]> git.proxmox.com Git - mirror_qemu.git/blame - qapi/migration.json
qga/qapi-schema: Reformat doc comments to conform to current conventions
[mirror_qemu.git] / qapi / migration.json
CommitLineData
48685a8e 1# -*- Mode: Python -*-
f7160f32 2# vim: filetype=python
48685a8e
MA
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
9aca82ba 10{ 'include': 'sockets.json' }
48685a8e
MA
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the target VM
20#
21# @total: total amount of bytes involved in the migration process
22#
23# @duplicate: number of duplicate (zero) pages (since 1.2)
24#
25# @skipped: number of skipped zero pages (since 1.5)
26#
27# @normal: number of normal pages (since 1.2)
28#
29# @normal-bytes: number of normal bytes sent (since 1.2)
30#
31# @dirty-pages-rate: number of pages dirtied by second by the
26ec4e53 32# guest (since 1.3)
48685a8e
MA
33#
34# @mbps: throughput in megabits/sec. (since 1.6)
35#
36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37#
38# @postcopy-requests: The number of page requests received from the destination
26ec4e53 39# (since 2.7)
48685a8e
MA
40#
41# @page-size: The number of bytes per page for the various page-based
26ec4e53 42# statistics (since 2.10)
48685a8e 43#
a61c45bd
JQ
44# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45#
aecbfe9c 46# @pages-per-second: the number of memory pages transferred per second
26ec4e53 47# (Since 4.0)
aecbfe9c 48#
ae680668
DE
49# @precopy-bytes: The number of bytes sent in the pre-copy phase
50# (since 7.0).
51#
52# @downtime-bytes: The number of bytes sent while the guest is paused
53# (since 7.0).
54#
55# @postcopy-bytes: The number of bytes sent during the post-copy phase
56# (since 7.0).
57#
cf20c897
LB
58# @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59# not avoid copying dirty pages. This is between
60# 0 and @dirty-sync-count * @multifd-channels.
61# (since 7.1)
9bc6e893 62# Since: 0.14
48685a8e
MA
63##
64{ 'struct': 'MigrationStats',
65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68 'mbps' : 'number', 'dirty-sync-count' : 'int',
a61c45bd 69 'postcopy-requests' : 'int', 'page-size' : 'int',
ae680668
DE
70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
cf20c897
LB
72 'postcopy-bytes' : 'uint64',
73 'dirty-sync-missed-zero-copy' : 'uint64' } }
48685a8e
MA
74
75##
76# @XBZRLECacheStats:
77#
78# Detailed XBZRLE migration cache statistics
79#
80# @cache-size: XBZRLE cache size
81#
82# @bytes: amount of bytes already transferred to the target VM
83#
84# @pages: amount of pages transferred to the target VM
85#
86# @cache-miss: number of cache miss
87#
88# @cache-miss-rate: rate of cache miss (since 2.1)
89#
e460a4b1
WW
90# @encoding-rate: rate of encoded bytes (since 5.1)
91#
48685a8e
MA
92# @overflow: number of overflows
93#
94# Since: 1.2
95##
96{ 'struct': 'XBZRLECacheStats',
8b9407a0 97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
48685a8e 98 'cache-miss': 'int', 'cache-miss-rate': 'number',
e460a4b1 99 'encoding-rate': 'number', 'overflow': 'int' } }
48685a8e 100
76e03000
XG
101##
102# @CompressionStats:
103#
104# Detailed migration compression statistics
105#
106# @pages: amount of pages compressed and transferred to the target VM
107#
108# @busy: count of times that no free thread was available to compress data
109#
110# @busy-rate: rate of thread busy
111#
112# @compressed-size: amount of bytes after compression
113#
114# @compression-rate: rate of compressed size
115#
116# Since: 3.1
117##
118{ 'struct': 'CompressionStats',
119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
dbb28bc8 120 'compressed-size': 'int', 'compression-rate': 'number' } }
76e03000 121
48685a8e
MA
122##
123# @MigrationStatus:
124#
125# An enumeration of migration status.
126#
127# @none: no migration has ever happened.
128#
129# @setup: migration process has been initiated.
130#
131# @cancelling: in the process of cancelling migration.
132#
133# @cancelled: cancelling migration is finished.
134#
135# @active: in the process of doing migration.
136#
137# @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138#
51f63ec7 139# @postcopy-paused: during postcopy but paused. (since 3.0)
a688d2c1 140#
51f63ec7 141# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
135b87b4 142#
48685a8e
MA
143# @completed: migration is finished.
144#
145# @failed: some error occurred during migration process.
146#
147# @colo: VM is in the process of fault tolerance, VM can not get into this
148# state unless colo capability is enabled for migration. (since 2.8)
149#
31e06077
DDAG
150# @pre-switchover: Paused before device serialisation. (since 2.11)
151#
152# @device: During device serialisation when pause-before-switchover is enabled
26ec4e53 153# (since 2.11)
31e06077 154#
c7e0acd5
JF
155# @wait-unplug: wait for device unplug request by guest OS to be completed.
156# (since 4.2)
157#
48685a8e 158# Since: 2.3
48685a8e
MA
159##
160{ 'enum': 'MigrationStatus',
161 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
a688d2c1 162 'active', 'postcopy-active', 'postcopy-paused',
135b87b4 163 'postcopy-recover', 'completed', 'failed', 'colo',
c7e0acd5 164 'pre-switchover', 'device', 'wait-unplug' ] }
3710586c
KW
165##
166# @VfioStats:
167#
168# Detailed VFIO devices migration statistics
169#
170# @transferred: amount of bytes transferred to the target VM by VFIO devices
171#
172# Since: 5.2
3710586c
KW
173##
174{ 'struct': 'VfioStats',
175 'data': {'transferred': 'int' } }
48685a8e
MA
176
177##
178# @MigrationInfo:
179#
180# Information about current migration process.
181#
182# @status: @MigrationStatus describing the current migration status.
183# If this field is not returned, no migration process
184# has been initiated
185#
186# @ram: @MigrationStats containing detailed migration
187# status, only returned if status is 'active' or
188# 'completed'(since 1.2)
189#
190# @disk: @MigrationStats containing detailed disk migration
191# status, only returned if status is 'active' and it is a block
192# migration
193#
194# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195# migration statistics, only returned if XBZRLE feature is on and
196# status is 'active' or 'completed' (since 1.2)
197#
198# @total-time: total amount of milliseconds since migration started.
26ec4e53
PM
199# If migration has ended, it returns the total migration
200# time. (since 1.2)
48685a8e
MA
201#
202# @downtime: only present when migration finishes correctly
26ec4e53
PM
203# total downtime in milliseconds for the guest.
204# (since 1.3)
48685a8e
MA
205#
206# @expected-downtime: only present while migration is active
26ec4e53
PM
207# expected downtime in milliseconds for the guest in last walk
208# of the dirty bitmap. (since 1.3)
48685a8e 209#
a660eed4
PM
210# @setup-time: amount of setup time in milliseconds *before* the
211# iterations begin but *after* the QMP command is issued. This is designed
26ec4e53
PM
212# to provide an accounting of any activities (such as RDMA pinning) which
213# may be expensive, but do not actually occur during the iterative
214# migration rounds themselves. (since 1.6)
48685a8e
MA
215#
216# @cpu-throttle-percentage: percentage of time guest cpus are being
26ec4e53
PM
217# throttled during auto-converge. This is only present when auto-converge
218# has started throttling guest cpus. (Since 2.7)
48685a8e
MA
219#
220# @error-desc: the human readable error description string, when
221# @status is 'failed'. Clients should not attempt to parse the
222# error strings. (Since 2.7)
65ace060
AP
223#
224# @postcopy-blocktime: total time when all vCPU were blocked during postcopy
26ec4e53
PM
225# live migration. This is only present when the postcopy-blocktime
226# migration capability is enabled. (Since 3.0)
65ace060 227#
5e50cae4 228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is
26ec4e53
PM
229# only present when the postcopy-blocktime migration capability
230# is enabled. (Since 3.0)
65ace060 231#
76e03000 232# @compression: migration compression statistics, only returned if compression
26ec4e53 233# feature is on and status is 'active' or 'completed' (Since 3.1)
48685a8e 234#
9aca82ba
JQ
235# @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236#
3710586c
KW
237# @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238# only returned if VFIO device is present, migration is supported by all
239# VFIO devices and status is 'active' or 'completed' (since 5.2)
240#
e11ce6c0
MA
241# @blocked-reasons: A list of reasons an outgoing migration is blocked.
242# Present and non-empty when migration is blocked.
243# (since 6.0)
244#
9bc6e893 245# Since: 0.14
48685a8e
MA
246##
247{ 'struct': 'MigrationInfo',
248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249 '*disk': 'MigrationStats',
3710586c 250 '*vfio': 'VfioStats',
48685a8e
MA
251 '*xbzrle-cache': 'XBZRLECacheStats',
252 '*total-time': 'int',
253 '*expected-downtime': 'int',
254 '*downtime': 'int',
255 '*setup-time': 'int',
256 '*cpu-throttle-percentage': 'int',
65ace060 257 '*error-desc': 'str',
3af8554b 258 '*blocked-reasons': ['str'],
65ace060 259 '*postcopy-blocktime' : 'uint32',
76e03000 260 '*postcopy-vcpu-blocktime': ['uint32'],
9aca82ba
JQ
261 '*compression': 'CompressionStats',
262 '*socket-address': ['SocketAddress'] } }
48685a8e
MA
263
264##
265# @query-migrate:
266#
267# Returns information about current migration process. If migration
268# is active there will be another json-object with RAM migration
269# status and if block migration is active another one with block
270# migration status.
