]> git.proxmox.com Git - mirror_ovs.git/blame - ofproto/ofproto-dpif.c
ofproto-dpif: Fix null pointer dereference in is_admissible().
[mirror_ovs.git] / ofproto / ofproto-dpif.c
CommitLineData
abe529af
BP
1/*
2 * Copyright (c) 2009, 2010, 2011 Nicira Networks.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <config.h>
18
19#include "ofproto/private.h"
20
21#include <errno.h>
22
23#include "autopath.h"
24#include "bond.h"
25#include "byte-order.h"
26#include "connmgr.h"
27#include "coverage.h"
28#include "cfm.h"
29#include "dpif.h"
30#include "dynamic-string.h"
31#include "fail-open.h"
32#include "hmapx.h"
33#include "lacp.h"
34#include "mac-learning.h"
35#include "multipath.h"
36#include "netdev.h"
37#include "netlink.h"
38#include "nx-match.h"
39#include "odp-util.h"
40#include "ofp-util.h"
41#include "ofpbuf.h"
42#include "ofp-print.h"
43#include "ofproto-sflow.h"
44#include "poll-loop.h"
45#include "timer.h"
6c1491fb 46#include "unaligned.h"
abe529af
BP
47#include "unixctl.h"
48#include "vlan-bitmap.h"
49#include "vlog.h"
50
51VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
52
53COVERAGE_DEFINE(ofproto_dpif_ctlr_action);
54COVERAGE_DEFINE(ofproto_dpif_expired);
55COVERAGE_DEFINE(ofproto_dpif_no_packet_in);
56COVERAGE_DEFINE(ofproto_dpif_xlate);
57COVERAGE_DEFINE(facet_changed_rule);
58COVERAGE_DEFINE(facet_invalidated);
59COVERAGE_DEFINE(facet_revalidate);
60COVERAGE_DEFINE(facet_unexpected);
61
62/* Maximum depth of flow table recursion (due to NXAST_RESUBMIT actions) in a
63 * flow translation. */
64#define MAX_RESUBMIT_RECURSION 16
65
66struct ofport_dpif;
67struct ofproto_dpif;
68
69struct rule_dpif {
70 struct rule up;
71
72 long long int used; /* Time last used; time created if not used. */
73
74 /* These statistics:
75 *
76 * - Do include packets and bytes from facets that have been deleted or
77 * whose own statistics have been folded into the rule.
78 *
79 * - Do include packets and bytes sent "by hand" that were accounted to
80 * the rule without any facet being involved (this is a rare corner
81 * case in rule_execute()).
82 *
83 * - Do not include packet or bytes that can be obtained from any facet's
84 * packet_count or byte_count member or that can be obtained from the
85 * datapath by, e.g., dpif_flow_get() for any facet.
86 */
87 uint64_t packet_count; /* Number of packets received. */
88 uint64_t byte_count; /* Number of bytes received. */
89
90 struct list facets; /* List of "struct facet"s. */
91};
92
93static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
94{
95 return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
96}
97
98static struct rule_dpif *rule_dpif_lookup(struct ofproto_dpif *ofproto,
99 const struct flow *flow);
100
101#define MAX_MIRRORS 32
102typedef uint32_t mirror_mask_t;
103#define MIRROR_MASK_C(X) UINT32_C(X)
104BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
105struct ofmirror {
106 struct ofproto_dpif *ofproto; /* Owning ofproto. */
107 size_t idx; /* In ofproto's "mirrors" array. */
108 void *aux; /* Key supplied by ofproto's client. */
109 char *name; /* Identifier for log messages. */
110
111 /* Selection criteria. */
112 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
113 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
114 unsigned long *vlans; /* Bitmap of chosen VLANs, NULL selects all. */
115
116 /* Output (mutually exclusive). */
117 struct ofbundle *out; /* Output port or NULL. */
118 int out_vlan; /* Output VLAN or -1. */
119};
120
121static void mirror_destroy(struct ofmirror *);
122
123/* A group of one or more OpenFlow ports. */
124#define OFBUNDLE_FLOOD ((struct ofbundle *) 1)
125struct ofbundle {
126 struct ofproto_dpif *ofproto; /* Owning ofproto. */
127 struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
128 void *aux; /* Key supplied by ofproto's client. */
129 char *name; /* Identifier for log messages. */
130
131 /* Configuration. */
132 struct list ports; /* Contains "struct ofport"s. */
133 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
134 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
135 * NULL if all VLANs are trunked. */
136 struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
137 struct bond *bond; /* Nonnull iff more than one port. */
138
139 /* Status. */
140 bool floodable; /* True if no port has OFPPC_NO_FLOOD set. */
141
142 /* Port mirroring info. */
143 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
144 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
145 mirror_mask_t mirror_out; /* Mirrors that output to this bundle. */
146};
147
148static void bundle_remove(struct ofport *);
149static void bundle_destroy(struct ofbundle *);
150static void bundle_del_port(struct ofport_dpif *);
151static void bundle_run(struct ofbundle *);
152static void bundle_wait(struct ofbundle *);
153
154struct action_xlate_ctx {
155/* action_xlate_ctx_init() initializes these members. */
156
157 /* The ofproto. */
158 struct ofproto_dpif *ofproto;
159
160 /* Flow to which the OpenFlow actions apply. xlate_actions() will modify
161 * this flow when actions change header fields. */
162 struct flow flow;
163
164 /* The packet corresponding to 'flow', or a null pointer if we are
165 * revalidating without a packet to refer to. */
166 const struct ofpbuf *packet;
167
168 /* If nonnull, called just before executing a resubmit action.
169 *
170 * This is normally null so the client has to set it manually after
171 * calling action_xlate_ctx_init(). */
172 void (*resubmit_hook)(struct action_xlate_ctx *, struct rule_dpif *);
173
abe529af
BP
174/* xlate_actions() initializes and uses these members. The client might want
175 * to look at them after it returns. */
176
177 struct ofpbuf *odp_actions; /* Datapath actions. */
178 tag_type tags; /* Tags associated with OFPP_NORMAL actions. */
179 bool may_set_up_flow; /* True ordinarily; false if the actions must
180 * be reassessed for every packet. */
181 uint16_t nf_output_iface; /* Output interface index for NetFlow. */
182
183/* xlate_actions() initializes and uses these members, but the client has no
184 * reason to look at them. */
185
186 int recurse; /* Recursion level, via xlate_table_action. */
187 int last_pop_priority; /* Offset in 'odp_actions' just past most
188 * recent ODP_ACTION_ATTR_SET_PRIORITY. */
189};
190
191static void action_xlate_ctx_init(struct action_xlate_ctx *,
192 struct ofproto_dpif *, const struct flow *,
193 const struct ofpbuf *);
194static struct ofpbuf *xlate_actions(struct action_xlate_ctx *,
195 const union ofp_action *in, size_t n_in);
196
197/* An exact-match instantiation of an OpenFlow flow. */
198struct facet {
199 long long int used; /* Time last used; time created if not used. */
200
201 /* These statistics:
202 *
203 * - Do include packets and bytes sent "by hand", e.g. with
204 * dpif_execute().
205 *
206 * - Do include packets and bytes that were obtained from the datapath
207 * when a flow was deleted (e.g. dpif_flow_del()) or when its
208 * statistics were reset (e.g. dpif_flow_put() with
209 * DPIF_FP_ZERO_STATS).
210 *
211 * - Do not include any packets or bytes that can currently be obtained
212 * from the datapath by, e.g., dpif_flow_get().
213 */
214 uint64_t packet_count; /* Number of packets received. */
215 uint64_t byte_count; /* Number of bytes received. */
216
217 uint64_t dp_packet_count; /* Last known packet count in the datapath. */
218 uint64_t dp_byte_count; /* Last known byte count in the datapath. */
219
220 uint64_t rs_packet_count; /* Packets pushed to resubmit children. */
221 uint64_t rs_byte_count; /* Bytes pushed to resubmit children. */
222 long long int rs_used; /* Used time pushed to resubmit children. */
223
224 /* Number of bytes passed to account_cb. This may include bytes that can
225 * currently obtained from the datapath (thus, it can be greater than
226 * byte_count). */
227 uint64_t accounted_bytes;
228
229 struct hmap_node hmap_node; /* In owning ofproto's 'facets' hmap. */
230 struct list list_node; /* In owning rule's 'facets' list. */
231 struct rule_dpif *rule; /* Owning rule. */
232 struct flow flow; /* Exact-match flow. */
233 bool installed; /* Installed in datapath? */
234 bool may_install; /* True ordinarily; false if actions must
235 * be reassessed for every packet. */
236 size_t actions_len; /* Number of bytes in actions[]. */
237 struct nlattr *actions; /* Datapath actions. */
238 tag_type tags; /* Tags. */
239 struct netflow_flow nf_flow; /* Per-flow NetFlow tracking data. */
240};
241
242static struct facet *facet_create(struct rule_dpif *, const struct flow *,
243 const struct ofpbuf *packet);
244static void facet_remove(struct ofproto_dpif *, struct facet *);
245static void facet_free(struct facet *);
246
247static struct facet *facet_find(struct ofproto_dpif *, const struct flow *);
248static struct facet *facet_lookup_valid(struct ofproto_dpif *,
249 const struct flow *);
250static bool facet_revalidate(struct ofproto_dpif *, struct facet *);
251
252static void facet_execute(struct ofproto_dpif *, struct facet *,
253 struct ofpbuf *packet);
254
255static int facet_put__(struct ofproto_dpif *, struct facet *,
256 const struct nlattr *actions, size_t actions_len,
257 struct dpif_flow_stats *);
258static void facet_install(struct ofproto_dpif *, struct facet *,
259 bool zero_stats);
260static void facet_uninstall(struct ofproto_dpif *, struct facet *);
261static void facet_flush_stats(struct ofproto_dpif *, struct facet *);
262
263static void facet_make_actions(struct ofproto_dpif *, struct facet *,
264 const struct ofpbuf *packet);
265static void facet_update_time(struct ofproto_dpif *, struct facet *,
266 long long int used);
267static void facet_update_stats(struct ofproto_dpif *, struct facet *,
268 const struct dpif_flow_stats *);
269static void facet_push_stats(struct facet *);
270static void facet_account(struct ofproto_dpif *, struct facet *,
271 uint64_t extra_bytes);
272
273static bool facet_is_controller_flow(struct facet *);
274
275static void flow_push_stats(const struct rule_dpif *,
276 struct flow *, uint64_t packets, uint64_t bytes,
277 long long int used);
278
279struct ofport_dpif {
280 struct ofport up;
281
282 uint32_t odp_port;
283 struct ofbundle *bundle; /* Bundle that contains this port, if any. */
284 struct list bundle_node; /* In struct ofbundle's "ports" list. */
285 struct cfm *cfm; /* Connectivity Fault Management, if any. */
286 tag_type tag; /* Tag associated with this port. */
00794817 287 uint32_t bond_stable_id; /* stable_id to use as bond slave, or 0. */
abe529af
BP
288};
289
290static struct ofport_dpif *
291ofport_dpif_cast(const struct ofport *ofport)
292{
293 assert(ofport->ofproto->ofproto_class == &ofproto_dpif_class);
294 return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
295}
296
297static void port_run(struct ofport_dpif *);
298static void port_wait(struct ofport_dpif *);
299static int set_cfm(struct ofport *, const struct cfm *,
300 const uint16_t *remote_mps, size_t n_remote_mps);
301
302struct ofproto_dpif {
303 struct ofproto up;
304 struct dpif *dpif;
305 int max_ports;
306
6c1491fb
BP
307 /* Statistics. */
308 uint64_t n_matches;
309
abe529af
BP
310 /* Bridging. */
311 struct netflow *netflow;
312 struct ofproto_sflow *sflow;
313 struct hmap bundles; /* Contains "struct ofbundle"s. */
314 struct mac_learning *ml;
315 struct ofmirror *mirrors[MAX_MIRRORS];
316 bool has_bonded_bundles;
317
318 /* Expiration. */
319 struct timer next_expiration;
320
321 /* Facets. */
322 struct hmap facets;
323 bool need_revalidate;
324 struct tag_set revalidate_set;
325};
326
327static void ofproto_dpif_unixctl_init(void);
328
329static struct ofproto_dpif *
330ofproto_dpif_cast(const struct ofproto *ofproto)
331{
332 assert(ofproto->ofproto_class == &ofproto_dpif_class);
333 return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
334}
335
336static struct ofport_dpif *get_ofp_port(struct ofproto_dpif *,
337 uint16_t ofp_port);
338static struct ofport_dpif *get_odp_port(struct ofproto_dpif *,
339 uint32_t odp_port);
340
341/* Packet processing. */
342static void update_learning_table(struct ofproto_dpif *,
343 const struct flow *, int vlan,
344 struct ofbundle *);
345static bool is_admissible(struct ofproto_dpif *, const struct flow *,
346 bool have_packet, tag_type *, int *vlanp,
347 struct ofbundle **in_bundlep);
348static void handle_upcall(struct ofproto_dpif *, struct dpif_upcall *);
349
350/* Flow expiration. */
351static int expire(struct ofproto_dpif *);
352
353/* Utilities. */
354static int send_packet(struct ofproto_dpif *,
355 uint32_t odp_port, uint16_t vlan_tci,
356 const struct ofpbuf *packet);
357
358/* Global variables. */
359static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
360\f
361/* Factory functions. */
362
363static void
364enumerate_types(struct sset *types)
365{
366 dp_enumerate_types(types);
367}
368
369static int
370enumerate_names(const char *type, struct sset *names)
371{
372 return dp_enumerate_names(type, names);
373}
374
375static int
376del(const char *type, const char *name)
377{
378 struct dpif *dpif;
379 int error;
380
381 error = dpif_open(name, type, &dpif);
382 if (!error) {
383 error = dpif_delete(dpif);
384 dpif_close(dpif);
385 }
386 return error;
387}
388\f
389/* Basic life-cycle. */
390
391static struct ofproto *
392alloc(void)
393{
394 struct ofproto_dpif *ofproto = xmalloc(sizeof *ofproto);
395 return &ofproto->up;
396}
397
398static void
399dealloc(struct ofproto *ofproto_)
400{
401 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
402 free(ofproto);
403}
404
405static int
406construct(struct ofproto *ofproto_)
407{
408 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
409 const char *name = ofproto->up.name;
410 int error;
411 int i;
412
413 error = dpif_create_and_open(name, ofproto->up.type, &ofproto->dpif);
414 if (error) {
415 VLOG_ERR("failed to open datapath %s: %s", name, strerror(error));
416 return error;
417 }
418
419 ofproto->max_ports = dpif_get_max_ports(ofproto->dpif);
6c1491fb 420 ofproto->n_matches = 0;
abe529af
BP
421
422 error = dpif_recv_set_mask(ofproto->dpif,
423 ((1u << DPIF_UC_MISS) |
424 (1u << DPIF_UC_ACTION) |
425 (1u << DPIF_UC_SAMPLE)));
426 if (error) {
427 VLOG_ERR("failed to listen on datapath %s: %s", name, strerror(error));
428 dpif_close(ofproto->dpif);
429 return error;
430 }
431 dpif_flow_flush(ofproto->dpif);
432 dpif_recv_purge(ofproto->dpif);
433
434 ofproto->netflow = NULL;
435 ofproto->sflow = NULL;
436 hmap_init(&ofproto->bundles);
437 ofproto->ml = mac_learning_create();
438 for (i = 0; i < MAX_MIRRORS; i++) {
439 ofproto->mirrors[i] = NULL;
440 }
441 ofproto->has_bonded_bundles = false;
442
443 timer_set_duration(&ofproto->next_expiration, 1000);
444
445 hmap_init(&ofproto->facets);
446 ofproto->need_revalidate = false;
447 tag_set_init(&ofproto->revalidate_set);
448
6c1491fb
BP
449 ofproto->up.tables = xmalloc(sizeof *ofproto->up.tables);
450 classifier_init(&ofproto->up.tables[0]);
451 ofproto->up.n_tables = 1;
452
abe529af
BP
453 ofproto_dpif_unixctl_init();
454
455 return 0;
456}
457
458static void
459destruct(struct ofproto *ofproto_)
460{
461 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
462 int i;
463
464 for (i = 0; i < MAX_MIRRORS; i++) {
465 mirror_destroy(ofproto->mirrors[i]);
466 }
467
468 netflow_destroy(ofproto->netflow);
469 ofproto_sflow_destroy(ofproto->sflow);
470 hmap_destroy(&ofproto->bundles);
471 mac_learning_destroy(ofproto->ml);
472
473 hmap_destroy(&ofproto->facets);
