]> git.proxmox.com Git - mirror_ovs.git/blame - ofproto/ofproto-dpif-upcall.c
ofproto: Handle flow installation and eviction in upcall.
[mirror_ovs.git] / ofproto / ofproto-dpif-upcall.c
CommitLineData
e1ec7dd4
EJ
1/* Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License. */
14
15#include <config.h>
16#include "ofproto-dpif-upcall.h"
17
18#include <errno.h>
19#include <stdbool.h>
20#include <inttypes.h>
21
0fb7792a 22#include "connmgr.h"
e1ec7dd4 23#include "coverage.h"
e1ec7dd4 24#include "dpif.h"
e22d52ee 25#include "dynamic-string.h"
e1ec7dd4 26#include "fail-open.h"
05067881 27#include "guarded-list.h"
e1ec7dd4 28#include "latch.h"
e1ec7dd4
EJ
29#include "list.h"
30#include "netlink.h"
31#include "ofpbuf.h"
10e57640
EJ
32#include "ofproto-dpif-ipfix.h"
33#include "ofproto-dpif-sflow.h"
e79a6c83 34#include "ofproto-dpif-xlate.h"
e1ec7dd4
EJ
35#include "packets.h"
36#include "poll-loop.h"
e22d52ee
EJ
37#include "seq.h"
38#include "unixctl.h"
e1ec7dd4
EJ
39#include "vlog.h"
40
41#define MAX_QUEUE_LENGTH 512
e79a6c83
EJ
42#define FLOW_MISS_MAX_BATCH 50
43#define REVALIDATE_MAX_BATCH 50
e1ec7dd4
EJ
44
45VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
46
10e57640 47COVERAGE_DEFINE(upcall_queue_overflow);
e1ec7dd4
EJ
48
49/* A thread that processes each upcall handed to it by the dispatcher thread,
e79a6c83
EJ
50 * forwards the upcall's packet, and possibly sets up a kernel flow as a
51 * cache. */
e1ec7dd4
EJ
52struct handler {
53 struct udpif *udpif; /* Parent udpif. */
54 pthread_t thread; /* Thread ID. */
e22d52ee 55 char *name; /* Thread name. */
e1ec7dd4
EJ
56
57 struct ovs_mutex mutex; /* Mutex guarding the following. */
58
10e57640 59 /* Atomic queue of unprocessed upcalls. */
e1ec7dd4
EJ
60 struct list upcalls OVS_GUARDED;
61 size_t n_upcalls OVS_GUARDED;
62
9b32ece6 63 bool need_signal; /* Only changed by the dispatcher. */
caf6491f 64
e1ec7dd4
EJ
65 pthread_cond_t wake_cond; /* Wakes 'thread' while holding
66 'mutex'. */
67};
68
e79a6c83
EJ
69/* A thread that processes each kernel flow handed to it by the flow_dumper
70 * thread, updates OpenFlow statistics, and updates or removes the kernel flow
71 * as necessary. */
72struct revalidator {
73 struct udpif *udpif; /* Parent udpif. */
74 char *name; /* Thread name. */
75
76 pthread_t thread; /* Thread ID. */
77 struct hmap ukeys; /* Datapath flow keys. */
78
79 uint64_t dump_seq;
80
81 struct ovs_mutex mutex; /* Mutex guarding the following. */
82 pthread_cond_t wake_cond;
83 struct list udumps OVS_GUARDED; /* Unprocessed udumps. */
84 size_t n_udumps OVS_GUARDED; /* Number of unprocessed udumps. */
85};
86
e1ec7dd4
EJ
87/* An upcall handler for ofproto_dpif.
88 *
e79a6c83
EJ
89 * udpif has two logically separate pieces:
90 *
91 * - A "dispatcher" thread that reads upcalls from the kernel and dispatches
92 * them to one of several "handler" threads (see struct handler).
93 *
94 * - A "flow_dumper" thread that reads the kernel flow table and dispatches
95 * flows to one of several "revalidator" threads (see struct
96 * revalidator). */
e1ec7dd4 97struct udpif {
e22d52ee
EJ
98 struct list list_node; /* In all_udpifs list. */
99
e1ec7dd4
EJ
100 struct dpif *dpif; /* Datapath handle. */
101 struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
102
103 uint32_t secret; /* Random seed for upcall hash. */
104
105 pthread_t dispatcher; /* Dispatcher thread ID. */
e79a6c83 106 pthread_t flow_dumper; /* Flow dumper thread ID. */
e1ec7dd4 107
10e57640 108 struct handler *handlers; /* Upcall handlers. */
e1ec7dd4
EJ
109 size_t n_handlers;
110
e79a6c83
EJ
111 struct revalidator *revalidators; /* Flow revalidators. */
112 size_t n_revalidators;
113
114 uint64_t last_reval_seq; /* 'reval_seq' at last revalidation. */
115 struct seq *reval_seq; /* Incremented to force revalidation. */
116
117 struct seq *dump_seq; /* Increments each dump iteration. */
118
119 struct latch exit_latch; /* Tells child threads to exit. */
120
121 long long int dump_duration; /* Duration of the last flow dump. */
e1ec7dd4 122
e79a6c83
EJ
123 /* Datapath flow statistics. */
124 unsigned int max_n_flows;
125 unsigned int avg_n_flows;
e1ec7dd4 126
e79a6c83
EJ
127 /* Following fields are accessed and modified by different threads. */
128 atomic_llong max_idle; /* Maximum datapath flow idle time. */
129 atomic_uint flow_limit; /* Datapath flow hard limit. */
e1ec7dd4
EJ
130};
131
10e57640
EJ
132enum upcall_type {
133 BAD_UPCALL, /* Some kind of bug somewhere. */
134 MISS_UPCALL, /* A flow miss. */
135 SFLOW_UPCALL, /* sFlow sample. */
136 FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
137 IPFIX_UPCALL /* Per-bridge sampling. */
138};
139
140struct upcall {
141 struct list list_node; /* For queuing upcalls. */
142 struct flow_miss *flow_miss; /* This upcall's flow_miss. */
143
144 /* Raw upcall plus data for keeping track of the memory backing it. */
145 struct dpif_upcall dpif_upcall; /* As returned by dpif_recv() */
146 struct ofpbuf upcall_buf; /* Owns some data in 'dpif_upcall'. */
147 uint64_t upcall_stub[512 / 8]; /* Buffer to reduce need for malloc(). */
148};
149
e79a6c83
EJ
150/* 'udpif_key's are responsible for tracking the little bit of state udpif
151 * needs to do flow expiration which can't be pulled directly from the
152 * datapath. They are owned, created by, maintained, and destroyed by a single
153 * revalidator making them easy to efficiently handle with multiple threads. */
154struct udpif_key {
155 struct hmap_node hmap_node; /* In parent revalidator 'ukeys' map. */
156
157 struct nlattr *key; /* Datapath flow key. */
158 size_t key_len; /* Length of 'key'. */
159
160 struct dpif_flow_stats stats; /* Stats at most recent flow dump. */
161 long long int created; /* Estimation of creation time. */
162
163 bool mark; /* Used by mark and sweep GC algorithm. */
164
165 struct odputil_keybuf key_buf; /* Memory for 'key'. */
166};
167
168/* 'udpif_flow_dump's hold the state associated with one iteration in a flow
169 * dump operation. This is created by the flow_dumper thread and handed to the
170 * appropriate revalidator thread to be processed. */
171struct udpif_flow_dump {
172 struct list list_node;
173
174 struct nlattr *key; /* Datapath flow key. */
175 size_t key_len; /* Length of 'key'. */
176 uint32_t key_hash; /* Hash of 'key'. */
177
178 struct odputil_keybuf mask_buf;
179 struct nlattr *mask; /* Datapath mask for 'key'. */
180 size_t mask_len; /* Length of 'mask'. */
181
182 struct dpif_flow_stats stats; /* Stats pulled from the datapath. */
183
184 bool need_revalidate; /* Key needs revalidation? */
185
186 struct odputil_keybuf key_buf;
187};
188
189/* Flow miss batching.
190 *
191 * Some dpifs implement operations faster when you hand them off in a batch.
