
1409 }
1410
1411 /* Since the kernel is free to ignore wildcarded bits in the mask, we can't
1412 * directly check that the masks are the same. Instead we check that the
1413 * mask in the kernel is more specific i.e. less wildcarded, than what
1414 * we've calculated here. This guarantees we don't catch any packets we
1415 * shouldn't with the megaflow. */
1416 udump32 = (uint32_t *) &udump_mask;
1417 xout32 = (uint32_t *) &xout.wc.masks;
1418 for (i = 0; i < FLOW_U32S; i++) {
1419 if ((udump32[i] | xout32[i]) != udump32[i]) {
1420 goto exit;
1421 }
1422 }
1423 ok = true;
1424
1425exit:
42f3baca
YT
1426 if (netflow) {
1427 if (!ok) {
1428 netflow_expire(netflow, &flow);
1429 netflow_flow_clear(netflow, &flow);
1430 }
1431 netflow_unref(netflow);
1432 }
e79a6c83
EJ
1433 ofpbuf_delete(actions);
1434 xlate_out_uninit(xoutp);
1435 return ok;
1436}
1437
13bb6ed0
JS
1438struct dump_op {
1439 struct udpif_key *ukey;
1440 struct udpif_flow_dump *udump;
1441 struct dpif_flow_stats stats; /* Stats for 'op'. */
1442 struct dpif_op op; /* Flow del operation. */
1443};
1444
e79a6c83 1445static void
13bb6ed0
JS
1446dump_op_init(struct dump_op *op, const struct nlattr *key, size_t key_len,
1447 struct udpif_key *ukey, struct udpif_flow_dump *udump)
1448{
1449 op->ukey = ukey;
1450 op->udump = udump;
1451 op->op.type = DPIF_OP_FLOW_DEL;
1452 op->op.u.flow_del.key = key;
1453 op->op.u.flow_del.key_len = key_len;
1454 op->op.u.flow_del.stats = &op->stats;
1455}
1456
1457static void
1458push_dump_ops(struct revalidator *revalidator,
1459 struct dump_op *ops, size_t n_ops)
e79a6c83
EJ
1460{
1461 struct udpif *udpif = revalidator->udpif;
13bb6ed0
JS
1462 struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
1463 size_t i;
e79a6c83 1464
13bb6ed0
JS
1465 ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
1466 for (i = 0; i < n_ops; i++) {
1467 opsp[i] = &ops[i].op;
1468 }
1469 dpif_operate(udpif->dpif, opsp, n_ops);
1470
1471 for (i = 0; i < n_ops; i++) {
1472 struct dump_op *op = &ops[i];
1473 struct dpif_flow_stats *push, *stats, push_buf;
1474
1475 stats = op->op.u.flow_del.stats;
1476 if (op->ukey) {
1477 push = &push_buf;
1478 push->used = MAX(stats->used, op->ukey->stats.used);
1479 push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
1480 push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
1481 push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
1482 } else {
1483 push = stats;
1484 }
1485
1486 if (push->n_packets || netflow_exists()) {
1487 struct ofproto_dpif *ofproto;
1488 struct netflow *netflow;
1489 struct flow flow;
1490
1491 if (!xlate_receive(udpif->backer, NULL, op->op.u.flow_del.key,
1492 op->op.u.flow_del.key_len, &flow, &ofproto,
1493 NULL, NULL, &netflow, NULL)) {
1494 struct xlate_in xin;
1495
1496 xlate_in_init(&xin, ofproto, &flow, NULL, push->tcp_flags,
1497 NULL);
1498 xin.resubmit_stats = push->n_packets ? push : NULL;
1499 xin.may_learn = push->n_packets > 0;
1500 xin.skip_wildcards = true;
1501 xlate_actions_for_side_effects(&xin);
1502
1503 if (netflow) {
1504 netflow_expire(netflow, &flow);
1505 netflow_flow_clear(netflow, &flow);
1506 netflow_unref(netflow);
1507 }
1508 }
1509 }
1510 }
1511
1512 for (i = 0; i < n_ops; i++) {
66fb5cc7 1513 struct udpif_key *ukey;
13bb6ed0 1514
66fb5cc7
BP
1515 /* If there's a udump, this ukey came directly from a datapath flow
1516 * dump. Sometimes a datapath can send duplicates in flow dumps, in
1517 * which case we wouldn't want to double-free a ukey, so avoid that by
1518 * looking up the ukey again.
