]> git.proxmox.com Git - mirror_qemu.git/blame - qapi/migration.json
qga/qapi-schema: Fix a misspelled reference
[mirror_qemu.git] / qapi / migration.json
CommitLineData
48685a8e 1# -*- Mode: Python -*-
f7160f32 2# vim: filetype=python
48685a8e
MA
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
9aca82ba 10{ 'include': 'sockets.json' }
48685a8e
MA
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the target VM
20#
21# @total: total amount of bytes involved in the migration process
22#
23# @duplicate: number of duplicate (zero) pages (since 1.2)
24#
25# @skipped: number of skipped zero pages (since 1.5)
26#
27# @normal: number of normal pages (since 1.2)
28#
29# @normal-bytes: number of normal bytes sent (since 1.2)
30#
31# @dirty-pages-rate: number of pages dirtied by second by the
26ec4e53 32# guest (since 1.3)
48685a8e
MA
33#
34# @mbps: throughput in megabits/sec. (since 1.6)
35#
36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37#
38# @postcopy-requests: The number of page requests received from the destination
26ec4e53 39# (since 2.7)
48685a8e
MA
40#
41# @page-size: The number of bytes per page for the various page-based
26ec4e53 42# statistics (since 2.10)
48685a8e 43#
a61c45bd
JQ
44# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45#
aecbfe9c 46# @pages-per-second: the number of memory pages transferred per second
26ec4e53 47# (Since 4.0)
aecbfe9c 48#
ae680668
DE
49# @precopy-bytes: The number of bytes sent in the pre-copy phase
50# (since 7.0).
51#
52# @downtime-bytes: The number of bytes sent while the guest is paused
53# (since 7.0).
54#
55# @postcopy-bytes: The number of bytes sent during the post-copy phase
56# (since 7.0).
57#
cf20c897
LB
58# @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59# not avoid copying dirty pages. This is between
60# 0 and @dirty-sync-count * @multifd-channels.
61# (since 7.1)
9bc6e893 62# Since: 0.14
48685a8e
MA
63##
64{ 'struct': 'MigrationStats',
65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68 'mbps' : 'number', 'dirty-sync-count' : 'int',
a61c45bd 69 'postcopy-requests' : 'int', 'page-size' : 'int',
ae680668
DE
70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
cf20c897
LB
72 'postcopy-bytes' : 'uint64',
73 'dirty-sync-missed-zero-copy' : 'uint64' } }
48685a8e
MA
74
75##
76# @XBZRLECacheStats:
77#
78# Detailed XBZRLE migration cache statistics
79#
80# @cache-size: XBZRLE cache size
81#
82# @bytes: amount of bytes already transferred to the target VM
83#
84# @pages: amount of pages transferred to the target VM
85#
86# @cache-miss: number of cache miss
87#
88# @cache-miss-rate: rate of cache miss (since 2.1)
89#
e460a4b1
WW
90# @encoding-rate: rate of encoded bytes (since 5.1)
91#
48685a8e
MA
92# @overflow: number of overflows
93#
94# Since: 1.2
95##
96{ 'struct': 'XBZRLECacheStats',
8b9407a0 97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
48685a8e 98 'cache-miss': 'int', 'cache-miss-rate': 'number',
e460a4b1 99 'encoding-rate': 'number', 'overflow': 'int' } }
48685a8e 100
76e03000
XG
101##
102# @CompressionStats:
103#
104# Detailed migration compression statistics
105#
106# @pages: amount of pages compressed and transferred to the target VM
107#
108# @busy: count of times that no free thread was available to compress data
109#
110# @busy-rate: rate of thread busy
111#
112# @compressed-size: amount of bytes after compression
113#
114# @compression-rate: rate of compressed size
115#
116# Since: 3.1
117##
118{ 'struct': 'CompressionStats',
119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
dbb28bc8 120 'compressed-size': 'int', 'compression-rate': 'number' } }
76e03000 121
48685a8e
MA
122##
123# @MigrationStatus:
124#
125# An enumeration of migration status.
126#
127# @none: no migration has ever happened.
128#
129# @setup: migration process has been initiated.
130#
131# @cancelling: in the process of cancelling migration.
132#
133# @cancelled: cancelling migration is finished.
134#
135# @active: in the process of doing migration.
136#
137# @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138#
51f63ec7 139# @postcopy-paused: during postcopy but paused. (since 3.0)
a688d2c1 140#
51f63ec7 141# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
135b87b4 142#
48685a8e
MA
143# @completed: migration is finished.
144#
145# @failed: some error occurred during migration process.
146#
147# @colo: VM is in the process of fault tolerance, VM can not get into this
148# state unless colo capability is enabled for migration. (since 2.8)
149#
31e06077
DDAG
150# @pre-switchover: Paused before device serialisation. (since 2.11)
151#
152# @device: During device serialisation when pause-before-switchover is enabled
26ec4e53 153# (since 2.11)
31e06077 154#
c7e0acd5
JF
155# @wait-unplug: wait for device unplug request by guest OS to be completed.
156# (since 4.2)
157#
48685a8e 158# Since: 2.3
48685a8e
MA
159##
160{ 'enum': 'MigrationStatus',
161 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
a688d2c1 162 'active', 'postcopy-active', 'postcopy-paused',
135b87b4 163 'postcopy-recover', 'completed', 'failed', 'colo',
c7e0acd5 164 'pre-switchover', 'device', 'wait-unplug' ] }
3710586c
KW
165##
166# @VfioStats:
167#
168# Detailed VFIO devices migration statistics
169#
170# @transferred: amount of bytes transferred to the target VM by VFIO devices
171#
172# Since: 5.2
3710586c
KW
173##
174{ 'struct': 'VfioStats',
175 'data': {'transferred': 'int' } }
48685a8e
MA
176
177##
178# @MigrationInfo:
179#
180# Information about current migration process.
181#
182# @status: @MigrationStatus describing the current migration status.
183# If this field is not returned, no migration process
184# has been initiated
185#
186# @ram: @MigrationStats containing detailed migration
187# status, only returned if status is 'active' or
188# 'completed'(since 1.2)
189#
190# @disk: @MigrationStats containing detailed disk migration
191# status, only returned if status is 'active' and it is a block
192# migration
193#
194# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195# migration statistics, only returned if XBZRLE feature is on and
196# status is 'active' or 'completed' (since 1.2)
197#
198# @total-time: total amount of milliseconds since migration started.
26ec4e53
PM
199# If migration has ended, it returns the total migration
200# time. (since 1.2)
48685a8e
MA
201#
202# @downtime: only present when migration finishes correctly
26ec4e53
PM
203# total downtime in milliseconds for the guest.
204# (since 1.3)
48685a8e
MA
205#
206# @expected-downtime: only present while migration is active
26ec4e53
PM
207# expected downtime in milliseconds for the guest in last walk
208# of the dirty bitmap. (since 1.3)
48685a8e 209#
a660eed4
PM
210# @setup-time: amount of setup time in milliseconds *before* the
211# iterations begin but *after* the QMP command is issued. This is designed
26ec4e53
PM
212# to provide an accounting of any activities (such as RDMA pinning) which
213# may be expensive, but do not actually occur during the iterative
214# migration rounds themselves. (since 1.6)
48685a8e
MA
215#
216# @cpu-throttle-percentage: percentage of time guest cpus are being
26ec4e53
PM
217# throttled during auto-converge. This is only present when auto-converge
218# has started throttling guest cpus. (Since 2.7)
48685a8e
MA
219#
220# @error-desc: the human readable error description string, when
221# @status is 'failed'. Clients should not attempt to parse the
222# error strings. (Since 2.7)
65ace060
AP
223#
224# @postcopy-blocktime: total time when all vCPU were blocked during postcopy
26ec4e53
PM
225# live migration. This is only present when the postcopy-blocktime
226# migration capability is enabled. (Since 3.0)
65ace060 227#
5e50cae4 228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is
26ec4e53
PM
229# only present when the postcopy-blocktime migration capability
230# is enabled. (Since 3.0)
65ace060 231#
76e03000 232# @compression: migration compression statistics, only returned if compression
26ec4e53 233# feature is on and status is 'active' or 'completed' (Since 3.1)
48685a8e 234#
9aca82ba
JQ
235# @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236#
3710586c
KW
237# @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238# only returned if VFIO device is present, migration is supported by all
239# VFIO devices and status is 'active' or 'completed' (since 5.2)
240#
e11ce6c0
MA
241# @blocked-reasons: A list of reasons an outgoing migration is blocked.
242# Present and non-empty when migration is blocked.
243# (since 6.0)
244#
9bc6e893 245# Since: 0.14
48685a8e
MA
246##
247{ 'struct': 'MigrationInfo',
248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249 '*disk': 'MigrationStats',
3710586c 250 '*vfio': 'VfioStats',
48685a8e
MA
251 '*xbzrle-cache': 'XBZRLECacheStats',
252 '*total-time': 'int',
253 '*expected-downtime': 'int',
254 '*downtime': 'int',
255 '*setup-time': 'int',
256 '*cpu-throttle-percentage': 'int',
65ace060 257 '*error-desc': 'str',
3af8554b 258 '*blocked-reasons': ['str'],
65ace060 259 '*postcopy-blocktime' : 'uint32',
76e03000 260 '*postcopy-vcpu-blocktime': ['uint32'],
9aca82ba
JQ
261 '*compression': 'CompressionStats',
262 '*socket-address': ['SocketAddress'] } }
48685a8e
MA
263
264##
265# @query-migrate:
266#
267# Returns information about current migration process. If migration
268# is active there will be another json-object with RAM migration
269# status and if block migration is active another one with block
270# migration status.