192 * To allow batching, "struct flow_miss" queues the dpif-related work needed
193 * for a given flow. Each "struct flow_miss" corresponds to sending one or
194 * more packets, plus possibly installing the flow in the dpif. */
195struct flow_miss {
196 struct hmap_node hmap_node;
197 struct ofproto_dpif *ofproto;
198
199 struct flow flow;
200 enum odp_key_fitness key_fitness;
201 const struct nlattr *key;
202 size_t key_len;
203 enum dpif_upcall_type upcall_type;
204 struct dpif_flow_stats stats;
205 odp_port_t odp_in_port;
206
207 uint64_t slow_path_buf[128 / 8];
208 struct odputil_keybuf mask_buf;
209
210 struct xlate_out xout;
211};
212
10e57640
EJ
213static void upcall_destroy(struct upcall *);
214
e1ec7dd4 215static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
e22d52ee 216static struct list all_udpifs = LIST_INITIALIZER(&all_udpifs);
e1ec7dd4
EJ
217
218static void recv_upcalls(struct udpif *);
e79a6c83
EJ
219static void handle_upcalls(struct handler *handler, struct list *upcalls);
220static void *udpif_flow_dumper(void *);
e1ec7dd4 221static void *udpif_dispatcher(void *);
10e57640 222static void *udpif_upcall_handler(void *);
e79a6c83
EJ
223static void *udpif_revalidator(void *);
224static uint64_t udpif_get_n_flows(const struct udpif *);
225static void revalidate_udumps(struct revalidator *, struct list *udumps);
226static void revalidator_sweep(struct revalidator *);
e22d52ee
EJ
227static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
228 const char *argv[], void *aux);
e79a6c83
EJ
229static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
230 const char *argv[], void *aux);
231static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
232 const char *argv[], void *aux);
233static void ukey_delete(struct revalidator *, struct udpif_key *);
234
235static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
e1ec7dd4
EJ
236
237struct udpif *
238udpif_create(struct dpif_backer *backer, struct dpif *dpif)
239{
e22d52ee 240 static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
e1ec7dd4
EJ
241 struct udpif *udpif = xzalloc(sizeof *udpif);
242
e22d52ee
EJ
243 if (ovsthread_once_start(&once)) {
244 unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
245 NULL);
e79a6c83
EJ
246 unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
247 upcall_unixctl_disable_megaflows, NULL);
248 unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
249 upcall_unixctl_enable_megaflows, NULL);
e22d52ee
EJ
250 ovsthread_once_done(&once);
251 }
252
e1ec7dd4
EJ
253 udpif->dpif = dpif;
254 udpif->backer = backer;
e79a6c83
EJ
255 atomic_init(&udpif->max_idle, 5000);
256 atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
e1ec7dd4 257 udpif->secret = random_uint32();
d7285d74 258 udpif->reval_seq = seq_create();
e79a6c83 259 udpif->dump_seq = seq_create();
e1ec7dd4 260 latch_init(&udpif->exit_latch);
e22d52ee 261 list_push_back(&all_udpifs, &udpif->list_node);
e1ec7dd4
EJ
262
263 return udpif;
264}
265
266void
267udpif_destroy(struct udpif *udpif)
268{
e79a6c83
EJ
269 udpif_set_threads(udpif, 0, 0);
270 udpif_flush();
e1ec7dd4 271
e22d52ee 272 list_remove(&udpif->list_node);
e1ec7dd4 273 latch_destroy(&udpif->exit_latch);
d7285d74 274 seq_destroy(udpif->reval_seq);
e79a6c83 275 seq_destroy(udpif->dump_seq);
e1ec7dd4
EJ
276 free(udpif);
277}
278
6567010f 279/* Tells 'udpif' how many threads it should use to handle upcalls. Disables
e79a6c83
EJ
280 * all threads if 'n_handlers' and 'n_revalidators' is zero. 'udpif''s
281 * datapath handle must have packet reception enabled before starting threads.
282 */
e1ec7dd4 283void
e79a6c83
EJ
284udpif_set_threads(struct udpif *udpif, size_t n_handlers,
285 size_t n_revalidators)
e1ec7dd4 286{
e1ec7dd4 287 /* Stop the old threads (if any). */
e79a6c83
EJ
288 if (udpif->handlers &&
289 (udpif->n_handlers != n_handlers
290 || udpif->n_revalidators != n_revalidators)) {
e1ec7dd4
EJ
291 size_t i;
292
293 latch_set(&udpif->exit_latch);
294
e1ec7dd4
EJ
295 for (i = 0; i < udpif->n_handlers; i++) {
296 struct handler *handler = &udpif->handlers[i];
297
298 ovs_mutex_lock(&handler->mutex);
299 xpthread_cond_signal(&handler->wake_cond);
300 ovs_mutex_unlock(&handler->mutex);
e79a6c83
EJ
301 xpthread_join(handler->thread, NULL);
302 }
303
304 for (i = 0; i < udpif->n_revalidators; i++) {
305 struct revalidator *revalidator = &udpif->revalidators[i];
306
307 ovs_mutex_lock(&revalidator->mutex);
308 xpthread_cond_signal(&revalidator->wake_cond);
309 ovs_mutex_unlock(&revalidator->mutex);
310 xpthread_join(revalidator->thread, NULL);
e1ec7dd4
EJ
311 }
312
e79a6c83 313 xpthread_join(udpif->flow_dumper, NULL);
e1ec7dd4 314 xpthread_join(udpif->dispatcher, NULL);
e79a6c83
EJ
315
316 for (i = 0; i < udpif->n_revalidators; i++) {
317 struct revalidator *revalidator = &udpif->revalidators[i];
318 struct udpif_flow_dump *udump, *next_udump;
319 struct udpif_key *ukey, *next_ukey;
320
321 LIST_FOR_EACH_SAFE (udump, next_udump, list_node,
322 &revalidator->udumps) {
323 list_remove(&udump->list_node);
324 free(udump);
325 }
326
327 HMAP_FOR_EACH_SAFE (ukey, next_ukey, hmap_node,
328 &revalidator->ukeys) {
329 ukey_delete(revalidator, ukey);
330 }
331 hmap_destroy(&revalidator->ukeys);
332 ovs_mutex_destroy(&revalidator->mutex);
333
334 free(revalidator->name);
335 }
336
e1ec7dd4
EJ
337 for (i = 0; i < udpif->n_handlers; i++) {
338 struct handler *handler = &udpif->handlers[i];
339 struct upcall *miss, *next;
340
e1ec7dd4
EJ
341 LIST_FOR_EACH_SAFE (miss, next, list_node, &handler->upcalls) {
342 list_remove(&miss->list_node);
343 upcall_destroy(miss);
344 }
e1ec7dd4
EJ
345 ovs_mutex_destroy(&handler->mutex);
346
347 xpthread_cond_destroy(&handler->wake_cond);
e22d52ee 348 free(handler->name);
e1ec7dd4
EJ
349 }
350 latch_poll(&udpif->exit_latch);
351
e79a6c83
EJ
352 free(udpif->revalidators);
353 udpif->revalidators = NULL;
354 udpif->n_revalidators = 0;
355
e1ec7dd4
EJ
356 free(udpif->handlers);
357 udpif->handlers = NULL;
358 udpif->n_handlers = 0;
359 }
360
361 /* Start new threads (if necessary). */