1519 *
1520 * If there's no udump then we know what we're doing. */
1521 ukey = (ops[i].udump
1522 ? ukey_lookup(revalidator, ops[i].udump)
1523 : ops[i].ukey);
13bb6ed0
JS
1524 if (ukey) {
1525 ukey_delete(revalidator, ukey);
1526 }
1527 }
1528}
1529
1530static void
1531revalidate_udumps(struct revalidator *revalidator, struct list *udumps)
1532{
1533 struct udpif *udpif = revalidator->udpif;
e79a6c83 1534
ad3415c0 1535 struct dump_op ops[REVALIDATE_MAX_BATCH];
e79a6c83 1536 struct udpif_flow_dump *udump, *next_udump;
13bb6ed0 1537 size_t n_ops, n_flows;
e79a6c83
EJ
1538 unsigned int flow_limit;
1539 long long int max_idle;
1540 bool must_del;
1541
e79a6c83
EJ
1542 atomic_read(&udpif->flow_limit, &flow_limit);
1543
1544 n_flows = udpif_get_n_flows(udpif);
1545
1546 must_del = false;
72310b04 1547 max_idle = ofproto_max_idle;
e79a6c83
EJ
1548 if (n_flows > flow_limit) {
1549 must_del = n_flows > 2 * flow_limit;
1550 max_idle = 100;
1551 }
1552
1553 n_ops = 0;
1554 LIST_FOR_EACH_SAFE (udump, next_udump, list_node, udumps) {
1555 long long int used, now;
1556 struct udpif_key *ukey;
1557
1558 now = time_msec();
1559 ukey = ukey_lookup(revalidator, udump);
1560
1561 used = udump->stats.used;
1562 if (!used && ukey) {
1563 used = ukey->created;
1564 }
1565
1566 if (must_del || (used && used < now - max_idle)) {
ad3415c0 1567 struct dump_op *dop = &ops[n_ops++];
e79a6c83 1568
13bb6ed0 1569 dump_op_init(dop, udump->key, udump->key_len, ukey, udump);
e79a6c83
EJ
1570 continue;
1571 }
1572
1573 if (!ukey) {
13bb6ed0 1574 ukey = ukey_create(udump->key, udump->key_len, used);
e79a6c83
EJ
1575 hmap_insert(&revalidator->ukeys, &ukey->hmap_node,
1576 udump->key_hash);
1577 }
1578 ukey->mark = true;
1579
1580 if (!revalidate_ukey(udpif, udump, ukey)) {
1581 dpif_flow_del(udpif->dpif, udump->key, udump->key_len, NULL);
1582 ukey_delete(revalidator, ukey);
1583 }
1584
1585 list_remove(&udump->list_node);
1586 free(udump);
1587 }
1588
13bb6ed0 1589 push_dump_ops(revalidator, ops, n_ops);
ad3415c0 1590
e79a6c83
EJ
1591 LIST_FOR_EACH_SAFE (udump, next_udump, list_node, udumps) {
1592 list_remove(&udump->list_node);
1593 free(udump);
1594 }
1595}
1596
1597static void
e96a5c24 1598revalidator_sweep__(struct revalidator *revalidator, bool purge)
e79a6c83 1599{
e4b79342 1600 struct dump_op ops[REVALIDATE_MAX_BATCH];
e79a6c83 1601 struct udpif_key *ukey, *next;
e4b79342
JS
1602 size_t n_ops;
1603
1604 n_ops = 0;
e79a6c83
EJ
1605
1606 HMAP_FOR_EACH_SAFE (ukey, next, hmap_node, &revalidator->ukeys) {
e96a5c24 1607 if (!purge && ukey->mark) {
e79a6c83
EJ
1608 ukey->mark = false;
1609 } else {
e4b79342
JS
1610 struct dump_op *op = &ops[n_ops++];
1611
1612 /* If we have previously seen a flow in the datapath, but didn't
1613 * see it during the most recent dump, delete it. This allows us
1614 * to clean up the ukey and keep the statistics consistent. */
1615 dump_op_init(op, ukey->key, ukey->key_len, ukey, NULL);
1616 if (n_ops == REVALIDATE_MAX_BATCH) {
1617 push_dump_ops(revalidator, ops, n_ops);
1618 n_ops = 0;
1619 }
e79a6c83 1620 }
e1ec7dd4 1621 }
e4b79342
JS
1622
1623 if (n_ops) {
1624 push_dump_ops(revalidator, ops, n_ops);
1625 }
e1ec7dd4 1626}
e96a5c24
JS
1627
1628static void
1629revalidator_sweep(struct revalidator *revalidator)
1630{
1631 revalidator_sweep__(revalidator, false);
1632}
1633
1634static void
1635revalidator_purge(struct revalidator *revalidator)
1636{
1637 revalidator_sweep__(revalidator, true);