271#
272# Returns: @MigrationInfo
273#
9bc6e893 274# Since: 0.14
48685a8e
MA
275#
276# Example:
277#
278# 1. Before the first migration
279#
280# -> { "execute": "query-migrate" }
281# <- { "return": {} }
282#
283# 2. Migration is done and has succeeded
284#
285# -> { "execute": "query-migrate" }
286# <- { "return": {
287# "status": "completed",
be1d2c49 288# "total-time":12345,
289# "setup-time":12345,
290# "downtime":12345,
48685a8e
MA
291# "ram":{
292# "transferred":123,
293# "remaining":123,
294# "total":246,
48685a8e
MA
295# "duplicate":123,
296# "normal":123,
297# "normal-bytes":123456,
298# "dirty-sync-count":15
299# }
300# }
301# }
302#
303# 3. Migration is done and has failed
304#
305# -> { "execute": "query-migrate" }
306# <- { "return": { "status": "failed" } }
307#
308# 4. Migration is being performed and is not a block migration:
309#
310# -> { "execute": "query-migrate" }
311# <- {
312# "return":{
313# "status":"active",
be1d2c49 314# "total-time":12345,
315# "setup-time":12345,
316# "expected-downtime":12345,
48685a8e
MA
317# "ram":{
318# "transferred":123,
319# "remaining":123,
320# "total":246,
48685a8e
MA
321# "duplicate":123,
322# "normal":123,
323# "normal-bytes":123456,
324# "dirty-sync-count":15
325# }
326# }
327# }
328#
329# 5. Migration is being performed and is a block migration:
330#
331# -> { "execute": "query-migrate" }
332# <- {
333# "return":{
334# "status":"active",
be1d2c49 335# "total-time":12345,
336# "setup-time":12345,
337# "expected-downtime":12345,
48685a8e
MA
338# "ram":{
339# "total":1057024,
340# "remaining":1053304,
341# "transferred":3720,
48685a8e
MA
342# "duplicate":123,
343# "normal":123,
344# "normal-bytes":123456,
345# "dirty-sync-count":15
346# },
347# "disk":{
348# "total":20971520,
349# "remaining":20880384,
350# "transferred":91136
351# }
352# }
353# }
354#
355# 6. Migration is being performed and XBZRLE is active:
356#
357# -> { "execute": "query-migrate" }
358# <- {
359# "return":{
360# "status":"active",
be1d2c49 361# "total-time":12345,
362# "setup-time":12345,
363# "expected-downtime":12345,
48685a8e
MA
364# "ram":{
365# "total":1057024,
366# "remaining":1053304,
367# "transferred":3720,
48685a8e
MA
368# "duplicate":10,
369# "normal":3333,
370# "normal-bytes":3412992,
371# "dirty-sync-count":15
372# },
373# "xbzrle-cache":{
374# "cache-size":67108864,
375# "bytes":20971520,
376# "pages":2444343,
377# "cache-miss":2244,
378# "cache-miss-rate":0.123,
e460a4b1 379# "encoding-rate":80.1,
48685a8e
MA
380# "overflow":34434
381# }
382# }
383# }
384#
385##
386{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388##
389# @MigrationCapability:
390#
391# Migration capabilities enumeration
392#
393# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394# This feature allows us to minimize migration traffic for certain work
395# loads, by sending compressed difference of the pages
396#
397# @rdma-pin-all: Controls whether or not the entire VM memory footprint is
26ec4e53
PM
398# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399# Disabled by default. (since 2.0)
48685a8e
MA
400#
401# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
26ec4e53
PM
402# essentially saves 1MB of zeroes per block on the wire. Enabling requires
403# source and target VM to support this feature. To enable it is sufficient
404# to enable the capability on the source VM. The feature is disabled by
405# default. (since 1.6)
48685a8e
MA
406#
407# @compress: Use multiple compression threads to accelerate live migration.
26ec4e53
PM
408# This feature can help to reduce the migration traffic, by sending
409# compressed pages. Please note that if compress and xbzrle are both
410# on, compress only takes effect in the ram bulk stage, after that,
411# it will be disabled and only xbzrle takes effect, this can help to
412# minimize migration traffic. The feature is disabled by default.
413# (since 2.4 )
48685a8e
MA
414#
415# @events: generate events for each migration state change
416# (since 2.4 )
417#
418# @auto-converge: If enabled, QEMU will automatically throttle down the guest
26ec4e53 419# to speed up convergence of RAM migration. (since 1.6)
48685a8e
MA
420#
421# @postcopy-ram: Start executing on the migration target before all of RAM has
26ec4e53
PM
422# been migrated, pulling the remaining pages along as needed. The
423# capacity must have the same setting on both source and target
424# or migration will not even start. NOTE: If the migration fails during
425# postcopy the VM will fail. (since 2.6)
48685a8e
MA
426#
427# @x-colo: If enabled, migration will never end, and the state of the VM on the
26ec4e53
PM
428# primary side will be migrated continuously to the VM on secondary
429# side, this process is called COarse-Grain LOck Stepping (COLO) for
430# Non-stop Service. (since 2.8)
48685a8e
MA
431#
432# @release-ram: if enabled, qemu will free the migrated ram pages on the source
26ec4e53 433# during postcopy-ram migration. (since 2.9)
48685a8e
MA
434#
435# @block: If enabled, QEMU will also migrate the contents of all block
26ec4e53
PM
436# devices. Default is disabled. A possible alternative uses
437# mirror jobs to a builtin NBD server on the destination, which
438# offers more flexibility.
439# (Since 2.10)
48685a8e
MA
440#
441# @return-path: If enabled, migration will use the return path even
442# for precopy. (since 2.10)
443#
93fbd031 444# @pause-before-switchover: Pause outgoing migration before serialising device
26ec4e53 445# state and before disabling block IO (since 2.11)
93fbd031 446#
cbfd6c95 447# @multifd: Use more than one fd for migration (since 4.0)
30126bbf 448#
55efc8c2
VSO
449# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450# (since 2.12)
451#
f22f928e 452# @postcopy-blocktime: Calculate downtime for postcopy live migration
26ec4e53 453# (since 3.0)
f22f928e 454#
0f073f44 455# @late-block-activate: If enabled, the destination will not activate block
26ec4e53
PM
456# devices (and thus take locks) immediately at the end of migration.
457# (since 3.0)
0f073f44 458#
18269069
YK
459# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460#
b9d68df6
YK
461# @validate-uuid: Send the UUID of the source to allow the destination
462# to ensure it is the same. (since 4.2)
463#
6e8c25b4
AG
464# @background-snapshot: If enabled, the migration stream will be a snapshot
465# of the VM exactly at the point when the migration
466# procedure starts. The VM RAM is saved with running VM.
467# (since 6.0)
468#
1abaec9a
LB
469# @zero-copy-send: Controls behavior on sending memory pages on migration.
470# When true, enables a zero-copy mechanism for sending
471# memory pages, if host supports it.
472# Requires that QEMU be permitted to use locked memory
473# for guest RAM pages.
474# (since 7.1)
ce5b0f4a
PX
475# @postcopy-preempt: If enabled, the migration process will allow postcopy
476# requests to preempt precopy stream, so postcopy requests
477# will be handled faster. This is a performance feature and
478# should not affect the correctness of postcopy migration.
479# (since 7.1)
1abaec9a 480#
9fb49daa
MA
481# Features:
482# @unstable: Members @x-colo and @x-ignore-shared are experimental.
483#
48685a8e
MA
484# Since: 1.2
485##
486{ 'enum': 'MigrationCapability',
487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
9fb49daa
MA
488 'compress', 'events', 'postcopy-ram',
489 { 'name': 'x-colo', 'features': [ 'unstable' ] },
490 'release-ram',
cbfd6c95 491 'block', 'return-path', 'pause-before-switchover', 'multifd',
18269069 492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
9fb49daa 493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
1abaec9a 494 'validate-uuid', 'background-snapshot',
ce5b0f4a 495 'zero-copy-send', 'postcopy-preempt'] }
48685a8e
MA
496
497##
498# @MigrationCapabilityStatus:
499#
500# Migration capability information
501#
502# @capability: capability enum
503#
504# @state: capability state bool
505#
506# Since: 1.2
507##
508{ 'struct': 'MigrationCapabilityStatus',
509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511##
512# @migrate-set-capabilities:
513#
514# Enable/Disable the following migration capabilities (like xbzrle)
515#
516# @capabilities: json array of capability modifications to make
517#
518# Since: 1.2
519#
520# Example:
521#
522# -> { "execute": "migrate-set-capabilities" , "arguments":
523# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
524#
525##
526{ 'command': 'migrate-set-capabilities',
527 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
528
529##
530# @query-migrate-capabilities:
531#
532# Returns information about the current migration capabilities status
533#
534# Returns: @MigrationCapabilitiesStatus
535#
536# Since: 1.2
537#
538# Example:
539#
540# -> { "execute": "query-migrate-capabilities" }
541# <- { "return": [
542# {"state": false, "capability": "xbzrle"},
543# {"state": false, "capability": "rdma-pin-all"},
544# {"state": false, "capability": "auto-converge"},
545# {"state": false, "capability": "zero-blocks"},
546# {"state": false, "capability": "compress"},
547# {"state": true, "capability": "events"},
548# {"state": false, "capability": "postcopy-ram"},
549# {"state": false, "capability": "x-colo"}
550# ]}
551#
552##
553{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
554
96eef042
JQ
555##
556# @MultiFDCompression:
557#
558# An enumeration of multifd compression methods.