362 if (!udpif->handlers && n_handlers) {
363 size_t i;
364
365 udpif->n_handlers = n_handlers;
e79a6c83
EJ
366 udpif->n_revalidators = n_revalidators;
367
e1ec7dd4
EJ
368 udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
369 for (i = 0; i < udpif->n_handlers; i++) {
370 struct handler *handler = &udpif->handlers[i];
371
372 handler->udpif = udpif;
373 list_init(&handler->upcalls);
9b32ece6 374 handler->need_signal = false;
e1ec7dd4 375 xpthread_cond_init(&handler->wake_cond, NULL);
834d6caf 376 ovs_mutex_init(&handler->mutex);
10e57640
EJ
377 xpthread_create(&handler->thread, NULL, udpif_upcall_handler,
378 handler);
e1ec7dd4 379 }
e1ec7dd4 380
e79a6c83
EJ
381 udpif->revalidators = xzalloc(udpif->n_revalidators
382 * sizeof *udpif->revalidators);
383 for (i = 0; i < udpif->n_revalidators; i++) {
384 struct revalidator *revalidator = &udpif->revalidators[i];
385
386 revalidator->udpif = udpif;
387 list_init(&revalidator->udumps);
388 hmap_init(&revalidator->ukeys);
389 ovs_mutex_init(&revalidator->mutex);
390 xpthread_cond_init(&revalidator->wake_cond, NULL);
391 xpthread_create(&revalidator->thread, NULL, udpif_revalidator,
392 revalidator);
393 }
394 xpthread_create(&udpif->dispatcher, NULL, udpif_dispatcher, udpif);
395 xpthread_create(&udpif->flow_dumper, NULL, udpif_flow_dumper, udpif);
e1ec7dd4 396 }
e1ec7dd4
EJ
397}
398
399/* Notifies 'udpif' that something changed which may render previous
400 * xlate_actions() results invalid. */
401void
402udpif_revalidate(struct udpif *udpif)
403{
d7285d74 404 seq_change(udpif->reval_seq);
e79a6c83 405}
05067881 406
e79a6c83
EJ
407/* Returns a seq which increments every time 'udpif' pulls stats from the
408 * datapath. Callers can use this to get a sense of when might be a good time
409 * to do periodic work which relies on relatively up to date statistics. */
410struct seq *
411udpif_dump_seq(struct udpif *udpif)
412{
413 return udpif->dump_seq;
e1ec7dd4
EJ
414}
415
1c030aa5
EJ
416void
417udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
418{
419 size_t i;
420
421 simap_increase(usage, "dispatchers", 1);
422 simap_increase(usage, "flow_dumpers", 1);
423
424 simap_increase(usage, "handlers", udpif->n_handlers);
425 for (i = 0; i < udpif->n_handlers; i++) {
426 struct handler *handler = &udpif->handlers[i];
427 ovs_mutex_lock(&handler->mutex);
428 simap_increase(usage, "handler upcalls", handler->n_upcalls);
429 ovs_mutex_unlock(&handler->mutex);
430 }
e79a6c83
EJ
431
432 simap_increase(usage, "revalidators", udpif->n_revalidators);
433 for (i = 0; i < udpif->n_revalidators; i++) {
434 struct revalidator *revalidator = &udpif->revalidators[i];
435 ovs_mutex_lock(&revalidator->mutex);
436 simap_increase(usage, "revalidator dumps", revalidator->n_udumps);
437
438 /* XXX: This isn't technically thread safe because the revalidator
439 * ukeys maps isn't protected by a mutex since it's per thread. */
440 simap_increase(usage, "revalidator keys",
441 hmap_count(&revalidator->ukeys));
442 ovs_mutex_unlock(&revalidator->mutex);
443 }
1c030aa5
EJ
444}
445
e79a6c83
EJ
446/* Removes all flows from all datapaths. */
447void
448udpif_flush(void)
449{
450 struct udpif *udpif;
451
452 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
453 dpif_flow_flush(udpif->dpif);
454 }
455}
456\f
e1ec7dd4 457/* Destroys and deallocates 'upcall'. */
10e57640 458static void
e1ec7dd4
EJ
459upcall_destroy(struct upcall *upcall)
460{
461 if (upcall) {
da546e07 462 ofpbuf_uninit(&upcall->dpif_upcall.packet);
e1ec7dd4
EJ
463 ofpbuf_uninit(&upcall->upcall_buf);
464 free(upcall);
465 }
466}
467
e79a6c83
EJ
468static uint64_t
469udpif_get_n_flows(const struct udpif *udpif)
e1ec7dd4 470{
e79a6c83 471 struct dpif_dp_stats stats;
05067881 472
e79a6c83
EJ
473 dpif_get_dp_stats(udpif->dpif, &stats);
474 return stats.n_flows;
475}
e1ec7dd4 476
e79a6c83
EJ
477/* The dispatcher thread is responsible for receiving upcalls from the kernel,
478 * assigning them to a upcall_handler thread. */
479static void *
480udpif_dispatcher(void *arg)
481{
482 struct udpif *udpif = arg;
05067881 483
e79a6c83
EJ
484 set_subprogram_name("dispatcher");
485 while (!latch_is_set(&udpif->exit_latch)) {
486 recv_upcalls(udpif);
487 dpif_recv_wait(udpif->dpif);
488 latch_wait(&udpif->exit_latch);
489 poll_block();
e1ec7dd4 490 }
05067881
BP
491
492 return NULL;
e1ec7dd4
EJ
493}
494
e79a6c83
EJ
495static void *
496udpif_flow_dumper(void *arg)
e1ec7dd4 497{
e79a6c83 498 struct udpif *udpif = arg;
ddeca9a4 499
e79a6c83
EJ
500 set_subprogram_name("flow_dumper");
501 while (!latch_is_set(&udpif->exit_latch)) {
502 const struct dpif_flow_stats *stats;
503 long long int start_time, duration;
504 const struct nlattr *key, *mask;
505 struct dpif_flow_dump dump;
506 size_t key_len, mask_len;
507 unsigned int flow_limit;
508 long long int max_idle;
509 bool need_revalidate;
510 uint64_t reval_seq;
511 size_t n_flows, i;
512
513 reval_seq = seq_read(udpif->reval_seq);
514 need_revalidate = udpif->last_reval_seq != reval_seq;
515 udpif->last_reval_seq = reval_seq;
516
517 n_flows = udpif_get_n_flows(udpif);
518 udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
519 udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
520
521 atomic_read(&udpif->flow_limit, &flow_limit);
522 if (n_flows < flow_limit / 8) {
523 max_idle = 5000;
524 } else if (n_flows < flow_limit / 4) {
525 max_idle = 2000;
526 } else if (n_flows < flow_limit / 2) {
527 max_idle = 1000;
528 } else {
529 max_idle = 500;
530 }
531 atomic_store(&udpif->max_idle, max_idle);
532
533 start_time = time_msec();
534 dpif_flow_dump_start(&dump, udpif->dpif);
535 while (dpif_flow_dump_next(&dump, &key, &key_len, &mask, &mask_len,
536 NULL, NULL, &stats)
537 && !latch_is_set(&udpif->exit_latch)) {
538 struct udpif_flow_dump *udump = xmalloc(sizeof *udump);
539 struct revalidator *revalidator;
540
541 udump->key_hash = hash_bytes(key, key_len, udpif->secret);
542 memcpy(&udump->key_buf, key, key_len);
543 udump->key = (struct nlattr *) &udump->key_buf;
544 udump->key_len = key_len;
545
546 memcpy(&udump->mask_buf, mask, mask_len);