271#
272# Returns: @MigrationInfo
273#
9bc6e893 274# Since: 0.14
48685a8e 275#
37fa48a4 276# Examples:
48685a8e
MA
277#
278# 1. Before the first migration
279#
280# -> { "execute": "query-migrate" }
281# <- { "return": {} }
282#
283# 2. Migration is done and has succeeded
284#
285# -> { "execute": "query-migrate" }
286# <- { "return": {
287# "status": "completed",
be1d2c49 288# "total-time":12345,
289# "setup-time":12345,
290# "downtime":12345,
48685a8e
MA
291# "ram":{
292# "transferred":123,
293# "remaining":123,
294# "total":246,
48685a8e
MA
295# "duplicate":123,
296# "normal":123,
297# "normal-bytes":123456,
298# "dirty-sync-count":15
299# }
300# }
301# }
302#
303# 3. Migration is done and has failed
304#
305# -> { "execute": "query-migrate" }
306# <- { "return": { "status": "failed" } }
307#
308# 4. Migration is being performed and is not a block migration:
309#
310# -> { "execute": "query-migrate" }
311# <- {
312# "return":{
313# "status":"active",
be1d2c49 314# "total-time":12345,
315# "setup-time":12345,
316# "expected-downtime":12345,
48685a8e
MA
317# "ram":{
318# "transferred":123,
319# "remaining":123,
320# "total":246,
48685a8e
MA
321# "duplicate":123,
322# "normal":123,
323# "normal-bytes":123456,
324# "dirty-sync-count":15
325# }
326# }
327# }
328#
329# 5. Migration is being performed and is a block migration:
330#
331# -> { "execute": "query-migrate" }
332# <- {
333# "return":{
334# "status":"active",
be1d2c49 335# "total-time":12345,
336# "setup-time":12345,
337# "expected-downtime":12345,
48685a8e
MA
338# "ram":{
339# "total":1057024,
340# "remaining":1053304,
341# "transferred":3720,
48685a8e
MA
342# "duplicate":123,
343# "normal":123,
344# "normal-bytes":123456,
345# "dirty-sync-count":15
346# },
347# "disk":{
348# "total":20971520,
349# "remaining":20880384,
350# "transferred":91136
351# }
352# }
353# }
354#
355# 6. Migration is being performed and XBZRLE is active:
356#
357# -> { "execute": "query-migrate" }
358# <- {
359# "return":{
360# "status":"active",
be1d2c49 361# "total-time":12345,
362# "setup-time":12345,
363# "expected-downtime":12345,
48685a8e
MA
364# "ram":{
365# "total":1057024,
366# "remaining":1053304,
367# "transferred":3720,
48685a8e
MA
368# "duplicate":10,
369# "normal":3333,
370# "normal-bytes":3412992,
371# "dirty-sync-count":15
372# },
373# "xbzrle-cache":{
374# "cache-size":67108864,
375# "bytes":20971520,
376# "pages":2444343,
377# "cache-miss":2244,
378# "cache-miss-rate":0.123,
e460a4b1 379# "encoding-rate":80.1,
48685a8e
MA
380# "overflow":34434
381# }
382# }
383# }
384#
385##
386{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388##
389# @MigrationCapability:
390#
391# Migration capabilities enumeration
392#
393# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394# This feature allows us to minimize migration traffic for certain work
395# loads, by sending compressed difference of the pages
396#
397# @rdma-pin-all: Controls whether or not the entire VM memory footprint is
26ec4e53
PM
398# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399# Disabled by default. (since 2.0)
48685a8e
MA
400#
401# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
26ec4e53
PM
402# essentially saves 1MB of zeroes per block on the wire. Enabling requires
403# source and target VM to support this feature. To enable it is sufficient
404# to enable the capability on the source VM. The feature is disabled by
405# default. (since 1.6)
48685a8e
MA
406#
407# @compress: Use multiple compression threads to accelerate live migration.
26ec4e53
PM
408# This feature can help to reduce the migration traffic, by sending
409# compressed pages. Please note that if compress and xbzrle are both
410# on, compress only takes effect in the ram bulk stage, after that,
411# it will be disabled and only xbzrle takes effect, this can help to
412# minimize migration traffic. The feature is disabled by default.
413# (since 2.4 )
48685a8e
MA
414#
415# @events: generate events for each migration state change
416# (since 2.4 )
417#
418# @auto-converge: If enabled, QEMU will automatically throttle down the guest
26ec4e53 419# to speed up convergence of RAM migration. (since 1.6)
48685a8e
MA
420#
421# @postcopy-ram: Start executing on the migration target before all of RAM has
26ec4e53
PM
422# been migrated, pulling the remaining pages along as needed. The
423# capacity must have the same setting on both source and target
424# or migration will not even start. NOTE: If the migration fails during
425# postcopy the VM will fail. (since 2.6)
48685a8e
MA
426#
427# @x-colo: If enabled, migration will never end, and the state of the VM on the
26ec4e53
PM
428# primary side will be migrated continuously to the VM on secondary
429# side, this process is called COarse-Grain LOck Stepping (COLO) for
430# Non-stop Service. (since 2.8)
48685a8e
MA
431#
432# @release-ram: if enabled, qemu will free the migrated ram pages on the source
26ec4e53 433# during postcopy-ram migration. (since 2.9)
48685a8e
MA
434#
435# @block: If enabled, QEMU will also migrate the contents of all block
26ec4e53
PM
436# devices. Default is disabled. A possible alternative uses
437# mirror jobs to a builtin NBD server on the destination, which
438# offers more flexibility.
439# (Since 2.10)
48685a8e
MA
440#
441# @return-path: If enabled, migration will use the return path even
442# for precopy. (since 2.10)
443#
93fbd031 444# @pause-before-switchover: Pause outgoing migration before serialising device
26ec4e53 445# state and before disabling block IO (since 2.11)
93fbd031 446#
cbfd6c95 447# @multifd: Use more than one fd for migration (since 4.0)
30126bbf 448#
55efc8c2
VSO
449# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450# (since 2.12)
451#
f22f928e 452# @postcopy-blocktime: Calculate downtime for postcopy live migration
26ec4e53 453# (since 3.0)
f22f928e 454#
0f073f44 455# @late-block-activate: If enabled, the destination will not activate block
26ec4e53
PM
456# devices (and thus take locks) immediately at the end of migration.
457# (since 3.0)
0f073f44 458#
18269069
YK
459# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460#
b9d68df6
YK
461# @validate-uuid: Send the UUID of the source to allow the destination
462# to ensure it is the same. (since 4.2)
463#
6e8c25b4
AG
464# @background-snapshot: If enabled, the migration stream will be a snapshot
465# of the VM exactly at the point when the migration
466# procedure starts. The VM RAM is saved with running VM.
467# (since 6.0)
468#
1abaec9a
LB
469# @zero-copy-send: Controls behavior on sending memory pages on migration.
470# When true, enables a zero-copy mechanism for sending
471# memory pages, if host supports it.
472# Requires that QEMU be permitted to use locked memory
473# for guest RAM pages.
474# (since 7.1)
ce5b0f4a
PX
475# @postcopy-preempt: If enabled, the migration process will allow postcopy
476# requests to preempt precopy stream, so postcopy requests
477# will be handled faster. This is a performance feature and
478# should not affect the correctness of postcopy migration.
479# (since 7.1)
1abaec9a 480#
9fb49daa
MA
481# Features:
482# @unstable: Members @x-colo and @x-ignore-shared are experimental.
483#
48685a8e
MA
484# Since: 1.2
485##
486{ 'enum': 'MigrationCapability',
487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
9fb49daa
MA
488 'compress', 'events', 'postcopy-ram',
489 { 'name': 'x-colo', 'features': [ 'unstable' ] },
490 'release-ram',
cbfd6c95 491 'block', 'return-path', 'pause-before-switchover', 'multifd',
18269069 492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
9fb49daa 493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
1abaec9a 494 'validate-uuid', 'background-snapshot',
ce5b0f4a 495 'zero-copy-send', 'postcopy-preempt'] }
48685a8e
MA
496
497##
498# @MigrationCapabilityStatus:
499#
500# Migration capability information
501#
502# @capability: capability enum
503#
504# @state: capability state bool
505#
506# Since: 1.2
507##
508{ 'struct': 'MigrationCapabilityStatus',
509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511##
512# @migrate-set-capabilities:
513#
514# Enable/Disable the following migration capabilities (like xbzrle)
515#
516# @capabilities: json array of capability modifications to make
517#
518# Since: 1.2
519#
520# Example:
521#
522# -> { "execute": "migrate-set-capabilities" , "arguments":
523# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
37fa48a4 524# <- { "return": {} }
48685a8e
MA
525#
526##
527{ 'command': 'migrate-set-capabilities',
528 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
529
530##
531# @query-migrate-capabilities:
532#
533# Returns information about the current migration capabilities status
534#
d93ed1bd 535# Returns: @MigrationCapabilityStatus
48685a8e
MA
536#
537# Since: 1.2
538#
539# Example:
540#
541# -> { "execute": "query-migrate-capabilities" }
542# <- { "return": [
543# {"state": false, "capability": "xbzrle"},
544# {"state": false, "capability": "rdma-pin-all"},
545# {"state": false, "capability": "auto-converge"},
546# {"state": false, "capability": "zero-blocks"},
547# {"state": false, "capability": "compress"},
548# {"state": true, "capability": "events"},
549# {"state": false, "capability": "postcopy-ram"},
550# {"state": false, "capability": "x-colo"}
551# ]}
552#
553##
554{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
555
96eef042
JQ
556##
557# @MultiFDCompression:
558#
559# An enumeration of multifd compression methods.