559#
560# @none: no compression.
7ec2c2b3 561# @zlib: use zlib compression method.
87dc6f5f 562# @zstd: use zstd compression method.
96eef042
JQ
563#
564# Since: 5.0
96eef042
JQ
565##
566{ 'enum': 'MultiFDCompression',
87dc6f5f 567 'data': [ 'none', 'zlib',
8a9f1e1d 568 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
96eef042 569
6e9f21a2
PK
570##
571# @BitmapMigrationBitmapAliasTransform:
572#
573# @persistent: If present, the bitmap will be made persistent
574# or transient depending on this parameter.
575#
576# Since: 6.0
577##
578{ 'struct': 'BitmapMigrationBitmapAliasTransform',
579 'data': {
580 '*persistent': 'bool'
581 } }
582
31e4c354
HR
583##
584# @BitmapMigrationBitmapAlias:
585#
586# @name: The name of the bitmap.
587#
588# @alias: An alias name for migration (for example the bitmap name on
589# the opposite site).
590#
6e9f21a2
PK
591# @transform: Allows the modification of the migrated bitmap.
592# (since 6.0)
593#
31e4c354
HR
594# Since: 5.2
595##
596{ 'struct': 'BitmapMigrationBitmapAlias',
597 'data': {
598 'name': 'str',
6e9f21a2
PK
599 'alias': 'str',
600 '*transform': 'BitmapMigrationBitmapAliasTransform'
31e4c354
HR
601 } }
602
603##
604# @BitmapMigrationNodeAlias:
605#
606# Maps a block node name and the bitmaps it has to aliases for dirty
607# bitmap migration.
608#
609# @node-name: A block node name.
610#
611# @alias: An alias block node name for migration (for example the
612# node name on the opposite site).
613#
614# @bitmaps: Mappings for the bitmaps on this node.
615#
616# Since: 5.2
617##
618{ 'struct': 'BitmapMigrationNodeAlias',
619 'data': {
620 'node-name': 'str',
621 'alias': 'str',
622 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
623 } }
624
48685a8e
MA
625##
626# @MigrationParameter:
627#
628# Migration parameters enumeration
629#
ee3d96ba 630# @announce-initial: Initial delay (in milliseconds) before sending the first
26ec4e53 631# announce (Since 4.0)
ee3d96ba
DDAG
632#
633# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 634# announcement (Since 4.0)
ee3d96ba
DDAG
635#
636# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 637# (Since 4.0)
ee3d96ba
DDAG
638#
639# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 640# packets in the announcement (Since 4.0)
ee3d96ba 641#
48685a8e 642# @compress-level: Set the compression level to be used in live migration,
26ec4e53
PM
643# the compression level is an integer between 0 and 9, where 0 means
644# no compression, 1 means the best compression speed, and 9 means best
645# compression ratio which will consume more CPU.
48685a8e
MA
646#
647# @compress-threads: Set compression thread count to be used in live migration,
26ec4e53 648# the compression thread count is an integer between 1 and 255.
48685a8e 649#
1d58872a
XG
650# @compress-wait-thread: Controls behavior when all compression threads are
651# currently busy. If true (default), wait for a free
652# compression thread to become available; otherwise,
653# send the page uncompressed. (Since 3.1)
654#
48685a8e 655# @decompress-threads: Set decompression thread count to be used in live
26ec4e53
PM
656# migration, the decompression thread count is an integer between 1
657# and 255. Usually, decompression is at least 4 times as fast as
658# compression, so set the decompress-threads to the number about 1/4
659# of compress-threads is adequate.
48685a8e 660#
dc14a470
KZ
661# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
662# to trigger throttling. It is expressed as percentage.
663# The default value is 50. (Since 5.0)
664#
48685a8e
MA
665# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
666# when migration auto-converge is activated. The
667# default value is 20. (Since 2.7)
668#
669# @cpu-throttle-increment: throttle percentage increase each time
670# auto-converge detects that migration is not making
671# progress. The default value is 10. (Since 2.7)
672#
cbbf8182
KZ
673# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
674# At the tail stage of throttling, the Guest is very
675# sensitive to CPU percentage while the @cpu-throttle
676# -increment is excessive usually at tail stage.
677# If this parameter is true, we will compute the ideal
678# CPU percentage used by the Guest, which may exactly make
679# the dirty rate match the dirty rate threshold. Then we
680# will choose a smaller throttle increment between the
681# one specified by @cpu-throttle-increment and the one
682# generated by ideal CPU percentage.
683# Therefore, it is compatible to traditional throttling,
684# meanwhile the throttle increment won't be excessive
685# at tail stage.
686# The default value is false. (Since 5.1)
687#
48685a8e
MA
688# @tls-creds: ID of the 'tls-creds' object that provides credentials for
689# establishing a TLS connection over the migration data channel.
690# On the outgoing side of the migration, the credentials must
691# be for a 'client' endpoint, while for the incoming side the
692# credentials must be for a 'server' endpoint. Setting this
693# will enable TLS for all migrations. The default is unset,
694# resulting in unsecured migration at the QEMU level. (Since 2.7)
695#
696# @tls-hostname: hostname of the target host for the migration. This is
697# required when using x509 based TLS credentials and the
698# migration URI does not already include a hostname. For
699# example if using fd: or exec: based migration, the
700# hostname must be provided so that the server's x509
701# certificate identity can be validated. (Since 2.7)
702#
d2f1d29b
DB
703# @tls-authz: ID of the 'authz' object subclass that provides access control
704# checking of the TLS x509 certificate distinguished name.
705# This object is only resolved at time of use, so can be deleted
706# and recreated on the fly while the migration server is active.
707# If missing, it will default to denying access (Since 4.0)
708#
48685a8e
MA
709# @max-bandwidth: to set maximum speed for migration. maximum speed in
710# bytes per second. (Since 2.8)
711#
712# @downtime-limit: set maximum tolerated downtime for migration. maximum
713# downtime in milliseconds (Since 2.8)
714#
715# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
26ec4e53 716# periodic mode. (Since 2.8)
48685a8e
MA
717#
718# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
719# block migration capability is enabled. When false, the entire
720# storage backing chain is migrated into a flattened image at
721# the destination; when true, only the active qcow2 layer is
722# migrated and the destination must already have access to the
723# same backing chain as was used on the source. (since 2.10)
48685a8e 724#
cbfd6c95
JQ
725# @multifd-channels: Number of channels used to migrate data in
726# parallel. This is the same number that the
727# number of sockets used for migration. The
728# default value is 2 (since 4.0)
4075fb1c 729#
73af8dd8
JQ
730# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
731# needs to be a multiple of the target page size
732# and a power of 2
733# (Since 2.11)
734#
7e555c6c 735# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
736# Defaults to 0 (unlimited). In bytes per second.
737# (Since 3.0)
4cbc9c7f
LQ
738#
739# @max-cpu-throttle: maximum cpu throttle percentage.
740# Defaults to 99. (Since 3.1)
ee3d96ba 741#
96eef042
JQ
742# @multifd-compression: Which compression method to use.
743# Defaults to none. (Since 5.0)
744#
9004db48 745# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
746# migration, the compression level is an integer between 0
747# and 9, where 0 means no compression, 1 means the best
748# compression speed, and 9 means best compression ratio which
749# will consume more CPU.
750# Defaults to 1. (Since 5.0)
9004db48 751#
6a9ad154 752# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
753# migration, the compression level is an integer between 0
754# and 20, where 0 means no compression, 1 means the best
755# compression speed, and 20 means best compression ratio which
756# will consume more CPU.
757# Defaults to 1. (Since 5.0)
6a9ad154 758#
abb6295b 759#
31e4c354 760# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
761# aliases for the purpose of dirty bitmap migration. Such
762# aliases may for example be the corresponding names on the
763# opposite site.
764# The mapping must be one-to-one, but not necessarily
765# complete: On the source, unmapped bitmaps and all bitmaps
766# on unmapped nodes will be ignored. On the destination,
767# encountering an unmapped alias in the incoming migration
768# stream will result in a report, and all further bitmap
769# migration data will then be discarded.
770# Note that the destination does not know about bitmaps it
771# does not receive, so there is no limitation or requirement
772# regarding the number of bitmaps received, or how they are
773# named, or on which nodes they are placed.
774# By default (when this parameter has never been set), bitmap
775# names are mapped to themselves. Nodes are mapped to their
776# block device name if there is one, and to their node name
777# otherwise. (Since 5.2)
31e4c354 778#
9fb49daa
MA
779# Features:
780# @unstable: Member @x-checkpoint-delay is experimental.
781#
48685a8e
MA
782# Since: 2.4
783##
784{ 'enum': 'MigrationParameter',
ee3d96ba
DDAG
785 'data': ['announce-initial', 'announce-max',
786 'announce-rounds', 'announce-step',
787 'compress-level', 'compress-threads', 'decompress-threads',
dc14a470 788 'compress-wait-thread', 'throttle-trigger-threshold',
48685a8e 789 'cpu-throttle-initial', 'cpu-throttle-increment',
cbbf8182 790 'cpu-throttle-tailslow',
d2f1d29b 791 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
9fb49daa
MA
792 'downtime-limit',
793 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
794 'block-incremental',
cbfd6c95 795 'multifd-channels',
4cbc9c7f 796 'xbzrle-cache-size', 'max-postcopy-bandwidth',
9004db48 797 'max-cpu-throttle', 'multifd-compression',
31e4c354
HR
798 'multifd-zlib-level' ,'multifd-zstd-level',
799 'block-bitmap-mapping' ] }
48685a8e
MA
800
801##
802# @MigrateSetParameters:
803#
ee3d96ba 804# @announce-initial: Initial delay (in milliseconds) before sending the first
26ec4e53 805# announce (Since 4.0)
ee3d96ba
DDAG
806#
807# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 808# announcement (Since 4.0)
ee3d96ba
DDAG
809#
810# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 811# (Since 4.0)
ee3d96ba
DDAG
812#
813# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 814# packets in the announcement (Since 4.0)
ee3d96ba 815#
48685a8e
MA
816# @compress-level: compression level
817#
818# @compress-threads: compression thread count
819#
1d58872a
XG
820# @compress-wait-thread: Controls behavior when all compression threads are
821# currently busy. If true (default), wait for a free
822# compression thread to become available; otherwise,
823# send the page uncompressed. (Since 3.1)
824#
48685a8e
MA
825# @decompress-threads: decompression thread count
826#
dc14a470
KZ
827# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
828# to trigger throttling. It is expressed as percentage.