547 udump->mask = (struct nlattr *) &udump->mask_buf;
548 udump->mask_len = mask_len;
549
550 udump->stats = *stats;
551 udump->need_revalidate = need_revalidate;
552
553 revalidator = &udpif->revalidators[udump->key_hash
554 % udpif->n_revalidators];
555
556 ovs_mutex_lock(&revalidator->mutex);
557 while (revalidator->n_udumps >= REVALIDATE_MAX_BATCH * 3
558 && !latch_is_set(&udpif->exit_latch)) {
559 ovs_mutex_cond_wait(&revalidator->wake_cond,
560 &revalidator->mutex);
561 }
562 list_push_back(&revalidator->udumps, &udump->list_node);
563 revalidator->n_udumps++;
564 xpthread_cond_signal(&revalidator->wake_cond);
565 ovs_mutex_unlock(&revalidator->mutex);
566 }
567 dpif_flow_dump_done(&dump);
568
569 /* Let all the revalidators finish and garbage collect. */
570 seq_change(udpif->dump_seq);
571 for (i = 0; i < udpif->n_revalidators; i++) {
572 struct revalidator *revalidator = &udpif->revalidators[i];
573 ovs_mutex_lock(&revalidator->mutex);
574 xpthread_cond_signal(&revalidator->wake_cond);
575 ovs_mutex_unlock(&revalidator->mutex);
576 }
e1ec7dd4 577
e79a6c83
EJ
578 for (i = 0; i < udpif->n_revalidators; i++) {
579 struct revalidator *revalidator = &udpif->revalidators[i];
e1ec7dd4 580
e79a6c83
EJ
581 ovs_mutex_lock(&revalidator->mutex);
582 while (revalidator->dump_seq != seq_read(udpif->dump_seq)
583 && !latch_is_set(&udpif->exit_latch)) {
584 ovs_mutex_cond_wait(&revalidator->wake_cond,
585 &revalidator->mutex);
586 }
587 ovs_mutex_unlock(&revalidator->mutex);
588 }
e1ec7dd4 589
e79a6c83
EJ
590 duration = time_msec() - start_time;
591 udpif->dump_duration = duration;
592 if (duration > 2000) {
593 flow_limit /= duration / 1000;
594 } else if (duration > 1300) {
595 flow_limit = flow_limit * 3 / 4;
596 } else if (duration < 1000 && n_flows > 2000
597 && flow_limit < n_flows * 1000 / duration) {
598 flow_limit += 1000;
599 }
600 flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
601 atomic_store(&udpif->flow_limit, flow_limit);
e1ec7dd4 602
e79a6c83
EJ
603 if (duration > 2000) {
604 VLOG_WARN("Spent an unreasonably long %lldms dumping flows",
605 duration);
606 }
e1ec7dd4 607
e79a6c83
EJ
608 poll_timer_wait_until(start_time + MIN(max_idle, 500));
609 seq_wait(udpif->reval_seq, udpif->last_reval_seq);
e1ec7dd4
EJ
610 latch_wait(&udpif->exit_latch);
611 poll_block();
612 }
613
614 return NULL;
615}
616
5f37b938 617/* The miss handler thread is responsible for processing miss upcalls retrieved
e1ec7dd4
EJ
618 * by the dispatcher thread. Once finished it passes the processed miss
619 * upcalls to ofproto-dpif where they're installed in the datapath. */
620static void *
10e57640 621udpif_upcall_handler(void *arg)
e1ec7dd4 622{
e1ec7dd4
EJ
623 struct handler *handler = arg;
624
e22d52ee
EJ
625 handler->name = xasprintf("handler_%u", ovsthread_id_self());
626 set_subprogram_name("%s", handler->name);
627
e1ec7dd4 628 for (;;) {
04a19fb8 629 struct list misses = LIST_INITIALIZER(&misses);
e1ec7dd4
EJ
630 size_t i;
631
632 ovs_mutex_lock(&handler->mutex);
633
634 if (latch_is_set(&handler->udpif->exit_latch)) {
635 ovs_mutex_unlock(&handler->mutex);
636 return NULL;
637 }
638
639 if (!handler->n_upcalls) {
640 ovs_mutex_cond_wait(&handler->wake_cond, &handler->mutex);
641 }
642
643 for (i = 0; i < FLOW_MISS_MAX_BATCH; i++) {
644 if (handler->n_upcalls) {
645 handler->n_upcalls--;
646 list_push_back(&misses, list_pop_front(&handler->upcalls));
647 } else {
648 break;
649 }
650 }
651 ovs_mutex_unlock(&handler->mutex);
652
e79a6c83 653 handle_upcalls(handler, &misses);
de80e4b6
BP
654
655 coverage_clear();
e1ec7dd4
EJ
656 }
657}
e79a6c83
EJ
658
659static void *
660udpif_revalidator(void *arg)
e1ec7dd4 661{
e79a6c83 662 struct revalidator *revalidator = arg;
e1ec7dd4 663
e79a6c83
EJ
664 revalidator->name = xasprintf("revalidator_%u", ovsthread_id_self());
665 set_subprogram_name("%s", revalidator->name);
666 for (;;) {
667 struct list udumps = LIST_INITIALIZER(&udumps);
668 struct udpif *udpif = revalidator->udpif;
669 size_t i;
670
671 ovs_mutex_lock(&revalidator->mutex);
672 if (latch_is_set(&udpif->exit_latch)) {
673 ovs_mutex_unlock(&revalidator->mutex);
674 return NULL;
675 }
676
677 if (!revalidator->n_udumps) {
678 if (revalidator->dump_seq != seq_read(udpif->dump_seq)) {
679 revalidator->dump_seq = seq_read(udpif->dump_seq);
680 revalidator_sweep(revalidator);
681 } else {
682 ovs_mutex_cond_wait(&revalidator->wake_cond,
683 &revalidator->mutex);
684 }
685 }
686
687 for (i = 0; i < REVALIDATE_MAX_BATCH && revalidator->n_udumps; i++) {
688 list_push_back(&udumps, list_pop_front(&revalidator->udumps));
689 revalidator->n_udumps--;
690 }
691
692 /* Wake up the flow dumper. */
693 xpthread_cond_signal(&revalidator->wake_cond);
694 ovs_mutex_unlock(&revalidator->mutex);
695
696 if (!list_is_empty(&udumps)) {
697 revalidate_udumps(revalidator, &udumps);
698 }
699 }
700
701 return NULL;
702}
703\f
e1ec7dd4
EJ
704static enum upcall_type
705classify_upcall(const struct upcall *upcall)
706{
707 const struct dpif_upcall *dpif_upcall = &upcall->dpif_upcall;
708 union user_action_cookie cookie;
709 size_t userdata_len;
710
711 /* First look at the upcall type. */
712 switch (dpif_upcall->type) {
713 case DPIF_UC_ACTION:
714 break;
715
716 case DPIF_UC_MISS:
717 return MISS_UPCALL;
718
719 case DPIF_N_UC_TYPES:
720 default:
721 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32,
722 dpif_upcall->type);
723 return BAD_UPCALL;
724 }
725
726 /* "action" upcalls need a closer look. */
727 if (!dpif_upcall->userdata) {
728 VLOG_WARN_RL(&rl, "action upcall missing cookie");
729 return BAD_UPCALL;
730 }
731 userdata_len = nl_attr_get_size(dpif_upcall->userdata);
732 if (userdata_len < sizeof cookie.type
733 || userdata_len > sizeof cookie) {
34582733 734 VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
e1ec7dd4
EJ
735 userdata_len);
736 return BAD_UPCALL;
737 }
738 memset(&cookie, 0, sizeof cookie);
739 memcpy(&cookie, nl_attr_get(dpif_upcall->userdata), userdata_len);
740 if (userdata_len == sizeof cookie.sflow