560#
561# @none: no compression.
7ec2c2b3 562# @zlib: use zlib compression method.
87dc6f5f 563# @zstd: use zstd compression method.
96eef042
JQ
564#
565# Since: 5.0
96eef042
JQ
566##
567{ 'enum': 'MultiFDCompression',
87dc6f5f 568 'data': [ 'none', 'zlib',
8a9f1e1d 569 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
96eef042 570
6e9f21a2
PK
571##
572# @BitmapMigrationBitmapAliasTransform:
573#
574# @persistent: If present, the bitmap will be made persistent
575# or transient depending on this parameter.
576#
577# Since: 6.0
578##
579{ 'struct': 'BitmapMigrationBitmapAliasTransform',
580 'data': {
581 '*persistent': 'bool'
582 } }
583
31e4c354
HR
584##
585# @BitmapMigrationBitmapAlias:
586#
587# @name: The name of the bitmap.
588#
589# @alias: An alias name for migration (for example the bitmap name on
590# the opposite site).
591#
6e9f21a2
PK
592# @transform: Allows the modification of the migrated bitmap.
593# (since 6.0)
594#
31e4c354
HR
595# Since: 5.2
596##
597{ 'struct': 'BitmapMigrationBitmapAlias',
598 'data': {
599 'name': 'str',
6e9f21a2
PK
600 'alias': 'str',
601 '*transform': 'BitmapMigrationBitmapAliasTransform'
31e4c354
HR
602 } }
603
604##
605# @BitmapMigrationNodeAlias:
606#
607# Maps a block node name and the bitmaps it has to aliases for dirty
608# bitmap migration.
609#
610# @node-name: A block node name.
611#
612# @alias: An alias block node name for migration (for example the
613# node name on the opposite site).
614#
615# @bitmaps: Mappings for the bitmaps on this node.
616#
617# Since: 5.2
618##
619{ 'struct': 'BitmapMigrationNodeAlias',
620 'data': {
621 'node-name': 'str',
622 'alias': 'str',
623 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
624 } }
625
48685a8e
MA
626##
627# @MigrationParameter:
628#
629# Migration parameters enumeration
630#
ee3d96ba 631# @announce-initial: Initial delay (in milliseconds) before sending the first
26ec4e53 632# announce (Since 4.0)
ee3d96ba
DDAG
633#
634# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 635# announcement (Since 4.0)
ee3d96ba
DDAG
636#
637# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 638# (Since 4.0)
ee3d96ba
DDAG
639#
640# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 641# packets in the announcement (Since 4.0)
ee3d96ba 642#
48685a8e 643# @compress-level: Set the compression level to be used in live migration,
26ec4e53
PM
644# the compression level is an integer between 0 and 9, where 0 means
645# no compression, 1 means the best compression speed, and 9 means best
646# compression ratio which will consume more CPU.
48685a8e
MA
647#
648# @compress-threads: Set compression thread count to be used in live migration,
26ec4e53 649# the compression thread count is an integer between 1 and 255.
48685a8e 650#
1d58872a
XG
651# @compress-wait-thread: Controls behavior when all compression threads are
652# currently busy. If true (default), wait for a free
653# compression thread to become available; otherwise,
654# send the page uncompressed. (Since 3.1)
655#
48685a8e 656# @decompress-threads: Set decompression thread count to be used in live
26ec4e53
PM
657# migration, the decompression thread count is an integer between 1
658# and 255. Usually, decompression is at least 4 times as fast as
659# compression, so set the decompress-threads to the number about 1/4
660# of compress-threads is adequate.
48685a8e 661#
dc14a470
KZ
662# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
663# to trigger throttling. It is expressed as percentage.
664# The default value is 50. (Since 5.0)
665#
48685a8e
MA
666# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
667# when migration auto-converge is activated. The
668# default value is 20. (Since 2.7)
669#
670# @cpu-throttle-increment: throttle percentage increase each time
671# auto-converge detects that migration is not making
672# progress. The default value is 10. (Since 2.7)
673#
cbbf8182
KZ
674# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
675# At the tail stage of throttling, the Guest is very
676# sensitive to CPU percentage while the @cpu-throttle
677# -increment is excessive usually at tail stage.
678# If this parameter is true, we will compute the ideal
679# CPU percentage used by the Guest, which may exactly make
680# the dirty rate match the dirty rate threshold. Then we
681# will choose a smaller throttle increment between the
682# one specified by @cpu-throttle-increment and the one
683# generated by ideal CPU percentage.
684# Therefore, it is compatible to traditional throttling,
685# meanwhile the throttle increment won't be excessive
686# at tail stage.
687# The default value is false. (Since 5.1)
688#
48685a8e
MA
689# @tls-creds: ID of the 'tls-creds' object that provides credentials for
690# establishing a TLS connection over the migration data channel.
691# On the outgoing side of the migration, the credentials must
692# be for a 'client' endpoint, while for the incoming side the
693# credentials must be for a 'server' endpoint. Setting this
694# will enable TLS for all migrations. The default is unset,
695# resulting in unsecured migration at the QEMU level. (Since 2.7)
696#
697# @tls-hostname: hostname of the target host for the migration. This is
698# required when using x509 based TLS credentials and the
699# migration URI does not already include a hostname. For
700# example if using fd: or exec: based migration, the
701# hostname must be provided so that the server's x509
702# certificate identity can be validated. (Since 2.7)
703#
d2f1d29b
DB
704# @tls-authz: ID of the 'authz' object subclass that provides access control
705# checking of the TLS x509 certificate distinguished name.
706# This object is only resolved at time of use, so can be deleted
707# and recreated on the fly while the migration server is active.
708# If missing, it will default to denying access (Since 4.0)
709#
48685a8e
MA
710# @max-bandwidth: to set maximum speed for migration. maximum speed in
711# bytes per second. (Since 2.8)
712#
713# @downtime-limit: set maximum tolerated downtime for migration. maximum
714# downtime in milliseconds (Since 2.8)
715#
716# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
26ec4e53 717# periodic mode. (Since 2.8)
48685a8e
MA
718#
719# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
720# block migration capability is enabled. When false, the entire
721# storage backing chain is migrated into a flattened image at
722# the destination; when true, only the active qcow2 layer is
723# migrated and the destination must already have access to the
724# same backing chain as was used on the source. (since 2.10)
48685a8e 725#
cbfd6c95
JQ
726# @multifd-channels: Number of channels used to migrate data in
727# parallel. This is the same number that the
728# number of sockets used for migration. The
729# default value is 2 (since 4.0)
4075fb1c 730#
73af8dd8
JQ
731# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
732# needs to be a multiple of the target page size
733# and a power of 2
734# (Since 2.11)
735#
7e555c6c 736# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
737# Defaults to 0 (unlimited). In bytes per second.
738# (Since 3.0)
4cbc9c7f
LQ
739#
740# @max-cpu-throttle: maximum cpu throttle percentage.
741# Defaults to 99. (Since 3.1)
ee3d96ba 742#
96eef042
JQ
743# @multifd-compression: Which compression method to use.
744# Defaults to none. (Since 5.0)
745#
9004db48 746# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
747# migration, the compression level is an integer between 0
748# and 9, where 0 means no compression, 1 means the best
749# compression speed, and 9 means best compression ratio which
750# will consume more CPU.
751# Defaults to 1. (Since 5.0)
9004db48 752#
6a9ad154 753# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
754# migration, the compression level is an integer between 0
755# and 20, where 0 means no compression, 1 means the best
756# compression speed, and 20 means best compression ratio which
757# will consume more CPU.
758# Defaults to 1. (Since 5.0)
6a9ad154 759#
abb6295b 760#
31e4c354 761# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
762# aliases for the purpose of dirty bitmap migration. Such
763# aliases may for example be the corresponding names on the
764# opposite site.
765# The mapping must be one-to-one, but not necessarily
766# complete: On the source, unmapped bitmaps and all bitmaps
767# on unmapped nodes will be ignored. On the destination,
768# encountering an unmapped alias in the incoming migration
769# stream will result in a report, and all further bitmap
770# migration data will then be discarded.
771# Note that the destination does not know about bitmaps it
772# does not receive, so there is no limitation or requirement
773# regarding the number of bitmaps received, or how they are
774# named, or on which nodes they are placed.
775# By default (when this parameter has never been set), bitmap
776# names are mapped to themselves. Nodes are mapped to their
777# block device name if there is one, and to their node name
778# otherwise. (Since 5.2)
31e4c354 779#
9fb49daa
MA
780# Features:
781# @unstable: Member @x-checkpoint-delay is experimental.
782#
48685a8e
MA
783# Since: 2.4
784##
785{ 'enum': 'MigrationParameter',
ee3d96ba
DDAG
786 'data': ['announce-initial', 'announce-max',
787 'announce-rounds', 'announce-step',
788 'compress-level', 'compress-threads', 'decompress-threads',
dc14a470 789 'compress-wait-thread', 'throttle-trigger-threshold',
48685a8e 790 'cpu-throttle-initial', 'cpu-throttle-increment',
cbbf8182 791 'cpu-throttle-tailslow',
d2f1d29b 792 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
9fb49daa
MA
793 'downtime-limit',
794 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
795 'block-incremental',
cbfd6c95 796 'multifd-channels',
4cbc9c7f 797 'xbzrle-cache-size', 'max-postcopy-bandwidth',
9004db48 798 'max-cpu-throttle', 'multifd-compression',
31e4c354
HR
799 'multifd-zlib-level' ,'multifd-zstd-level',
800 'block-bitmap-mapping' ] }
48685a8e
MA
801
802##
803# @MigrateSetParameters:
804#
ee3d96ba 805# @announce-initial: Initial delay (in milliseconds) before sending the first
26ec4e53 806# announce (Since 4.0)
ee3d96ba
DDAG
807#
808# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 809# announcement (Since 4.0)
ee3d96ba
DDAG
810#
811# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 812# (Since 4.0)
ee3d96ba
DDAG
813#
814# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 815# packets in the announcement (Since 4.0)
ee3d96ba 816#
48685a8e
MA
817# @compress-level: compression level
818#
819# @compress-threads: compression thread count
820#
1d58872a
XG
821# @compress-wait-thread: Controls behavior when all compression threads are
822# currently busy. If true (default), wait for a free
823# compression thread to become available; otherwise,
824# send the page uncompressed. (Since 3.1)
825#
48685a8e
MA
826# @decompress-threads: decompression thread count
827#
dc14a470
KZ
828# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
829# to trigger throttling. It is expressed as percentage.