829# The default value is 50. (Since 5.0)
830#
48685a8e
MA
831# @cpu-throttle-initial: Initial percentage of time guest cpus are
832# throttled when migration auto-converge is activated.
833# The default value is 20. (Since 2.7)
834#
835# @cpu-throttle-increment: throttle percentage increase each time
836# auto-converge detects that migration is not making
837# progress. The default value is 10. (Since 2.7)
838#
cbbf8182
KZ
839# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
840# At the tail stage of throttling, the Guest is very
841# sensitive to CPU percentage while the @cpu-throttle
842# -increment is excessive usually at tail stage.
843# If this parameter is true, we will compute the ideal
844# CPU percentage used by the Guest, which may exactly make
845# the dirty rate match the dirty rate threshold. Then we
846# will choose a smaller throttle increment between the
847# one specified by @cpu-throttle-increment and the one
848# generated by ideal CPU percentage.
849# Therefore, it is compatible to traditional throttling,
850# meanwhile the throttle increment won't be excessive
851# at tail stage.
852# The default value is false. (Since 5.1)
853#
48685a8e
MA
854# @tls-creds: ID of the 'tls-creds' object that provides credentials
855# for establishing a TLS connection over the migration data
856# channel. On the outgoing side of the migration, the credentials
857# must be for a 'client' endpoint, while for the incoming side the
858# credentials must be for a 'server' endpoint. Setting this
859# to a non-empty string enables TLS for all migrations.
860# An empty string means that QEMU will use plain text mode for
861# migration, rather than TLS (Since 2.9)
862# Previously (since 2.7), this was reported by omitting
863# tls-creds instead.
864#
865# @tls-hostname: hostname of the target host for the migration. This
866# is required when using x509 based TLS credentials and the
867# migration URI does not already include a hostname. For
868# example if using fd: or exec: based migration, the
869# hostname must be provided so that the server's x509
870# certificate identity can be validated. (Since 2.7)
871# An empty string means that QEMU will use the hostname
872# associated with the migration URI, if any. (Since 2.9)
873# Previously (since 2.7), this was reported by omitting
874# tls-hostname instead.
875#
876# @max-bandwidth: to set maximum speed for migration. maximum speed in
877# bytes per second. (Since 2.8)
878#
879# @downtime-limit: set maximum tolerated downtime for migration. maximum
880# downtime in milliseconds (Since 2.8)
881#
882# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
883#
884# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
885# block migration capability is enabled. When false, the entire
886# storage backing chain is migrated into a flattened image at
887# the destination; when true, only the active qcow2 layer is
888# migrated and the destination must already have access to the
889# same backing chain as was used on the source. (since 2.10)
48685a8e 890#
cbfd6c95
JQ
891# @multifd-channels: Number of channels used to migrate data in
892# parallel. This is the same number that the
893# number of sockets used for migration. The
894# default value is 2 (since 4.0)
4075fb1c 895#
73af8dd8
JQ
896# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
897# needs to be a multiple of the target page size
898# and a power of 2
899# (Since 2.11)
7e555c6c
DDAG
900#
901# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
902# Defaults to 0 (unlimited). In bytes per second.
903# (Since 3.0)
4cbc9c7f
LQ
904#
905# @max-cpu-throttle: maximum cpu throttle percentage.
906# The default value is 99. (Since 3.1)
907#
96eef042
JQ
908# @multifd-compression: Which compression method to use.
909# Defaults to none. (Since 5.0)
910#
9004db48 911# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
912# migration, the compression level is an integer between 0
913# and 9, where 0 means no compression, 1 means the best
914# compression speed, and 9 means best compression ratio which
915# will consume more CPU.
916# Defaults to 1. (Since 5.0)
9004db48 917#
6a9ad154 918# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
919# migration, the compression level is an integer between 0
920# and 20, where 0 means no compression, 1 means the best
921# compression speed, and 20 means best compression ratio which
922# will consume more CPU.
923# Defaults to 1. (Since 5.0)
6a9ad154 924#
31e4c354 925# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
926# aliases for the purpose of dirty bitmap migration. Such
927# aliases may for example be the corresponding names on the
928# opposite site.
929# The mapping must be one-to-one, but not necessarily
930# complete: On the source, unmapped bitmaps and all bitmaps
931# on unmapped nodes will be ignored. On the destination,
932# encountering an unmapped alias in the incoming migration
933# stream will result in a report, and all further bitmap
934# migration data will then be discarded.
935# Note that the destination does not know about bitmaps it
936# does not receive, so there is no limitation or requirement
937# regarding the number of bitmaps received, or how they are
938# named, or on which nodes they are placed.
939# By default (when this parameter has never been set), bitmap
940# names are mapped to themselves. Nodes are mapped to their
941# block device name if there is one, and to their node name
942# otherwise. (Since 5.2)
31e4c354 943#
9fb49daa
MA
944# Features:
945# @unstable: Member @x-checkpoint-delay is experimental.
946#
48685a8e
MA
947# Since: 2.4
948##
949# TODO either fuse back into MigrationParameters, or make
950# MigrationParameters members mandatory
951{ 'struct': 'MigrateSetParameters',
ee3d96ba
DDAG
952 'data': { '*announce-initial': 'size',
953 '*announce-max': 'size',
954 '*announce-rounds': 'size',
955 '*announce-step': 'size',
ec17de0a
MA
956 '*compress-level': 'uint8',
957 '*compress-threads': 'uint8',
1d58872a 958 '*compress-wait-thread': 'bool',
ec17de0a
MA
959 '*decompress-threads': 'uint8',
960 '*throttle-trigger-threshold': 'uint8',
961 '*cpu-throttle-initial': 'uint8',
962 '*cpu-throttle-increment': 'uint8',
cbbf8182 963 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
964 '*tls-creds': 'StrOrNull',
965 '*tls-hostname': 'StrOrNull',
d2f1d29b 966 '*tls-authz': 'StrOrNull',
ec17de0a
MA
967 '*max-bandwidth': 'size',
968 '*downtime-limit': 'uint64',
9fb49daa
MA
969 '*x-checkpoint-delay': { 'type': 'uint32',
970 'features': [ 'unstable' ] },
4075fb1c 971 '*block-incremental': 'bool',
ec17de0a 972 '*multifd-channels': 'uint8',
7e555c6c 973 '*xbzrle-cache-size': 'size',
4cbc9c7f 974 '*max-postcopy-bandwidth': 'size',
ec17de0a 975 '*max-cpu-throttle': 'uint8',
9004db48 976 '*multifd-compression': 'MultiFDCompression',
ec17de0a
MA
977 '*multifd-zlib-level': 'uint8',
978 '*multifd-zstd-level': 'uint8',
31e4c354 979 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
48685a8e
MA
980
981##
982# @migrate-set-parameters:
983#
984# Set various migration parameters.
985#
986# Since: 2.4
987#
988# Example:
989#
990# -> { "execute": "migrate-set-parameters" ,
991# "arguments": { "compress-level": 1 } }
992#
993##
994{ 'command': 'migrate-set-parameters', 'boxed': true,
995 'data': 'MigrateSetParameters' }
996
997##
998# @MigrationParameters:
999#
1000# The optional members aren't actually optional.
1001#
ee3d96ba 1002# @announce-initial: Initial delay (in milliseconds) before sending the
26ec4e53 1003# first announce (Since 4.0)
ee3d96ba
DDAG
1004#
1005# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 1006# announcement (Since 4.0)
ee3d96ba
DDAG
1007#
1008# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 1009# (Since 4.0)
ee3d96ba
DDAG
1010#
1011# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 1012# packets in the announcement (Since 4.0)
ee3d96ba 1013#
48685a8e
MA
1014# @compress-level: compression level
1015#
1016# @compress-threads: compression thread count
1017#
1d58872a
XG
1018# @compress-wait-thread: Controls behavior when all compression threads are
1019# currently busy. If true (default), wait for a free
1020# compression thread to become available; otherwise,
1021# send the page uncompressed. (Since 3.1)
1022#
48685a8e
MA
1023# @decompress-threads: decompression thread count
1024#
dc14a470
KZ
1025# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1026# to trigger throttling. It is expressed as percentage.
1027# The default value is 50. (Since 5.0)
1028#
48685a8e
MA
1029# @cpu-throttle-initial: Initial percentage of time guest cpus are
1030# throttled when migration auto-converge is activated.
1031# (Since 2.7)
1032#
1033# @cpu-throttle-increment: throttle percentage increase each time
1034# auto-converge detects that migration is not making
1035# progress. (Since 2.7)
1036#
cbbf8182
KZ
1037# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1038# At the tail stage of throttling, the Guest is very
1039# sensitive to CPU percentage while the @cpu-throttle
1040# -increment is excessive usually at tail stage.