474
475 dpif_close(ofproto->dpif);
476}
477
478static int
479run(struct ofproto *ofproto_)
480{
481 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
482 struct ofport_dpif *ofport;
483 struct ofbundle *bundle;
484 int i;
485
486 dpif_run(ofproto->dpif);
487
488 for (i = 0; i < 50; i++) {
489 struct dpif_upcall packet;
490 int error;
491
492 error = dpif_recv(ofproto->dpif, &packet);
493 if (error) {
494 if (error == ENODEV) {
495 /* Datapath destroyed. */
496 return error;
497 }
498 break;
499 }
500
501 handle_upcall(ofproto, &packet);
502 }
503
504 if (timer_expired(&ofproto->next_expiration)) {
505 int delay = expire(ofproto);
506 timer_set_duration(&ofproto->next_expiration, delay);
507 }
508
509 if (ofproto->netflow) {
510 netflow_run(ofproto->netflow);
511 }
512 if (ofproto->sflow) {
513 ofproto_sflow_run(ofproto->sflow);
514 }
515
516 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
517 port_run(ofport);
518 }
519 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
520 bundle_run(bundle);
521 }
522
523 /* Now revalidate if there's anything to do. */
524 if (ofproto->need_revalidate
525 || !tag_set_is_empty(&ofproto->revalidate_set)) {
526 struct tag_set revalidate_set = ofproto->revalidate_set;
527 bool revalidate_all = ofproto->need_revalidate;
528 struct facet *facet, *next;
529
530 /* Clear the revalidation flags. */
531 tag_set_init(&ofproto->revalidate_set);
532 ofproto->need_revalidate = false;
533
534 HMAP_FOR_EACH_SAFE (facet, next, hmap_node, &ofproto->facets) {
535 if (revalidate_all
536 || tag_set_intersects(&revalidate_set, facet->tags)) {
537 facet_revalidate(ofproto, facet);
538 }
539 }
540 }
541
542 return 0;
543}
544
545static void
546wait(struct ofproto *ofproto_)
547{
548 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
549 struct ofport_dpif *ofport;
550 struct ofbundle *bundle;
551
552 dpif_wait(ofproto->dpif);
553 dpif_recv_wait(ofproto->dpif);
554 if (ofproto->sflow) {
555 ofproto_sflow_wait(ofproto->sflow);
556 }
557 if (!tag_set_is_empty(&ofproto->revalidate_set)) {
558 poll_immediate_wake();
559 }
560 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
561 port_wait(ofport);
562 }
563 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
564 bundle_wait(bundle);
565 }
566 if (ofproto->need_revalidate) {
567 /* Shouldn't happen, but if it does just go around again. */
568 VLOG_DBG_RL(&rl, "need revalidate in ofproto_wait_cb()");
569 poll_immediate_wake();
570 } else {
571 timer_wait(&ofproto->next_expiration);
572 }
573}
574
575static void
576flush(struct ofproto *ofproto_)
577{
578 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
579 struct facet *facet, *next_facet;
580
581 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
582 /* Mark the facet as not installed so that facet_remove() doesn't
583 * bother trying to uninstall it. There is no point in uninstalling it
584 * individually since we are about to blow away all the facets with
585 * dpif_flow_flush(). */
586 facet->installed = false;
587 facet->dp_packet_count = 0;
588 facet->dp_byte_count = 0;
589 facet_remove(ofproto, facet);
590 }
591 dpif_flow_flush(ofproto->dpif);
592}
593
6c1491fb
BP
594static void
595get_features(struct ofproto *ofproto_ OVS_UNUSED,
596 bool *arp_match_ip, uint32_t *actions)
597{
598 *arp_match_ip = true;
599 *actions = ((1u << OFPAT_OUTPUT) |
600 (1u << OFPAT_SET_VLAN_VID) |
601 (1u << OFPAT_SET_VLAN_PCP) |
602 (1u << OFPAT_STRIP_VLAN) |
603 (1u << OFPAT_SET_DL_SRC) |
604 (1u << OFPAT_SET_DL_DST) |
605 (1u << OFPAT_SET_NW_SRC) |
606 (1u << OFPAT_SET_NW_DST) |
607 (1u << OFPAT_SET_NW_TOS) |
608 (1u << OFPAT_SET_TP_SRC) |
609 (1u << OFPAT_SET_TP_DST) |
610 (1u << OFPAT_ENQUEUE));
611}
612
613static void
614get_tables(struct ofproto *ofproto_, struct ofp_table_stats *ots)
615{
616 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
617 struct odp_stats s;
618
619 strcpy(ots->name, "classifier");
620
621 dpif_get_dp_stats(ofproto->dpif, &s);
622 put_32aligned_be64(&ots->lookup_count, htonll(s.n_hit + s.n_missed));
623 put_32aligned_be64(&ots->matched_count,
624 htonll(s.n_hit + ofproto->n_matches));
625}
626
abe529af
BP
627static int
628set_netflow(struct ofproto *ofproto_,
629 const struct netflow_options *netflow_options)
630{
631 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
632
633 if (netflow_options) {
634 if (!ofproto->netflow) {
635 ofproto->netflow = netflow_create();
636 }
637 return netflow_set_options(ofproto->netflow, netflow_options);
638 } else {
639 netflow_destroy(ofproto->netflow);
640 ofproto->netflow = NULL;
641 return 0;
642 }
643}
644
645static struct ofport *
646port_alloc(void)
647{
648 struct ofport_dpif *port = xmalloc(sizeof *port);
649 return &port->up;
650}
651
652static void
653port_dealloc(struct ofport *port_)
654{
655 struct ofport_dpif *port = ofport_dpif_cast(port_);
656 free(port);
657}
658
659static int
660port_construct(struct ofport *port_)
661{
662 struct ofport_dpif *port = ofport_dpif_cast(port_);
663 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
664
665 port->odp_port = ofp_port_to_odp_port(port->up.ofp_port);
666 port->bundle = NULL;
667 port->cfm = NULL;
668 port->tag = tag_create_random();
669
670 if (ofproto->sflow) {
671 ofproto_sflow_add_port(ofproto->sflow, port->odp_port,
672 netdev_get_name(port->up.netdev));
673 }
674
675 return 0;
676}
677
678static void
679port_destruct(struct ofport *port_)
680{
681 struct ofport_dpif *port = ofport_dpif_cast(port_);
682 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
683
684 bundle_remove(port_);
685 set_cfm(port_, NULL, NULL, 0);
686 if (ofproto->sflow) {
687 ofproto_sflow_del_port(ofproto->sflow, port->odp_port);
688 }
689}
690
691static void
692port_modified(struct ofport *port_)
693{
694 struct ofport_dpif *port = ofport_dpif_cast(port_);
695
696 if (port->bundle && port->bundle->bond) {
697 bond_slave_set_netdev(port->bundle->bond, port, port->up.netdev);
698 }
699}
700
701static void
702port_reconfigured(struct ofport *port_, ovs_be32 old_config)
703{
704 struct ofport_dpif *port = ofport_dpif_cast(port_);
705 struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
706 ovs_be32 changed = old_config ^ port->up.opp.config;
707
708 if (changed & htonl(OFPPC_NO_RECV | OFPPC_NO_RECV_STP |
709 OFPPC_NO_FWD | OFPPC_NO_FLOOD)) {
710 ofproto->need_revalidate = true;
711 }
712}
713
714static int
715set_sflow(struct ofproto *ofproto_,
716 const struct ofproto_sflow_options *sflow_options)
717{
718 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
719 struct ofproto_sflow *os = ofproto->sflow;
720 if (sflow_options) {
721 if (!os) {
722 struct ofport_dpif *ofport;
723
724 os = ofproto->sflow = ofproto_sflow_create(ofproto->dpif);
725 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
726 ofproto_sflow_add_port(os, ofport->odp_port,
727 netdev_get_name(ofport->up.netdev));
728 }
729 }
730 ofproto_sflow_set_options(os, sflow_options);
731 } else {
732 ofproto_sflow_destroy(os);
733 ofproto->sflow = NULL;
734 }
735 return 0;
736}
737
738static int
739set_cfm(struct ofport *ofport_, const struct cfm *cfm,
740 const uint16_t *remote_mps, size_t n_remote_mps)
741{
742 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
743 int error;
744
745 if (!cfm) {
746 error = 0;
747 } else {
748 if (!ofport->cfm) {
749 ofport->cfm = cfm_create();
750 }
751
752 ofport->cfm->mpid = cfm->mpid;
753 ofport->cfm->interval = cfm->interval;
754 memcpy(ofport->cfm->maid, cfm->maid, CCM_MAID_LEN);
755
756 cfm_update_remote_mps(ofport->cfm, remote_mps, n_remote_mps);
757
758 if (cfm_configure(ofport->cfm)) {
759 return 0;
760 }
761
762 error = EINVAL;
763 }
764 cfm_destroy(ofport->cfm);
765 ofport->cfm = NULL;
766 return error;
767}
768
769static int
770get_cfm(struct ofport *ofport_, const struct cfm **cfmp)
771{
772 struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
773 *cfmp = ofport->cfm;
774 return 0;
775}
776\f
777/* Bundles. */
778
779/* Expires all MAC learning entries associated with 'port' and forces ofproto
780 * to revalidate every flow. */
781static void
782bundle_flush_macs(struct ofbundle *bundle)
783{
784 struct ofproto_dpif *ofproto = bundle->ofproto;
785 struct mac_learning *ml = ofproto->ml;
786 struct mac_entry *mac, *next_mac;
787
788 ofproto->need_revalidate = true;
789 LIST_FOR_EACH_SAFE (mac, next_mac, lru_node, &ml->lrus) {
790 if (mac->port.p == bundle) {
791 mac_learning_expire(ml, mac);
792 }
793 }
794}
795
796static struct ofbundle *
797bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
798{
799 struct ofbundle *bundle;
800
801 HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
802 &ofproto->bundles) {
803 if (bundle->aux == aux) {
804 return bundle;
805 }
806 }
807 return NULL;
808}
809
810/* Looks up each of the 'n_auxes' pointers in 'auxes' as bundles and adds the
811 * ones that are found to 'bundles'. */
812static void
813bundle_lookup_multiple(struct ofproto_dpif *ofproto,
814 void **auxes, size_t n_auxes,
815 struct hmapx *bundles)
816{
817 size_t i;
818
819 hmapx_init(bundles);
820 for (i = 0; i < n_auxes; i++) {
821 struct ofbundle *bundle = bundle_lookup(ofproto, auxes[i]);
822 if (bundle) {
823 hmapx_add(bundles, bundle);
824 }
825 }
826}
827
828static void
829bundle_del_port(struct ofport_dpif *port)
830{
831 struct ofbundle *bundle = port->bundle;
832
833 list_remove(&port->bundle_node);
834 port->bundle = NULL;
835
836 if (bundle->lacp) {
837 lacp_slave_unregister(bundle->lacp, port);
838 }
839 if (bundle->bond) {
840 bond_slave_unregister(bundle->bond, port);
841 }
842
843 bundle->floodable = true;
844 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
845 if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) {
846 bundle->floodable = false;
847 }
848 }
849}
850
851static bool
852bundle_add_port(struct ofbundle *bundle, uint32_t ofp_port,
00794817
BP
853 struct lacp_slave_settings *lacp,
854 uint32_t bond_stable_id)
abe529af
BP
855{
856 struct ofport_dpif *port;
857
858 port = get_ofp_port(bundle->ofproto, ofp_port);
859 if (!port) {
860 return false;
861 }
862
863 if (port->bundle != bundle) {
864 if (port->bundle) {
865 bundle_del_port(port);
866 }
867
868 port->bundle = bundle;
869 list_push_back(&bundle->ports, &port->bundle_node);
870 if (port->up.opp.config & htonl(OFPPC_NO_FLOOD)) {
871 bundle->floodable = false;
872 }
873 }
874 if (lacp) {
875 lacp_slave_register(bundle->lacp, port, lacp);
876 }
877
00794817
BP
878 port->bond_stable_id = bond_stable_id;
879
abe529af
BP
880 return true;
881}
882
883static void
884bundle_destroy(struct ofbundle *bundle)
885{
886 struct ofproto_dpif *ofproto;
887 struct ofport_dpif *port, *next_port;
888 int i;
889
890 if (!bundle) {
891 return;
892 }
893
894 ofproto = bundle->ofproto;
895 for (i = 0; i < MAX_MIRRORS; i++) {
896 struct ofmirror *m = ofproto->mirrors[i];
897 if (m) {
898 if (m->out == bundle) {
899 mirror_destroy(m);
900 } else if (hmapx_find_and_delete(&m->srcs, bundle)
901 || hmapx_find_and_delete(&m->dsts, bundle)) {
902 ofproto->need_revalidate = true;
903 }
904 }
905 }
906
907 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
908 bundle_del_port(port);
909 }
910
911 bundle_flush_macs(bundle);
912 hmap_remove(&ofproto->bundles, &bundle->hmap_node);
913 free(bundle->name);
914 free(bundle->trunks);
915 lacp_destroy(bundle->lacp);
916 bond_destroy(bundle->bond);
917 free(bundle);
918}
919
920static int
921bundle_set(struct ofproto *ofproto_, void *aux,
922 const struct ofproto_bundle_settings *s)
923{
924 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
925 bool need_flush = false;
926 const unsigned long *trunks;
927 struct ofport_dpif *port;
928 struct ofbundle *bundle;
929 size_t i;
930 bool ok;
931
932 if (!s) {
933 bundle_destroy(bundle_lookup(ofproto, aux));
934 return 0;
935 }
936
937 assert(s->n_slaves == 1 || s->bond != NULL);
938 assert((s->lacp != NULL) == (s->lacp_slaves != NULL));
939
940 bundle = bundle_lookup(ofproto, aux);
941 if (!bundle) {
942 bundle = xmalloc(sizeof *bundle);
943
944 bundle->ofproto = ofproto;
945 hmap_insert(&ofproto->bundles, &bundle->hmap_node,
946 hash_pointer(aux, 0));
947 bundle->aux = aux;
948 bundle->name = NULL;
949
950 list_init(&bundle->ports);
951 bundle->vlan = -1;
952 bundle->trunks = NULL;
953 bundle->lacp = NULL;
954 bundle->bond = NULL;
955
956 bundle->floodable = true;
957
958 bundle->src_mirrors = 0;
959 bundle->dst_mirrors = 0;
960 bundle->mirror_out = 0;
961 }
962
963 if (!bundle->name || strcmp(s->name, bundle->name)) {
964 free(bundle->name);
965 bundle->name = xstrdup(s->name);
966 }
967
968 /* LACP. */
969 if (s->lacp) {
970 if (!bundle->lacp) {
971 bundle->lacp = lacp_create();
972 }
973 lacp_configure(bundle->lacp, s->lacp);
974 } else {
975 lacp_destroy(bundle->lacp);
976 bundle->lacp = NULL;
977 }
978
979 /* Update set of ports. */
980 ok = true;
981 for (i = 0; i < s->n_slaves; i++) {
982 if (!bundle_add_port(bundle, s->slaves[i],
00794817
BP
983 s->lacp ? &s->lacp_slaves[i] : NULL,
984 s->bond_stable_ids ? s->bond_stable_ids[i] : 0)) {
abe529af
BP
985 ok = false;
986 }
987 }
988 if (!ok || list_size(&bundle->ports) != s->n_slaves) {
989 struct ofport_dpif *next_port;
990
991 LIST_FOR_EACH_SAFE (port, next_port, bundle_node, &bundle->ports) {
992 for (i = 0; i < s->n_slaves; i++) {
993 if (s->slaves[i] == odp_port_to_ofp_port(port->odp_port)) {
994 goto found;
995 }
996 }
997
998 bundle_del_port(port);
999 found: ;
1000 }
1001 }
1002 assert(list_size(&bundle->ports) <= s->n_slaves);
1003
1004 if (list_is_empty(&bundle->ports)) {
1005 bundle_destroy(bundle);
1006 return EINVAL;
1007 }
1008
1009 /* Set VLAN tag. */
1010 if (s->vlan != bundle->vlan) {
1011 bundle->vlan = s->vlan;
1012 need_flush = true;
1013 }
1014
1015 /* Get trunked VLANs. */
1016 trunks = s->vlan == -1 ? NULL : s->trunks;
1017 if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
1018 free(bundle->trunks);
1019 bundle->trunks = vlan_bitmap_clone(trunks);
1020 need_flush = true;
1021 }
1022
1023 /* Bonding. */
1024 if (!list_is_short(&bundle->ports)) {
1025 bundle->ofproto->has_bonded_bundles = true;
1026 if (bundle->bond) {
1027 if (bond_reconfigure(bundle->bond, s->bond)) {
1028 ofproto->need_revalidate = true;
1029 }
1030 } else {
1031 bundle->bond = bond_create(s->bond);
1032 }
1033
1034 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
00794817 1035 bond_slave_register(bundle->bond, port, port->bond_stable_id,
abe529af
BP
1036 port->up.netdev);
1037 }
1038 } else {
1039 bond_destroy(bundle->bond);
1040 bundle->bond = NULL;
1041 }
1042
1043 /* If we changed something that would affect MAC learning, un-learn
1044 * everything on this port and force flow revalidation. */
1045 if (need_flush) {
1046 bundle_flush_macs(bundle);
1047 }
1048
1049 return 0;
1050}
1051
1052static void
1053bundle_remove(struct ofport *port_)
1054{
1055 struct ofport_dpif *port = ofport_dpif_cast(port_);
1056 struct ofbundle *bundle = port->bundle;
1057
1058 if (bundle) {
1059 bundle_del_port(port);
1060 if (list_is_empty(&bundle->ports)) {
1061 bundle_destroy(bundle);
1062 } else if (list_is_short(&bundle->ports)) {
1063 bond_destroy(bundle->bond);
1064 bundle->bond = NULL;
1065 }
1066 }
1067}
1068
1069static void
1070send_pdu_cb(void *port_, const struct lacp_pdu *pdu)
1071{
1072 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 10);
1073 struct ofport_dpif *port = port_;
1074 uint8_t ea[ETH_ADDR_LEN];
1075 int error;
1076
1077 error = netdev_get_etheraddr(port->up.netdev, ea);
1078 if (!error) {
1079 struct lacp_pdu *packet_pdu;