1638}
e22d52ee
EJ
1639\f
1640static void
1641upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
1642 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
1643{
1644 struct ds ds = DS_EMPTY_INITIALIZER;
1645 struct udpif *udpif;
1646
1647 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
e79a6c83 1648 unsigned int flow_limit;
e22d52ee
EJ
1649 size_t i;
1650
e79a6c83 1651 atomic_read(&udpif->flow_limit, &flow_limit);
e79a6c83 1652
e22d52ee 1653 ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
e79a6c83
EJ
1654 ds_put_format(&ds, "\tflows : (current %"PRIu64")"
1655 " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
1656 udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
e79a6c83
EJ
1657 ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);
1658
1659 ds_put_char(&ds, '\n');
e22d52ee
EJ
1660 for (i = 0; i < udpif->n_handlers; i++) {
1661 struct handler *handler = &udpif->handlers[i];
1662
1663 ovs_mutex_lock(&handler->mutex);
1664 ds_put_format(&ds, "\t%s: (upcall queue %"PRIuSIZE")\n",
1665 handler->name, handler->n_upcalls);
1666 ovs_mutex_unlock(&handler->mutex);
1667 }
e79a6c83
EJ
1668
1669 ds_put_char(&ds, '\n');
1670 for (i = 0; i < n_revalidators; i++) {
1671 struct revalidator *revalidator = &udpif->revalidators[i];
1672
1673 /* XXX: The result of hmap_count(&revalidator->ukeys) may not be
1674 * accurate because it's not protected by the revalidator mutex. */
1675 ovs_mutex_lock(&revalidator->mutex);
1676 ds_put_format(&ds, "\t%s: (dump queue %"PRIuSIZE") (keys %"PRIuSIZE
1677 ")\n", revalidator->name, revalidator->n_udumps,
1678 hmap_count(&revalidator->ukeys));
1679 ovs_mutex_unlock(&revalidator->mutex);
1680 }
e22d52ee
EJ
1681 }
1682
1683 unixctl_command_reply(conn, ds_cstr(&ds));
1684 ds_destroy(&ds);
1685}
e79a6c83
EJ
1686
1687/* Disable using the megaflows.
1688 *
1689 * This command is only needed for advanced debugging, so it's not
1690 * documented in the man page. */
1691static void
1692upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
1693 int argc OVS_UNUSED,
1694 const char *argv[] OVS_UNUSED,
1695 void *aux OVS_UNUSED)
1696{
1697 atomic_store(&enable_megaflows, false);
1b5b5071 1698 udpif_flush_all_datapaths();
e79a6c83
EJ
1699 unixctl_command_reply(conn, "megaflows disabled");
1700}
1701
1702/* Re-enable using megaflows.
1703 *
1704 * This command is only needed for advanced debugging, so it's not
1705 * documented in the man page. */
1706static void
1707upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
1708 int argc OVS_UNUSED,
1709 const char *argv[] OVS_UNUSED,
1710 void *aux OVS_UNUSED)
1711{
1712 atomic_store(&enable_megaflows, true);
1b5b5071 1713 udpif_flush_all_datapaths();
e79a6c83
EJ
1714 unixctl_command_reply(conn, "megaflows enabled");
1715}
94b8c324
JS
1716
1717/* Set the flow limit.
1718 *
1719 * This command is only needed for advanced debugging, so it's not
1720 * documented in the man page. */
1721static void
1722upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
1723 int argc OVS_UNUSED,
1724 const char *argv[] OVS_UNUSED,
1725 void *aux OVS_UNUSED)
1726{
1727 struct ds ds = DS_EMPTY_INITIALIZER;
1728 struct udpif *udpif;
1729 unsigned int flow_limit = atoi(argv[1]);
1730
1731 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
1732 atomic_store(&udpif->flow_limit, flow_limit);
1733 }
1734 ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
1735 unixctl_command_reply(conn, ds_cstr(&ds));
1736 ds_destroy(&ds);
1737}