]> git.proxmox.com Git - mirror_qemu.git/blame - qapi/migration.json
qapi: Reformat the dirty-limit migration doc comments
[mirror_qemu.git] / qapi / migration.json
CommitLineData
48685a8e 1# -*- Mode: Python -*-
f7160f32 2# vim: filetype=python
48685a8e
MA
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
9aca82ba 10{ 'include': 'sockets.json' }
48685a8e
MA
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
a937b6aa
MA
19# @remaining: amount of bytes remaining to be transferred to the
20# target VM
48685a8e
MA
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
7b24d326
JQ
26# @skipped: number of skipped zero pages. Always zero, only provided for
27# compatibility (since 1.5)
48685a8e
MA
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
a937b6aa
MA
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34# (since 1.3)
48685a8e 35#
a937b6aa 36# @mbps: throughput in megabits/sec. (since 1.6)
48685a8e 37#
a937b6aa
MA
38# @dirty-sync-count: number of times that dirty ram was synchronized
39# (since 2.1)
48685a8e 40#
a937b6aa
MA
41# @postcopy-requests: The number of page requests received from the
42# destination (since 2.7)
48685a8e
MA
43#
44# @page-size: The number of bytes per page for the various page-based
a937b6aa 45# statistics (since 2.10)
48685a8e 46#
a61c45bd
JQ
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
aecbfe9c 49# @pages-per-second: the number of memory pages transferred per second
a937b6aa 50# (Since 4.0)
aecbfe9c 51#
ae680668 52# @precopy-bytes: The number of bytes sent in the pre-copy phase
a937b6aa 53# (since 7.0).
ae680668
DE
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
a937b6aa 56# (since 7.0).
ae680668
DE
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
a937b6aa
MA
59# (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62# synchronization could not avoid copying dirty pages. This is
63# between 0 and @dirty-sync-count * @multifd-channels. (since
64# 7.1)
ae680668 65#
7b24d326
JQ
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
9bc6e893 70# Since: 0.14
7b24d326 71#
48685a8e
MA
72##
73{ 'struct': 'MigrationStats',
74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
7b24d326
JQ
75 'duplicate': 'int',
76 'skipped': { 'type': 'int', 'features': ['deprecated'] },
77 'normal': 'int',
fd658a7b
JQ
78 'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79 'mbps': 'number', 'dirty-sync-count': 'int',
80 'postcopy-requests': 'int', 'page-size': 'int',
81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83 'postcopy-bytes': 'uint64',
84 'dirty-sync-missed-zero-copy': 'uint64' } }
48685a8e
MA
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
e460a4b1
WW
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
48685a8e
MA
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
8b9407a0 108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
48685a8e 109 'cache-miss': 'int', 'cache-miss-rate': 'number',
e460a4b1 110 'encoding-rate': 'number', 'overflow': 'int' } }
48685a8e 111
76e03000
XG
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
a937b6aa
MA
119# @busy: count of times that no free thread was available to compress
120# data
76e03000
XG
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
dbb28bc8 132 'compressed-size': 'int', 'compression-rate': 'number' } }
76e03000 133
48685a8e
MA
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
a937b6aa
MA
149# @postcopy-active: like active, but now in postcopy mode. (since
150# 2.5)
48685a8e 151#
a937b6aa 152# @postcopy-paused: during postcopy but paused. (since 3.0)
a688d2c1 153#
a937b6aa
MA
154# @postcopy-recover: trying to recover from a paused postcopy. (since
155# 3.0)
135b87b4 156#
48685a8e
MA
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
a937b6aa
MA
161# @colo: VM is in the process of fault tolerance, VM can not get into
162# this state unless colo capability is enabled for migration.