741 && cookie.type == USER_ACTION_COOKIE_SFLOW) {
742 return SFLOW_UPCALL;
743 } else if (userdata_len == sizeof cookie.slow_path
744 && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
745 return MISS_UPCALL;
746 } else if (userdata_len == sizeof cookie.flow_sample
747 && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
748 return FLOW_SAMPLE_UPCALL;
749 } else if (userdata_len == sizeof cookie.ipfix
750 && cookie.type == USER_ACTION_COOKIE_IPFIX) {
751 return IPFIX_UPCALL;
752 } else {
753 VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
34582733 754 " and size %"PRIuSIZE, cookie.type, userdata_len);
e1ec7dd4
EJ
755 return BAD_UPCALL;
756 }
757}
758
759static void
760recv_upcalls(struct udpif *udpif)
761{
caf6491f
JR
762 int n;
763
e1ec7dd4 764 for (;;) {
10e57640
EJ
765 uint32_t hash = udpif->secret;
766 struct handler *handler;
e1ec7dd4 767 struct upcall *upcall;
10e57640
EJ
768 size_t n_bytes, left;
769 struct nlattr *nla;
e1ec7dd4
EJ
770 int error;
771
772 upcall = xmalloc(sizeof *upcall);
773 ofpbuf_use_stub(&upcall->upcall_buf, upcall->upcall_stub,
774 sizeof upcall->upcall_stub);
775 error = dpif_recv(udpif->dpif, &upcall->dpif_upcall,
776 &upcall->upcall_buf);
777 if (error) {
837a88dc
JR
778 /* upcall_destroy() can only be called on successfully received
779 * upcalls. */
780 ofpbuf_uninit(&upcall->upcall_buf);
781 free(upcall);
e1ec7dd4
EJ
782 break;
783 }
784
10e57640
EJ
785 n_bytes = 0;
786 NL_ATTR_FOR_EACH (nla, left, upcall->dpif_upcall.key,
787 upcall->dpif_upcall.key_len) {
788 enum ovs_key_attr type = nl_attr_type(nla);
789 if (type == OVS_KEY_ATTR_IN_PORT
790 || type == OVS_KEY_ATTR_TCP
791 || type == OVS_KEY_ATTR_UDP) {
792 if (nl_attr_get_size(nla) == 4) {
be58eabb 793 hash = mhash_add(hash, nl_attr_get_u32(nla));
10e57640
EJ
794 n_bytes += 4;
795 } else {
796 VLOG_WARN_RL(&rl,
797 "Netlink attribute with incorrect size.");
e1ec7dd4
EJ
798 }
799 }
10e57640
EJ
800 }
801 hash = mhash_finish(hash, n_bytes);
dfbdea46 802
10e57640 803 handler = &udpif->handlers[hash % udpif->n_handlers];
dfbdea46 804
10e57640
EJ
805 ovs_mutex_lock(&handler->mutex);
806 if (handler->n_upcalls < MAX_QUEUE_LENGTH) {
807 list_push_back(&handler->upcalls, &upcall->list_node);
9b32ece6
YT
808 if (handler->n_upcalls == 0) {
809 handler->need_signal = true;
810 }
811 handler->n_upcalls++;
812 if (handler->need_signal &&
813 handler->n_upcalls >= FLOW_MISS_MAX_BATCH) {
814 handler->need_signal = false;
10e57640 815 xpthread_cond_signal(&handler->wake_cond);
dfbdea46 816 }
10e57640
EJ
817 ovs_mutex_unlock(&handler->mutex);
818 if (!VLOG_DROP_DBG(&rl)) {
819 struct ds ds = DS_EMPTY_INITIALIZER;
820
821 odp_flow_key_format(upcall->dpif_upcall.key,
822 upcall->dpif_upcall.key_len,
823 &ds);
824 VLOG_DBG("dispatcher: enqueue (%s)", ds_cstr(&ds));
825 ds_destroy(&ds);
e1ec7dd4 826 }
10e57640
EJ
827 } else {
828 ovs_mutex_unlock(&handler->mutex);
829 COVERAGE_INC(upcall_queue_overflow);
830 upcall_destroy(upcall);
e1ec7dd4
EJ
831 }
832 }
10e57640 833
caf6491f 834 for (n = 0; n < udpif->n_handlers; ++n) {
10e57640
EJ
835 struct handler *handler = &udpif->handlers[n];
836
9b32ece6
YT
837 if (handler->need_signal) {
838 handler->need_signal = false;
caf6491f
JR
839 ovs_mutex_lock(&handler->mutex);
840 xpthread_cond_signal(&handler->wake_cond);
841 ovs_mutex_unlock(&handler->mutex);
842 }
843 }
e1ec7dd4
EJ
844}
845
e79a6c83
EJ
846/* Calculates slow path actions for 'xout'. 'buf' must statically be
847 * initialized with at least 128 bytes of space. */
848static void
849compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
850 odp_port_t odp_in_port, struct ofpbuf *buf)
851{
852 union user_action_cookie cookie;
853 odp_port_t port;
854 uint32_t pid;
855
856 cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
857 cookie.slow_path.unused = 0;
858 cookie.slow_path.reason = xout->slow;
859
860 port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
861 ? ODPP_NONE
862 : odp_in_port;
863 pid = dpif_port_get_pid(udpif->dpif, port);
864 odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, buf);
865}
866
e1ec7dd4
EJ
867static struct flow_miss *
868flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
869 const struct flow *flow, uint32_t hash)
870{
871 struct flow_miss *miss;
872
873 HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
874 if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
875 return miss;
876 }
877 }
878
879 return NULL;
880}
881
e1ec7dd4 882static void
e79a6c83 883handle_upcalls(struct handler *handler, struct list *upcalls)
e1ec7dd4 884{
e79a6c83
EJ
885 struct hmap misses = HMAP_INITIALIZER(&misses);
886 struct udpif *udpif = handler->udpif;
887
888 struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH];
889 struct dpif_op *opsp[FLOW_MISS_MAX_BATCH * 2];
890 struct dpif_op ops[FLOW_MISS_MAX_BATCH * 2];
891 struct flow_miss *miss, *next_miss;
e1ec7dd4 892 struct upcall *upcall, *next;
ddeca9a4 893 size_t n_misses, n_ops, i;
e79a6c83
EJ
894 unsigned int flow_limit;
895 bool fail_open, may_put;
10e57640 896 enum upcall_type type;
e1ec7dd4 897
e79a6c83
EJ
898 atomic_read(&udpif->flow_limit, &flow_limit);
899 may_put = udpif_get_n_flows(udpif) < flow_limit;
900
901 /* Extract the flow from each upcall. Construct in 'misses' a hash table
902 * that maps each unique flow to a 'struct flow_miss'.
04a19fb8
BP
903 *
904 * Most commonly there is a single packet per flow_miss, but there are
905 * several reasons why there might be more than one, e.g.:
906 *
907 * - The dpif packet interface does not support TSO (or UFO, etc.), so a
908 * large packet sent to userspace is split into a sequence of smaller
909 * ones.
e1ec7dd4 910 *
04a19fb8
BP
911 * - A stream of quickly arriving packets in an established "slow-pathed"
912 * flow.
913 *
914 * - Rarely, a stream of quickly arriving packets in a flow not yet
915 * established. (This is rare because most protocols do not send
916 * multiple back-to-back packets before receiving a reply from the
917 * other end of the connection, which gives OVS a chance to set up a
918 * datapath flow.)