830# The default value is 50. (Since 5.0)
831#
48685a8e
MA
832# @cpu-throttle-initial: Initial percentage of time guest cpus are
833# throttled when migration auto-converge is activated.
834# The default value is 20. (Since 2.7)
835#
836# @cpu-throttle-increment: throttle percentage increase each time
837# auto-converge detects that migration is not making
838# progress. The default value is 10. (Since 2.7)
839#
cbbf8182
KZ
840# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
841# At the tail stage of throttling, the Guest is very
842# sensitive to CPU percentage while the @cpu-throttle
843# -increment is excessive usually at tail stage.
844# If this parameter is true, we will compute the ideal
845# CPU percentage used by the Guest, which may exactly make
846# the dirty rate match the dirty rate threshold. Then we
847# will choose a smaller throttle increment between the
848# one specified by @cpu-throttle-increment and the one
849# generated by ideal CPU percentage.
850# Therefore, it is compatible to traditional throttling,
851# meanwhile the throttle increment won't be excessive
852# at tail stage.
853# The default value is false. (Since 5.1)
854#
48685a8e
MA
855# @tls-creds: ID of the 'tls-creds' object that provides credentials
856# for establishing a TLS connection over the migration data
857# channel. On the outgoing side of the migration, the credentials
858# must be for a 'client' endpoint, while for the incoming side the
859# credentials must be for a 'server' endpoint. Setting this
860# to a non-empty string enables TLS for all migrations.
861# An empty string means that QEMU will use plain text mode for
862# migration, rather than TLS (Since 2.9)
863# Previously (since 2.7), this was reported by omitting
864# tls-creds instead.
865#
866# @tls-hostname: hostname of the target host for the migration. This
867# is required when using x509 based TLS credentials and the
868# migration URI does not already include a hostname. For
869# example if using fd: or exec: based migration, the
870# hostname must be provided so that the server's x509
871# certificate identity can be validated. (Since 2.7)
872# An empty string means that QEMU will use the hostname
873# associated with the migration URI, if any. (Since 2.9)
874# Previously (since 2.7), this was reported by omitting
875# tls-hostname instead.
876#
877# @max-bandwidth: to set maximum speed for migration. maximum speed in
878# bytes per second. (Since 2.8)
879#
880# @downtime-limit: set maximum tolerated downtime for migration. maximum
881# downtime in milliseconds (Since 2.8)
882#
883# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
884#
885# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
886# block migration capability is enabled. When false, the entire
887# storage backing chain is migrated into a flattened image at
888# the destination; when true, only the active qcow2 layer is
889# migrated and the destination must already have access to the
890# same backing chain as was used on the source. (since 2.10)
48685a8e 891#
cbfd6c95
JQ
892# @multifd-channels: Number of channels used to migrate data in
893# parallel. This is the same number that the
894# number of sockets used for migration. The
895# default value is 2 (since 4.0)
4075fb1c 896#
73af8dd8
JQ
897# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
898# needs to be a multiple of the target page size
899# and a power of 2
900# (Since 2.11)
7e555c6c
DDAG
901#
902# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
903# Defaults to 0 (unlimited). In bytes per second.
904# (Since 3.0)
4cbc9c7f
LQ
905#
906# @max-cpu-throttle: maximum cpu throttle percentage.
907# The default value is 99. (Since 3.1)
908#
96eef042
JQ
909# @multifd-compression: Which compression method to use.
910# Defaults to none. (Since 5.0)
911#
9004db48 912# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
913# migration, the compression level is an integer between 0
914# and 9, where 0 means no compression, 1 means the best
915# compression speed, and 9 means best compression ratio which
916# will consume more CPU.
917# Defaults to 1. (Since 5.0)
9004db48 918#
6a9ad154 919# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
920# migration, the compression level is an integer between 0
921# and 20, where 0 means no compression, 1 means the best
922# compression speed, and 20 means best compression ratio which
923# will consume more CPU.
924# Defaults to 1. (Since 5.0)
6a9ad154 925#
31e4c354 926# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
927# aliases for the purpose of dirty bitmap migration. Such
928# aliases may for example be the corresponding names on the
929# opposite site.
930# The mapping must be one-to-one, but not necessarily
931# complete: On the source, unmapped bitmaps and all bitmaps
932# on unmapped nodes will be ignored. On the destination,
933# encountering an unmapped alias in the incoming migration
934# stream will result in a report, and all further bitmap
935# migration data will then be discarded.
936# Note that the destination does not know about bitmaps it
937# does not receive, so there is no limitation or requirement
938# regarding the number of bitmaps received, or how they are
939# named, or on which nodes they are placed.
940# By default (when this parameter has never been set), bitmap
941# names are mapped to themselves. Nodes are mapped to their
942# block device name if there is one, and to their node name
943# otherwise. (Since 5.2)
31e4c354 944#
9fb49daa
MA
945# Features:
946# @unstable: Member @x-checkpoint-delay is experimental.
947#
56266c6d
MA
948# TODO: either fuse back into MigrationParameters, or make
949# MigrationParameters members mandatory
950#
48685a8e
MA
951# Since: 2.4
952##
48685a8e 953{ 'struct': 'MigrateSetParameters',
ee3d96ba
DDAG
954 'data': { '*announce-initial': 'size',
955 '*announce-max': 'size',
956 '*announce-rounds': 'size',
957 '*announce-step': 'size',
ec17de0a
MA
958 '*compress-level': 'uint8',
959 '*compress-threads': 'uint8',
1d58872a 960 '*compress-wait-thread': 'bool',
ec17de0a
MA
961 '*decompress-threads': 'uint8',
962 '*throttle-trigger-threshold': 'uint8',
963 '*cpu-throttle-initial': 'uint8',
964 '*cpu-throttle-increment': 'uint8',
cbbf8182 965 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
966 '*tls-creds': 'StrOrNull',
967 '*tls-hostname': 'StrOrNull',
d2f1d29b 968 '*tls-authz': 'StrOrNull',
ec17de0a
MA
969 '*max-bandwidth': 'size',
970 '*downtime-limit': 'uint64',
9fb49daa
MA
971 '*x-checkpoint-delay': { 'type': 'uint32',
972 'features': [ 'unstable' ] },
4075fb1c 973 '*block-incremental': 'bool',
ec17de0a 974 '*multifd-channels': 'uint8',
7e555c6c 975 '*xbzrle-cache-size': 'size',
4cbc9c7f 976 '*max-postcopy-bandwidth': 'size',
ec17de0a 977 '*max-cpu-throttle': 'uint8',
9004db48 978 '*multifd-compression': 'MultiFDCompression',
ec17de0a
MA
979 '*multifd-zlib-level': 'uint8',
980 '*multifd-zstd-level': 'uint8',
31e4c354 981 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
48685a8e
MA
982
983##
984# @migrate-set-parameters:
985#
986# Set various migration parameters.
987#
988# Since: 2.4
989#
990# Example:
991#
992# -> { "execute": "migrate-set-parameters" ,
993# "arguments": { "compress-level": 1 } }
37fa48a4 994# <- { "return": {} }
48685a8e
MA
995#
996##
997{ 'command': 'migrate-set-parameters', 'boxed': true,
998 'data': 'MigrateSetParameters' }
999
1000##
1001# @MigrationParameters:
1002#
1003# The optional members aren't actually optional.
1004#
ee3d96ba 1005# @announce-initial: Initial delay (in milliseconds) before sending the
26ec4e53 1006# first announce (Since 4.0)
ee3d96ba
DDAG
1007#
1008# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 1009# announcement (Since 4.0)
ee3d96ba
DDAG
1010#
1011# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 1012# (Since 4.0)
ee3d96ba
DDAG
1013#
1014# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 1015# packets in the announcement (Since 4.0)
ee3d96ba 1016#
48685a8e
MA
1017# @compress-level: compression level
1018#
1019# @compress-threads: compression thread count
1020#
1d58872a
XG
1021# @compress-wait-thread: Controls behavior when all compression threads are
1022# currently busy. If true (default), wait for a free
1023# compression thread to become available; otherwise,
1024# send the page uncompressed. (Since 3.1)
1025#
48685a8e
MA
1026# @decompress-threads: decompression thread count
1027#
dc14a470
KZ
1028# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1029# to trigger throttling. It is expressed as percentage.
1030# The default value is 50. (Since 5.0)
1031#
48685a8e
MA
1032# @cpu-throttle-initial: Initial percentage of time guest cpus are
1033# throttled when migration auto-converge is activated.
1034# (Since 2.7)
1035#
1036# @cpu-throttle-increment: throttle percentage increase each time
1037# auto-converge detects that migration is not making
1038# progress. (Since 2.7)
1039#
cbbf8182
KZ
1040# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1041# At the tail stage of throttling, the Guest is very
1042# sensitive to CPU percentage while the @cpu-throttle
1043# -increment is excessive usually at tail stage.