1041# If this parameter is true, we will compute the ideal
1042# CPU percentage used by the Guest, which may exactly make
1043# the dirty rate match the dirty rate threshold. Then we
1044# will choose a smaller throttle increment between the
1045# one specified by @cpu-throttle-increment and the one
1046# generated by ideal CPU percentage.
1047# Therefore, it is compatible to traditional throttling,
1048# meanwhile the throttle increment won't be excessive
1049# at tail stage.
1050# The default value is false. (Since 5.1)
1051#
48685a8e
MA
1052# @tls-creds: ID of the 'tls-creds' object that provides credentials
1053# for establishing a TLS connection over the migration data
1054# channel. On the outgoing side of the migration, the credentials
1055# must be for a 'client' endpoint, while for the incoming side the
1056# credentials must be for a 'server' endpoint.
1057# An empty string means that QEMU will use plain text mode for
1058# migration, rather than TLS (Since 2.7)
1059# Note: 2.8 reports this by omitting tls-creds instead.
1060#
1061# @tls-hostname: hostname of the target host for the migration. This
1062# is required when using x509 based TLS credentials and the
1063# migration URI does not already include a hostname. For
1064# example if using fd: or exec: based migration, the
1065# hostname must be provided so that the server's x509
1066# certificate identity can be validated. (Since 2.7)
1067# An empty string means that QEMU will use the hostname
1068# associated with the migration URI, if any. (Since 2.9)
1069# Note: 2.8 reports this by omitting tls-hostname instead.
1070#
d2f1d29b
DB
1071# @tls-authz: ID of the 'authz' object subclass that provides access control
1072# checking of the TLS x509 certificate distinguished name. (Since
1073# 4.0)
1074#
48685a8e
MA
1075# @max-bandwidth: to set maximum speed for migration. maximum speed in
1076# bytes per second. (Since 2.8)
1077#
1078# @downtime-limit: set maximum tolerated downtime for migration. maximum
1079# downtime in milliseconds (Since 2.8)
1080#
1081# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1082#
1083# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
1084# block migration capability is enabled. When false, the entire
1085# storage backing chain is migrated into a flattened image at
1086# the destination; when true, only the active qcow2 layer is
1087# migrated and the destination must already have access to the
1088# same backing chain as was used on the source. (since 2.10)
48685a8e 1089#
cbfd6c95
JQ
1090# @multifd-channels: Number of channels used to migrate data in
1091# parallel. This is the same number that the
1092# number of sockets used for migration.
1093# The default value is 2 (since 4.0)
4075fb1c 1094#
73af8dd8
JQ
1095# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1096# needs to be a multiple of the target page size
1097# and a power of 2
1098# (Since 2.11)
7e555c6c
DDAG
1099#
1100# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
1101# Defaults to 0 (unlimited). In bytes per second.
1102# (Since 3.0)
4cbc9c7f
LQ
1103#
1104# @max-cpu-throttle: maximum cpu throttle percentage.
1105# Defaults to 99.
26ec4e53 1106# (Since 3.1)
4cbc9c7f 1107#
96eef042
JQ
1108# @multifd-compression: Which compression method to use.
1109# Defaults to none. (Since 5.0)
1110#
9004db48 1111# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
1112# migration, the compression level is an integer between 0
1113# and 9, where 0 means no compression, 1 means the best
1114# compression speed, and 9 means best compression ratio which
1115# will consume more CPU.
1116# Defaults to 1. (Since 5.0)
9004db48 1117#
6a9ad154 1118# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
1119# migration, the compression level is an integer between 0
1120# and 20, where 0 means no compression, 1 means the best
1121# compression speed, and 20 means best compression ratio which
1122# will consume more CPU.
1123# Defaults to 1. (Since 5.0)
6a9ad154 1124#
31e4c354 1125# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
1126# aliases for the purpose of dirty bitmap migration. Such
1127# aliases may for example be the corresponding names on the
1128# opposite site.
1129# The mapping must be one-to-one, but not necessarily
1130# complete: On the source, unmapped bitmaps and all bitmaps
1131# on unmapped nodes will be ignored. On the destination,
1132# encountering an unmapped alias in the incoming migration
1133# stream will result in a report, and all further bitmap
1134# migration data will then be discarded.
1135# Note that the destination does not know about bitmaps it
1136# does not receive, so there is no limitation or requirement
1137# regarding the number of bitmaps received, or how they are
1138# named, or on which nodes they are placed.
1139# By default (when this parameter has never been set), bitmap
1140# names are mapped to themselves. Nodes are mapped to their
1141# block device name if there is one, and to their node name
1142# otherwise. (Since 5.2)
31e4c354 1143#
9fb49daa
MA
1144# Features:
1145# @unstable: Member @x-checkpoint-delay is experimental.
1146#
48685a8e
MA
1147# Since: 2.4
1148##
1149{ 'struct': 'MigrationParameters',
ee3d96ba
DDAG
1150 'data': { '*announce-initial': 'size',
1151 '*announce-max': 'size',
1152 '*announce-rounds': 'size',
1153 '*announce-step': 'size',
1154 '*compress-level': 'uint8',
741d4086 1155 '*compress-threads': 'uint8',
1d58872a 1156 '*compress-wait-thread': 'bool',
741d4086 1157 '*decompress-threads': 'uint8',
dc14a470 1158 '*throttle-trigger-threshold': 'uint8',
741d4086
JQ
1159 '*cpu-throttle-initial': 'uint8',
1160 '*cpu-throttle-increment': 'uint8',
cbbf8182 1161 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
1162 '*tls-creds': 'str',
1163 '*tls-hostname': 'str',
d2f1d29b 1164 '*tls-authz': 'str',
741d4086
JQ
1165 '*max-bandwidth': 'size',
1166 '*downtime-limit': 'uint64',
9fb49daa
MA
1167 '*x-checkpoint-delay': { 'type': 'uint32',
1168 'features': [ 'unstable' ] },
ec17de0a 1169 '*block-incremental': 'bool',
cbfd6c95 1170 '*multifd-channels': 'uint8',
7e555c6c 1171 '*xbzrle-cache-size': 'size',
dbb28bc8 1172 '*max-postcopy-bandwidth': 'size',
96eef042 1173 '*max-cpu-throttle': 'uint8',
9004db48 1174 '*multifd-compression': 'MultiFDCompression',
6a9ad154 1175 '*multifd-zlib-level': 'uint8',
31e4c354
HR
1176 '*multifd-zstd-level': 'uint8',
1177 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
48685a8e
MA
1178
1179##
1180# @query-migrate-parameters:
1181#
1182# Returns information about the current migration parameters
1183#
1184# Returns: @MigrationParameters
1185#
1186# Since: 2.4
1187#
1188# Example:
1189#
1190# -> { "execute": "query-migrate-parameters" }
1191# <- { "return": {
1192# "decompress-threads": 2,
1193# "cpu-throttle-increment": 10,
1194# "compress-threads": 8,
1195# "compress-level": 1,
1196# "cpu-throttle-initial": 20,
1197# "max-bandwidth": 33554432,
1198# "downtime-limit": 300
1199# }
1200# }
1201#
1202##
1203{ 'command': 'query-migrate-parameters',
1204 'returns': 'MigrationParameters' }
1205
48685a8e
MA
1206##
1207# @migrate-start-postcopy:
1208#
1209# Followup to a migration command to switch the migration to postcopy mode.
c2eb7f21
GK
1210# The postcopy-ram capability must be set on both source and destination
1211# before the original migration command.
48685a8e
MA
1212#
1213# Since: 2.5
1214#
1215# Example:
1216#
1217# -> { "execute": "migrate-start-postcopy" }
1218# <- { "return": {} }
1219#
1220##
1221{ 'command': 'migrate-start-postcopy' }
1222
1223##
1224# @MIGRATION:
1225#
1226# Emitted when a migration event happens
1227#
1228# @status: @MigrationStatus describing the current migration status.
1229#
1230# Since: 2.4
1231#
1232# Example:
1233#
1234# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1235# "event": "MIGRATION",
1236# "data": {"status": "completed"} }
1237#
1238##
1239{ 'event': 'MIGRATION',
1240 'data': {'status': 'MigrationStatus'}}
1241
1242##
1243# @MIGRATION_PASS:
1244#
1245# Emitted from the source side of a migration at the start of each pass
1246# (when it syncs the dirty bitmap)
1247#
1248# @pass: An incrementing count (starting at 1 on the first pass)
1249#
1250# Since: 2.6
1251#
1252# Example:
1253#
1254# { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1255# "event": "MIGRATION_PASS", "data": {"pass": 2} }
1256#
1257##
1258{ 'event': 'MIGRATION_PASS',
1259 'data': { 'pass': 'int' } }
1260
1261##
1262# @COLOMessage:
1263#
1264# The message transmission between Primary side and Secondary side.
1265#
1266# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1267#
1268# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1269#
1270# @checkpoint-reply: SVM gets PVM's checkpoint request
1271#
1272# @vmstate-send: VM's state will be sent by PVM.
1273#
1274# @vmstate-size: The total size of VMstate.
1275#
1276# @vmstate-received: VM's state has been received by SVM.
1277#
1278# @vmstate-loaded: VM's state has been loaded by SVM.
1279#
1280# Since: 2.8
1281##
1282{ 'enum': 'COLOMessage',
1283 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1284 'vmstate-send', 'vmstate-size', 'vmstate-received',
1285 'vmstate-loaded' ] }
1286
1287##
1288# @COLOMode:
1289#
41b6b779 1290# The COLO current mode.