1080 struct ofpbuf packet;
1081
1082 ofpbuf_init(&packet, 0);
1083 packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
1084 sizeof *packet_pdu);
1085 *packet_pdu = *pdu;
1086 error = netdev_send(port->up.netdev, &packet);
1087 if (error) {
1088 VLOG_WARN_RL(&rl, "port %s: sending LACP PDU on iface %s failed "
1089 "(%s)", port->bundle->name,
1090 netdev_get_name(port->up.netdev), strerror(error));
1091 }
1092 ofpbuf_uninit(&packet);
1093 } else {
1094 VLOG_ERR_RL(&rl, "port %s: cannot obtain Ethernet address of iface "
1095 "%s (%s)", port->bundle->name,
1096 netdev_get_name(port->up.netdev), strerror(error));
1097 }
1098}
1099
1100static void
1101bundle_send_learning_packets(struct ofbundle *bundle)
1102{
1103 struct ofproto_dpif *ofproto = bundle->ofproto;
1104 int error, n_packets, n_errors;
1105 struct mac_entry *e;
1106
1107 error = n_packets = n_errors = 0;
1108 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
1109 if (e->port.p != bundle) {
1110 int ret = bond_send_learning_packet(bundle->bond, e->mac, e->vlan);
1111 if (ret) {
1112 error = ret;
1113 n_errors++;
1114 }
1115 n_packets++;
1116 }
1117 }
1118
1119 if (n_errors) {
1120 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1121 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
1122 "packets, last error was: %s",
1123 bundle->name, n_errors, n_packets, strerror(error));
1124 } else {
1125 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
1126 bundle->name, n_packets);
1127 }
1128}
1129
1130static void
1131bundle_run(struct ofbundle *bundle)
1132{
1133 if (bundle->lacp) {
1134 lacp_run(bundle->lacp, send_pdu_cb);
1135 }
1136 if (bundle->bond) {
1137 struct ofport_dpif *port;
1138
1139 LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
1140 bool may_enable = lacp_slave_may_enable(bundle->lacp, port);
1141 bond_slave_set_lacp_may_enable(bundle->bond, port, may_enable);
1142 }
1143
1144 bond_run(bundle->bond, &bundle->ofproto->revalidate_set,
1145 lacp_negotiated(bundle->lacp));
1146 if (bond_should_send_learning_packets(bundle->bond)) {
1147 bundle_send_learning_packets(bundle);
1148 }
1149 }
1150}
1151
1152static void
1153bundle_wait(struct ofbundle *bundle)
1154{
1155 if (bundle->lacp) {
1156 lacp_wait(bundle->lacp);
1157 }
1158 if (bundle->bond) {
1159 bond_wait(bundle->bond);
1160 }
1161}
1162\f
1163/* Mirrors. */
1164
1165static int
1166mirror_scan(struct ofproto_dpif *ofproto)
1167{
1168 int idx;
1169
1170 for (idx = 0; idx < MAX_MIRRORS; idx++) {
1171 if (!ofproto->mirrors[idx]) {
1172 return idx;
1173 }
1174 }
1175 return -1;
1176}
1177
1178static struct ofmirror *
1179mirror_lookup(struct ofproto_dpif *ofproto, void *aux)
1180{
1181 int i;
1182
1183 for (i = 0; i < MAX_MIRRORS; i++) {
1184 struct ofmirror *mirror = ofproto->mirrors[i];
1185 if (mirror && mirror->aux == aux) {
1186 return mirror;
1187 }
1188 }
1189
1190 return NULL;
1191}
1192
1193static int
1194mirror_set(struct ofproto *ofproto_, void *aux,
1195 const struct ofproto_mirror_settings *s)
1196{
1197 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1198 mirror_mask_t mirror_bit;
1199 struct ofbundle *bundle;
1200 struct ofmirror *mirror;
1201 struct ofbundle *out;
1202 struct hmapx srcs; /* Contains "struct ofbundle *"s. */
1203 struct hmapx dsts; /* Contains "struct ofbundle *"s. */
1204 int out_vlan;
1205
1206 mirror = mirror_lookup(ofproto, aux);
1207 if (!s) {
1208 mirror_destroy(mirror);
1209 return 0;
1210 }
1211 if (!mirror) {
1212 int idx;
1213
1214 idx = mirror_scan(ofproto);
1215 if (idx < 0) {
1216 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
1217 "cannot create %s",
1218 ofproto->up.name, MAX_MIRRORS, s->name);
1219 return EFBIG;
1220 }
1221
1222 mirror = ofproto->mirrors[idx] = xzalloc(sizeof *mirror);
1223 mirror->ofproto = ofproto;
1224 mirror->idx = idx;
1225 mirror->out_vlan = -1;
1226 mirror->name = NULL;
1227 }
1228
1229 if (!mirror->name || strcmp(s->name, mirror->name)) {
1230 free(mirror->name);
1231 mirror->name = xstrdup(s->name);
1232 }
1233
1234 /* Get the new configuration. */
1235 if (s->out_bundle) {
1236 out = bundle_lookup(ofproto, s->out_bundle);
1237 if (!out) {
1238 mirror_destroy(mirror);
1239 return EINVAL;
1240 }
1241 out_vlan = -1;
1242 } else {
1243 out = NULL;
1244 out_vlan = s->out_vlan;
1245 }
1246 bundle_lookup_multiple(ofproto, s->srcs, s->n_srcs, &srcs);
1247 bundle_lookup_multiple(ofproto, s->dsts, s->n_dsts, &dsts);
1248
1249 /* If the configuration has not changed, do nothing. */
1250 if (hmapx_equals(&srcs, &mirror->srcs)
1251 && hmapx_equals(&dsts, &mirror->dsts)
1252 && vlan_bitmap_equal(mirror->vlans, s->src_vlans)
1253 && mirror->out == out
1254 && mirror->out_vlan == out_vlan)
1255 {
1256 hmapx_destroy(&srcs);
1257 hmapx_destroy(&dsts);
1258 return 0;
1259 }
1260
1261 hmapx_swap(&srcs, &mirror->srcs);
1262 hmapx_destroy(&srcs);
1263
1264 hmapx_swap(&dsts, &mirror->dsts);
1265 hmapx_destroy(&dsts);
1266
1267 free(mirror->vlans);
1268 mirror->vlans = vlan_bitmap_clone(s->src_vlans);
1269
1270 mirror->out = out;
1271 mirror->out_vlan = out_vlan;
1272
1273 /* Update bundles. */
1274 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
1275 HMAP_FOR_EACH (bundle, hmap_node, &mirror->ofproto->bundles) {
1276 if (hmapx_contains(&mirror->srcs, bundle)) {
1277 bundle->src_mirrors |= mirror_bit;
1278 } else {
1279 bundle->src_mirrors &= ~mirror_bit;
1280 }
1281
1282 if (hmapx_contains(&mirror->dsts, bundle)) {
1283 bundle->dst_mirrors |= mirror_bit;
1284 } else {
1285 bundle->dst_mirrors &= ~mirror_bit;
1286 }
1287
1288 if (mirror->out == bundle) {
1289 bundle->mirror_out |= mirror_bit;
1290 } else {
1291 bundle->mirror_out &= ~mirror_bit;
1292 }
1293 }
1294
1295 ofproto->need_revalidate = true;
1296 mac_learning_flush(ofproto->ml);
1297
1298 return 0;
1299}
1300
1301static void
1302mirror_destroy(struct ofmirror *mirror)
1303{
1304 struct ofproto_dpif *ofproto;
1305 mirror_mask_t mirror_bit;
1306 struct ofbundle *bundle;
1307
1308 if (!mirror) {
1309 return;
1310 }
1311
1312 ofproto = mirror->ofproto;
1313 ofproto->need_revalidate = true;
1314 mac_learning_flush(ofproto->ml);
1315
1316 mirror_bit = MIRROR_MASK_C(1) << mirror->idx;
1317 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1318 bundle->src_mirrors &= ~mirror_bit;
1319 bundle->dst_mirrors &= ~mirror_bit;
1320 bundle->mirror_out &= ~mirror_bit;
1321 }
1322
1323 hmapx_destroy(&mirror->srcs);
1324 hmapx_destroy(&mirror->dsts);
1325 free(mirror->vlans);
1326
1327 ofproto->mirrors[mirror->idx] = NULL;
1328 free(mirror->name);
1329 free(mirror);
1330}
1331
1332static int
1333set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
1334{
1335 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1336 if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
1337 ofproto->need_revalidate = true;
1338 mac_learning_flush(ofproto->ml);
1339 }
1340 return 0;
1341}
1342
1343static bool
1344is_mirror_output_bundle(struct ofproto *ofproto_, void *aux)
1345{
1346 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1347 struct ofbundle *bundle = bundle_lookup(ofproto, aux);
1348 return bundle && bundle->mirror_out != 0;
1349}
1350\f
1351/* Ports. */
1352
1353static struct ofport_dpif *
1354get_ofp_port(struct ofproto_dpif *ofproto, uint16_t ofp_port)
1355{
7df6a8bd
BP
1356 struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
1357 return ofport ? ofport_dpif_cast(ofport) : NULL;
abe529af
BP
1358}
1359
1360static struct ofport_dpif *
1361get_odp_port(struct ofproto_dpif *ofproto, uint32_t odp_port)
1362{
1363 return get_ofp_port(ofproto, odp_port_to_ofp_port(odp_port));
1364}
1365
1366static void
1367ofproto_port_from_dpif_port(struct ofproto_port *ofproto_port,
1368 struct dpif_port *dpif_port)
1369{
1370 ofproto_port->name = dpif_port->name;
1371 ofproto_port->type = dpif_port->type;
1372 ofproto_port->ofp_port = odp_port_to_ofp_port(dpif_port->port_no);
1373}
1374
1375static void
1376port_run(struct ofport_dpif *ofport)
1377{
1378 if (ofport->cfm) {
1379 cfm_run(ofport->cfm);
1380
1381 if (cfm_should_send_ccm(ofport->cfm)) {
1382 struct ofpbuf packet;
1383 struct ccm *ccm;
1384
1385 ofpbuf_init(&packet, 0);
1386 ccm = eth_compose(&packet, eth_addr_ccm, ofport->up.opp.hw_addr,
1387 ETH_TYPE_CFM, sizeof *ccm);
1388 cfm_compose_ccm(ofport->cfm, ccm);
1389 send_packet(ofproto_dpif_cast(ofport->up.ofproto),
1390 ofport->odp_port, 0, &packet);
1391 ofpbuf_uninit(&packet);
1392 }
1393 }
1394}
1395
1396static void
1397port_wait(struct ofport_dpif *ofport)
1398{
1399 if (ofport->cfm) {
1400 cfm_wait(ofport->cfm);
1401 }
1402}
1403
1404static int
1405port_query_by_name(const struct ofproto *ofproto_, const char *devname,
1406 struct ofproto_port *ofproto_port)
1407{
1408 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1409 struct dpif_port dpif_port;
1410 int error;
1411
1412 error = dpif_port_query_by_name(ofproto->dpif, devname, &dpif_port);
1413 if (!error) {
1414 ofproto_port_from_dpif_port(ofproto_port, &dpif_port);
1415 }
1416 return error;
1417}
1418
1419static int
1420port_add(struct ofproto *ofproto_, struct netdev *netdev, uint16_t *ofp_portp)
1421{
1422 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1423 uint16_t odp_port;
1424 int error;
1425
1426 error = dpif_port_add(ofproto->dpif, netdev, &odp_port);
1427 if (!error) {
1428 *ofp_portp = odp_port_to_ofp_port(odp_port);
1429 }
1430 return error;
1431}
1432
1433static int
1434port_del(struct ofproto *ofproto_, uint16_t ofp_port)
1435{
1436 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1437 int error;
1438
1439 error = dpif_port_del(ofproto->dpif, ofp_port_to_odp_port(ofp_port));
1440 if (!error) {
1441 struct ofport_dpif *ofport = get_ofp_port(ofproto, ofp_port);
1442 if (ofport) {
1443 /* The caller is going to close ofport->up.netdev. If this is a
1444 * bonded port, then the bond is using that netdev, so remove it
1445 * from the bond. The client will need to reconfigure everything
1446 * after deleting ports, so then the slave will get re-added. */
1447 bundle_remove(&ofport->up);
1448 }
1449 }
1450 return error;
1451}
1452
1453struct port_dump_state {
1454 struct dpif_port_dump dump;
1455 bool done;
1456};
1457
1458static int
1459port_dump_start(const struct ofproto *ofproto_, void **statep)
1460{
1461 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1462 struct port_dump_state *state;
1463
1464 *statep = state = xmalloc(sizeof *state);
1465 dpif_port_dump_start(&state->dump, ofproto->dpif);
1466 state->done = false;
1467 return 0;
1468}
1469
1470static int
1471port_dump_next(const struct ofproto *ofproto_ OVS_UNUSED, void *state_,
1472 struct ofproto_port *port)
1473{
1474 struct port_dump_state *state = state_;
1475 struct dpif_port dpif_port;
1476
1477 if (dpif_port_dump_next(&state->dump, &dpif_port)) {
1478 ofproto_port_from_dpif_port(port, &dpif_port);
1479 return 0;
1480 } else {
1481 int error = dpif_port_dump_done(&state->dump);
1482 state->done = true;
1483 return error ? error : EOF;
1484 }
1485}
1486
1487static int
1488port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
1489{
1490 struct port_dump_state *state = state_;
1491
1492 if (!state->done) {
1493 dpif_port_dump_done(&state->dump);
1494 }
1495 free(state);
1496 return 0;
1497}
1498
1499static int
1500port_poll(const struct ofproto *ofproto_, char **devnamep)
1501{
1502 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1503 return dpif_port_poll(ofproto->dpif, devnamep);
1504}
1505
1506static void
1507port_poll_wait(const struct ofproto *ofproto_)
1508{
1509 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
1510 dpif_port_poll_wait(ofproto->dpif);
1511}
1512
1513static int
1514port_is_lacp_current(const struct ofport *ofport_)
1515{
1516 const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
1517 return (ofport->bundle && ofport->bundle->lacp
1518 ? lacp_slave_is_current(ofport->bundle->lacp, ofport)
1519 : -1);
1520}
1521\f
1522/* Upcall handling. */
1523
1524/* Given 'upcall', of type DPIF_UC_ACTION or DPIF_UC_MISS, sends an
1525 * OFPT_PACKET_IN message to each OpenFlow controller as necessary according to
1526 * their individual configurations.
1527 *
1528 * If 'clone' is true, the caller retains ownership of 'upcall->packet'.
1529 * Otherwise, ownership is transferred to this function. */
1530static void
1531send_packet_in(struct ofproto_dpif *ofproto, struct dpif_upcall *upcall,
1532 const struct flow *flow, bool clone)
1533{
1534 struct ofputil_packet_in pin;
1535
1536 pin.packet = upcall->packet;
1537 pin.in_port = flow->in_port;
1538 pin.reason = upcall->type == DPIF_UC_MISS ? OFPR_NO_MATCH : OFPR_ACTION;
1539 pin.buffer_id = 0; /* not yet known */
1540 pin.send_len = upcall->userdata;
78bd1cd0 1541 connmgr_send_packet_in(ofproto->up.connmgr, &pin, flow,
abe529af
BP
1542 clone ? NULL : upcall->packet);
1543}
1544
1545static bool
1546process_special(struct ofproto_dpif *ofproto, const struct flow *flow,
1547 const struct ofpbuf *packet)
1548{
1549 if (cfm_should_process_flow(flow)) {
1550 struct ofport_dpif *ofport = get_ofp_port(ofproto, flow->in_port);
1551 if (ofport && ofport->cfm) {
1552 cfm_process_heartbeat(ofport->cfm, packet);
1553 }
1554 return true;
1555 } else if (flow->dl_type == htons(ETH_TYPE_LACP)) {
1556 struct ofport_dpif *port = get_ofp_port(ofproto, flow->in_port);
1557 if (port && port->bundle && port->bundle->lacp) {
1558 const struct lacp_pdu *pdu = parse_lacp_packet(packet);
1559 if (pdu) {
1560 lacp_process_pdu(port->bundle->lacp, port, pdu);
1561 }
1562 return true;
1563 }
1564 }
1565 return false;
1566}
1567
1568static void
1569handle_miss_upcall(struct ofproto_dpif *ofproto, struct dpif_upcall *upcall)
1570{
1571 struct facet *facet;
1572 struct flow flow;
1573
1574 /* Obtain in_port and tun_id, at least. */
1575 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
1576
1577 /* Set header pointers in 'flow'. */
1578 flow_extract(upcall->packet, flow.tun_id, flow.in_port, &flow);
1579
1580 /* Handle 802.1ag and LACP. */
1581 if (process_special(ofproto, &flow, upcall->packet)) {
1582 ofpbuf_delete(upcall->packet);
6c1491fb 1583 ofproto->n_matches++;
abe529af
BP
1584 return;
1585 }
1586
1587 /* Check with in-band control to see if this packet should be sent
1588 * to the local port regardless of the flow table. */
1589 if (connmgr_msg_in_hook(ofproto->up.connmgr, &flow, upcall->packet)) {
1590 send_packet(ofproto, OFPP_LOCAL, 0, upcall->packet);
1591 }
1592
1593 facet = facet_lookup_valid(ofproto, &flow);
1594 if (!facet) {
1595 struct rule_dpif *rule = rule_dpif_lookup(ofproto, &flow);
1596 if (!rule) {
1597 /* Don't send a packet-in if OFPPC_NO_PACKET_IN asserted. */
1598 struct ofport_dpif *port = get_ofp_port(ofproto, flow.in_port);
1599 if (port) {
1600 if (port->up.opp.config & htonl(OFPPC_NO_PACKET_IN)) {
1601 COVERAGE_INC(ofproto_dpif_no_packet_in);
1602 /* XXX install 'drop' flow entry */
1603 ofpbuf_delete(upcall->packet);
1604 return;
1605 }
1606 } else {
1607 VLOG_WARN_RL(&rl, "packet-in on unknown port %"PRIu16,
1608 flow.in_port);
1609 }
1610
1611 send_packet_in(ofproto, upcall, &flow, false);
1612 return;
1613 }
1614
1615 facet = facet_create(rule, &flow, upcall->packet);
1616 } else if (!facet->may_install) {
1617 /* The facet is not installable, that is, we need to process every
1618 * packet, so process the current packet's actions into 'facet'. */
1619 facet_make_actions(ofproto, facet, upcall->packet);
1620 }
1621
1622 if (facet->rule->up.cr.priority == FAIL_OPEN_PRIORITY) {
1623 /*
1624 * Extra-special case for fail-open mode.