1044# If this parameter is true, we will compute the ideal
1045# CPU percentage used by the Guest, which may exactly make
1046# the dirty rate match the dirty rate threshold. Then we
1047# will choose a smaller throttle increment between the
1048# one specified by @cpu-throttle-increment and the one
1049# generated by ideal CPU percentage.
1050# Therefore, it is compatible to traditional throttling,
1051# meanwhile the throttle increment won't be excessive
1052# at tail stage.
1053# The default value is false. (Since 5.1)
1054#
48685a8e
MA
1055# @tls-creds: ID of the 'tls-creds' object that provides credentials
1056# for establishing a TLS connection over the migration data
1057# channel. On the outgoing side of the migration, the credentials
1058# must be for a 'client' endpoint, while for the incoming side the
1059# credentials must be for a 'server' endpoint.
1060# An empty string means that QEMU will use plain text mode for
1061# migration, rather than TLS (Since 2.7)
1062# Note: 2.8 reports this by omitting tls-creds instead.
1063#
1064# @tls-hostname: hostname of the target host for the migration. This
1065# is required when using x509 based TLS credentials and the
1066# migration URI does not already include a hostname. For
1067# example if using fd: or exec: based migration, the
1068# hostname must be provided so that the server's x509
1069# certificate identity can be validated. (Since 2.7)
1070# An empty string means that QEMU will use the hostname
1071# associated with the migration URI, if any. (Since 2.9)
1072# Note: 2.8 reports this by omitting tls-hostname instead.
1073#
d2f1d29b
DB
1074# @tls-authz: ID of the 'authz' object subclass that provides access control
1075# checking of the TLS x509 certificate distinguished name. (Since
1076# 4.0)
1077#
48685a8e
MA
1078# @max-bandwidth: to set maximum speed for migration. maximum speed in
1079# bytes per second. (Since 2.8)
1080#
1081# @downtime-limit: set maximum tolerated downtime for migration. maximum
1082# downtime in milliseconds (Since 2.8)
1083#
1084# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1085#
1086# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
1087# block migration capability is enabled. When false, the entire
1088# storage backing chain is migrated into a flattened image at
1089# the destination; when true, only the active qcow2 layer is
1090# migrated and the destination must already have access to the
1091# same backing chain as was used on the source. (since 2.10)
48685a8e 1092#
cbfd6c95
JQ
1093# @multifd-channels: Number of channels used to migrate data in
1094# parallel. This is the same number that the
1095# number of sockets used for migration.
1096# The default value is 2 (since 4.0)
4075fb1c 1097#
73af8dd8
JQ
1098# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1099# needs to be a multiple of the target page size
1100# and a power of 2
1101# (Since 2.11)
7e555c6c
DDAG
1102#
1103# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
1104# Defaults to 0 (unlimited). In bytes per second.
1105# (Since 3.0)
4cbc9c7f
LQ
1106#
1107# @max-cpu-throttle: maximum cpu throttle percentage.
1108# Defaults to 99.
26ec4e53 1109# (Since 3.1)
4cbc9c7f 1110#
96eef042
JQ
1111# @multifd-compression: Which compression method to use.
1112# Defaults to none. (Since 5.0)
1113#
9004db48 1114# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
1115# migration, the compression level is an integer between 0
1116# and 9, where 0 means no compression, 1 means the best
1117# compression speed, and 9 means best compression ratio which
1118# will consume more CPU.
1119# Defaults to 1. (Since 5.0)
9004db48 1120#
6a9ad154 1121# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
1122# migration, the compression level is an integer between 0
1123# and 20, where 0 means no compression, 1 means the best
1124# compression speed, and 20 means best compression ratio which
1125# will consume more CPU.
1126# Defaults to 1. (Since 5.0)
6a9ad154 1127#
31e4c354 1128# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
1129# aliases for the purpose of dirty bitmap migration. Such
1130# aliases may for example be the corresponding names on the
1131# opposite site.
1132# The mapping must be one-to-one, but not necessarily
1133# complete: On the source, unmapped bitmaps and all bitmaps
1134# on unmapped nodes will be ignored. On the destination,
1135# encountering an unmapped alias in the incoming migration
1136# stream will result in a report, and all further bitmap
1137# migration data will then be discarded.
1138# Note that the destination does not know about bitmaps it
1139# does not receive, so there is no limitation or requirement
1140# regarding the number of bitmaps received, or how they are
1141# named, or on which nodes they are placed.
1142# By default (when this parameter has never been set), bitmap
1143# names are mapped to themselves. Nodes are mapped to their
1144# block device name if there is one, and to their node name
1145# otherwise. (Since 5.2)
31e4c354 1146#
9fb49daa
MA
1147# Features:
1148# @unstable: Member @x-checkpoint-delay is experimental.
1149#
48685a8e
MA
1150# Since: 2.4
1151##
1152{ 'struct': 'MigrationParameters',
ee3d96ba
DDAG
1153 'data': { '*announce-initial': 'size',
1154 '*announce-max': 'size',
1155 '*announce-rounds': 'size',
1156 '*announce-step': 'size',
1157 '*compress-level': 'uint8',
741d4086 1158 '*compress-threads': 'uint8',
1d58872a 1159 '*compress-wait-thread': 'bool',
741d4086 1160 '*decompress-threads': 'uint8',
dc14a470 1161 '*throttle-trigger-threshold': 'uint8',
741d4086
JQ
1162 '*cpu-throttle-initial': 'uint8',
1163 '*cpu-throttle-increment': 'uint8',
cbbf8182 1164 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
1165 '*tls-creds': 'str',
1166 '*tls-hostname': 'str',
d2f1d29b 1167 '*tls-authz': 'str',
741d4086
JQ
1168 '*max-bandwidth': 'size',
1169 '*downtime-limit': 'uint64',
9fb49daa
MA
1170 '*x-checkpoint-delay': { 'type': 'uint32',
1171 'features': [ 'unstable' ] },
ec17de0a 1172 '*block-incremental': 'bool',
cbfd6c95 1173 '*multifd-channels': 'uint8',
7e555c6c 1174 '*xbzrle-cache-size': 'size',
dbb28bc8 1175 '*max-postcopy-bandwidth': 'size',
96eef042 1176 '*max-cpu-throttle': 'uint8',
9004db48 1177 '*multifd-compression': 'MultiFDCompression',
6a9ad154 1178 '*multifd-zlib-level': 'uint8',
31e4c354
HR
1179 '*multifd-zstd-level': 'uint8',
1180 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
48685a8e
MA
1181
1182##
1183# @query-migrate-parameters:
1184#
1185# Returns information about the current migration parameters
1186#
1187# Returns: @MigrationParameters
1188#
1189# Since: 2.4
1190#
1191# Example:
1192#
1193# -> { "execute": "query-migrate-parameters" }
1194# <- { "return": {
1195# "decompress-threads": 2,
1196# "cpu-throttle-increment": 10,
1197# "compress-threads": 8,
1198# "compress-level": 1,
1199# "cpu-throttle-initial": 20,
1200# "max-bandwidth": 33554432,
1201# "downtime-limit": 300
1202# }
1203# }
1204#
1205##
1206{ 'command': 'query-migrate-parameters',
1207 'returns': 'MigrationParameters' }
1208
48685a8e
MA
1209##
1210# @migrate-start-postcopy:
1211#
1212# Followup to a migration command to switch the migration to postcopy mode.
c2eb7f21
GK
1213# The postcopy-ram capability must be set on both source and destination
1214# before the original migration command.
48685a8e
MA
1215#
1216# Since: 2.5
1217#
1218# Example:
1219#
1220# -> { "execute": "migrate-start-postcopy" }
1221# <- { "return": {} }
1222#
1223##
1224{ 'command': 'migrate-start-postcopy' }
1225
1226##
1227# @MIGRATION:
1228#
1229# Emitted when a migration event happens
1230#
1231# @status: @MigrationStatus describing the current migration status.
1232#
1233# Since: 2.4
1234#
1235# Example:
1236#
1237# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1238# "event": "MIGRATION",
1239# "data": {"status": "completed"} }
1240#
1241##
1242{ 'event': 'MIGRATION',
1243 'data': {'status': 'MigrationStatus'}}
1244
1245##
1246# @MIGRATION_PASS:
1247#
1248# Emitted from the source side of a migration at the start of each pass
1249# (when it syncs the dirty bitmap)
1250#
1251# @pass: An incrementing count (starting at 1 on the first pass)
1252#
1253# Since: 2.6
1254#
1255# Example:
1256#
37fa48a4
MA
1257# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1258# "event": "MIGRATION_PASS", "data": {"pass": 2} }
48685a8e
MA
1259#
1260##
1261{ 'event': 'MIGRATION_PASS',
1262 'data': { 'pass': 'int' } }
1263
1264##
1265# @COLOMessage:
1266#
1267# The message transmission between Primary side and Secondary side.
1268#
1269# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1270#
1271# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1272#
1273# @checkpoint-reply: SVM gets PVM's checkpoint request
1274#
1275# @vmstate-send: VM's state will be sent by PVM.
1276#
1277# @vmstate-size: The total size of VMstate.
1278#
1279# @vmstate-received: VM's state has been received by SVM.
1280#
1281# @vmstate-loaded: VM's state has been loaded by SVM.
1282#
1283# Since: 2.8
1284##
1285{ 'enum': 'COLOMessage',
1286 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1287 'vmstate-send', 'vmstate-size', 'vmstate-received',
1288 'vmstate-loaded' ] }
1289
1290##
1291# @COLOMode:
1292#
41b6b779 1293# The COLO current mode.