48685a8e 1291#
41b6b779 1292# @none: COLO is disabled.
48685a8e 1293#
41b6b779 1294# @primary: COLO node in primary side.
48685a8e 1295#
41b6b779 1296# @secondary: COLO node in slave side.
48685a8e
MA
1297#
1298# Since: 2.8
1299##
1300{ 'enum': 'COLOMode',
41b6b779 1301 'data': [ 'none', 'primary', 'secondary'] }
48685a8e
MA
1302
1303##
1304# @FailoverStatus:
1305#
1306# An enumeration of COLO failover status
1307#
1308# @none: no failover has ever happened
1309#
1310# @require: got failover requirement but not handled
1311#
1312# @active: in the process of doing failover
1313#
1314# @completed: finish the process of failover
1315#
1316# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1317#
1318# Since: 2.8
1319##
1320{ 'enum': 'FailoverStatus',
1321 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1322
9ecff6d6
HZ
1323##
1324# @COLO_EXIT:
1325#
1326# Emitted when VM finishes COLO mode due to some errors happening or
1327# at the request of users.
1328#
1329# @mode: report COLO mode when COLO exited.
1330#
1331# @reason: describes the reason for the COLO exit.
1332#
1333# Since: 3.1
1334#
1335# Example:
1336#
1337# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1338# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1339#
1340##
1341{ 'event': 'COLO_EXIT',
1342 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1343
1344##
1345# @COLOExitReason:
1346#
3a43ac47 1347# The reason for a COLO exit.
9ecff6d6 1348#
3a43ac47 1349# @none: failover has never happened. This state does not occur
26ec4e53
PM
1350# in the COLO_EXIT event, and is only visible in the result of
1351# query-colo-status.
9ecff6d6 1352#
3a43ac47 1353# @request: COLO exit is due to an external request.
9ecff6d6 1354#
3a43ac47
ZC
1355# @error: COLO exit is due to an internal error.
1356#
1357# @processing: COLO is currently handling a failover (since 4.0).
9ecff6d6
HZ
1358#
1359# Since: 3.1
1360##
1361{ 'enum': 'COLOExitReason',
3a43ac47 1362 'data': [ 'none', 'request', 'error' , 'processing' ] }
9ecff6d6 1363
48685a8e
MA
1364##
1365# @x-colo-lost-heartbeat:
1366#
1367# Tell qemu that heartbeat is lost, request it to do takeover procedures.
1368# If this command is sent to the PVM, the Primary side will exit COLO mode.
1369# If sent to the Secondary, the Secondary side will run failover work,
1370# then takes over server operation to become the service VM.
1371#
9fb49daa
MA
1372# Features:
1373# @unstable: This command is experimental.
1374#
48685a8e
MA
1375# Since: 2.8
1376#
1377# Example:
1378#
1379# -> { "execute": "x-colo-lost-heartbeat" }
1380# <- { "return": {} }
1381#
1382##
9fb49daa
MA
1383{ 'command': 'x-colo-lost-heartbeat',
1384 'features': [ 'unstable' ] }
48685a8e
MA
1385
1386##
1387# @migrate_cancel:
1388#
1389# Cancel the current executing migration process.
1390#
1391# Returns: nothing on success
1392#
1393# Notes: This command succeeds even if there is no migration process running.
1394#
9bc6e893 1395# Since: 0.14
48685a8e
MA
1396#
1397# Example:
1398#
1399# -> { "execute": "migrate_cancel" }
1400# <- { "return": {} }
1401#
1402##
1403{ 'command': 'migrate_cancel' }
1404
89cfc02c
DDAG
1405##
1406# @migrate-continue:
1407#
1408# Continue migration when it's in a paused state.
1409#
1410# @state: The state the migration is currently expected to be in
1411#
1412# Returns: nothing on success
4ae65a52 1413#
89cfc02c 1414# Since: 2.11
4ae65a52 1415#
89cfc02c
DDAG
1416# Example:
1417#
1418# -> { "execute": "migrate-continue" , "arguments":
1419# { "state": "pre-switchover" } }
1420# <- { "return": {} }
1421##
1422{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1423
48685a8e
MA
1424##
1425# @migrate:
1426#
1427# Migrates the current running guest to another Virtual Machine.
1428#
1429# @uri: the Uniform Resource Identifier of the destination VM
1430#
1431# @blk: do block migration (full disk copy)
1432#
1433# @inc: incremental disk copy migration
1434#
1435# @detach: this argument exists only for compatibility reasons and
1436# is ignored by QEMU
1437#
51f63ec7 1438# @resume: resume one paused migration, default "off". (since 3.0)
7a4da28b 1439#
48685a8e
MA
1440# Returns: nothing on success
1441#
9bc6e893 1442# Since: 0.14
48685a8e
MA
1443#
1444# Notes:
1445#
1446# 1. The 'query-migrate' command should be used to check migration's progress
1447# and final result (this information is provided by the 'status' member)
1448#
1449# 2. All boolean arguments default to false
1450#
1451# 3. The user Monitor's "detach" argument is invalid in QMP and should not
1452# be used
1453#
1454# Example:
1455#
1456# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1457# <- { "return": {} }
1458#
1459##
1460{ 'command': 'migrate',
7a4da28b
PX
1461 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1462 '*detach': 'bool', '*resume': 'bool' } }
48685a8e
MA
1463
1464##
1465# @migrate-incoming:
1466#
1467# Start an incoming migration, the qemu must have been started
1468# with -incoming defer
1469#
1470# @uri: The Uniform Resource Identifier identifying the source or
1471# address to listen on
1472#
1473# Returns: nothing on success
1474#
1475# Since: 2.3
1476#
1477# Notes:
1478#
1479# 1. It's a bad idea to use a string for the uri, but it needs to stay
1480# compatible with -incoming and the format of the uri is already exposed
1481# above libvirt.
1482#
1483# 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1484# be used.
1485#
1486# 3. The uri format is the same as for -incoming
1487#
1488# Example:
1489#
1490# -> { "execute": "migrate-incoming",
1491# "arguments": { "uri": "tcp::4446" } }
1492# <- { "return": {} }
1493#
1494##
1495{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1496
1497##
1498# @xen-save-devices-state:
1499#
1500# Save the state of all devices to file. The RAM and the block devices
1501# of the VM are not saved by this command.
1502#
1503# @filename: the file to save the state of the devices to as binary
26ec4e53
PM
1504# data. See xen-save-devices-state.txt for a description of the binary
1505# format.
48685a8e 1506#
5d6c599f 1507# @live: Optional argument to ask QEMU to treat this command as part of a live
26ec4e53 1508# migration. Default to true. (since 2.11)
5d6c599f 1509#
48685a8e
MA
1510# Returns: Nothing on success
1511#
1512# Since: 1.1
1513#
1514# Example:
1515#
1516# -> { "execute": "xen-save-devices-state",
1517# "arguments": { "filename": "/tmp/save" } }
1518# <- { "return": {} }
1519#
1520##
5d6c599f
AP
1521{ 'command': 'xen-save-devices-state',
1522 'data': {'filename': 'str', '*live':'bool' } }
48685a8e 1523
28af9ba2
PMD
1524##
1525# @xen-set-global-dirty-log:
1526#
1527# Enable or disable the global dirty log mode.
1528#
1529# @enable: true to enable, false to disable.
1530#
1531# Returns: nothing
1532#
1533# Since: 1.3
1534#
1535# Example:
1536#
1537# -> { "execute": "xen-set-global-dirty-log",
1538# "arguments": { "enable": true } }
1539# <- { "return": {} }
1540#
1541##
1542{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1543
1544##
1545# @xen-load-devices-state:
1546#
1547# Load the state of all devices from file. The RAM and the block devices
1548# of the VM are not loaded by this command.
1549#
1550# @filename: the file to load the state of the devices from as binary
1551# data. See xen-save-devices-state.txt for a description of the binary
1552# format.
1553#
1554# Since: 2.7
1555#
1556# Example:
1557#
1558# -> { "execute": "xen-load-devices-state",
1559# "arguments": { "filename": "/tmp/resume" } }
1560# <- { "return": {} }
1561#
1562##
1563{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1564
48685a8e
MA
1565##
1566# @xen-set-replication:
1567#
1568# Enable or disable replication.
1569#
1570# @enable: true to enable, false to disable.
1571#
1572# @primary: true for primary or false for secondary.
1573#
1574# @failover: true to do failover, false to stop. but cannot be
1575# specified if 'enable' is true. default value is false.
1576#
1577# Returns: nothing.
1578#
1579# Example:
1580#
1581# -> { "execute": "xen-set-replication",
1582# "arguments": {"enable": true, "primary": false} }
1583# <- { "return": {} }
1584#
1585# Since: 2.9
1586##
1587{ 'command': 'xen-set-replication',
335d10cd 1588 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
8a9f1e1d 1589 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1590
1591##
1592# @ReplicationStatus:
1593#
1594# The result format for 'query-xen-replication-status'.
1595#
1596# @error: true if an error happened, false if replication is normal.
1597#
1598# @desc: the human readable error description string, when
1599# @error is 'true'.
1600#
1601# Since: 2.9
1602##
1603{ 'struct': 'ReplicationStatus',
335d10cd 1604 'data': { 'error': 'bool', '*desc': 'str' },
8a9f1e1d 1605 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1606
1607##
1608# @query-xen-replication-status:
1609#
1610# Query replication status while the vm is running.
1611#
f4347129 1612# Returns: A @ReplicationStatus object showing the status.