1625 *
1626 * We are in fail-open mode and the packet matched the fail-open rule,
1627 * but we are connected to a controller too. We should send the packet
1628 * up to the controller in the hope that it will try to set up a flow
1629 * and thereby allow us to exit fail-open.
1630 *
1631 * See the top-level comment in fail-open.c for more information.
1632 */
1633 send_packet_in(ofproto, upcall, &flow, true);
1634 }
1635
1636 facet_execute(ofproto, facet, upcall->packet);
1637 facet_install(ofproto, facet, false);
6c1491fb 1638 ofproto->n_matches++;
abe529af
BP
1639}
1640
1641static void
1642handle_upcall(struct ofproto_dpif *ofproto, struct dpif_upcall *upcall)
1643{
1644 struct flow flow;
1645
1646 switch (upcall->type) {
1647 case DPIF_UC_ACTION:
1648 COVERAGE_INC(ofproto_dpif_ctlr_action);
1649 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
1650 send_packet_in(ofproto, upcall, &flow, false);
1651 break;
1652
1653 case DPIF_UC_SAMPLE:
1654 if (ofproto->sflow) {
1655 odp_flow_key_to_flow(upcall->key, upcall->key_len, &flow);
1656 ofproto_sflow_received(ofproto->sflow, upcall, &flow);
1657 }
1658 ofpbuf_delete(upcall->packet);
1659 break;
1660
1661 case DPIF_UC_MISS:
1662 handle_miss_upcall(ofproto, upcall);
1663 break;
1664
1665 case DPIF_N_UC_TYPES:
1666 default:
1667 VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, upcall->type);
1668 break;
1669 }
1670}
1671\f
1672/* Flow expiration. */
1673
1674static int facet_max_idle(const struct ofproto_dpif *);
1675static void update_stats(struct ofproto_dpif *);
1676static void rule_expire(struct rule_dpif *);
1677static void expire_facets(struct ofproto_dpif *, int dp_max_idle);
1678
1679/* This function is called periodically by run(). Its job is to collect
1680 * updates for the flows that have been installed into the datapath, most
1681 * importantly when they last were used, and then use that information to
1682 * expire flows that have not been used recently.
1683 *
1684 * Returns the number of milliseconds after which it should be called again. */
1685static int
1686expire(struct ofproto_dpif *ofproto)
1687{
1688 struct rule_dpif *rule, *next_rule;
1689 struct cls_cursor cursor;
1690 int dp_max_idle;
1691
1692 /* Update stats for each flow in the datapath. */
1693 update_stats(ofproto);
1694
1695 /* Expire facets that have been idle too long. */
1696 dp_max_idle = facet_max_idle(ofproto);
1697 expire_facets(ofproto, dp_max_idle);
1698
1699 /* Expire OpenFlow flows whose idle_timeout or hard_timeout has passed. */
6c1491fb 1700 cls_cursor_init(&cursor, &ofproto->up.tables[0], NULL);
abe529af
BP
1701 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, up.cr, &cursor) {
1702 rule_expire(rule);
1703 }
1704
1705 /* All outstanding data in existing flows has been accounted, so it's a
1706 * good time to do bond rebalancing. */
1707 if (ofproto->has_bonded_bundles) {
1708 struct ofbundle *bundle;
1709
1710 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
1711 if (bundle->bond) {
1712 bond_rebalance(bundle->bond, &ofproto->revalidate_set);
1713 }
1714 }
1715 }
1716
1717 return MIN(dp_max_idle, 1000);
1718}
1719
1720/* Update 'packet_count', 'byte_count', and 'used' members of installed facets.
1721 *
1722 * This function also pushes statistics updates to rules which each facet
1723 * resubmits into. Generally these statistics will be accurate. However, if a
1724 * facet changes the rule it resubmits into at some time in between
1725 * update_stats() runs, it is possible that statistics accrued to the
1726 * old rule will be incorrectly attributed to the new rule. This could be
1727 * avoided by calling update_stats() whenever rules are created or
1728 * deleted. However, the performance impact of making so many calls to the
1729 * datapath do not justify the benefit of having perfectly accurate statistics.
1730 */
1731static void
1732update_stats(struct ofproto_dpif *p)
1733{
1734 const struct dpif_flow_stats *stats;
1735 struct dpif_flow_dump dump;
1736 const struct nlattr *key;
1737 size_t key_len;
1738
1739 dpif_flow_dump_start(&dump, p->dpif);
1740 while (dpif_flow_dump_next(&dump, &key, &key_len, NULL, NULL, &stats)) {
1741 struct facet *facet;
1742 struct flow flow;
1743
1744 if (odp_flow_key_to_flow(key, key_len, &flow)) {
1745 struct ds s;
1746
1747 ds_init(&s);
1748 odp_flow_key_format(key, key_len, &s);
1749 VLOG_WARN_RL(&rl, "failed to convert ODP flow key to flow: %s",
1750 ds_cstr(&s));
1751 ds_destroy(&s);
1752
1753 continue;
1754 }
1755 facet = facet_find(p, &flow);
1756
1757 if (facet && facet->installed) {
1758
1759 if (stats->n_packets >= facet->dp_packet_count) {
1760 uint64_t extra = stats->n_packets - facet->dp_packet_count;
1761 facet->packet_count += extra;
1762 } else {
1763 VLOG_WARN_RL(&rl, "unexpected packet count from the datapath");
1764 }
1765
1766 if (stats->n_bytes >= facet->dp_byte_count) {
1767 facet->byte_count += stats->n_bytes - facet->dp_byte_count;
1768 } else {
1769 VLOG_WARN_RL(&rl, "unexpected byte count from datapath");
1770 }
1771
1772 facet->dp_packet_count = stats->n_packets;
1773 facet->dp_byte_count = stats->n_bytes;
1774
1775 facet_update_time(p, facet, stats->used);
1776 facet_account(p, facet, stats->n_bytes);
1777 facet_push_stats(facet);
1778 } else {
1779 /* There's a flow in the datapath that we know nothing about.
1780 * Delete it. */
1781 COVERAGE_INC(facet_unexpected);
1782 dpif_flow_del(p->dpif, key, key_len, NULL);
1783 }
1784 }
1785 dpif_flow_dump_done(&dump);
1786}
1787
1788/* Calculates and returns the number of milliseconds of idle time after which
1789 * facets should expire from the datapath and we should fold their statistics
1790 * into their parent rules in userspace. */
1791static int
1792facet_max_idle(const struct ofproto_dpif *ofproto)
1793{
1794 /*
1795 * Idle time histogram.
1796 *
1797 * Most of the time a switch has a relatively small number of facets. When
1798 * this is the case we might as well keep statistics for all of them in
1799 * userspace and to cache them in the kernel datapath for performance as
1800 * well.
1801 *
1802 * As the number of facets increases, the memory required to maintain
1803 * statistics about them in userspace and in the kernel becomes
1804 * significant. However, with a large number of facets it is likely that
1805 * only a few of them are "heavy hitters" that consume a large amount of
1806 * bandwidth. At this point, only heavy hitters are worth caching in the
1807 * kernel and maintaining in userspaces; other facets we can discard.
1808 *
1809 * The technique used to compute the idle time is to build a histogram with
1810 * N_BUCKETS buckets whose width is BUCKET_WIDTH msecs each. Each facet
1811 * that is installed in the kernel gets dropped in the appropriate bucket.
1812 * After the histogram has been built, we compute the cutoff so that only
1813 * the most-recently-used 1% of facets (but at least 1000 flows) are kept
1814 * cached. At least the most-recently-used bucket of facets is kept, so
1815 * actually an arbitrary number of facets can be kept in any given
1816 * expiration run (though the next run will delete most of those unless
1817 * they receive additional data).
1818 *
1819 * This requires a second pass through the facets, in addition to the pass
1820 * made by update_stats(), because the former function never looks
1821 * at uninstallable facets.
1822 */
1823 enum { BUCKET_WIDTH = ROUND_UP(100, TIME_UPDATE_INTERVAL) };
1824 enum { N_BUCKETS = 5000 / BUCKET_WIDTH };
1825 int buckets[N_BUCKETS] = { 0 };
1826 struct facet *facet;
1827 int total, bucket;
1828 long long int now;
1829 int i;
1830
1831 total = hmap_count(&ofproto->facets);
1832 if (total <= 1000) {
1833 return N_BUCKETS * BUCKET_WIDTH;
1834 }
1835
1836 /* Build histogram. */
1837 now = time_msec();
1838 HMAP_FOR_EACH (facet, hmap_node, &ofproto->facets) {
1839 long long int idle = now - facet->used;
1840 int bucket = (idle <= 0 ? 0
1841 : idle >= BUCKET_WIDTH * N_BUCKETS ? N_BUCKETS - 1
1842 : (unsigned int) idle / BUCKET_WIDTH);
1843 buckets[bucket]++;
1844 }
1845
1846 /* Find the first bucket whose flows should be expired. */
1847 for (bucket = 0; bucket < N_BUCKETS; bucket++) {
1848 if (buckets[bucket]) {
1849 int subtotal = 0;
1850 do {
1851 subtotal += buckets[bucket++];
1852 } while (bucket < N_BUCKETS && subtotal < MAX(1000, total / 100));
1853 break;
1854 }
1855 }
1856
1857 if (VLOG_IS_DBG_ENABLED()) {
1858 struct ds s;
1859
1860 ds_init(&s);
1861 ds_put_cstr(&s, "keep");
1862 for (i = 0; i < N_BUCKETS; i++) {
1863 if (i == bucket) {
1864 ds_put_cstr(&s, ", drop");
1865 }
1866 if (buckets[i]) {
1867 ds_put_format(&s, " %d:%d", i * BUCKET_WIDTH, buckets[i]);
1868 }
1869 }
1870 VLOG_INFO("%s: %s (msec:count)", ofproto->up.name, ds_cstr(&s));
1871 ds_destroy(&s);
1872 }
1873
1874 return bucket * BUCKET_WIDTH;
1875}
1876
1877static void
1878facet_active_timeout(struct ofproto_dpif *ofproto, struct facet *facet)
1879{
1880 if (ofproto->netflow && !facet_is_controller_flow(facet) &&
1881 netflow_active_timeout_expired(ofproto->netflow, &facet->nf_flow)) {
1882 struct ofexpired expired;
1883
1884 if (facet->installed) {
1885 struct dpif_flow_stats stats;
1886
1887 facet_put__(ofproto, facet, facet->actions, facet->actions_len,
1888 &stats);
1889 facet_update_stats(ofproto, facet, &stats);
1890 }
1891
1892 expired.flow = facet->flow;
1893 expired.packet_count = facet->packet_count;
1894 expired.byte_count = facet->byte_count;
1895 expired.used = facet->used;
1896 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
1897 }
1898}
1899
1900static void
1901expire_facets(struct ofproto_dpif *ofproto, int dp_max_idle)
1902{
1903 long long int cutoff = time_msec() - dp_max_idle;
1904 struct facet *facet, *next_facet;
1905
1906 HMAP_FOR_EACH_SAFE (facet, next_facet, hmap_node, &ofproto->facets) {
1907 facet_active_timeout(ofproto, facet);
1908 if (facet->used < cutoff) {
1909 facet_remove(ofproto, facet);
1910 }
1911 }
1912}
1913
1914/* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
1915 * then delete it entirely. */
1916static void
1917rule_expire(struct rule_dpif *rule)
1918{
1919 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
1920 struct facet *facet, *next_facet;
1921 long long int now;
1922 uint8_t reason;
1923
1924 /* Has 'rule' expired? */
1925 now = time_msec();
1926 if (rule->up.hard_timeout
1927 && now > rule->up.created + rule->up.hard_timeout * 1000) {
1928 reason = OFPRR_HARD_TIMEOUT;
1929 } else if (rule->up.idle_timeout && list_is_empty(&rule->facets)
1930 && now > rule->used + rule->up.idle_timeout * 1000) {
1931 reason = OFPRR_IDLE_TIMEOUT;
1932 } else {
1933 return;
1934 }
1935
1936 COVERAGE_INC(ofproto_dpif_expired);
1937
1938 /* Update stats. (This is a no-op if the rule expired due to an idle
1939 * timeout, because that only happens when the rule has no facets left.) */
1940 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
1941 facet_remove(ofproto, facet);
1942 }
1943
1944 /* Get rid of the rule. */
1945 ofproto_rule_expire(&rule->up, reason);
1946}
1947\f
1948/* Facets. */
1949
1950/* Creates and returns a new facet owned by 'rule', given a 'flow' and an
1951 * example 'packet' within that flow.
1952 *
1953 * The caller must already have determined that no facet with an identical
1954 * 'flow' exists in 'ofproto' and that 'flow' is the best match for 'rule' in
1955 * the ofproto's classifier table. */
1956static struct facet *
1957facet_create(struct rule_dpif *rule, const struct flow *flow,
1958 const struct ofpbuf *packet)
1959{
1960 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
1961 struct facet *facet;
1962
1963 facet = xzalloc(sizeof *facet);
1964 facet->used = time_msec();
1965 hmap_insert(&ofproto->facets, &facet->hmap_node, flow_hash(flow, 0));
1966 list_push_back(&rule->facets, &facet->list_node);
1967 facet->rule = rule;
1968 facet->flow = *flow;
1969 netflow_flow_init(&facet->nf_flow);
1970 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, facet->used);
1971
1972 facet_make_actions(ofproto, facet, packet);
1973
1974 return facet;
1975}
1976
1977static void
1978facet_free(struct facet *facet)
1979{
1980 free(facet->actions);
1981 free(facet);
1982}
1983
1984/* Executes, within 'ofproto', the 'n_actions' actions in 'actions' on
1985 * 'packet', which arrived on 'in_port'.
1986 *
1987 * Takes ownership of 'packet'. */
1988static bool
1989execute_odp_actions(struct ofproto_dpif *ofproto, const struct flow *flow,
1990 const struct nlattr *odp_actions, size_t actions_len,
1991 struct ofpbuf *packet)
1992{
1993 if (actions_len == NLA_ALIGN(NLA_HDRLEN + sizeof(uint64_t))
1994 && odp_actions->nla_type == ODP_ACTION_ATTR_CONTROLLER) {
1995 /* As an optimization, avoid a round-trip from userspace to kernel to
1996 * userspace. This also avoids possibly filling up kernel packet
1997 * buffers along the way. */
1998 struct dpif_upcall upcall;
1999
2000 upcall.type = DPIF_UC_ACTION;
2001 upcall.packet = packet;
2002 upcall.key = NULL;
2003 upcall.key_len = 0;
2004 upcall.userdata = nl_attr_get_u64(odp_actions);
2005 upcall.sample_pool = 0;
2006 upcall.actions = NULL;
2007 upcall.actions_len = 0;
2008
2009 send_packet_in(ofproto, &upcall, flow, false);
2010
2011 return true;
2012 } else {
2013 int error;
2014
2015 error = dpif_execute(ofproto->dpif, odp_actions, actions_len, packet);
2016 ofpbuf_delete(packet);
2017 return !error;
2018 }
2019}
2020
2021/* Executes the actions indicated by 'facet' on 'packet' and credits 'facet''s
2022 * statistics appropriately. 'packet' must have at least sizeof(struct
2023 * ofp_packet_in) bytes of headroom.
2024 *
2025 * For correct results, 'packet' must actually be in 'facet''s flow; that is,
2026 * applying flow_extract() to 'packet' would yield the same flow as
2027 * 'facet->flow'.
2028 *
2029 * 'facet' must have accurately composed ODP actions; that is, it must not be
2030 * in need of revalidation.
2031 *
2032 * Takes ownership of 'packet'. */
2033static void
2034facet_execute(struct ofproto_dpif *ofproto, struct facet *facet,
2035 struct ofpbuf *packet)
2036{
2037 struct dpif_flow_stats stats;
2038
2039 assert(ofpbuf_headroom(packet) >= sizeof(struct ofp_packet_in));
2040
2041 flow_extract_stats(&facet->flow, packet, &stats);
2042 stats.used = time_msec();
2043 if (execute_odp_actions(ofproto, &facet->flow,
2044 facet->actions, facet->actions_len, packet)) {
2045 facet_update_stats(ofproto, facet, &stats);
2046 }
2047}
2048
2049/* Remove 'facet' from 'ofproto' and free up the associated memory:
2050 *
2051 * - If 'facet' was installed in the datapath, uninstalls it and updates its
2052 * rule's statistics, via facet_uninstall().
2053 *
2054 * - Removes 'facet' from its rule and from ofproto->facets.