48685a8e 1294#
41b6b779 1295# @none: COLO is disabled.
48685a8e 1296#
41b6b779 1297# @primary: COLO node in primary side.
48685a8e 1298#
41b6b779 1299# @secondary: COLO node in slave side.
48685a8e
MA
1300#
1301# Since: 2.8
1302##
1303{ 'enum': 'COLOMode',
41b6b779 1304 'data': [ 'none', 'primary', 'secondary'] }
48685a8e
MA
1305
1306##
1307# @FailoverStatus:
1308#
1309# An enumeration of COLO failover status
1310#
1311# @none: no failover has ever happened
1312#
1313# @require: got failover requirement but not handled
1314#
1315# @active: in the process of doing failover
1316#
1317# @completed: finish the process of failover
1318#
1319# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1320#
1321# Since: 2.8
1322##
1323{ 'enum': 'FailoverStatus',
1324 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1325
9ecff6d6
HZ
1326##
1327# @COLO_EXIT:
1328#
1329# Emitted when VM finishes COLO mode due to some errors happening or
1330# at the request of users.
1331#
1332# @mode: report COLO mode when COLO exited.
1333#
1334# @reason: describes the reason for the COLO exit.
1335#
1336# Since: 3.1
1337#
1338# Example:
1339#
1340# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1341# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1342#
1343##
1344{ 'event': 'COLO_EXIT',
1345 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1346
1347##
1348# @COLOExitReason:
1349#
3a43ac47 1350# The reason for a COLO exit.
9ecff6d6 1351#
3a43ac47 1352# @none: failover has never happened. This state does not occur
26ec4e53
PM
1353# in the COLO_EXIT event, and is only visible in the result of
1354# query-colo-status.
9ecff6d6 1355#
3a43ac47 1356# @request: COLO exit is due to an external request.
9ecff6d6 1357#
3a43ac47
ZC
1358# @error: COLO exit is due to an internal error.
1359#
1360# @processing: COLO is currently handling a failover (since 4.0).
9ecff6d6
HZ
1361#
1362# Since: 3.1
1363##
1364{ 'enum': 'COLOExitReason',
3a43ac47 1365 'data': [ 'none', 'request', 'error' , 'processing' ] }
9ecff6d6 1366
48685a8e
MA
1367##
1368# @x-colo-lost-heartbeat:
1369#
1370# Tell qemu that heartbeat is lost, request it to do takeover procedures.
1371# If this command is sent to the PVM, the Primary side will exit COLO mode.
1372# If sent to the Secondary, the Secondary side will run failover work,
1373# then takes over server operation to become the service VM.
1374#
9fb49daa
MA
1375# Features:
1376# @unstable: This command is experimental.
1377#
48685a8e
MA
1378# Since: 2.8
1379#
1380# Example:
1381#
1382# -> { "execute": "x-colo-lost-heartbeat" }
1383# <- { "return": {} }
1384#
1385##
9fb49daa
MA
1386{ 'command': 'x-colo-lost-heartbeat',
1387 'features': [ 'unstable' ] }
48685a8e
MA
1388
1389##
1390# @migrate_cancel:
1391#
1392# Cancel the current executing migration process.
1393#
1394# Returns: nothing on success
1395#
1396# Notes: This command succeeds even if there is no migration process running.
1397#
9bc6e893 1398# Since: 0.14
48685a8e
MA
1399#
1400# Example:
1401#
1402# -> { "execute": "migrate_cancel" }
1403# <- { "return": {} }
1404#
1405##
1406{ 'command': 'migrate_cancel' }
1407
89cfc02c
DDAG
1408##
1409# @migrate-continue:
1410#
1411# Continue migration when it's in a paused state.
1412#
1413# @state: The state the migration is currently expected to be in
1414#
1415# Returns: nothing on success
4ae65a52 1416#
89cfc02c 1417# Since: 2.11
4ae65a52 1418#
89cfc02c
DDAG
1419# Example:
1420#
1421# -> { "execute": "migrate-continue" , "arguments":
1422# { "state": "pre-switchover" } }
1423# <- { "return": {} }
1424##
1425{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1426
48685a8e
MA
1427##
1428# @migrate:
1429#
1430# Migrates the current running guest to another Virtual Machine.
1431#
1432# @uri: the Uniform Resource Identifier of the destination VM
1433#
1434# @blk: do block migration (full disk copy)
1435#
1436# @inc: incremental disk copy migration
1437#
1438# @detach: this argument exists only for compatibility reasons and
1439# is ignored by QEMU
1440#
51f63ec7 1441# @resume: resume one paused migration, default "off". (since 3.0)
7a4da28b 1442#
48685a8e
MA
1443# Returns: nothing on success
1444#
9bc6e893 1445# Since: 0.14
48685a8e
MA
1446#
1447# Notes:
1448#
1449# 1. The 'query-migrate' command should be used to check migration's progress
1450# and final result (this information is provided by the 'status' member)
1451#
1452# 2. All boolean arguments default to false
1453#
1454# 3. The user Monitor's "detach" argument is invalid in QMP and should not
1455# be used
1456#
1457# Example:
1458#
1459# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1460# <- { "return": {} }
1461#
1462##
1463{ 'command': 'migrate',
7a4da28b
PX
1464 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1465 '*detach': 'bool', '*resume': 'bool' } }
48685a8e
MA
1466
1467##
1468# @migrate-incoming:
1469#
1470# Start an incoming migration, the qemu must have been started
1471# with -incoming defer
1472#
1473# @uri: The Uniform Resource Identifier identifying the source or
1474# address to listen on
1475#
1476# Returns: nothing on success
1477#
1478# Since: 2.3
1479#
1480# Notes:
1481#
1482# 1. It's a bad idea to use a string for the uri, but it needs to stay
1483# compatible with -incoming and the format of the uri is already exposed
1484# above libvirt.
1485#
1486# 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1487# be used.
1488#
1489# 3. The uri format is the same as for -incoming
1490#
1491# Example:
1492#
1493# -> { "execute": "migrate-incoming",
1494# "arguments": { "uri": "tcp::4446" } }
1495# <- { "return": {} }
1496#
1497##
1498{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1499
1500##
1501# @xen-save-devices-state:
1502#
1503# Save the state of all devices to file. The RAM and the block devices
1504# of the VM are not saved by this command.
1505#
1506# @filename: the file to save the state of the devices to as binary
26ec4e53
PM
1507# data. See xen-save-devices-state.txt for a description of the binary
1508# format.
48685a8e 1509#
5d6c599f 1510# @live: Optional argument to ask QEMU to treat this command as part of a live
26ec4e53 1511# migration. Default to true. (since 2.11)
5d6c599f 1512#
48685a8e
MA
1513# Returns: Nothing on success
1514#
1515# Since: 1.1
1516#
1517# Example:
1518#
1519# -> { "execute": "xen-save-devices-state",
1520# "arguments": { "filename": "/tmp/save" } }
1521# <- { "return": {} }
1522#
1523##
5d6c599f
AP
1524{ 'command': 'xen-save-devices-state',
1525 'data': {'filename': 'str', '*live':'bool' } }
48685a8e 1526
28af9ba2
PMD
1527##
1528# @xen-set-global-dirty-log:
1529#
1530# Enable or disable the global dirty log mode.
1531#
1532# @enable: true to enable, false to disable.
1533#
1534# Returns: nothing
1535#
1536# Since: 1.3
1537#
1538# Example:
1539#
1540# -> { "execute": "xen-set-global-dirty-log",
1541# "arguments": { "enable": true } }
1542# <- { "return": {} }
1543#
1544##
1545{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1546
1547##
1548# @xen-load-devices-state:
1549#
1550# Load the state of all devices from file. The RAM and the block devices
1551# of the VM are not loaded by this command.
1552#
1553# @filename: the file to load the state of the devices from as binary
1554# data. See xen-save-devices-state.txt for a description of the binary
1555# format.
1556#
1557# Since: 2.7
1558#
1559# Example:
1560#
1561# -> { "execute": "xen-load-devices-state",
1562# "arguments": { "filename": "/tmp/resume" } }
1563# <- { "return": {} }
1564#
1565##
1566{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1567
48685a8e
MA
1568##
1569# @xen-set-replication:
1570#
1571# Enable or disable replication.
1572#
1573# @enable: true to enable, false to disable.
1574#
1575# @primary: true for primary or false for secondary.
1576#
1577# @failover: true to do failover, false to stop. but cannot be
1578# specified if 'enable' is true. default value is false.
1579#
1580# Returns: nothing.
1581#
1582# Example:
1583#
1584# -> { "execute": "xen-set-replication",
1585# "arguments": {"enable": true, "primary": false} }
1586# <- { "return": {} }
1587#
1588# Since: 2.9
1589##
1590{ 'command': 'xen-set-replication',
335d10cd 1591 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
8a9f1e1d 1592 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1593
1594##
1595# @ReplicationStatus:
1596#
1597# The result format for 'query-xen-replication-status'.
1598#
1599# @error: true if an error happened, false if replication is normal.
1600#
1601# @desc: the human readable error description string, when
1602# @error is 'true'.
1603#
1604# Since: 2.9
1605##
1606{ 'struct': 'ReplicationStatus',
335d10cd 1607 'data': { 'error': 'bool', '*desc': 'str' },
8a9f1e1d 1608 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1609
1610##
1611# @query-xen-replication-status:
1612#
1613# Query replication status while the vm is running.
1614#
f4347129 1615# Returns: A @ReplicationStatus object showing the status.