48685a8e
MA
1613#
1614# Example:
1615#
1616# -> { "execute": "query-xen-replication-status" }
1617# <- { "return": { "error": false } }
1618#
1619# Since: 2.9
1620##
1621{ 'command': 'query-xen-replication-status',
335d10cd 1622 'returns': 'ReplicationStatus',
8a9f1e1d 1623 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1624
1625##
1626# @xen-colo-do-checkpoint:
1627#
1628# Xen uses this command to notify replication to trigger a checkpoint.
1629#
1630# Returns: nothing.
1631#
1632# Example:
1633#
1634# -> { "execute": "xen-colo-do-checkpoint" }
1635# <- { "return": {} }
1636#
1637# Since: 2.9
1638##
335d10cd 1639{ 'command': 'xen-colo-do-checkpoint',
8a9f1e1d 1640 'if': 'CONFIG_REPLICATION' }
02affd41 1641
f56c0065
ZC
1642##
1643# @COLOStatus:
1644#
1645# The result format for 'query-colo-status'.
1646#
1647# @mode: COLO running mode. If COLO is running, this field will return
1648# 'primary' or 'secondary'.
1649#
5cc8f9eb 1650# @last-mode: COLO last running mode. If COLO is running, this field
5ed0deca 1651# will return same like mode field, after failover we can
966c0d49 1652# use this field to get last colo mode. (since 4.0)
5ed0deca 1653#
f56c0065
ZC
1654# @reason: describes the reason for the COLO exit.
1655#
ea3b23e5 1656# Since: 3.1
f56c0065
ZC
1657##
1658{ 'struct': 'COLOStatus',
5cc8f9eb 1659 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
5ed0deca 1660 'reason': 'COLOExitReason' } }
f56c0065
ZC
1661
1662##
1663# @query-colo-status:
1664#
1665# Query COLO status while the vm is running.
1666#
1667# Returns: A @COLOStatus object showing the status.
1668#
1669# Example:
1670#
1671# -> { "execute": "query-colo-status" }
51ec294d 1672# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
f56c0065 1673#
ea3b23e5 1674# Since: 3.1
f56c0065
ZC
1675##
1676{ 'command': 'query-colo-status',
1677 'returns': 'COLOStatus' }
1678
02affd41
PX
1679##
1680# @migrate-recover:
1681#
1682# Provide a recovery migration stream URI.
1683#
1684# @uri: the URI to be used for the recovery of migration stream.
1685#
1686# Returns: nothing.
1687#
1688# Example:
1689#
1690# -> { "execute": "migrate-recover",
1691# "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1692# <- { "return": {} }
1693#
51f63ec7 1694# Since: 3.0
02affd41 1695##
b0ddeba2
MAL
1696{ 'command': 'migrate-recover',
1697 'data': { 'uri': 'str' },
02affd41 1698 'allow-oob': true }
bfbf89c2
PX
1699
1700##
1701# @migrate-pause:
1702#
1703# Pause a migration. Currently it only supports postcopy.
1704#
1705# Returns: nothing.
1706#
1707# Example:
1708#
1709# -> { "execute": "migrate-pause" }
1710# <- { "return": {} }
1711#
51f63ec7 1712# Since: 3.0
bfbf89c2
PX
1713##
1714{ 'command': 'migrate-pause', 'allow-oob': true }
d328e6f3
JF
1715
1716##
1717# @UNPLUG_PRIMARY:
1718#
1719# Emitted from source side of a migration when migration state is
1720# WAIT_UNPLUG. Device was unplugged by guest operating system.
1721# Device resources in QEMU are kept on standby to be able to re-plug it in case
1722# of migration failure.
1723#
1724# @device-id: QEMU device id of the unplugged device
1725#
1726# Since: 4.2
1727#
1728# Example:
4ae65a52 1729#
0df5e9a3
VT
1730# <- { "event": "UNPLUG_PRIMARY",
1731# "data": { "device-id": "hostdev0" },
1732# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
d328e6f3
JF
1733#
1734##
1735{ 'event': 'UNPLUG_PRIMARY',
1736 'data': { 'device-id': 'str' } }
7df3aa30 1737
71864ead
HH
1738##
1739# @DirtyRateVcpu:
1740#
1741# Dirty rate of vcpu.
1742#
1743# @id: vcpu index.
1744#
1745# @dirty-rate: dirty rate.
1746#
f78d4ed7 1747# Since: 6.2
71864ead
HH
1748##
1749{ 'struct': 'DirtyRateVcpu',
1750 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1751
7df3aa30
CZ
1752##
1753# @DirtyRateStatus:
1754#
1755# An enumeration of dirtyrate status.
1756#
1757# @unstarted: the dirtyrate thread has not been started.
1758#
1759# @measuring: the dirtyrate thread is measuring.
1760#
1761# @measured: the dirtyrate thread has measured and results are available.
1762#
1763# Since: 5.2
7df3aa30
CZ
1764##
1765{ 'enum': 'DirtyRateStatus',
1766 'data': [ 'unstarted', 'measuring', 'measured'] }
4c437254 1767
71864ead
HH
1768##
1769# @DirtyRateMeasureMode:
1770#
1771# An enumeration of mode of measuring dirtyrate.
1772#
1773# @page-sampling: calculate dirtyrate by sampling pages.
1774#
826b8bc8
HH
1775# @dirty-ring: calculate dirtyrate by dirty ring.
1776#
1777# @dirty-bitmap: calculate dirtyrate by dirty bitmap.
71864ead 1778#
f78d4ed7 1779# Since: 6.2
71864ead
HH
1780##
1781{ 'enum': 'DirtyRateMeasureMode',
826b8bc8 1782 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
71864ead 1783
4c437254
CZ
1784##
1785# @DirtyRateInfo:
1786#
1787# Information about current dirty page rate of vm.
1788#
b1a859cf
CZ
1789# @dirty-rate: an estimate of the dirty page rate of the VM in units of
1790# MB/s, present only when estimating the rate has completed.
4c437254
CZ
1791#
1792# @status: status containing dirtyrate query status includes
1793# 'unstarted' or 'measuring' or 'measured'
1794#
1795# @start-time: start time in units of second for calculation
1796#
1797# @calc-time: time in units of second for sample dirty pages
1798#
7afa08cd 1799# @sample-pages: page count per GB for sample dirty pages
adc903a6 1800# the default value is 512 (since 6.1)
7afa08cd 1801#
0e21bf24 1802# @mode: mode containing method of calculate dirtyrate includes
f78d4ed7 1803# 'page-sampling' and 'dirty-ring' (Since 6.2)
0e21bf24
HH
1804#
1805# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
f78d4ed7 1806# mode specified (Since 6.2)
0e21bf24 1807#
4c437254 1808# Since: 5.2
4c437254
CZ
1809##
1810{ 'struct': 'DirtyRateInfo',
b1a859cf 1811 'data': {'*dirty-rate': 'int64',
4c437254
CZ
1812 'status': 'DirtyRateStatus',
1813 'start-time': 'int64',
7afa08cd 1814 'calc-time': 'int64',
0e21bf24
HH
1815 'sample-pages': 'uint64',
1816 'mode': 'DirtyRateMeasureMode',
1817 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
4c437254
CZ
1818
1819##
1820# @calc-dirty-rate:
1821#
1822# start calculating dirty page rate for vm
1823#
1824# @calc-time: time in units of second for sample dirty pages
1825#
7afa08cd
HH
1826# @sample-pages: page count per GB for sample dirty pages
1827# the default value is 512 (since 6.1)
1828#
0e21bf24
HH
1829# @mode: mechanism of calculating dirtyrate includes
1830# 'page-sampling' and 'dirty-ring' (Since 6.1)
1831#
4c437254
CZ
1832# Since: 5.2
1833#
1834# Example:
4ae65a52 1835#
8230f338 1836# {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
b1ca5322 1837# 'sample-pages': 512} }
4c437254
CZ
1838#
1839##
7afa08cd 1840{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
0e21bf24
HH
1841 '*sample-pages': 'int',
1842 '*mode': 'DirtyRateMeasureMode'} }
4c437254
CZ
1843
1844##
1845# @query-dirty-rate:
1846#
1847# query dirty page rate in units of MB/s for vm
1848#
1849# Since: 5.2
1850##
1851{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
0f0d83a4 1852
f3b2e38c
HH
1853##
1854# @DirtyLimitInfo:
1855#
1856# Dirty page rate limit information of a virtual CPU.
1857#
1858# @cpu-index: index of a virtual CPU.
1859#
1860# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1861# CPU, 0 means unlimited.
1862#
1863# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1864#
1865# Since: 7.1
1866#
1867##
1868{ 'struct': 'DirtyLimitInfo',
1869 'data': { 'cpu-index': 'int',
1870 'limit-rate': 'uint64',
1871 'current-rate': 'uint64' } }
1872
1873##
1874# @set-vcpu-dirty-limit:
1875#
1876# Set the upper limit of dirty page rate for virtual CPUs.
1877#
1878# Requires KVM with accelerator property "dirty-ring-size" set.
1879# A virtual CPU's dirty page rate is a measure of its memory load.
1880# To observe dirty page rates, use @calc-dirty-rate.
1881#
1882# @cpu-index: index of a virtual CPU, default is all.
1883#
1884# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1885#
1886# Since: 7.1
1887#
1888# Example:
1889# {"execute": "set-vcpu-dirty-limit"}
1890# "arguments": { "dirty-rate": 200,
1891# "cpu-index": 1 } }
1892#
1893##
1894{ 'command': 'set-vcpu-dirty-limit',
1895 'data': { '*cpu-index': 'int',
1896 'dirty-rate': 'uint64' } }
1897
1898##
1899# @cancel-vcpu-dirty-limit:
1900#
1901# Cancel the upper limit of dirty page rate for virtual CPUs.