2055 */
2056static void
2057facet_remove(struct ofproto_dpif *ofproto, struct facet *facet)
2058{
2059 facet_uninstall(ofproto, facet);
2060 facet_flush_stats(ofproto, facet);
2061 hmap_remove(&ofproto->facets, &facet->hmap_node);
2062 list_remove(&facet->list_node);
2063 facet_free(facet);
2064}
2065
2066/* Composes the ODP actions for 'facet' based on its rule's actions. */
2067static void
2068facet_make_actions(struct ofproto_dpif *p, struct facet *facet,
2069 const struct ofpbuf *packet)
2070{
2071 const struct rule_dpif *rule = facet->rule;
2072 struct ofpbuf *odp_actions;
2073 struct action_xlate_ctx ctx;
2074
2075 action_xlate_ctx_init(&ctx, p, &facet->flow, packet);
2076 odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions);
2077 facet->tags = ctx.tags;
2078 facet->may_install = ctx.may_set_up_flow;
2079 facet->nf_flow.output_iface = ctx.nf_output_iface;
2080
2081 if (facet->actions_len != odp_actions->size
2082 || memcmp(facet->actions, odp_actions->data, odp_actions->size)) {
2083 free(facet->actions);
2084 facet->actions_len = odp_actions->size;
2085 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2086 }
2087
2088 ofpbuf_delete(odp_actions);
2089}
2090
2091static int
2092facet_put__(struct ofproto_dpif *ofproto, struct facet *facet,
2093 const struct nlattr *actions, size_t actions_len,
2094 struct dpif_flow_stats *stats)
2095{
2096 struct odputil_keybuf keybuf;
2097 enum dpif_flow_put_flags flags;
2098 struct ofpbuf key;
2099
2100 flags = DPIF_FP_CREATE | DPIF_FP_MODIFY;
2101 if (stats) {
2102 flags |= DPIF_FP_ZERO_STATS;
2103 facet->dp_packet_count = 0;
2104 facet->dp_byte_count = 0;
2105 }
2106
2107 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
2108 odp_flow_key_from_flow(&key, &facet->flow);
2109
2110 return dpif_flow_put(ofproto->dpif, flags, key.data, key.size,
2111 actions, actions_len, stats);
2112}
2113
2114/* If 'facet' is installable, inserts or re-inserts it into 'p''s datapath. If
2115 * 'zero_stats' is true, clears any existing statistics from the datapath for
2116 * 'facet'. */
2117static void
2118facet_install(struct ofproto_dpif *p, struct facet *facet, bool zero_stats)
2119{
2120 struct dpif_flow_stats stats;
2121
2122 if (facet->may_install
2123 && !facet_put__(p, facet, facet->actions, facet->actions_len,
2124 zero_stats ? &stats : NULL)) {
2125 facet->installed = true;
2126 }
2127}
2128
2129static void
2130facet_account(struct ofproto_dpif *ofproto,
2131 struct facet *facet, uint64_t extra_bytes)
2132{
2133 uint64_t total_bytes, n_bytes;
2134 struct ofbundle *in_bundle;
2135 const struct nlattr *a;
2136 tag_type dummy = 0;
2137 unsigned int left;
2138 int vlan;
2139
2140 total_bytes = facet->byte_count + extra_bytes;
2141 if (total_bytes <= facet->accounted_bytes) {
2142 return;
2143 }
2144 n_bytes = total_bytes - facet->accounted_bytes;
2145 facet->accounted_bytes = total_bytes;
2146
2147 /* Test that 'tags' is nonzero to ensure that only flows that include an
2148 * OFPP_NORMAL action are used for learning and bond slave rebalancing.
2149 * This works because OFPP_NORMAL always sets a nonzero tag value.
2150 *
2151 * Feed information from the active flows back into the learning table to
2152 * ensure that table is always in sync with what is actually flowing
2153 * through the datapath. */
2154 if (!facet->tags
2155 || !is_admissible(ofproto, &facet->flow, false, &dummy,
2156 &vlan, &in_bundle)) {
2157 return;
2158 }
2159
2160 update_learning_table(ofproto, &facet->flow, vlan, in_bundle);
2161
2162 if (!ofproto->has_bonded_bundles) {
2163 return;
2164 }
2165 NL_ATTR_FOR_EACH_UNSAFE (a, left, facet->actions, facet->actions_len) {
2166 if (nl_attr_type(a) == ODP_ACTION_ATTR_OUTPUT) {
2167 struct ofport_dpif *port;
2168
2169 port = get_odp_port(ofproto, nl_attr_get_u32(a));
2170 if (port && port->bundle && port->bundle->bond) {
2171 bond_account(port->bundle->bond, &facet->flow, vlan, n_bytes);
2172 }
2173 }
2174 }
2175}
2176
2177/* If 'rule' is installed in the datapath, uninstalls it. */
2178static void
2179facet_uninstall(struct ofproto_dpif *p, struct facet *facet)
2180{
2181 if (facet->installed) {
2182 struct odputil_keybuf keybuf;
2183 struct dpif_flow_stats stats;
2184 struct ofpbuf key;
2185
2186 ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
2187 odp_flow_key_from_flow(&key, &facet->flow);
2188
2189 if (!dpif_flow_del(p->dpif, key.data, key.size, &stats)) {
2190 facet_update_stats(p, facet, &stats);
2191 }
2192 facet->installed = false;
2193 facet->dp_packet_count = 0;
2194 facet->dp_byte_count = 0;
2195 } else {
2196 assert(facet->dp_packet_count == 0);
2197 assert(facet->dp_byte_count == 0);
2198 }
2199}
2200
2201/* Returns true if the only action for 'facet' is to send to the controller.
2202 * (We don't report NetFlow expiration messages for such facets because they
2203 * are just part of the control logic for the network, not real traffic). */
2204static bool
2205facet_is_controller_flow(struct facet *facet)
2206{
2207 return (facet
2208 && facet->rule->up.n_actions == 1
2209 && action_outputs_to_port(&facet->rule->up.actions[0],
2210 htons(OFPP_CONTROLLER)));
2211}
2212
2213/* Folds all of 'facet''s statistics into its rule. Also updates the
2214 * accounting ofhook and emits a NetFlow expiration if appropriate. All of
2215 * 'facet''s statistics in the datapath should have been zeroed and folded into
2216 * its packet and byte counts before this function is called. */
2217static void
2218facet_flush_stats(struct ofproto_dpif *ofproto, struct facet *facet)
2219{
2220 assert(!facet->dp_byte_count);
2221 assert(!facet->dp_packet_count);
2222
2223 facet_push_stats(facet);
2224 facet_account(ofproto, facet, 0);
2225
2226 if (ofproto->netflow && !facet_is_controller_flow(facet)) {
2227 struct ofexpired expired;
2228 expired.flow = facet->flow;
2229 expired.packet_count = facet->packet_count;
2230 expired.byte_count = facet->byte_count;
2231 expired.used = facet->used;
2232 netflow_expire(ofproto->netflow, &facet->nf_flow, &expired);
2233 }
2234
2235 facet->rule->packet_count += facet->packet_count;
2236 facet->rule->byte_count += facet->byte_count;
2237
2238 /* Reset counters to prevent double counting if 'facet' ever gets
2239 * reinstalled. */
2240 facet->packet_count = 0;
2241 facet->byte_count = 0;
2242 facet->rs_packet_count = 0;
2243 facet->rs_byte_count = 0;
2244 facet->accounted_bytes = 0;
2245
2246 netflow_flow_clear(&facet->nf_flow);
2247}
2248
2249/* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2250 * Returns it if found, otherwise a null pointer.
2251 *
2252 * The returned facet might need revalidation; use facet_lookup_valid()
2253 * instead if that is important. */
2254static struct facet *
2255facet_find(struct ofproto_dpif *ofproto, const struct flow *flow)
2256{
2257 struct facet *facet;
2258
2259 HMAP_FOR_EACH_WITH_HASH (facet, hmap_node, flow_hash(flow, 0),
2260 &ofproto->facets) {
2261 if (flow_equal(flow, &facet->flow)) {
2262 return facet;
2263 }
2264 }
2265
2266 return NULL;
2267}
2268
2269/* Searches 'ofproto''s table of facets for one exactly equal to 'flow'.
2270 * Returns it if found, otherwise a null pointer.
2271 *
2272 * The returned facet is guaranteed to be valid. */
2273static struct facet *
2274facet_lookup_valid(struct ofproto_dpif *ofproto, const struct flow *flow)
2275{
2276 struct facet *facet = facet_find(ofproto, flow);
2277
2278 /* The facet we found might not be valid, since we could be in need of
2279 * revalidation. If it is not valid, don't return it. */
2280 if (facet
2281 && ofproto->need_revalidate
2282 && !facet_revalidate(ofproto, facet)) {
2283 COVERAGE_INC(facet_invalidated);
2284 return NULL;
2285 }
2286
2287 return facet;
2288}
2289
2290/* Re-searches 'ofproto''s classifier for a rule matching 'facet':
2291 *
2292 * - If the rule found is different from 'facet''s current rule, moves
2293 * 'facet' to the new rule and recompiles its actions.
2294 *
2295 * - If the rule found is the same as 'facet''s current rule, leaves 'facet'
2296 * where it is and recompiles its actions anyway.
2297 *
2298 * - If there is none, destroys 'facet'.
2299 *
2300 * Returns true if 'facet' still exists, false if it has been destroyed. */
2301static bool
2302facet_revalidate(struct ofproto_dpif *ofproto, struct facet *facet)
2303{
2304 struct action_xlate_ctx ctx;
2305 struct ofpbuf *odp_actions;
2306 struct rule_dpif *new_rule;
2307 bool actions_changed;
2308
2309 COVERAGE_INC(facet_revalidate);
2310
2311 /* Determine the new rule. */
2312 new_rule = rule_dpif_lookup(ofproto, &facet->flow);
2313 if (!new_rule) {
2314 /* No new rule, so delete the facet. */
2315 facet_remove(ofproto, facet);
2316 return false;
2317 }
2318
2319 /* Calculate new ODP actions.
2320 *
2321 * We do not modify any 'facet' state yet, because we might need to, e.g.,
2322 * emit a NetFlow expiration and, if so, we need to have the old state
2323 * around to properly compose it. */
2324 action_xlate_ctx_init(&ctx, ofproto, &facet->flow, NULL);
2325 odp_actions = xlate_actions(&ctx,
2326 new_rule->up.actions, new_rule->up.n_actions);
2327 actions_changed = (facet->actions_len != odp_actions->size
2328 || memcmp(facet->actions, odp_actions->data,
2329 facet->actions_len));
2330
2331 /* If the ODP actions changed or the installability changed, then we need
2332 * to talk to the datapath. */
2333 if (actions_changed || ctx.may_set_up_flow != facet->installed) {
2334 if (ctx.may_set_up_flow) {
2335 struct dpif_flow_stats stats;
2336
2337 facet_put__(ofproto, facet,
2338 odp_actions->data, odp_actions->size, &stats);
2339 facet_update_stats(ofproto, facet, &stats);
2340 } else {
2341 facet_uninstall(ofproto, facet);
2342 }
2343
2344 /* The datapath flow is gone or has zeroed stats, so push stats out of
2345 * 'facet' into 'rule'. */
2346 facet_flush_stats(ofproto, facet);
2347 }
2348
2349 /* Update 'facet' now that we've taken care of all the old state. */
2350 facet->tags = ctx.tags;
2351 facet->nf_flow.output_iface = ctx.nf_output_iface;
2352 facet->may_install = ctx.may_set_up_flow;
2353 if (actions_changed) {
2354 free(facet->actions);
2355 facet->actions_len = odp_actions->size;
2356 facet->actions = xmemdup(odp_actions->data, odp_actions->size);
2357 }
2358 if (facet->rule != new_rule) {
2359 COVERAGE_INC(facet_changed_rule);
2360 list_remove(&facet->list_node);
2361 list_push_back(&new_rule->facets, &facet->list_node);
2362 facet->rule = new_rule;
2363 facet->used = new_rule->up.created;
2364 facet->rs_used = facet->used;
2365 }
2366
2367 ofpbuf_delete(odp_actions);
2368
2369 return true;
2370}
2371
2372/* Updates 'facet''s used time. Caller is responsible for calling
2373 * facet_push_stats() to update the flows which 'facet' resubmits into. */
2374static void
2375facet_update_time(struct ofproto_dpif *ofproto, struct facet *facet,
2376 long long int used)
2377{
2378 if (used > facet->used) {
2379 facet->used = used;
2380 if (used > facet->rule->used) {
2381 facet->rule->used = used;
2382 }
2383 netflow_flow_update_time(ofproto->netflow, &facet->nf_flow, used);
2384 }
2385}
2386
2387/* Folds the statistics from 'stats' into the counters in 'facet'.
2388 *
2389 * Because of the meaning of a facet's counters, it only makes sense to do this
2390 * if 'stats' are not tracked in the datapath, that is, if 'stats' represents a
2391 * packet that was sent by hand or if it represents statistics that have been
2392 * cleared out of the datapath. */
2393static void
2394facet_update_stats(struct ofproto_dpif *ofproto, struct facet *facet,
2395 const struct dpif_flow_stats *stats)
2396{
2397 if (stats->n_packets || stats->used > facet->used) {
2398 facet_update_time(ofproto, facet, stats->used);
2399 facet->packet_count += stats->n_packets;
2400 facet->byte_count += stats->n_bytes;
2401 facet_push_stats(facet);
2402 netflow_flow_update_flags(&facet->nf_flow, stats->tcp_flags);
2403 }
2404}
2405
2406static void
2407facet_push_stats(struct facet *facet)
2408{
2409 uint64_t rs_packets, rs_bytes;
2410
2411 assert(facet->packet_count >= facet->rs_packet_count);
2412 assert(facet->byte_count >= facet->rs_byte_count);
2413 assert(facet->used >= facet->rs_used);
2414
2415 rs_packets = facet->packet_count - facet->rs_packet_count;
2416 rs_bytes = facet->byte_count - facet->rs_byte_count;
2417
2418 if (rs_packets || rs_bytes || facet->used > facet->rs_used) {
2419 facet->rs_packet_count = facet->packet_count;
2420 facet->rs_byte_count = facet->byte_count;
2421 facet->rs_used = facet->used;
2422
2423 flow_push_stats(facet->rule, &facet->flow,
2424 rs_packets, rs_bytes, facet->used);
2425 }
2426}
2427
2428struct ofproto_push {
2429 struct action_xlate_ctx ctx;
2430 uint64_t packets;
2431 uint64_t bytes;
2432 long long int used;
2433};
2434
2435static void
2436push_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
2437{
2438 struct ofproto_push *push = CONTAINER_OF(ctx, struct ofproto_push, ctx);
2439
2440 if (rule) {
2441 rule->packet_count += push->packets;
2442 rule->byte_count += push->bytes;
2443 rule->used = MAX(push->used, rule->used);
2444 }
2445}
2446
2447/* Pushes flow statistics to the rules which 'flow' resubmits into given
2448 * 'rule''s actions. */
2449static void
2450flow_push_stats(const struct rule_dpif *rule,
2451 struct flow *flow, uint64_t packets, uint64_t bytes,
2452 long long int used)
2453{
2454 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
2455 struct ofproto_push push;
2456
2457 push.packets = packets;
2458 push.bytes = bytes;
2459 push.used = used;
2460
2461 action_xlate_ctx_init(&push.ctx, ofproto, flow, NULL);
2462 push.ctx.resubmit_hook = push_resubmit;
2463 ofpbuf_delete(xlate_actions(&push.ctx,
2464 rule->up.actions, rule->up.n_actions));
2465}
2466\f
2467/* Rules. */
2468
2469static struct rule_dpif *
2470rule_dpif_lookup(struct ofproto_dpif *ofproto, const struct flow *flow)
2471{
154896e3 2472 return rule_dpif_cast(rule_from_cls_rule(
6c1491fb
BP
2473 classifier_lookup(&ofproto->up.tables[0],
2474 flow)));
abe529af
BP
2475}
2476
2477static struct rule *
2478rule_alloc(void)
2479{
2480 struct rule_dpif *rule = xmalloc(sizeof *rule);
2481 return &rule->up;
2482}
2483
2484static void
2485rule_dealloc(struct rule *rule_)
2486{
2487 struct rule_dpif *rule = rule_dpif_cast(rule_);
2488 free(rule);
2489}
2490
2491static int
2492rule_construct(struct rule *rule_)
2493{
2494 struct rule_dpif *rule = rule_dpif_cast(rule_);
2495 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
08944c1d 2496 struct rule_dpif *old_rule;
5bf0e941
BP
2497 int error;
2498
2499 error = validate_actions(rule->up.actions, rule->up.n_actions,
2500 &rule->up.cr.flow, ofproto->max_ports);
2501 if (error) {
2502 return error;
2503 }
abe529af 2504
08944c1d 2505 old_rule = rule_dpif_cast(rule_from_cls_rule(classifier_find_rule_exactly(
6c1491fb 2506 &ofproto->up.tables[0],
08944c1d
BP
2507 &rule->up.cr)));
2508 if (old_rule) {
2509 ofproto_rule_destroy(&old_rule->up);
2510 }
2511
abe529af
BP
2512 rule->used = rule->up.created;
2513 rule->packet_count = 0;
2514 rule->byte_count = 0;
2515 list_init(&rule->facets);
6c1491fb 2516 classifier_insert(&ofproto->up.tables[0], &rule->up.cr);
abe529af 2517
abe529af
BP
2518 ofproto->need_revalidate = true;
2519
2520 return 0;
2521}
2522
2523static void
2524rule_destruct(struct rule *rule_)
2525{
2526 struct rule_dpif *rule = rule_dpif_cast(rule_);
2527 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
2528 struct facet *facet, *next_facet;
2529
6c1491fb 2530 classifier_remove(&ofproto->up.tables[0], &rule->up.cr);
abe529af
BP
2531 LIST_FOR_EACH_SAFE (facet, next_facet, list_node, &rule->facets) {
2532 facet_revalidate(ofproto, facet);
2533 }
abe529af 2534 ofproto->need_revalidate = true;
abe529af
BP
2535}
2536
2537static void
2538rule_get_stats(struct rule *rule_, uint64_t *packets, uint64_t *bytes)
2539{
2540 struct rule_dpif *rule = rule_dpif_cast(rule_);
2541 struct facet *facet;
2542
2543 /* Start from historical data for 'rule' itself that are no longer tracked
2544 * in facets. This counts, for example, facets that have expired. */
2545 *packets = rule->packet_count;
2546 *bytes = rule->byte_count;
2547
2548 /* Add any statistics that are tracked by facets. This includes
2549 * statistical data recently updated by ofproto_update_stats() as well as
2550 * stats for packets that were executed "by hand" via dpif_execute(). */
2551 LIST_FOR_EACH (facet, list_node, &rule->facets) {
2552 *packets += facet->packet_count;
2553 *bytes += facet->byte_count;
2554 }
2555}
2556
5bf0e941 2557static int
abe529af
BP
2558rule_execute(struct rule *rule_, struct flow *flow, struct ofpbuf *packet)
2559{
2560 struct rule_dpif *rule = rule_dpif_cast(rule_);
2561 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
2562 struct action_xlate_ctx ctx;
2563 struct ofpbuf *odp_actions;
2564 struct facet *facet;
2565 size_t size;
2566
2567 /* First look for a related facet. If we find one, account it to that. */
2568 facet = facet_lookup_valid(ofproto, flow);
2569 if (facet && facet->rule == rule) {
2570 facet_execute(ofproto, facet, packet);
5bf0e941 2571 return 0;
abe529af
BP
2572 }
2573
2574 /* Otherwise, if 'rule' is in fact the correct rule for 'packet', then
2575 * create a new facet for it and use that. */
2576 if (rule_dpif_lookup(ofproto, flow) == rule) {
2577 facet = facet_create(rule, flow, packet);
2578 facet_execute(ofproto, facet, packet);
2579 facet_install(ofproto, facet, true);
5bf0e941 2580 return 0;
abe529af
BP
2581 }
2582
2583 /* We can't account anything to a facet. If we were to try, then that
2584 * facet would have a non-matching rule, busting our invariants. */
2585 action_xlate_ctx_init(&ctx, ofproto, flow, packet);
2586 odp_actions = xlate_actions(&ctx, rule->up.actions, rule->up.n_actions);
2587 size = packet->size;
2588 if (execute_odp_actions(ofproto, flow, odp_actions->data,
2589 odp_actions->size, packet)) {
2590 rule->used = time_msec();
2591 rule->packet_count++;
2592 rule->byte_count += size;
2593 flow_push_stats(rule, flow, 1, size, rule->used);
2594 }
2595 ofpbuf_delete(odp_actions);
5bf0e941
BP
2596
2597 return 0;
abe529af
BP
2598}
2599
2600static int
2601rule_modify_actions(struct rule *rule_,
2602 const union ofp_action *actions, size_t n_actions)
2603{
2604 struct rule_dpif *rule = rule_dpif_cast(rule_);
2605 struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->up.ofproto);
2606 int error;
2607
2608 error = validate_actions(actions, n_actions, &rule->up.cr.flow,
2609 ofproto->max_ports);
2610 if (!error) {
2611 ofproto->need_revalidate = true;
2612 }
2613 return error;
2614}
2615\f
2616/* Sends 'packet' out of port 'odp_port' within 'ofproto'. If 'vlan_tci' is
2617 * zero the packet will not have any 802.1Q hader; if it is nonzero, then the
2618 * packet will be sent with the VLAN TCI specified by 'vlan_tci & ~VLAN_CFI'.