919 */
ddeca9a4 920 n_misses = 0;
e1ec7dd4
EJ
921 LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) {
922 struct dpif_upcall *dupcall = &upcall->dpif_upcall;
e79a6c83 923 struct flow_miss *miss = &miss_buf[n_misses];
da546e07 924 struct ofpbuf *packet = &dupcall->packet;
e1ec7dd4
EJ
925 struct flow_miss *existing_miss;
926 struct ofproto_dpif *ofproto;
10e57640
EJ
927 struct dpif_sflow *sflow;
928 struct dpif_ipfix *ipfix;
e1ec7dd4
EJ
929 odp_port_t odp_in_port;
930 struct flow flow;
e1ec7dd4
EJ
931 int error;
932
04a19fb8 933 error = xlate_receive(udpif->backer, packet, dupcall->key,
e1ec7dd4 934 dupcall->key_len, &flow, &miss->key_fitness,
1dfdb9b3 935 &ofproto, &ipfix, &sflow, NULL, &odp_in_port);
10e57640
EJ
936 if (error) {
937 if (error == ENODEV) {
10e57640
EJ
938 /* Received packet on datapath port for which we couldn't
939 * associate an ofproto. This can happen if a port is removed
940 * while traffic is being received. Print a rate-limited
941 * message in case it happens frequently. Install a drop flow
942 * so that future packets of the flow are inexpensively dropped
943 * in the kernel. */
944 VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
945 "port %"PRIu32, odp_in_port);
e79a6c83
EJ
946 dpif_flow_put(udpif->dpif, DPIF_FP_CREATE | DPIF_FP_MODIFY,
947 dupcall->key, dupcall->key_len, NULL, 0, NULL, 0,
948 NULL);
10e57640
EJ
949 }
950 list_remove(&upcall->list_node);
951 upcall_destroy(upcall);
952 continue;
953 }
954
955 type = classify_upcall(upcall);
956 if (type == MISS_UPCALL) {
04a19fb8
BP
957 uint32_t hash;
958
959 flow_extract(packet, flow.skb_priority, flow.pkt_mark,
960 &flow.tunnel, &flow.in_port, &miss->flow);
961
962 hash = flow_hash(&miss->flow, 0);
e79a6c83 963 existing_miss = flow_miss_find(&misses, ofproto, &miss->flow,
04a19fb8
BP
964 hash);
965 if (!existing_miss) {
e79a6c83 966 hmap_insert(&misses, &miss->hmap_node, hash);
04a19fb8
BP
967 miss->ofproto = ofproto;
968 miss->key = dupcall->key;
969 miss->key_len = dupcall->key_len;
970 miss->upcall_type = dupcall->type;
971 miss->stats.n_packets = 0;
972 miss->stats.n_bytes = 0;
973 miss->stats.used = time_msec();
974 miss->stats.tcp_flags = 0;
e79a6c83 975 miss->odp_in_port = odp_in_port;
04a19fb8 976
ddeca9a4 977 n_misses++;
e1ec7dd4 978 } else {
04a19fb8 979 miss = existing_miss;
e1ec7dd4 980 }
04a19fb8
BP
981 miss->stats.tcp_flags |= packet_get_tcp_flags(packet, &miss->flow);
982 miss->stats.n_bytes += packet->size;
983 miss->stats.n_packets++;
e1ec7dd4 984
04a19fb8 985 upcall->flow_miss = miss;
10e57640
EJ
986 continue;
987 }
04a19fb8 988
10e57640
EJ
989 switch (type) {
990 case SFLOW_UPCALL:
10e57640
EJ
991 if (sflow) {
992 union user_action_cookie cookie;
993
994 memset(&cookie, 0, sizeof cookie);
995 memcpy(&cookie, nl_attr_get(dupcall->userdata),
996 sizeof cookie.sflow);
da546e07 997 dpif_sflow_received(sflow, packet, &flow, odp_in_port,
10e57640 998 &cookie);
04a19fb8 999 }
10e57640
EJ
1000 break;
1001 case IPFIX_UPCALL:
10e57640 1002 if (ipfix) {
da546e07 1003 dpif_ipfix_bridge_sample(ipfix, packet, &flow);
10e57640
EJ
1004 }
1005 break;
1006 case FLOW_SAMPLE_UPCALL:
10e57640
EJ
1007 if (ipfix) {
1008 union user_action_cookie cookie;
1009
1010 memset(&cookie, 0, sizeof cookie);
1011 memcpy(&cookie, nl_attr_get(dupcall->userdata),
1012 sizeof cookie.flow_sample);
1013
1014 /* The flow reflects exactly the contents of the packet.
1015 * Sample the packet using it. */
da546e07 1016 dpif_ipfix_flow_sample(ipfix, packet, &flow,
10e57640
EJ
1017 cookie.flow_sample.collector_set_id,
1018 cookie.flow_sample.probability,
1019 cookie.flow_sample.obs_domain_id,
1020 cookie.flow_sample.obs_point_id);
10e57640
EJ
1021 }
1022 break;
1023 case BAD_UPCALL:
1024 break;
1025 case MISS_UPCALL:
428b2edd 1026 OVS_NOT_REACHED();
e1ec7dd4 1027 }
10e57640 1028
1dfdb9b3
EJ
1029 dpif_ipfix_unref(ipfix);
1030 dpif_sflow_unref(sflow);
1031
10e57640
EJ
1032 list_remove(&upcall->list_node);
1033 upcall_destroy(upcall);
e1ec7dd4
EJ
1034 }
1035
04a19fb8
BP
1036 /* Initialize each 'struct flow_miss's ->xout.
1037 *
1038 * We do this per-flow_miss rather than per-packet because, most commonly,
1039 * all the packets in a flow can use the same translation.
1040 *
1041 * We can't do this in the previous loop because we need the TCP flags for
1042 * all the packets in each miss. */
1043 fail_open = false;
e79a6c83 1044 HMAP_FOR_EACH (miss, hmap_node, &misses) {
04a19fb8
BP
1045 struct xlate_in xin;
1046
10c44245 1047 xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL,
04a19fb8
BP
1048 miss->stats.tcp_flags, NULL);
1049 xin.may_learn = true;
e79a6c83
EJ
1050
1051 if (miss->upcall_type == DPIF_UC_MISS) {
1052 xin.resubmit_stats = &miss->stats;
1053 } else {
1054 /* For non-miss upcalls, there's a flow in the datapath which this
1055 * packet was accounted to. Presumably the revalidators will deal
1056 * with pushing its stats eventually. */
1057 }
1058
04a19fb8 1059 xlate_actions(&xin, &miss->xout);
10c44245 1060 fail_open = fail_open || miss->xout.fail_open;
04a19fb8
BP
1061 }
1062
1063 /* Now handle the packets individually in order of arrival. In the common
1064 * case each packet of a miss can share the same actions, but slow-pathed
1065 * packets need to be translated individually:
1066 *
1067 * - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
1068 * processes received packets for these protocols.
1069 *
1070 * - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
1071 * controller.
1072 *
1073 * The loop fills 'ops' with an array of operations to execute in the
1074 * datapath. */
1075 n_ops = 0;
1076 LIST_FOR_EACH (upcall, list_node, upcalls) {
1077 struct flow_miss *miss = upcall->flow_miss;
da546e07 1078 struct ofpbuf *packet = &upcall->dpif_upcall.packet;
e79a6c83
EJ
1079 struct ofpbuf mask;
1080 struct dpif_op *op;
1081 bool megaflow;
04a19fb8
BP
1082
1083 if (miss->xout.slow) {
04a19fb8
BP
1084 struct xlate_in xin;
1085
10c44245 1086 xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL, 0, packet);
04a19fb8 1087 xlate_actions_for_side_effects(&xin);
04a19fb8
BP
1088 }
1089
e79a6c83
EJ
1090 atomic_read(&enable_megaflows, &megaflow);
1091 ofpbuf_use_stack(&mask, &miss->mask_buf, sizeof miss->mask_buf);
1092 if (megaflow) {
1093 odp_flow_key_from_mask(&mask, &miss->xout.wc.masks, &miss->flow,
1094 UINT32_MAX);
1095 }
04a19fb8 1096
e79a6c83
EJ
1097 if (may_put) {
1098 op = &ops[n_ops++];
1099 op->type = DPIF_OP_FLOW_PUT;
1100 op->u.flow_put.flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
1101 op->u.flow_put.key = miss->key;
1102 op->u.flow_put.key_len = miss->key_len;
1103 op->u.flow_put.mask = mask.data;
1104 op->u.flow_put.mask_len = mask.size;
1105 op->u.flow_put.stats = NULL;
1106
1107 if (!miss->xout.slow) {
1108 op->u.flow_put.actions = miss->xout.odp_actions.data;
1109 op->u.flow_put.actions_len = miss->xout.odp_actions.size;
1110 } else {
1111 struct ofpbuf buf;
1112
1113 ofpbuf_use_stack(&buf, miss->slow_path_buf,
1114 sizeof miss->slow_path_buf);
1115 compose_slow_path(udpif, &miss->xout, miss->odp_in_port, &buf);
1116 op->u.flow_put.actions = buf.data;
1117 op->u.flow_put.actions_len = buf.size;
1118 }
1119 }
1120
1121 if (miss->xout.odp_actions.size) {
04a19fb8
BP
1122 if (miss->flow.in_port.ofp_port
1123 != vsp_realdev_to_vlandev(miss->ofproto,
1124 miss->flow.in_port.ofp_port,
1125 miss->flow.vlan_tci)) {
1126 /* This packet was received on a VLAN splinter port. We
1127 * added a VLAN to the packet to make the packet resemble
1128 * the flow, but the actions were composed assuming that
1129 * the packet contained no VLAN. So, we must remove the
1130 * VLAN header from the packet before trying to execute the
1131 * actions. */
1132 eth_pop_vlan(packet);
1133 }
1134
1135 op = &ops[n_ops++];
1136 op->type = DPIF_OP_EXECUTE;
1137 op->u.execute.key = miss->key;
1138 op->u.execute.key_len = miss->key_len;
1139 op->u.execute.packet = packet;
1140 op->u.execute.actions = miss->xout.odp_actions.data;
1141 op->u.execute.actions_len = miss->xout.odp_actions.size;
7fd91025 1142 op->u.execute.needs_help = (miss->xout.slow & SLOW_ACTION) != 0;
04a19fb8 1143 }
e1ec7dd4 1144 }
e1ec7dd4 1145
04a19fb8
BP
1146 /* Special case for fail-open mode.