48685a8e
MA
1616#
1617# Example:
1618#
1619# -> { "execute": "query-xen-replication-status" }
1620# <- { "return": { "error": false } }
1621#
1622# Since: 2.9
1623##
1624{ 'command': 'query-xen-replication-status',
335d10cd 1625 'returns': 'ReplicationStatus',
8a9f1e1d 1626 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1627
1628##
1629# @xen-colo-do-checkpoint:
1630#
1631# Xen uses this command to notify replication to trigger a checkpoint.
1632#
1633# Returns: nothing.
1634#
1635# Example:
1636#
1637# -> { "execute": "xen-colo-do-checkpoint" }
1638# <- { "return": {} }
1639#
1640# Since: 2.9
1641##
335d10cd 1642{ 'command': 'xen-colo-do-checkpoint',
8a9f1e1d 1643 'if': 'CONFIG_REPLICATION' }
02affd41 1644
f56c0065
ZC
1645##
1646# @COLOStatus:
1647#
1648# The result format for 'query-colo-status'.
1649#
1650# @mode: COLO running mode. If COLO is running, this field will return
1651# 'primary' or 'secondary'.
1652#
5cc8f9eb 1653# @last-mode: COLO last running mode. If COLO is running, this field
5ed0deca 1654# will return same like mode field, after failover we can
966c0d49 1655# use this field to get last colo mode. (since 4.0)
5ed0deca 1656#
f56c0065
ZC
1657# @reason: describes the reason for the COLO exit.
1658#
ea3b23e5 1659# Since: 3.1
f56c0065
ZC
1660##
1661{ 'struct': 'COLOStatus',
5cc8f9eb 1662 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
5ed0deca 1663 'reason': 'COLOExitReason' } }
f56c0065
ZC
1664
1665##
1666# @query-colo-status:
1667#
1668# Query COLO status while the vm is running.
1669#
1670# Returns: A @COLOStatus object showing the status.
1671#
1672# Example:
1673#
1674# -> { "execute": "query-colo-status" }
51ec294d 1675# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
f56c0065 1676#
ea3b23e5 1677# Since: 3.1
f56c0065
ZC
1678##
1679{ 'command': 'query-colo-status',
1680 'returns': 'COLOStatus' }
1681
02affd41
PX
1682##
1683# @migrate-recover:
1684#
1685# Provide a recovery migration stream URI.
1686#
1687# @uri: the URI to be used for the recovery of migration stream.
1688#
1689# Returns: nothing.
1690#
1691# Example:
1692#
1693# -> { "execute": "migrate-recover",
1694# "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1695# <- { "return": {} }
1696#
51f63ec7 1697# Since: 3.0
02affd41 1698##
b0ddeba2
MAL
1699{ 'command': 'migrate-recover',
1700 'data': { 'uri': 'str' },
02affd41 1701 'allow-oob': true }
bfbf89c2
PX
1702
1703##
1704# @migrate-pause:
1705#
1706# Pause a migration. Currently it only supports postcopy.
1707#
1708# Returns: nothing.
1709#
1710# Example:
1711#
1712# -> { "execute": "migrate-pause" }
1713# <- { "return": {} }
1714#
51f63ec7 1715# Since: 3.0
bfbf89c2
PX
1716##
1717{ 'command': 'migrate-pause', 'allow-oob': true }
d328e6f3
JF
1718
1719##
1720# @UNPLUG_PRIMARY:
1721#
1722# Emitted from source side of a migration when migration state is
1723# WAIT_UNPLUG. Device was unplugged by guest operating system.
1724# Device resources in QEMU are kept on standby to be able to re-plug it in case
1725# of migration failure.
1726#
1727# @device-id: QEMU device id of the unplugged device
1728#
1729# Since: 4.2
1730#
1731# Example:
4ae65a52 1732#
0df5e9a3
VT
1733# <- { "event": "UNPLUG_PRIMARY",
1734# "data": { "device-id": "hostdev0" },
1735# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
d328e6f3
JF
1736#
1737##
1738{ 'event': 'UNPLUG_PRIMARY',
1739 'data': { 'device-id': 'str' } }
7df3aa30 1740
71864ead
HH
1741##
1742# @DirtyRateVcpu:
1743#
1744# Dirty rate of vcpu.
1745#
1746# @id: vcpu index.
1747#
1748# @dirty-rate: dirty rate.
1749#
f78d4ed7 1750# Since: 6.2
71864ead
HH
1751##
1752{ 'struct': 'DirtyRateVcpu',
1753 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1754
7df3aa30
CZ
1755##
1756# @DirtyRateStatus:
1757#
1758# An enumeration of dirtyrate status.
1759#
1760# @unstarted: the dirtyrate thread has not been started.
1761#
1762# @measuring: the dirtyrate thread is measuring.
1763#
1764# @measured: the dirtyrate thread has measured and results are available.
1765#
1766# Since: 5.2
7df3aa30
CZ
1767##
1768{ 'enum': 'DirtyRateStatus',
1769 'data': [ 'unstarted', 'measuring', 'measured'] }
4c437254 1770
71864ead
HH
1771##
1772# @DirtyRateMeasureMode:
1773#
1774# An enumeration of mode of measuring dirtyrate.
1775#
1776# @page-sampling: calculate dirtyrate by sampling pages.
1777#
826b8bc8
HH
1778# @dirty-ring: calculate dirtyrate by dirty ring.
1779#
1780# @dirty-bitmap: calculate dirtyrate by dirty bitmap.
71864ead 1781#
f78d4ed7 1782# Since: 6.2
71864ead
HH
1783##
1784{ 'enum': 'DirtyRateMeasureMode',
826b8bc8 1785 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
71864ead 1786
4c437254
CZ
1787##
1788# @DirtyRateInfo:
1789#
1790# Information about current dirty page rate of vm.
1791#
b1a859cf
CZ
1792# @dirty-rate: an estimate of the dirty page rate of the VM in units of
1793# MB/s, present only when estimating the rate has completed.
4c437254
CZ
1794#
1795# @status: status containing dirtyrate query status includes
1796# 'unstarted' or 'measuring' or 'measured'
1797#
1798# @start-time: start time in units of second for calculation
1799#
1800# @calc-time: time in units of second for sample dirty pages
1801#
7afa08cd 1802# @sample-pages: page count per GB for sample dirty pages
adc903a6 1803# the default value is 512 (since 6.1)
7afa08cd 1804#
0e21bf24 1805# @mode: mode containing method of calculate dirtyrate includes
f78d4ed7 1806# 'page-sampling' and 'dirty-ring' (Since 6.2)
0e21bf24
HH
1807#
1808# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
f78d4ed7 1809# mode specified (Since 6.2)
0e21bf24 1810#
4c437254 1811# Since: 5.2
4c437254
CZ
1812##
1813{ 'struct': 'DirtyRateInfo',
b1a859cf 1814 'data': {'*dirty-rate': 'int64',
4c437254
CZ
1815 'status': 'DirtyRateStatus',
1816 'start-time': 'int64',
7afa08cd 1817 'calc-time': 'int64',
0e21bf24
HH
1818 'sample-pages': 'uint64',
1819 'mode': 'DirtyRateMeasureMode',
1820 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
4c437254
CZ
1821
1822##
1823# @calc-dirty-rate:
1824#
1825# start calculating dirty page rate for vm
1826#
1827# @calc-time: time in units of second for sample dirty pages
1828#
7afa08cd
HH
1829# @sample-pages: page count per GB for sample dirty pages
1830# the default value is 512 (since 6.1)
1831#
0e21bf24
HH
1832# @mode: mechanism of calculating dirtyrate includes
1833# 'page-sampling' and 'dirty-ring' (Since 6.1)
1834#
4c437254
CZ
1835# Since: 5.2
1836#
1837# Example:
4ae65a52 1838#
37fa48a4
MA
1839# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1840# 'sample-pages': 512} }
1841# <- { "return": {} }
4c437254
CZ
1842#
1843##
7afa08cd 1844{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
0e21bf24
HH
1845 '*sample-pages': 'int',
1846 '*mode': 'DirtyRateMeasureMode'} }
4c437254
CZ
1847
1848##
1849# @query-dirty-rate:
1850#
1851# query dirty page rate in units of MB/s for vm
1852#
1853# Since: 5.2
1854##
1855{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
0f0d83a4 1856
f3b2e38c
HH
1857##
1858# @DirtyLimitInfo:
1859#
1860# Dirty page rate limit information of a virtual CPU.
1861#
1862# @cpu-index: index of a virtual CPU.
1863#
1864# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1865# CPU, 0 means unlimited.
1866#
1867# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1868#
1869# Since: 7.1
1870#
1871##
1872{ 'struct': 'DirtyLimitInfo',
1873 'data': { 'cpu-index': 'int',
1874 'limit-rate': 'uint64',
1875 'current-rate': 'uint64' } }
1876
1877##
1878# @set-vcpu-dirty-limit:
1879#
1880# Set the upper limit of dirty page rate for virtual CPUs.
1881#
1882# Requires KVM with accelerator property "dirty-ring-size" set.
1883# A virtual CPU's dirty page rate is a measure of its memory load.
1884# To observe dirty page rates, use @calc-dirty-rate.
1885#
1886# @cpu-index: index of a virtual CPU, default is all.
1887#
1888# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1889#
1890# Since: 7.1
1891#
1892# Example:
37fa48a4
MA
1893#
1894# -> {"execute": "set-vcpu-dirty-limit"}
1895# "arguments": { "dirty-rate": 200,
1896# "cpu-index": 1 } }
1897# <- { "return": {} }
f3b2e38c
HH
1898#
1899##
1900{ 'command': 'set-vcpu-dirty-limit',
1901 'data': { '*cpu-index': 'int',
1902 'dirty-rate': 'uint64' } }
1903
1904##
1905# @cancel-vcpu-dirty-limit:
1906#
1907# Cancel the upper limit of dirty page rate for virtual CPUs.