2619 *
2620 * Returns 0 if successful, otherwise a positive errno value. */
2621static int
2622send_packet(struct ofproto_dpif *ofproto, uint32_t odp_port, uint16_t vlan_tci,
2623 const struct ofpbuf *packet)
2624{
2625 struct ofpbuf odp_actions;
2626 int error;
2627
2628 ofpbuf_init(&odp_actions, 32);
2629 if (vlan_tci != 0) {
2630 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
2631 ntohs(vlan_tci & ~VLAN_CFI));
2632 }
2633 nl_msg_put_u32(&odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port);
2634 error = dpif_execute(ofproto->dpif, odp_actions.data, odp_actions.size,
2635 packet);
2636 ofpbuf_uninit(&odp_actions);
2637
2638 if (error) {
2639 VLOG_WARN_RL(&rl, "%s: failed to send packet on port %"PRIu32" (%s)",
2640 ofproto->up.name, odp_port, strerror(error));
2641 }
2642 return error;
2643}
2644\f
2645/* OpenFlow to ODP action translation. */
2646
2647static void do_xlate_actions(const union ofp_action *in, size_t n_in,
2648 struct action_xlate_ctx *ctx);
2649static bool xlate_normal(struct action_xlate_ctx *);
2650
2651static void
2652add_output_action(struct action_xlate_ctx *ctx, uint16_t ofp_port)
2653{
2654 const struct ofport_dpif *ofport = get_ofp_port(ctx->ofproto, ofp_port);
2655 uint16_t odp_port = ofp_port_to_odp_port(ofp_port);
2656
2657 if (ofport) {
2658 if (ofport->up.opp.config & htonl(OFPPC_NO_FWD)) {
2659 /* Forwarding disabled on port. */
2660 return;
2661 }
2662 } else {
2663 /*
2664 * We don't have an ofport record for this port, but it doesn't hurt to
2665 * allow forwarding to it anyhow. Maybe such a port will appear later
2666 * and we're pre-populating the flow table.
2667 */
2668 }
2669
2670 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_OUTPUT, odp_port);
2671 ctx->nf_output_iface = ofp_port;
2672}
2673
2674static void
2675xlate_table_action(struct action_xlate_ctx *ctx, uint16_t in_port)
2676{
2677 if (ctx->recurse < MAX_RESUBMIT_RECURSION) {
2678 struct rule_dpif *rule;
2679 uint16_t old_in_port;
2680
2681 /* Look up a flow with 'in_port' as the input port. Then restore the
2682 * original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
2683 * have surprising behavior). */
2684 old_in_port = ctx->flow.in_port;
2685 ctx->flow.in_port = in_port;
2686 rule = rule_dpif_lookup(ctx->ofproto, &ctx->flow);
2687 ctx->flow.in_port = old_in_port;
2688
2689 if (ctx->resubmit_hook) {
2690 ctx->resubmit_hook(ctx, rule);
2691 }
2692
2693 if (rule) {
2694 ctx->recurse++;
2695 do_xlate_actions(rule->up.actions, rule->up.n_actions, ctx);
2696 ctx->recurse--;
2697 }
2698 } else {
2699 static struct vlog_rate_limit recurse_rl = VLOG_RATE_LIMIT_INIT(1, 1);
2700
2701 VLOG_ERR_RL(&recurse_rl, "NXAST_RESUBMIT recursed over %d times",
2702 MAX_RESUBMIT_RECURSION);
2703 }
2704}
2705
2706static void
2707flood_packets(struct ofproto_dpif *ofproto,
2708 uint16_t ofp_in_port, ovs_be32 mask,
2709 uint16_t *nf_output_iface, struct ofpbuf *odp_actions)
2710{
2711 struct ofport_dpif *ofport;
2712
2713 HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
2714 uint16_t ofp_port = ofport->up.ofp_port;
2715 if (ofp_port != ofp_in_port && !(ofport->up.opp.config & mask)) {
2716 nl_msg_put_u32(odp_actions, ODP_ACTION_ATTR_OUTPUT,
2717 ofport->odp_port);
2718 }
2719 }
2720 *nf_output_iface = NF_OUT_FLOOD;
2721}
2722
2723static void
2724xlate_output_action__(struct action_xlate_ctx *ctx,
2725 uint16_t port, uint16_t max_len)
2726{
2727 uint16_t prev_nf_output_iface = ctx->nf_output_iface;
2728
2729 ctx->nf_output_iface = NF_OUT_DROP;
2730
2731 switch (port) {
2732 case OFPP_IN_PORT:
2733 add_output_action(ctx, ctx->flow.in_port);
2734 break;
2735 case OFPP_TABLE:
2736 xlate_table_action(ctx, ctx->flow.in_port);
2737 break;
2738 case OFPP_NORMAL:
2739 xlate_normal(ctx);
2740 break;
2741 case OFPP_FLOOD:
2742 flood_packets(ctx->ofproto, ctx->flow.in_port, htonl(OFPPC_NO_FLOOD),
2743 &ctx->nf_output_iface, ctx->odp_actions);
2744 break;
2745 case OFPP_ALL:
2746 flood_packets(ctx->ofproto, ctx->flow.in_port, htonl(0),
2747 &ctx->nf_output_iface, ctx->odp_actions);
2748 break;
2749 case OFPP_CONTROLLER:
2750 nl_msg_put_u64(ctx->odp_actions, ODP_ACTION_ATTR_CONTROLLER, max_len);
2751 break;
2752 case OFPP_LOCAL:
2753 add_output_action(ctx, OFPP_LOCAL);
2754 break;
2755 default:
2756 if (port != ctx->flow.in_port) {
2757 add_output_action(ctx, port);
2758 }
2759 break;
2760 }
2761
2762 if (prev_nf_output_iface == NF_OUT_FLOOD) {
2763 ctx->nf_output_iface = NF_OUT_FLOOD;
2764 } else if (ctx->nf_output_iface == NF_OUT_DROP) {
2765 ctx->nf_output_iface = prev_nf_output_iface;
2766 } else if (prev_nf_output_iface != NF_OUT_DROP &&
2767 ctx->nf_output_iface != NF_OUT_FLOOD) {
2768 ctx->nf_output_iface = NF_OUT_MULTI;
2769 }
2770}
2771
2772static void
2773xlate_output_action(struct action_xlate_ctx *ctx,
2774 const struct ofp_action_output *oao)
2775{
2776 xlate_output_action__(ctx, ntohs(oao->port), ntohs(oao->max_len));
2777}
2778
2779/* If the final ODP action in 'ctx' is "pop priority", drop it, as an
2780 * optimization, because we're going to add another action that sets the
2781 * priority immediately after, or because there are no actions following the
2782 * pop. */
2783static void
2784remove_pop_action(struct action_xlate_ctx *ctx)
2785{
2786 if (ctx->odp_actions->size == ctx->last_pop_priority) {
2787 ctx->odp_actions->size -= NLA_ALIGN(NLA_HDRLEN);
2788 ctx->last_pop_priority = -1;
2789 }
2790}
2791
2792static void
2793add_pop_action(struct action_xlate_ctx *ctx)
2794{
2795 if (ctx->odp_actions->size != ctx->last_pop_priority) {
2796 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_POP_PRIORITY);
2797 ctx->last_pop_priority = ctx->odp_actions->size;
2798 }
2799}
2800
2801static void
2802xlate_enqueue_action(struct action_xlate_ctx *ctx,
2803 const struct ofp_action_enqueue *oae)
2804{
2805 uint16_t ofp_port, odp_port;
2806 uint32_t priority;
2807 int error;
2808
2809 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(oae->queue_id),
2810 &priority);
2811 if (error) {
2812 /* Fall back to ordinary output action. */
2813 xlate_output_action__(ctx, ntohs(oae->port), 0);
2814 return;
2815 }
2816
2817 /* Figure out ODP output port. */
2818 ofp_port = ntohs(oae->port);
2819 if (ofp_port == OFPP_IN_PORT) {
2820 ofp_port = ctx->flow.in_port;
2821 }
2822 odp_port = ofp_port_to_odp_port(ofp_port);
2823
2824 /* Add ODP actions. */
2825 remove_pop_action(ctx);
2826 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2827 add_output_action(ctx, odp_port);
2828 add_pop_action(ctx);
2829
2830 /* Update NetFlow output port. */
2831 if (ctx->nf_output_iface == NF_OUT_DROP) {
2832 ctx->nf_output_iface = odp_port;
2833 } else if (ctx->nf_output_iface != NF_OUT_FLOOD) {
2834 ctx->nf_output_iface = NF_OUT_MULTI;
2835 }
2836}
2837
2838static void
2839xlate_set_queue_action(struct action_xlate_ctx *ctx,
2840 const struct nx_action_set_queue *nasq)
2841{
2842 uint32_t priority;
2843 int error;
2844
2845 error = dpif_queue_to_priority(ctx->ofproto->dpif, ntohl(nasq->queue_id),
2846 &priority);
2847 if (error) {
2848 /* Couldn't translate queue to a priority, so ignore. A warning
2849 * has already been logged. */
2850 return;
2851 }
2852
2853 remove_pop_action(ctx);
2854 nl_msg_put_u32(ctx->odp_actions, ODP_ACTION_ATTR_SET_PRIORITY, priority);
2855}
2856
2857static void
2858xlate_set_dl_tci(struct action_xlate_ctx *ctx)
2859{
2860 ovs_be16 tci = ctx->flow.vlan_tci;
2861 if (!(tci & htons(VLAN_CFI))) {
2862 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN);
2863 } else {
2864 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_TCI,
2865 tci & ~htons(VLAN_CFI));
2866 }
2867}
2868
2869struct xlate_reg_state {
2870 ovs_be16 vlan_tci;
2871 ovs_be64 tun_id;
2872};
2873
2874static void
2875save_reg_state(const struct action_xlate_ctx *ctx,
2876 struct xlate_reg_state *state)
2877{
2878 state->vlan_tci = ctx->flow.vlan_tci;
2879 state->tun_id = ctx->flow.tun_id;
2880}
2881
2882static void
2883update_reg_state(struct action_xlate_ctx *ctx,
2884 const struct xlate_reg_state *state)
2885{
2886 if (ctx->flow.vlan_tci != state->vlan_tci) {
2887 xlate_set_dl_tci(ctx);
2888 }
2889 if (ctx->flow.tun_id != state->tun_id) {
2890 nl_msg_put_be64(ctx->odp_actions,
2891 ODP_ACTION_ATTR_SET_TUNNEL, ctx->flow.tun_id);
2892 }
2893}
2894
2895static void
2896xlate_autopath(struct action_xlate_ctx *ctx,
2897 const struct nx_action_autopath *naa)
2898{
2899 uint16_t ofp_port = ntohl(naa->id);
2900 struct ofport_dpif *port = get_ofp_port(ctx->ofproto, ofp_port);
2901
2902 if (!port || !port->bundle) {
2903 ofp_port = OFPP_NONE;
2904 } else if (port->bundle->bond) {
2905 /* Autopath does not support VLAN hashing. */
2906 struct ofport_dpif *slave = bond_choose_output_slave(
2907 port->bundle->bond, &ctx->flow, OFP_VLAN_NONE, &ctx->tags);
2908 if (slave) {
2909 ofp_port = slave->up.ofp_port;
2910 }
2911 }
2912 autopath_execute(naa, &ctx->flow, ofp_port);
2913}
2914
2915static void
2916xlate_nicira_action(struct action_xlate_ctx *ctx,
2917 const struct nx_action_header *nah)
2918{
2919 const struct nx_action_resubmit *nar;
2920 const struct nx_action_set_tunnel *nast;
2921 const struct nx_action_set_queue *nasq;
2922 const struct nx_action_multipath *nam;
2923 const struct nx_action_autopath *naa;
2924 enum nx_action_subtype subtype = ntohs(nah->subtype);
2925 struct xlate_reg_state state;
2926 ovs_be64 tun_id;
2927
2928 assert(nah->vendor == htonl(NX_VENDOR_ID));
2929 switch (subtype) {
2930 case NXAST_RESUBMIT:
2931 nar = (const struct nx_action_resubmit *) nah;
2932 xlate_table_action(ctx, ntohs(nar->in_port));
2933 break;
2934
2935 case NXAST_SET_TUNNEL:
2936 nast = (const struct nx_action_set_tunnel *) nah;
2937 tun_id = htonll(ntohl(nast->tun_id));
2938 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2939 ctx->flow.tun_id = tun_id;
2940 break;
2941
2942 case NXAST_DROP_SPOOFED_ARP:
2943 if (ctx->flow.dl_type == htons(ETH_TYPE_ARP)) {
2944 nl_msg_put_flag(ctx->odp_actions,
2945 ODP_ACTION_ATTR_DROP_SPOOFED_ARP);
2946 }
2947 break;
2948
2949 case NXAST_SET_QUEUE:
2950 nasq = (const struct nx_action_set_queue *) nah;
2951 xlate_set_queue_action(ctx, nasq);
2952 break;
2953
2954 case NXAST_POP_QUEUE:
2955 add_pop_action(ctx);
2956 break;
2957
2958 case NXAST_REG_MOVE:
2959 save_reg_state(ctx, &state);
2960 nxm_execute_reg_move((const struct nx_action_reg_move *) nah,
2961 &ctx->flow);
2962 update_reg_state(ctx, &state);
2963 break;
2964
2965 case NXAST_REG_LOAD:
2966 save_reg_state(ctx, &state);
2967 nxm_execute_reg_load((const struct nx_action_reg_load *) nah,
2968 &ctx->flow);
2969 update_reg_state(ctx, &state);
2970 break;
2971
2972 case NXAST_NOTE:
2973 /* Nothing to do. */
2974 break;
2975
2976 case NXAST_SET_TUNNEL64:
2977 tun_id = ((const struct nx_action_set_tunnel64 *) nah)->tun_id;
2978 nl_msg_put_be64(ctx->odp_actions, ODP_ACTION_ATTR_SET_TUNNEL, tun_id);
2979 ctx->flow.tun_id = tun_id;
2980 break;
2981
2982 case NXAST_MULTIPATH:
2983 nam = (const struct nx_action_multipath *) nah;
2984 multipath_execute(nam, &ctx->flow);
2985 break;
2986
2987 case NXAST_AUTOPATH:
2988 naa = (const struct nx_action_autopath *) nah;
2989 xlate_autopath(ctx, naa);
2990 break;
2991
2992 /* If you add a new action here that modifies flow data, don't forget to
2993 * update the flow key in ctx->flow at the same time. */
2994
2995 case NXAST_SNAT__OBSOLETE:
2996 default:
2997 VLOG_DBG_RL(&rl, "unknown Nicira action type %d", (int) subtype);
2998 break;
2999 }
3000}
3001
3002static void
3003do_xlate_actions(const union ofp_action *in, size_t n_in,
3004 struct action_xlate_ctx *ctx)
3005{
3006 const struct ofport_dpif *port;
3007 struct actions_iterator iter;
3008 const union ofp_action *ia;
3009
3010 port = get_ofp_port(ctx->ofproto, ctx->flow.in_port);
3011 if (port
3012 && port->up.opp.config & htonl(OFPPC_NO_RECV | OFPPC_NO_RECV_STP) &&
3013 port->up.opp.config & (eth_addr_equals(ctx->flow.dl_dst, eth_addr_stp)
3014 ? htonl(OFPPC_NO_RECV_STP)
3015 : htonl(OFPPC_NO_RECV))) {
3016 /* Drop this flow. */
3017 return;
3018 }
3019
3020 for (ia = actions_first(&iter, in, n_in); ia; ia = actions_next(&iter)) {
3021 enum ofp_action_type type = ntohs(ia->type);
3022 const struct ofp_action_dl_addr *oada;
3023
3024 switch (type) {
3025 case OFPAT_OUTPUT:
3026 xlate_output_action(ctx, &ia->output);
3027 break;
3028
3029 case OFPAT_SET_VLAN_VID:
3030 ctx->flow.vlan_tci &= ~htons(VLAN_VID_MASK);
3031 ctx->flow.vlan_tci |= ia->vlan_vid.vlan_vid | htons(VLAN_CFI);
3032 xlate_set_dl_tci(ctx);
3033 break;
3034
3035 case OFPAT_SET_VLAN_PCP:
3036 ctx->flow.vlan_tci &= ~htons(VLAN_PCP_MASK);
3037 ctx->flow.vlan_tci |= htons(
3038 (ia->vlan_pcp.vlan_pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
3039 xlate_set_dl_tci(ctx);
3040 break;
3041
3042 case OFPAT_STRIP_VLAN:
3043 ctx->flow.vlan_tci = htons(0);
3044 xlate_set_dl_tci(ctx);
3045 break;
3046
3047 case OFPAT_SET_DL_SRC:
3048 oada = ((struct ofp_action_dl_addr *) ia);
3049 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_SRC,
3050 oada->dl_addr, ETH_ADDR_LEN);
3051 memcpy(ctx->flow.dl_src, oada->dl_addr, ETH_ADDR_LEN);