1902#
1903# Cancel the dirty page limit for the vCPU which has been set with
1904# set-vcpu-dirty-limit command. Note that this command requires
1905# support from dirty ring, same as the "set-vcpu-dirty-limit".
1906#
1907# @cpu-index: index of a virtual CPU, default is all.
1908#
1909# Since: 7.1
1910#
1911# Example:
1912# {"execute": "cancel-vcpu-dirty-limit"}
1913# "arguments": { "cpu-index": 1 } }
1914#
1915##
1916{ 'command': 'cancel-vcpu-dirty-limit',
1917 'data': { '*cpu-index': 'int'} }
1918
1919##
1920# @query-vcpu-dirty-limit:
1921#
1922# Returns information about virtual CPU dirty page rate limits, if any.
1923#
1924# Since: 7.1
1925#
1926# Example:
1927# {"execute": "query-vcpu-dirty-limit"}
1928#
1929##
1930{ 'command': 'query-vcpu-dirty-limit',
1931 'returns': [ 'DirtyLimitInfo' ] }
1932
67132620
JJ
1933##
1934# @MigrationThreadInfo:
1935#
1936# Information about migrationthreads
1937#
1938# @name: the name of migration thread
1939#
1940# @thread-id: ID of the underlying host thread
1941#
1942# Since: 7.2
1943##
1944{ 'struct': 'MigrationThreadInfo',
1945 'data': {'name': 'str',
1946 'thread-id': 'int'} }
1947
1948##
1949# @query-migrationthreads:
1950#
1951# Returns information of migration threads
1952#
1953# data: migration thread name
1954#
1955# returns: information about migration threads
1956#
1957# Since: 7.2
1958##
1959{ 'command': 'query-migrationthreads',
1960 'returns': ['MigrationThreadInfo'] }
1961
0f0d83a4
DB
1962##
1963# @snapshot-save:
1964#
1965# Save a VM snapshot
1966#
1967# @job-id: identifier for the newly created job
1968# @tag: name of the snapshot to create
1969# @vmstate: block device node name to save vmstate to
1970# @devices: list of block device node names to save a snapshot to
1971#
1972# Applications should not assume that the snapshot save is complete
1973# when this command returns. The job commands / events must be used
1974# to determine completion and to fetch details of any errors that arise.
1975#
1976# Note that execution of the guest CPUs may be stopped during the
1977# time it takes to save the snapshot. A future version of QEMU
1978# may ensure CPUs are executing continuously.
1979#
1980# It is strongly recommended that @devices contain all writable
1981# block device nodes if a consistent snapshot is required.
1982#
1983# If @tag already exists, an error will be reported
1984#
1985# Returns: nothing
1986#
1987# Example:
1988#
1989# -> { "execute": "snapshot-save",
b1ca5322 1990# "arguments": {
0f0d83a4
DB
1991# "job-id": "snapsave0",
1992# "tag": "my-snap",
1993# "vmstate": "disk0",
1994# "devices": ["disk0", "disk1"]
1995# }
1996# }
1997# <- { "return": { } }
1998# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 1999# "timestamp": {"seconds": 1432121972, "microseconds": 744001},
0f0d83a4
DB
2000# "data": {"status": "created", "id": "snapsave0"}}
2001# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2002# "timestamp": {"seconds": 1432122172, "microseconds": 744001},
0f0d83a4 2003# "data": {"status": "running", "id": "snapsave0"}}
6e7a37ff
VT
2004# <- {"event": "STOP",
2005# "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2006# <- {"event": "RESUME",
2007# "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
0f0d83a4 2008# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2009# "timestamp": {"seconds": 1432122772, "microseconds": 744001},
0f0d83a4
DB
2010# "data": {"status": "waiting", "id": "snapsave0"}}
2011# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2012# "timestamp": {"seconds": 1432122972, "microseconds": 744001},
0f0d83a4
DB
2013# "data": {"status": "pending", "id": "snapsave0"}}
2014# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2015# "timestamp": {"seconds": 1432123172, "microseconds": 744001},
0f0d83a4
DB
2016# "data": {"status": "concluded", "id": "snapsave0"}}
2017# -> {"execute": "query-jobs"}
2018# <- {"return": [{"current-progress": 1,
2019# "status": "concluded",
2020# "total-progress": 1,
2021# "type": "snapshot-save",
2022# "id": "snapsave0"}]}
2023#
2024# Since: 6.0
2025##
2026{ 'command': 'snapshot-save',
2027 'data': { 'job-id': 'str',
2028 'tag': 'str',
2029 'vmstate': 'str',
2030 'devices': ['str'] } }
2031
2032##
2033# @snapshot-load:
2034#
2035# Load a VM snapshot
2036#
2037# @job-id: identifier for the newly created job
2038# @tag: name of the snapshot to load.
2039# @vmstate: block device node name to load vmstate from
2040# @devices: list of block device node names to load a snapshot from
2041#
2042# Applications should not assume that the snapshot load is complete
2043# when this command returns. The job commands / events must be used
2044# to determine completion and to fetch details of any errors that arise.
2045#
2046# Note that execution of the guest CPUs will be stopped during the
2047# time it takes to load the snapshot.
2048#
2049# It is strongly recommended that @devices contain all writable
2050# block device nodes that can have changed since the original
2051# @snapshot-save command execution.
2052#
2053# Returns: nothing
2054#
2055# Example:
2056#
2057# -> { "execute": "snapshot-load",
b1ca5322 2058# "arguments": {
0f0d83a4
DB
2059# "job-id": "snapload0",
2060# "tag": "my-snap",
2061# "vmstate": "disk0",
2062# "devices": ["disk0", "disk1"]
2063# }
2064# }
2065# <- { "return": { } }
2066# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2067# "timestamp": {"seconds": 1472124172, "microseconds": 744001},
0f0d83a4
DB
2068# "data": {"status": "created", "id": "snapload0"}}
2069# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2070# "timestamp": {"seconds": 1472125172, "microseconds": 744001},
0f0d83a4 2071# "data": {"status": "running", "id": "snapload0"}}
6e7a37ff
VT
2072# <- {"event": "STOP",
2073# "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2074# <- {"event": "RESUME",
2075# "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
0f0d83a4 2076# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2077# "timestamp": {"seconds": 1472126172, "microseconds": 744001},
0f0d83a4
DB
2078# "data": {"status": "waiting", "id": "snapload0"}}
2079# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2080# "timestamp": {"seconds": 1472127172, "microseconds": 744001},
0f0d83a4
DB
2081# "data": {"status": "pending", "id": "snapload0"}}
2082# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2083# "timestamp": {"seconds": 1472128172, "microseconds": 744001},
0f0d83a4
DB
2084# "data": {"status": "concluded", "id": "snapload0"}}
2085# -> {"execute": "query-jobs"}
2086# <- {"return": [{"current-progress": 1,
2087# "status": "concluded",
2088# "total-progress": 1,
2089# "type": "snapshot-load",
2090# "id": "snapload0"}]}
2091#
2092# Since: 6.0
2093##
2094{ 'command': 'snapshot-load',
2095 'data': { 'job-id': 'str',
2096 'tag': 'str',
2097 'vmstate': 'str',
2098 'devices': ['str'] } }
2099
2100##
2101# @snapshot-delete:
2102#
2103# Delete a VM snapshot
2104#
2105# @job-id: identifier for the newly created job
2106# @tag: name of the snapshot to delete.
2107# @devices: list of block device node names to delete a snapshot from
2108#
2109# Applications should not assume that the snapshot delete is complete
2110# when this command returns. The job commands / events must be used
2111# to determine completion and to fetch details of any errors that arise.
2112#
2113# Returns: nothing
2114#
2115# Example:
2116#
2117# -> { "execute": "snapshot-delete",
b1ca5322 2118# "arguments": {
0f0d83a4
DB
2119# "job-id": "snapdelete0",
2120# "tag": "my-snap",
2121# "devices": ["disk0", "disk1"]
2122# }
2123# }
2124# <- { "return": { } }
2125# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2126# "timestamp": {"seconds": 1442124172, "microseconds": 744001},
0f0d83a4
DB
2127# "data": {"status": "created", "id": "snapdelete0"}}
2128# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2129# "timestamp": {"seconds": 1442125172, "microseconds": 744001},
0f0d83a4
DB
2130# "data": {"status": "running", "id": "snapdelete0"}}
2131# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2132# "timestamp": {"seconds": 1442126172, "microseconds": 744001},
0f0d83a4
DB
2133# "data": {"status": "waiting", "id": "snapdelete0"}}
2134# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2135# "timestamp": {"seconds": 1442127172, "microseconds": 744001},
0f0d83a4
DB
2136# "data": {"status": "pending", "id": "snapdelete0"}}
2137# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2138# "timestamp": {"seconds": 1442128172, "microseconds": 744001},
0f0d83a4
DB
2139# "data": {"status": "concluded", "id": "snapdelete0"}}
2140# -> {"execute": "query-jobs"}
2141# <- {"return": [{"current-progress": 1,
2142# "status": "concluded",
2143# "total-progress": 1,
2144# "type": "snapshot-delete",
2145# "id": "snapdelete0"}]}
2146#
2147# Since: 6.0
2148##
2149{ 'command': 'snapshot-delete',
2150 'data': { 'job-id': 'str',
2151 'tag': 'str',
2152 'devices': ['str'] } }