1908#
1909# Cancel the dirty page limit for the vCPU which has been set with
1910# set-vcpu-dirty-limit command. Note that this command requires
1911# support from dirty ring, same as the "set-vcpu-dirty-limit".
1912#
1913# @cpu-index: index of a virtual CPU, default is all.
1914#
1915# Since: 7.1
1916#
1917# Example:
37fa48a4
MA
1918#
1919# -> {"execute": "cancel-vcpu-dirty-limit"},
1920# "arguments": { "cpu-index": 1 } }
1921# <- { "return": {} }
f3b2e38c
HH
1922#
1923##
1924{ 'command': 'cancel-vcpu-dirty-limit',
1925 'data': { '*cpu-index': 'int'} }
1926
1927##
1928# @query-vcpu-dirty-limit:
1929#
1930# Returns information about virtual CPU dirty page rate limits, if any.
1931#
1932# Since: 7.1
1933#
1934# Example:
37fa48a4
MA
1935#
1936# -> {"execute": "query-vcpu-dirty-limit"}
1937# <- {"return": [
1938# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
1939# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
f3b2e38c
HH
1940#
1941##
1942{ 'command': 'query-vcpu-dirty-limit',
1943 'returns': [ 'DirtyLimitInfo' ] }
1944
67132620
JJ
1945##
1946# @MigrationThreadInfo:
1947#
1948# Information about migrationthreads
1949#
1950# @name: the name of migration thread
1951#
1952# @thread-id: ID of the underlying host thread
1953#
1954# Since: 7.2
1955##
1956{ 'struct': 'MigrationThreadInfo',
1957 'data': {'name': 'str',
1958 'thread-id': 'int'} }
1959
1960##
1961# @query-migrationthreads:
1962#
1963# Returns information of migration threads
1964#
1965# data: migration thread name
1966#
7c3def93 1967# Returns: information about migration threads
67132620
JJ
1968#
1969# Since: 7.2
1970##
1971{ 'command': 'query-migrationthreads',
1972 'returns': ['MigrationThreadInfo'] }
1973
0f0d83a4
DB
1974##
1975# @snapshot-save:
1976#
1977# Save a VM snapshot
1978#
1979# @job-id: identifier for the newly created job
1980# @tag: name of the snapshot to create
1981# @vmstate: block device node name to save vmstate to
1982# @devices: list of block device node names to save a snapshot to
1983#
1984# Applications should not assume that the snapshot save is complete
1985# when this command returns. The job commands / events must be used
1986# to determine completion and to fetch details of any errors that arise.
1987#
1988# Note that execution of the guest CPUs may be stopped during the
1989# time it takes to save the snapshot. A future version of QEMU
1990# may ensure CPUs are executing continuously.
1991#
1992# It is strongly recommended that @devices contain all writable
1993# block device nodes if a consistent snapshot is required.
1994#
1995# If @tag already exists, an error will be reported
1996#
1997# Returns: nothing
1998#
1999# Example:
2000#
2001# -> { "execute": "snapshot-save",
b1ca5322 2002# "arguments": {
0f0d83a4
DB
2003# "job-id": "snapsave0",
2004# "tag": "my-snap",
2005# "vmstate": "disk0",
2006# "devices": ["disk0", "disk1"]
2007# }
2008# }
2009# <- { "return": { } }
2010# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2011# "timestamp": {"seconds": 1432121972, "microseconds": 744001},
0f0d83a4
DB
2012# "data": {"status": "created", "id": "snapsave0"}}
2013# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2014# "timestamp": {"seconds": 1432122172, "microseconds": 744001},
0f0d83a4 2015# "data": {"status": "running", "id": "snapsave0"}}
6e7a37ff
VT
2016# <- {"event": "STOP",
2017# "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2018# <- {"event": "RESUME",
2019# "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
0f0d83a4 2020# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2021# "timestamp": {"seconds": 1432122772, "microseconds": 744001},
0f0d83a4
DB
2022# "data": {"status": "waiting", "id": "snapsave0"}}
2023# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2024# "timestamp": {"seconds": 1432122972, "microseconds": 744001},
0f0d83a4
DB
2025# "data": {"status": "pending", "id": "snapsave0"}}
2026# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2027# "timestamp": {"seconds": 1432123172, "microseconds": 744001},
0f0d83a4
DB
2028# "data": {"status": "concluded", "id": "snapsave0"}}
2029# -> {"execute": "query-jobs"}
2030# <- {"return": [{"current-progress": 1,
2031# "status": "concluded",
2032# "total-progress": 1,
2033# "type": "snapshot-save",
2034# "id": "snapsave0"}]}
2035#
2036# Since: 6.0
2037##
2038{ 'command': 'snapshot-save',
2039 'data': { 'job-id': 'str',
2040 'tag': 'str',
2041 'vmstate': 'str',
2042 'devices': ['str'] } }
2043
2044##
2045# @snapshot-load:
2046#
2047# Load a VM snapshot
2048#
2049# @job-id: identifier for the newly created job
2050# @tag: name of the snapshot to load.
2051# @vmstate: block device node name to load vmstate from
2052# @devices: list of block device node names to load a snapshot from
2053#
2054# Applications should not assume that the snapshot load is complete
2055# when this command returns. The job commands / events must be used
2056# to determine completion and to fetch details of any errors that arise.
2057#
2058# Note that execution of the guest CPUs will be stopped during the
2059# time it takes to load the snapshot.
2060#
2061# It is strongly recommended that @devices contain all writable
2062# block device nodes that can have changed since the original
2063# @snapshot-save command execution.
2064#
2065# Returns: nothing
2066#
2067# Example:
2068#
2069# -> { "execute": "snapshot-load",
b1ca5322 2070# "arguments": {
0f0d83a4
DB
2071# "job-id": "snapload0",
2072# "tag": "my-snap",
2073# "vmstate": "disk0",
2074# "devices": ["disk0", "disk1"]
2075# }
2076# }
2077# <- { "return": { } }
2078# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2079# "timestamp": {"seconds": 1472124172, "microseconds": 744001},
0f0d83a4
DB
2080# "data": {"status": "created", "id": "snapload0"}}
2081# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2082# "timestamp": {"seconds": 1472125172, "microseconds": 744001},
0f0d83a4 2083# "data": {"status": "running", "id": "snapload0"}}
6e7a37ff
VT
2084# <- {"event": "STOP",
2085# "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2086# <- {"event": "RESUME",
2087# "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
0f0d83a4 2088# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2089# "timestamp": {"seconds": 1472126172, "microseconds": 744001},
0f0d83a4
DB
2090# "data": {"status": "waiting", "id": "snapload0"}}
2091# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2092# "timestamp": {"seconds": 1472127172, "microseconds": 744001},
0f0d83a4
DB
2093# "data": {"status": "pending", "id": "snapload0"}}
2094# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2095# "timestamp": {"seconds": 1472128172, "microseconds": 744001},
0f0d83a4
DB
2096# "data": {"status": "concluded", "id": "snapload0"}}
2097# -> {"execute": "query-jobs"}
2098# <- {"return": [{"current-progress": 1,
2099# "status": "concluded",
2100# "total-progress": 1,
2101# "type": "snapshot-load",
2102# "id": "snapload0"}]}
2103#
2104# Since: 6.0
2105##
2106{ 'command': 'snapshot-load',
2107 'data': { 'job-id': 'str',
2108 'tag': 'str',
2109 'vmstate': 'str',
2110 'devices': ['str'] } }
2111
2112##
2113# @snapshot-delete:
2114#
2115# Delete a VM snapshot
2116#
2117# @job-id: identifier for the newly created job
2118# @tag: name of the snapshot to delete.
2119# @devices: list of block device node names to delete a snapshot from
2120#
2121# Applications should not assume that the snapshot delete is complete
2122# when this command returns. The job commands / events must be used
2123# to determine completion and to fetch details of any errors that arise.
2124#
2125# Returns: nothing
2126#
2127# Example:
2128#
2129# -> { "execute": "snapshot-delete",
b1ca5322 2130# "arguments": {
0f0d83a4
DB
2131# "job-id": "snapdelete0",
2132# "tag": "my-snap",
2133# "devices": ["disk0", "disk1"]
2134# }
2135# }
2136# <- { "return": { } }
2137# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2138# "timestamp": {"seconds": 1442124172, "microseconds": 744001},
0f0d83a4
DB
2139# "data": {"status": "created", "id": "snapdelete0"}}
2140# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2141# "timestamp": {"seconds": 1442125172, "microseconds": 744001},
0f0d83a4
DB
2142# "data": {"status": "running", "id": "snapdelete0"}}
2143# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2144# "timestamp": {"seconds": 1442126172, "microseconds": 744001},
0f0d83a4
DB
2145# "data": {"status": "waiting", "id": "snapdelete0"}}
2146# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2147# "timestamp": {"seconds": 1442127172, "microseconds": 744001},
0f0d83a4
DB
2148# "data": {"status": "pending", "id": "snapdelete0"}}
2149# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2150# "timestamp": {"seconds": 1442128172, "microseconds": 744001},
0f0d83a4
DB
2151# "data": {"status": "concluded", "id": "snapdelete0"}}
2152# -> {"execute": "query-jobs"}
2153# <- {"return": [{"current-progress": 1,
2154# "status": "concluded",
2155# "total-progress": 1,
2156# "type": "snapshot-delete",
2157# "id": "snapdelete0"}]}
2158#
2159# Since: 6.0
2160##
2161{ 'command': 'snapshot-delete',
2162 'data': { 'job-id': 'str',
2163 'tag': 'str',
2164 'devices': ['str'] } }