3052 break;
3053
3054 case OFPAT_SET_DL_DST:
3055 oada = ((struct ofp_action_dl_addr *) ia);
3056 nl_msg_put_unspec(ctx->odp_actions, ODP_ACTION_ATTR_SET_DL_DST,
3057 oada->dl_addr, ETH_ADDR_LEN);
3058 memcpy(ctx->flow.dl_dst, oada->dl_addr, ETH_ADDR_LEN);
3059 break;
3060
3061 case OFPAT_SET_NW_SRC:
3062 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_SRC,
3063 ia->nw_addr.nw_addr);
3064 ctx->flow.nw_src = ia->nw_addr.nw_addr;
3065 break;
3066
3067 case OFPAT_SET_NW_DST:
3068 nl_msg_put_be32(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_DST,
3069 ia->nw_addr.nw_addr);
3070 ctx->flow.nw_dst = ia->nw_addr.nw_addr;
3071 break;
3072
3073 case OFPAT_SET_NW_TOS:
3074 nl_msg_put_u8(ctx->odp_actions, ODP_ACTION_ATTR_SET_NW_TOS,
3075 ia->nw_tos.nw_tos);
3076 ctx->flow.nw_tos = ia->nw_tos.nw_tos;
3077 break;
3078
3079 case OFPAT_SET_TP_SRC:
3080 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_SRC,
3081 ia->tp_port.tp_port);
3082 ctx->flow.tp_src = ia->tp_port.tp_port;
3083 break;
3084
3085 case OFPAT_SET_TP_DST:
3086 nl_msg_put_be16(ctx->odp_actions, ODP_ACTION_ATTR_SET_TP_DST,
3087 ia->tp_port.tp_port);
3088 ctx->flow.tp_dst = ia->tp_port.tp_port;
3089 break;
3090
3091 case OFPAT_VENDOR:
3092 xlate_nicira_action(ctx, (const struct nx_action_header *) ia);
3093 break;
3094
3095 case OFPAT_ENQUEUE:
3096 xlate_enqueue_action(ctx, (const struct ofp_action_enqueue *) ia);
3097 break;
3098
3099 default:
3100 VLOG_DBG_RL(&rl, "unknown action type %d", (int) type);
3101 break;
3102 }
3103 }
3104}
3105
3106static void
3107action_xlate_ctx_init(struct action_xlate_ctx *ctx,
3108 struct ofproto_dpif *ofproto, const struct flow *flow,
3109 const struct ofpbuf *packet)
3110{
3111 ctx->ofproto = ofproto;
3112 ctx->flow = *flow;
3113 ctx->packet = packet;
3114 ctx->resubmit_hook = NULL;
abe529af
BP
3115}
3116
3117static struct ofpbuf *
3118xlate_actions(struct action_xlate_ctx *ctx,
3119 const union ofp_action *in, size_t n_in)
3120{
3121 COVERAGE_INC(ofproto_dpif_xlate);
3122
3123 ctx->odp_actions = ofpbuf_new(512);
3124 ctx->tags = 0;
3125 ctx->may_set_up_flow = true;
3126 ctx->nf_output_iface = NF_OUT_DROP;
3127 ctx->recurse = 0;
3128 ctx->last_pop_priority = -1;
3129
fc08b7a2 3130 if (process_special(ctx->ofproto, &ctx->flow, ctx->packet)) {
abe529af
BP
3131 ctx->may_set_up_flow = false;
3132 } else {
3133 do_xlate_actions(in, n_in, ctx);
3134 }
3135
3136 remove_pop_action(ctx);
3137
3138 /* Check with in-band control to see if we're allowed to set up this
3139 * flow. */
3140 if (!connmgr_may_set_up_flow(ctx->ofproto->up.connmgr, &ctx->flow,
3141 ctx->odp_actions->data,
3142 ctx->odp_actions->size)) {
3143 ctx->may_set_up_flow = false;
3144 }
3145
3146 return ctx->odp_actions;
3147}
3148\f
3149/* OFPP_NORMAL implementation. */
3150
3151struct dst {
3152 struct ofport_dpif *port;
3153 uint16_t vlan;
3154};
3155
3156struct dst_set {
3157 struct dst builtin[32];
3158 struct dst *dsts;
3159 size_t n, allocated;
3160};
3161
3162static void dst_set_init(struct dst_set *);
3163static void dst_set_add(struct dst_set *, const struct dst *);
3164static void dst_set_free(struct dst_set *);
3165
3166static struct ofport_dpif *ofbundle_get_a_port(const struct ofbundle *);
3167
3168static bool
3169set_dst(struct action_xlate_ctx *ctx, struct dst *dst,
3170 const struct ofbundle *in_bundle, const struct ofbundle *out_bundle)
3171{
3172 dst->vlan = (out_bundle->vlan >= 0 ? OFP_VLAN_NONE
3173 : in_bundle->vlan >= 0 ? in_bundle->vlan
3174 : ctx->flow.vlan_tci == 0 ? OFP_VLAN_NONE
3175 : vlan_tci_to_vid(ctx->flow.vlan_tci));
3176
3177 dst->port = (!out_bundle->bond
3178 ? ofbundle_get_a_port(out_bundle)
3179 : bond_choose_output_slave(out_bundle->bond, &ctx->flow,
3180 dst->vlan, &ctx->tags));
3181
3182 return dst->port != NULL;
3183}
3184
3185static int
3186mirror_mask_ffs(mirror_mask_t mask)
3187{
3188 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
3189 return ffs(mask);
3190}
3191
3192static void
3193dst_set_init(struct dst_set *set)
3194{
3195 set->dsts = set->builtin;
3196 set->n = 0;
3197 set->allocated = ARRAY_SIZE(set->builtin);
3198}
3199
3200static void
3201dst_set_add(struct dst_set *set, const struct dst *dst)
3202{
3203 if (set->n >= set->allocated) {
3204 size_t new_allocated;
3205 struct dst *new_dsts;
3206
3207 new_allocated = set->allocated * 2;
3208 new_dsts = xmalloc(new_allocated * sizeof *new_dsts);
3209 memcpy(new_dsts, set->dsts, set->n * sizeof *new_dsts);
3210
3211 dst_set_free(set);
3212
3213 set->dsts = new_dsts;
3214 set->allocated = new_allocated;
3215 }
3216 set->dsts[set->n++] = *dst;
3217}
3218
3219static void
3220dst_set_free(struct dst_set *set)
3221{
3222 if (set->dsts != set->builtin) {
3223 free(set->dsts);
3224 }
3225}
3226
3227static bool
3228dst_is_duplicate(const struct dst_set *set, const struct dst *test)
3229{
3230 size_t i;
3231 for (i = 0; i < set->n; i++) {
3232 if (set->dsts[i].vlan == test->vlan
3233 && set->dsts[i].port == test->port) {
3234 return true;
3235 }
3236 }
3237 return false;
3238}
3239
3240static bool
3241ofbundle_trunks_vlan(const struct ofbundle *bundle, uint16_t vlan)
3242{
3243 return bundle->vlan < 0 && vlan_bitmap_contains(bundle->trunks, vlan);
3244}
3245
3246static bool
3247ofbundle_includes_vlan(const struct ofbundle *bundle, uint16_t vlan)
3248{
3249 return vlan == bundle->vlan || ofbundle_trunks_vlan(bundle, vlan);
3250}
3251
3252/* Returns an arbitrary interface within 'bundle'. */
3253static struct ofport_dpif *
3254ofbundle_get_a_port(const struct ofbundle *bundle)
3255{
3256 return CONTAINER_OF(list_front(&bundle->ports),
3257 struct ofport_dpif, bundle_node);
3258}
3259
3260static void
3261compose_dsts(struct action_xlate_ctx *ctx, uint16_t vlan,
3262 const struct ofbundle *in_bundle,
3263 const struct ofbundle *out_bundle, struct dst_set *set)
3264{
3265 struct dst dst;
3266
3267 if (out_bundle == OFBUNDLE_FLOOD) {
3268 struct ofbundle *bundle;
3269
3270 HMAP_FOR_EACH (bundle, hmap_node, &ctx->ofproto->bundles) {
3271 if (bundle != in_bundle
3272 && ofbundle_includes_vlan(bundle, vlan)
3273 && bundle->floodable
3274 && !bundle->mirror_out
3275 && set_dst(ctx, &dst, in_bundle, bundle)) {
3276 dst_set_add(set, &dst);
3277 }
3278 }
3279 ctx->nf_output_iface = NF_OUT_FLOOD;
3280 } else if (out_bundle && set_dst(ctx, &dst, in_bundle, out_bundle)) {
3281 dst_set_add(set, &dst);
3282 ctx->nf_output_iface = dst.port->odp_port;
3283 }
3284}
3285
3286static bool
3287vlan_is_mirrored(const struct ofmirror *m, int vlan)
3288{
3289 return vlan_bitmap_contains(m->vlans, vlan);
3290}
3291
3292static void
3293compose_mirror_dsts(struct action_xlate_ctx *ctx,
3294 uint16_t vlan, const struct ofbundle *in_bundle,
3295 struct dst_set *set)
3296{
3297 struct ofproto_dpif *ofproto = ctx->ofproto;
3298 mirror_mask_t mirrors;
3299 int flow_vlan;
3300 size_t i;
3301
3302 mirrors = in_bundle->src_mirrors;
3303 for (i = 0; i < set->n; i++) {
3304 mirrors |= set->dsts[i].port->bundle->dst_mirrors;
3305 }
3306
3307 if (!mirrors) {
3308 return;
3309 }
3310
3311 flow_vlan = vlan_tci_to_vid(ctx->flow.vlan_tci);
3312 if (flow_vlan == 0) {
3313 flow_vlan = OFP_VLAN_NONE;
3314 }
3315
3316 while (mirrors) {
3317 struct ofmirror *m = ofproto->mirrors[mirror_mask_ffs(mirrors) - 1];
3318 if (vlan_is_mirrored(m, vlan)) {
3319 struct dst dst;
3320
3321 if (m->out) {
3322 if (set_dst(ctx, &dst, in_bundle, m->out)
3323 && !dst_is_duplicate(set, &dst)) {
3324 dst_set_add(set, &dst);
3325 }
3326 } else {
3327 struct ofbundle *bundle;
3328
3329 HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
3330 if (ofbundle_includes_vlan(bundle, m->out_vlan)
3331 && set_dst(ctx, &dst, in_bundle, bundle))
3332 {
3333 if (bundle->vlan < 0) {
3334 dst.vlan = m->out_vlan;
3335 }
3336 if (dst_is_duplicate(set, &dst)) {
3337 continue;
3338 }
3339
3340 /* Use the vlan tag on the original flow instead of
3341 * the one passed in the vlan parameter. This ensures
3342 * that we compare the vlan from before any implicit
3343 * tagging tags place. This is necessary because
3344 * dst->vlan is the final vlan, after removing implicit
3345 * tags. */
3346 if (bundle == in_bundle && dst.vlan == flow_vlan) {
3347 /* Don't send out input port on same VLAN. */
3348 continue;
3349 }
3350 dst_set_add(set, &dst);
3351 }
3352 }
3353 }
3354 }
3355 mirrors &= mirrors - 1;
3356 }
3357}
3358
3359static void
3360compose_actions(struct action_xlate_ctx *ctx, uint16_t vlan,
3361 const struct ofbundle *in_bundle,
3362 const struct ofbundle *out_bundle)
3363{
3364 uint16_t initial_vlan, cur_vlan;
3365 const struct dst *dst;
3366 struct dst_set set;
3367
3368 dst_set_init(&set);
3369 compose_dsts(ctx, vlan, in_bundle, out_bundle, &set);
3370 compose_mirror_dsts(ctx, vlan, in_bundle, &set);
3371
3372 /* Output all the packets we can without having to change the VLAN. */
3373 initial_vlan = vlan_tci_to_vid(ctx->flow.vlan_tci);
3374 if (initial_vlan == 0) {
3375 initial_vlan = OFP_VLAN_NONE;
3376 }
3377 for (dst = set.dsts; dst < &set.dsts[set.n]; dst++) {
3378 if (dst->vlan != initial_vlan) {
3379 continue;
3380 }
3381 nl_msg_put_u32(ctx->odp_actions,
3382 ODP_ACTION_ATTR_OUTPUT, dst->port->odp_port);
3383 }
3384
3385 /* Then output the rest. */
3386 cur_vlan = initial_vlan;
3387 for (dst = set.dsts; dst < &set.dsts[set.n]; dst++) {
3388 if (dst->vlan == initial_vlan) {
3389 continue;
3390 }
3391 if (dst->vlan != cur_vlan) {
3392 if (dst->vlan == OFP_VLAN_NONE) {
3393 nl_msg_put_flag(ctx->odp_actions, ODP_ACTION_ATTR_STRIP_VLAN);
3394 } else {
3395 ovs_be16 tci;
3396 tci = htons(dst->vlan & VLAN_VID_MASK);
3397 tci |= ctx->flow.vlan_tci & htons(VLAN_PCP_MASK);
3398 nl_msg_put_be16(ctx->odp_actions,
3399 ODP_ACTION_ATTR_SET_DL_TCI, tci);
3400 }
3401 cur_vlan = dst->vlan;
3402 }
3403 nl_msg_put_u32(ctx->odp_actions,
3404 ODP_ACTION_ATTR_OUTPUT, dst->port->odp_port);
3405 }
3406
3407 dst_set_free(&set);
3408}
3409
3410/* Returns the effective vlan of a packet, taking into account both the
3411 * 802.1Q header and implicitly tagged ports. A value of 0 indicates that
3412 * the packet is untagged and -1 indicates it has an invalid header and
3413 * should be dropped. */
3414static int
3415flow_get_vlan(struct ofproto_dpif *ofproto, const struct flow *flow,
3416 struct ofbundle *in_bundle, bool have_packet)
3417{
3418 int vlan = vlan_tci_to_vid(flow->vlan_tci);
3419 if (in_bundle->vlan >= 0) {
3420 if (vlan) {
3421 if (have_packet) {
3422 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3423 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged "
3424 "packet received on port %s configured with "
3425 "implicit VLAN %"PRIu16,
3426 ofproto->up.name, vlan,
3427 in_bundle->name, in_bundle->vlan);
3428 }
3429 return -1;
3430 }
3431 vlan = in_bundle->vlan;
3432 } else {
3433 if (!ofbundle_includes_vlan(in_bundle, vlan)) {
3434 if (have_packet) {
3435 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3436 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged "
3437 "packet received on port %s not configured for "
3438 "trunking VLAN %d",
3439 ofproto->up.name, vlan, in_bundle->name, vlan);
3440 }
3441 return -1;
3442 }
3443 }
3444
3445 return vlan;
3446}
3447
3448/* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
3449 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
3450 * indicate this; newer upstream kernels use gratuitous ARP requests. */
3451static bool
3452is_gratuitous_arp(const struct flow *flow)
3453{
3454 return (flow->dl_type == htons(ETH_TYPE_ARP)
3455 && eth_addr_is_broadcast(flow->dl_dst)
3456 && (flow->nw_proto == ARP_OP_REPLY
3457 || (flow->nw_proto == ARP_OP_REQUEST
3458 && flow->nw_src == flow->nw_dst)));
3459}
3460
3461static void
3462update_learning_table(struct ofproto_dpif *ofproto,
3463 const struct flow *flow, int vlan,
3464 struct ofbundle *in_bundle)
3465{
3466 struct mac_entry *mac;
3467
3468 if (!mac_learning_may_learn(ofproto->ml, flow->dl_src, vlan)) {
3469 return;
3470 }
3471
3472 mac = mac_learning_insert(ofproto->ml, flow->dl_src, vlan);
3473 if (is_gratuitous_arp(flow)) {
3474 /* We don't want to learn from gratuitous ARP packets that are
3475 * reflected back over bond slaves so we lock the learning table. */
3476 if (!in_bundle->bond) {
3477 mac_entry_set_grat_arp_lock(mac);
3478 } else if (mac_entry_is_grat_arp_locked(mac)) {
3479 return;
3480 }
3481 }
3482
3483 if (mac_entry_is_new(mac) || mac->port.p != in_bundle) {
3484 /* The log messages here could actually be useful in debugging,
3485 * so keep the rate limit relatively high. */
3486 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30, 300);
3487 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
3488 "on port %s in VLAN %d",
3489 ofproto->up.name, ETH_ADDR_ARGS(flow->dl_src),
3490 in_bundle->name, vlan);
3491
3492 mac->port.p = in_bundle;
3493 tag_set_add(&ofproto->revalidate_set,
3494 mac_learning_changed(ofproto->ml, mac));
3495 }
3496}
3497
3498/* Determines whether packets in 'flow' within 'br' should be forwarded or
3499 * dropped. Returns true if they may be forwarded, false if they should be
3500 * dropped.