1147 *
1148 * If we are in fail-open mode, but we are connected to a controller too,
1149 * then we should send the packet up to the controller in the hope that it
1150 * will try to set up a flow and thereby allow us to exit fail-open.
1151 *
da546e07
JR
1152 * See the top-level comment in fail-open.c for more information.
1153 *
1154 * Copy packets before they are modified by execution. */
04a19fb8
BP
1155 if (fail_open) {
1156 LIST_FOR_EACH (upcall, list_node, upcalls) {
1157 struct flow_miss *miss = upcall->flow_miss;
da546e07 1158 struct ofpbuf *packet = &upcall->dpif_upcall.packet;
0fb7792a 1159 struct ofproto_packet_in *pin;
04a19fb8
BP
1160
1161 pin = xmalloc(sizeof *pin);
0fb7792a
BP
1162 pin->up.packet = xmemdup(packet->data, packet->size);
1163 pin->up.packet_len = packet->size;
1164 pin->up.reason = OFPR_NO_MATCH;
0fb7792a 1165 pin->up.table_id = 0;
d4fa4e79 1166 pin->up.cookie = OVS_BE64_MAX;
0fb7792a 1167 flow_get_metadata(&miss->flow, &pin->up.fmd);
d38a3c7b 1168 pin->send_len = 0; /* Not used for flow table misses. */
cfa955b0 1169 pin->generated_by_table_miss = false;
04a19fb8
BP
1170 ofproto_dpif_send_packet_in(miss->ofproto, pin);
1171 }
1172 }
1173
da546e07
JR
1174 /* Execute batch. */
1175 for (i = 0; i < n_ops; i++) {
1176 opsp[i] = &ops[i];
1177 }
1178 dpif_operate(udpif->dpif, opsp, n_ops);
1179
e79a6c83
EJ
1180 HMAP_FOR_EACH_SAFE (miss, next_miss, hmap_node, &misses) {
1181 hmap_remove(&misses, &miss->hmap_node);
1182 xlate_out_uninit(&miss->xout);
1183 }
1184 hmap_destroy(&misses);
1185
1186 LIST_FOR_EACH_SAFE (upcall, next, list_node, upcalls) {
1187 list_remove(&upcall->list_node);
1188 upcall_destroy(upcall);
1189 }
1190}
1191
1192static struct udpif_key *
1193ukey_lookup(struct revalidator *revalidator, struct udpif_flow_dump *udump)
1194{
1195 struct udpif_key *ukey;
1196
1197 HMAP_FOR_EACH_WITH_HASH (ukey, hmap_node, udump->key_hash,
1198 &revalidator->ukeys) {
1199 if (ukey->key_len == udump->key_len
1200 && !memcmp(ukey->key, udump->key, udump->key_len)) {
1201 return ukey;
1202 }
1203 }
1204 return NULL;
1205}
1206
1207static void
1208ukey_delete(struct revalidator *revalidator, struct udpif_key *ukey)
1209{
1210 hmap_remove(&revalidator->ukeys, &ukey->hmap_node);
1211 free(ukey);
1212}
1213
1214static bool
1215revalidate_ukey(struct udpif *udpif, struct udpif_flow_dump *udump,
1216 struct udpif_key *ukey)
1217{
1218 struct ofpbuf xout_actions, *actions;
1219 uint64_t slow_path_buf[128 / 8];
1220 struct xlate_out xout, *xoutp;
1221 struct flow flow, udump_mask;
1222 struct ofproto_dpif *ofproto;
1223 struct dpif_flow_stats push;
1224 uint32_t *udump32, *xout32;
1225 odp_port_t odp_in_port;
1226 struct xlate_in xin;
1227 int error;
1228 size_t i;
1229 bool ok;
1230
1231 ok = false;
1232 xoutp = NULL;
1233 actions = NULL;
1234
1235 /* If we don't need to revalidate, we can simply push the stats contained
1236 * in the udump, otherwise we'll have to get the actions so we can check
1237 * them. */
1238 if (udump->need_revalidate) {
1239 if (dpif_flow_get(udpif->dpif, ukey->key, ukey->key_len, &actions,
1240 &udump->stats)) {
1241 goto exit;
1242 }
1243 }
1244
1245 push.used = udump->stats.used;
1246 push.tcp_flags = udump->stats.tcp_flags;
1247 push.n_packets = udump->stats.n_packets > ukey->stats.n_packets
1248 ? udump->stats.n_packets - ukey->stats.n_packets
1249 : 0;
1250 push.n_bytes = udump->stats.n_bytes > ukey->stats.n_bytes
1251 ? udump->stats.n_bytes - ukey->stats.n_bytes
1252 : 0;
1253 ukey->stats = udump->stats;
1254
1255 if (!push.n_packets && !udump->need_revalidate) {
1256 ok = true;
1257 goto exit;
1258 }
1259
1260 error = xlate_receive(udpif->backer, NULL, ukey->key, ukey->key_len, &flow,
1261 NULL, &ofproto, NULL, NULL, NULL, &odp_in_port);
1262 if (error) {
1263 goto exit;
1264 }
1265
1266 xlate_in_init(&xin, ofproto, &flow, NULL, push.tcp_flags, NULL);
1267 xin.resubmit_stats = push.n_packets ? &push : NULL;
1268 xin.may_learn = push.n_packets > 0;
1269 xin.skip_wildcards = !udump->need_revalidate;
1270 xlate_actions(&xin, &xout);
1271 xoutp = &xout;
ddeca9a4 1272
e79a6c83
EJ
1273 if (!udump->need_revalidate) {
1274 ok = true;
1275 goto exit;
1276 }
1277
1278 if (!xout.slow) {
1279 ofpbuf_use_const(&xout_actions, xout.odp_actions.data,
1280 xout.odp_actions.size);
05067881 1281 } else {
e79a6c83
EJ
1282 ofpbuf_use_stack(&xout_actions, slow_path_buf, sizeof slow_path_buf);
1283 compose_slow_path(udpif, &xout, odp_in_port, &xout_actions);
1284 }
1285
1286 if (!ofpbuf_equal(&xout_actions, actions)) {
1287 goto exit;
1288 }
1289
1290 if (odp_flow_key_to_mask(udump->mask, udump->mask_len, &udump_mask, &flow)
1291 == ODP_FIT_ERROR) {
1292 goto exit;
1293 }
1294
1295 /* Since the kernel is free to ignore wildcarded bits in the mask, we can't
1296 * directly check that the masks are the same. Instead we check that the
1297 * mask in the kernel is more specific i.e. less wildcarded, than what
1298 * we've calculated here. This guarantees we don't catch any packets we
1299 * shouldn't with the megaflow. */
1300 udump32 = (uint32_t *) &udump_mask;
1301 xout32 = (uint32_t *) &xout.wc.masks;
1302 for (i = 0; i < FLOW_U32S; i++) {
1303 if ((udump32[i] | xout32[i]) != udump32[i]) {
1304 goto exit;
1305 }
1306 }
1307 ok = true;
1308
1309exit:
1310 ofpbuf_delete(actions);
1311 xlate_out_uninit(xoutp);
1312 return ok;
1313}
1314
1315static void
1316revalidate_udumps(struct revalidator *revalidator, struct list *udumps)
1317{
1318 struct udpif *udpif = revalidator->udpif;
1319
1320 struct {
1321 struct dpif_flow_stats ukey_stats; /* Stats stored in the ukey. */
1322 struct dpif_flow_stats stats; /* Stats for 'op'. */
1323 struct dpif_op op; /* Flow del operation. */
1324 } ops[REVALIDATE_MAX_BATCH];
1325
1326 struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
1327 struct udpif_flow_dump *udump, *next_udump;
1328 size_t n_ops, i, n_flows;
1329 unsigned int flow_limit;
1330 long long int max_idle;
1331 bool must_del;
1332
1333 atomic_read(&udpif->max_idle, &max_idle);
1334 atomic_read(&udpif->flow_limit, &flow_limit);
1335
1336 n_flows = udpif_get_n_flows(udpif);
1337
1338 must_del = false;
1339 if (n_flows > flow_limit) {
1340 must_del = n_flows > 2 * flow_limit;
1341 max_idle = 100;
1342 }
1343
1344 n_ops = 0;
1345 LIST_FOR_EACH_SAFE (udump, next_udump, list_node, udumps) {
1346 long long int used, now;
1347 struct udpif_key *ukey;
1348
1349 now = time_msec();
1350 ukey = ukey_lookup(revalidator, udump);
1351
1352 used = udump->stats.used;
1353 if (!used && ukey) {
1354 used = ukey->created;
1355 }
1356
1357 if (must_del || (used && used < now - max_idle)) {
1358 struct dpif_flow_stats *ukey_stats = &ops[n_ops].ukey_stats;
1359 struct dpif_op *op = &ops[n_ops].op;
1360
1361 op->type = DPIF_OP_FLOW_DEL;
1362 op->u.flow_del.key = udump->key;
1363 op->u.flow_del.key_len = udump->key_len;
1364 op->u.flow_del.stats = &ops[n_ops].stats;
1365 n_ops++;
1366
1367 if (ukey) {
1368 *ukey_stats = ukey->stats;
1369 ukey_delete(revalidator, ukey);
1370 } else {
1371 memset(ukey_stats, 0, sizeof *ukey_stats);
1372 }
1373
1374 continue;
1375 }
1376
1377 if (!ukey) {
1378 ukey = xmalloc(sizeof *ukey);
1379
1380 ukey->key = (struct nlattr *) &ukey->key_buf;
1381 memcpy(ukey->key, udump->key, udump->key_len);
1382 ukey->key_len = udump->key_len;
1383
1384 ukey->created = used ? used : now;
1385 memset(&ukey->stats, 0, sizeof ukey->stats);
1386
1387 ukey->mark = false;
1388
1389 hmap_insert(&revalidator->ukeys, &ukey->hmap_node,
1390 udump->key_hash);
1391 }
1392 ukey->mark = true;
1393
1394 if (!revalidate_ukey(udpif, udump, ukey)) {
1395 dpif_flow_del(udpif->dpif, udump->key, udump->key_len, NULL);
1396 ukey_delete(revalidator, ukey);
1397 }
1398
1399 list_remove(&udump->list_node);
1400 free(udump);
1401 }
1402
1403 for (i = 0; i < n_ops; i++) {
1404 opsp[i] = &ops[i].op;
1405 }
1406 dpif_operate(udpif->dpif, opsp, n_ops);
1407
1408 for (i = 0; i < n_ops; i++) {
1409 struct dpif_flow_stats push, *stats, *ukey_stats;
1410
1411 ukey_stats = &ops[i].ukey_stats;
1412 stats = ops[i].op.u.flow_del.stats;
1413 push.used = MAX(stats->used, ukey_stats->used);
1414 push.tcp_flags = stats->tcp_flags | ukey_stats->tcp_flags;
1415 push.n_packets = stats->n_packets - ukey_stats->n_packets;
1416 push.n_bytes = stats->n_bytes - ukey_stats->n_bytes;
1417
1418 if (push.n_packets || netflow_exists()) {
1419 struct ofproto_dpif *ofproto;
1420 struct netflow *netflow;
1421 struct flow flow;
1422
1423 if (!xlate_receive(udpif->backer, NULL, ops[i].op.u.flow_del.key,
1424 ops[i].op.u.flow_del.key_len, &flow, NULL,
1425 &ofproto, NULL, NULL, &netflow, NULL)) {
1426 struct xlate_in xin;
1427
1428 xlate_in_init(&xin, ofproto, &flow, NULL, push.tcp_flags,
1429 NULL);
1430 xin.resubmit_stats = push.n_packets ? &push : NULL;
1431 xin.may_learn = push.n_packets > 0;
1432 xin.skip_wildcards = true;
1433 xlate_actions_for_side_effects(&xin);
1434
1435 if (netflow) {
1436 netflow_expire(netflow, &flow);
1437 netflow_flow_clear(netflow, &flow);
1438 netflow_unref(netflow);
1439 }
1440 }
1441 }
1442 }
1443
1444 LIST_FOR_EACH_SAFE (udump, next_udump, list_node, udumps) {
1445 list_remove(&udump->list_node);
1446 free(udump);
1447 }
1448}
1449
1450static void
1451revalidator_sweep(struct revalidator *revalidator)
1452{
1453 struct udpif_key *ukey, *next;
1454
1455 HMAP_FOR_EACH_SAFE (ukey, next, hmap_node, &revalidator->ukeys) {
1456 if (ukey->mark) {
1457 ukey->mark = false;
1458 } else {
1459 ukey_delete(revalidator, ukey);
1460 }
e1ec7dd4
EJ
1461 }
1462}
e22d52ee
EJ
1463\f
1464static void
1465upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
1466 const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
1467{
1468 struct ds ds = DS_EMPTY_INITIALIZER;
1469 struct udpif *udpif;
1470
1471 LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
e79a6c83
EJ
1472 unsigned int flow_limit;
1473 long long int max_idle;
e22d52ee
EJ
1474 size_t i;
1475
e79a6c83
EJ
1476 atomic_read(&udpif->flow_limit, &flow_limit);
1477 atomic_read(&udpif->max_idle, &max_idle);
1478
e22d52ee 1479 ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
e79a6c83
EJ
1480 ds_put_format(&ds, "\tflows : (current %"PRIu64")"
1481 " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
1482 udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
1483 ds_put_format(&ds, "\tmax idle : %lldms\n", max_idle);
1484 ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);
1485
1486 ds_put_char(&ds, '\n');
e22d52ee
EJ
1487 for (i = 0; i < udpif->n_handlers; i++) {
1488 struct handler *handler = &udpif->handlers[i];
1489
1490 ovs_mutex_lock(&handler->mutex);
1491 ds_put_format(&ds, "\t%s: (upcall queue %"PRIuSIZE")\n",
1492 handler->name, handler->n_upcalls);
1493 ovs_mutex_unlock(&handler->mutex);
1494 }
e79a6c83
EJ
1495
1496 ds_put_char(&ds, '\n');
1497 for (i = 0; i < n_revalidators; i++) {
1498 struct revalidator *revalidator = &udpif->revalidators[i];
1499
1500 /* XXX: The result of hmap_count(&revalidator->ukeys) may not be
1501 * accurate because it's not protected by the revalidator mutex. */
1502 ovs_mutex_lock(&revalidator->mutex);
1503 ds_put_format(&ds, "\t%s: (dump queue %"PRIuSIZE") (keys %"PRIuSIZE
1504 ")\n", revalidator->name, revalidator->n_udumps,
1505 hmap_count(&revalidator->ukeys));
1506 ovs_mutex_unlock(&revalidator->mutex);
1507 }
e22d52ee
EJ
1508 }
1509
1510 unixctl_command_reply(conn, ds_cstr(&ds));
1511 ds_destroy(&ds);
1512}
e79a6c83
EJ
1513
1514/* Disable using the megaflows.
1515 *
1516 * This command is only needed for advanced debugging, so it's not
1517 * documented in the man page. */
1518static void
1519upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
1520 int argc OVS_UNUSED,
1521 const char *argv[] OVS_UNUSED,
1522 void *aux OVS_UNUSED)
1523{
1524 atomic_store(&enable_megaflows, false);
1525 udpif_flush();
1526 unixctl_command_reply(conn, "megaflows disabled");
1527}
1528
1529/* Re-enable using megaflows.
1530 *
1531 * This command is only needed for advanced debugging, so it's not
1532 * documented in the man page. */
1533static void
1534upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
1535 int argc OVS_UNUSED,
1536 const char *argv[] OVS_UNUSED,
1537 void *aux OVS_UNUSED)
1538{
1539 atomic_store(&enable_megaflows, true);
1540 udpif_flush();
1541 unixctl_command_reply(conn, "megaflows enabled");
1542}