3501 *
3502 * If 'have_packet' is true, it indicates that the caller is processing a
3503 * received packet. If 'have_packet' is false, then the caller is just
3504 * revalidating an existing flow because configuration has changed. Either
3505 * way, 'have_packet' only affects logging (there is no point in logging errors
3506 * during revalidation).
3507 *
3508 * Sets '*in_portp' to the input port. This will be a null pointer if
3509 * flow->in_port does not designate a known input port (in which case
3510 * is_admissible() returns false).
3511 *
3512 * When returning true, sets '*vlanp' to the effective VLAN of the input
3513 * packet, as returned by flow_get_vlan().
3514 *
3515 * May also add tags to '*tags', although the current implementation only does
3516 * so in one special case.
3517 */
3518static bool
3519is_admissible(struct ofproto_dpif *ofproto, const struct flow *flow,
3520 bool have_packet,
3521 tag_type *tags, int *vlanp, struct ofbundle **in_bundlep)
3522{
3523 struct ofport_dpif *in_port;
3524 struct ofbundle *in_bundle;
3525 int vlan;
3526
3527 /* Find the port and bundle for the received packet. */
3528 in_port = get_ofp_port(ofproto, flow->in_port);
23adee42 3529 *in_bundlep = in_bundle = in_port ? in_port->bundle : NULL;
abe529af
BP
3530 if (!in_port || !in_bundle) {
3531 /* No interface? Something fishy... */
3532 if (have_packet) {
3533 /* Odd. A few possible reasons here:
3534 *
3535 * - We deleted a port but there are still a few packets queued up
3536 * from it.
3537 *
3538 * - Someone externally added a port (e.g. "ovs-dpctl add-if") that
3539 * we don't know about.
3540 *
3541 * - Packet arrived on the local port but the local port is not
3542 * part of a bundle.
3543 */
3544 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3545
3546 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
3547 "port %"PRIu16,
3548 ofproto->up.name, flow->in_port);
3549 }
3550 return false;
3551 }
3552 *vlanp = vlan = flow_get_vlan(ofproto, flow, in_bundle, have_packet);
3553 if (vlan < 0) {
3554 return false;
3555 }
3556
3557 /* Drop frames for reserved multicast addresses. */
3558 if (eth_addr_is_reserved(flow->dl_dst)) {
3559 return false;
3560 }
3561
3562 /* Drop frames on bundles reserved for mirroring. */
3563 if (in_bundle->mirror_out) {
3564 if (have_packet) {
3565 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3566 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
3567 "%s, which is reserved exclusively for mirroring",
3568 ofproto->up.name, in_bundle->name);
3569 }
3570 return false;
3571 }
3572
3573 if (in_bundle->bond) {
3574 struct mac_entry *mac;
3575
3576 switch (bond_check_admissibility(in_bundle->bond, in_port,
3577 flow->dl_dst, tags)) {
3578 case BV_ACCEPT:
3579 break;
3580
3581 case BV_DROP:
3582 return false;
3583
3584 case BV_DROP_IF_MOVED:
3585 mac = mac_learning_lookup(ofproto->ml, flow->dl_src, vlan, NULL);
3586 if (mac && mac->port.p != in_bundle &&
3587 (!is_gratuitous_arp(flow)
3588 || mac_entry_is_grat_arp_locked(mac))) {
3589 return false;
3590 }
3591 break;
3592 }
3593 }
3594
3595 return true;
3596}
3597
3598/* If the composed actions may be applied to any packet in the given 'flow',
3599 * returns true. Otherwise, the actions should only be applied to 'packet', or
3600 * not at all, if 'packet' was NULL. */
3601static bool
3602xlate_normal(struct action_xlate_ctx *ctx)
3603{
3604 struct ofbundle *in_bundle;
3605 struct ofbundle *out_bundle;
3606 struct mac_entry *mac;
3607 int vlan;
3608
3609 /* Check whether we should drop packets in this flow. */
3610 if (!is_admissible(ctx->ofproto, &ctx->flow, ctx->packet != NULL,
3611 &ctx->tags, &vlan, &in_bundle)) {
3612 out_bundle = NULL;
3613 goto done;
3614 }
3615
3616 /* Learn source MAC (but don't try to learn from revalidation). */
3617 if (ctx->packet) {
3618 update_learning_table(ctx->ofproto, &ctx->flow, vlan, in_bundle);
3619 }
3620
3621 /* Determine output bundle. */
3622 mac = mac_learning_lookup(ctx->ofproto->ml, ctx->flow.dl_dst, vlan,
3623 &ctx->tags);
3624 if (mac) {
3625 out_bundle = mac->port.p;
3626 } else if (!ctx->packet && !eth_addr_is_multicast(ctx->flow.dl_dst)) {
3627 /* If we are revalidating but don't have a learning entry then eject
3628 * the flow. Installing a flow that floods packets opens up a window
3629 * of time where we could learn from a packet reflected on a bond and
3630 * blackhole packets before the learning table is updated to reflect
3631 * the correct port. */
3632 return false;
3633 } else {
3634 out_bundle = OFBUNDLE_FLOOD;
3635 }
3636
3637 /* Don't send packets out their input bundles. */
3638 if (in_bundle == out_bundle) {
3639 out_bundle = NULL;
3640 }
3641
3642done:
3643 if (in_bundle) {
3644 compose_actions(ctx, vlan, in_bundle, out_bundle);
3645 }
3646
3647 return true;
3648}
3649\f
3650static bool
3651get_drop_frags(struct ofproto *ofproto_)
3652{
3653 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3654 bool drop_frags;
3655
3656 dpif_get_drop_frags(ofproto->dpif, &drop_frags);
3657 return drop_frags;
3658}
3659
3660static void
3661set_drop_frags(struct ofproto *ofproto_, bool drop_frags)
3662{
3663 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3664
3665 dpif_set_drop_frags(ofproto->dpif, drop_frags);
3666}
3667
3668static int
3669packet_out(struct ofproto *ofproto_, struct ofpbuf *packet,
3670 const struct flow *flow,
3671 const union ofp_action *ofp_actions, size_t n_ofp_actions)
3672{
3673 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3674 int error;
3675
3676 error = validate_actions(ofp_actions, n_ofp_actions, flow,
3677 ofproto->max_ports);
3678 if (!error) {
3679 struct action_xlate_ctx ctx;
3680 struct ofpbuf *odp_actions;
3681
3682 action_xlate_ctx_init(&ctx, ofproto, flow, packet);
3683 odp_actions = xlate_actions(&ctx, ofp_actions, n_ofp_actions);
3684 dpif_execute(ofproto->dpif, odp_actions->data, odp_actions->size,
3685 packet);
3686 ofpbuf_delete(odp_actions);
3687 }
3688 return error;
3689}
3690
3691static void
3692get_netflow_ids(const struct ofproto *ofproto_,
3693 uint8_t *engine_type, uint8_t *engine_id)
3694{
3695 struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
3696
3697 dpif_get_netflow_ids(ofproto->dpif, engine_type, engine_id);
3698}
3699\f
3700static struct ofproto_dpif *
3701ofproto_dpif_lookup(const char *name)
3702{
3703 struct ofproto *ofproto = ofproto_lookup(name);
3704 return (ofproto && ofproto->ofproto_class == &ofproto_dpif_class
3705 ? ofproto_dpif_cast(ofproto)
3706 : NULL);
3707}
3708
3709static void
3710ofproto_unixctl_fdb_show(struct unixctl_conn *conn,
3711 const char *args, void *aux OVS_UNUSED)
3712{
3713 struct ds ds = DS_EMPTY_INITIALIZER;
3714 const struct ofproto_dpif *ofproto;
3715 const struct mac_entry *e;
3716
3717 ofproto = ofproto_dpif_lookup(args);
3718 if (!ofproto) {
3719 unixctl_command_reply(conn, 501, "no such bridge");
3720 return;
3721 }
3722
3723 ds_put_cstr(&ds, " port VLAN MAC Age\n");
3724 LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
3725 struct ofbundle *bundle = e->port.p;
3726 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
3727 ofbundle_get_a_port(bundle)->odp_port,
3728 e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(e));
3729 }
3730 unixctl_command_reply(conn, 200, ds_cstr(&ds));
3731 ds_destroy(&ds);
3732}
3733
3734struct ofproto_trace {
3735 struct action_xlate_ctx ctx;
3736 struct flow flow;
3737 struct ds *result;
3738};
3739
3740static void
3741trace_format_rule(struct ds *result, int level, const struct rule *rule)
3742{
3743 ds_put_char_multiple(result, '\t', level);
3744 if (!rule) {
3745 ds_put_cstr(result, "No match\n");
3746 return;
3747 }
3748
3749 ds_put_format(result, "Rule: cookie=%#"PRIx64" ",
3750 ntohll(rule->flow_cookie));
3751 cls_rule_format(&rule->cr, result);
3752 ds_put_char(result, '\n');
3753
3754 ds_put_char_multiple(result, '\t', level);
3755 ds_put_cstr(result, "OpenFlow ");
3756 ofp_print_actions(result, (const struct ofp_action_header *) rule->actions,
3757 rule->n_actions * sizeof *rule->actions);
3758 ds_put_char(result, '\n');
3759}
3760
3761static void
3762trace_format_flow(struct ds *result, int level, const char *title,
3763 struct ofproto_trace *trace)
3764{
3765 ds_put_char_multiple(result, '\t', level);
3766 ds_put_format(result, "%s: ", title);
3767 if (flow_equal(&trace->ctx.flow, &trace->flow)) {
3768 ds_put_cstr(result, "unchanged");
3769 } else {
3770 flow_format(result, &trace->ctx.flow);
3771 trace->flow = trace->ctx.flow;
3772 }
3773 ds_put_char(result, '\n');
3774}
3775
3776static void
3777trace_resubmit(struct action_xlate_ctx *ctx, struct rule_dpif *rule)
3778{
3779 struct ofproto_trace *trace = CONTAINER_OF(ctx, struct ofproto_trace, ctx);
3780 struct ds *result = trace->result;
3781
3782 ds_put_char(result, '\n');
3783 trace_format_flow(result, ctx->recurse + 1, "Resubmitted flow", trace);
3784 trace_format_rule(result, ctx->recurse + 1, &rule->up);
3785}
3786
3787static void
3788ofproto_unixctl_trace(struct unixctl_conn *conn, const char *args_,
3789 void *aux OVS_UNUSED)
3790{
3791 char *dpname, *in_port_s, *tun_id_s, *packet_s;
3792 char *args = xstrdup(args_);
3793 char *save_ptr = NULL;
3794 struct ofproto_dpif *ofproto;
3795 struct ofpbuf packet;
3796 struct rule_dpif *rule;
3797 struct ds result;
3798 struct flow flow;
3799 uint16_t in_port;
3800 ovs_be64 tun_id;
3801 char *s;
3802
3803 ofpbuf_init(&packet, strlen(args) / 2);
3804 ds_init(&result);
3805
3806 dpname = strtok_r(args, " ", &save_ptr);
3807 tun_id_s = strtok_r(NULL, " ", &save_ptr);
3808 in_port_s = strtok_r(NULL, " ", &save_ptr);
3809 packet_s = strtok_r(NULL, "", &save_ptr); /* Get entire rest of line. */
3810 if (!dpname || !in_port_s || !packet_s) {
3811 unixctl_command_reply(conn, 501, "Bad command syntax");
3812 goto exit;
3813 }
3814
3815 ofproto = ofproto_dpif_lookup(dpname);
3816 if (!ofproto) {
3817 unixctl_command_reply(conn, 501, "Unknown ofproto (use ofproto/list "
3818 "for help)");
3819 goto exit;
3820 }
3821
3822 tun_id = htonll(strtoull(tun_id_s, NULL, 0));
3823 in_port = ofp_port_to_odp_port(atoi(in_port_s));
3824
3825 packet_s = ofpbuf_put_hex(&packet, packet_s, NULL);
3826 packet_s += strspn(packet_s, " ");
3827 if (*packet_s != '\0') {
3828 unixctl_command_reply(conn, 501, "Trailing garbage in command");
3829 goto exit;
3830 }
3831 if (packet.size < ETH_HEADER_LEN) {
3832 unixctl_command_reply(conn, 501, "Packet data too short for Ethernet");
3833 goto exit;
3834 }
3835
3836 ds_put_cstr(&result, "Packet: ");
3837 s = ofp_packet_to_string(packet.data, packet.size, packet.size);
3838 ds_put_cstr(&result, s);
3839 free(s);
3840
3841 flow_extract(&packet, tun_id, in_port, &flow);
3842 ds_put_cstr(&result, "Flow: ");
3843 flow_format(&result, &flow);
3844 ds_put_char(&result, '\n');
3845
3846 rule = rule_dpif_lookup(ofproto, &flow);
3847 trace_format_rule(&result, 0, &rule->up);
3848 if (rule) {
3849 struct ofproto_trace trace;
3850 struct ofpbuf *odp_actions;
3851
3852 trace.result = &result;
3853 trace.flow = flow;
3854 action_xlate_ctx_init(&trace.ctx, ofproto, &flow, &packet);
3855 trace.ctx.resubmit_hook = trace_resubmit;
3856 odp_actions = xlate_actions(&trace.ctx,
3857 rule->up.actions, rule->up.n_actions);
3858
3859 ds_put_char(&result, '\n');
3860 trace_format_flow(&result, 0, "Final flow", &trace);
3861 ds_put_cstr(&result, "Datapath actions: ");
3862 format_odp_actions(&result, odp_actions->data, odp_actions->size);
3863 ofpbuf_delete(odp_actions);
3864 }
3865
3866 unixctl_command_reply(conn, 200, ds_cstr(&result));
3867
3868exit:
3869 ds_destroy(&result);
3870 ofpbuf_uninit(&packet);
3871 free(args);
3872}
3873
3874static void
3875ofproto_dpif_unixctl_init(void)
3876{
3877 static bool registered;
3878 if (registered) {
3879 return;
3880 }
3881 registered = true;
3882
3883 unixctl_command_register("ofproto/trace", ofproto_unixctl_trace, NULL);
3884 unixctl_command_register("fdb/show", ofproto_unixctl_fdb_show, NULL);
3885}
3886\f
3887const struct ofproto_class ofproto_dpif_class = {
3888 enumerate_types,
3889 enumerate_names,
3890 del,
3891 alloc,
3892 construct,
3893 destruct,
3894 dealloc,
3895 run,
3896 wait,
3897 flush,
6c1491fb
BP
3898 get_features,
3899 get_tables,
abe529af
BP
3900 port_alloc,
3901 port_construct,
3902 port_destruct,
3903 port_dealloc,
3904 port_modified,
3905 port_reconfigured,
3906 port_query_by_name,
3907 port_add,
3908 port_del,
3909 port_dump_start,
3910 port_dump_next,
3911 port_dump_done,
3912 port_poll,
3913 port_poll_wait,
3914 port_is_lacp_current,
3915 rule_alloc,
3916 rule_construct,
3917 rule_destruct,
3918 rule_dealloc,
abe529af
BP
3919 rule_get_stats,
3920 rule_execute,
3921 rule_modify_actions,
3922 get_drop_frags,
3923 set_drop_frags,
3924 packet_out,
3925 set_netflow,
3926 get_netflow_ids,
3927 set_sflow,
3928 set_cfm,
3929 get_cfm,
3930 bundle_set,
3931 bundle_remove,
3932 mirror_set,
3933 set_flood_vlans,
3934 is_mirror_output_bundle,
3935};