163# (since 2.8)
48685a8e 164#
a937b6aa 165# @pre-switchover: Paused before device serialisation. (since 2.11)
31e06077 166#
a937b6aa
MA
167# @device: During device serialisation when pause-before-switchover is
168# enabled (since 2.11)
31e06077 169#
a937b6aa
MA
170# @wait-unplug: wait for device unplug request by guest OS to be
171# completed. (since 4.2)
c7e0acd5 172#
48685a8e 173# Since: 2.3
48685a8e
MA
174##
175{ 'enum': 'MigrationStatus',
176 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
a688d2c1 177 'active', 'postcopy-active', 'postcopy-paused',
135b87b4 178 'postcopy-recover', 'completed', 'failed', 'colo',
c7e0acd5 179 'pre-switchover', 'device', 'wait-unplug' ] }
3710586c
KW
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
a937b6aa
MA
185# @transferred: amount of bytes transferred to the target VM by VFIO
186# devices
3710586c
KW
187#
188# Since: 5.2
3710586c
KW
189##
190{ 'struct': 'VfioStats',
191 'data': {'transferred': 'int' } }
48685a8e
MA
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
a937b6aa
MA
199# If this field is not returned, no migration process has been
200# initiated
48685a8e 201#
a937b6aa
MA
202# @ram: @MigrationStats containing detailed migration status, only
203# returned if status is 'active' or 'completed'(since 1.2)
48685a8e 204#
a937b6aa
MA
205# @disk: @MigrationStats containing detailed disk migration status,
206# only returned if status is 'active' and it is a block migration
48685a8e
MA
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
a937b6aa
MA
209# migration statistics, only returned if XBZRLE feature is on and
210# status is 'active' or 'completed' (since 1.2)
48685a8e
MA
211#
212# @total-time: total amount of milliseconds since migration started.
a937b6aa
MA
213# If migration has ended, it returns the total migration time.
214# (since 1.2)
48685a8e 215#
a937b6aa
MA
216# @downtime: only present when migration finishes correctly total
217# downtime in milliseconds for the guest. (since 1.3)
48685a8e 218#
a937b6aa
MA
219# @expected-downtime: only present while migration is active expected
220# downtime in milliseconds for the guest in last walk of the dirty
221# bitmap. (since 1.3)
48685a8e 222#
a660eed4 223# @setup-time: amount of setup time in milliseconds *before* the
a937b6aa
MA
224# iterations begin but *after* the QMP command is issued. This is
225# designed to provide an accounting of any activities (such as
226# RDMA pinning) which may be expensive, but do not actually occur
227# during the iterative migration rounds themselves. (since 1.6)
48685a8e
MA
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
a937b6aa
MA
230# throttled during auto-converge. This is only present when
231# auto-converge has started throttling guest cpus. (Since 2.7)
48685a8e
MA
232#
233# @error-desc: the human readable error description string, when
a937b6aa
MA
234# @status is 'failed'. Clients should not attempt to parse the
235# error strings. (Since 2.7)
65ace060 236#
a937b6aa
MA
237# @postcopy-blocktime: total time when all vCPU were blocked during
238# postcopy live migration. This is only present when the
239# postcopy-blocktime migration capability is enabled. (Since 3.0)
65ace060 240#
a937b6aa
MA
241# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
242# This is only present when the postcopy-blocktime migration
243# capability is enabled. (Since 3.0)
65ace060 244#
a937b6aa
MA
245# @compression: migration compression statistics, only returned if
246# compression feature is on and status is 'active' or 'completed'
247# (Since 3.1)
48685a8e 248#
a937b6aa
MA
249# @socket-address: Only used for tcp, to know what the real port is
250# (Since 4.0)
9aca82ba 251#
a937b6aa
MA
252# @vfio: @VfioStats containing detailed VFIO devices migration
253# statistics, only returned if VFIO device is present, migration
254# is supported by all VFIO devices and status is 'active' or
255# 'completed' (since 5.2)
3710586c 256#
a937b6aa
MA
257# @blocked-reasons: A list of reasons an outgoing migration is
258# blocked. Present and non-empty when migration is blocked.
259# (since 6.0)
e11ce6c0 260#
8abc8115
HH
261# @dirty-limit-throttle-time-per-round: Maximum throttle time
262# (in microseconds) of virtual CPUs each dirty ring full round,
263# which shows how MigrationCapability dirty-limit affects the
264# guest during live migration. (Since 8.1)
265#
266# @dirty-limit-ring-full-time: Estimated average dirty ring full time
267# (in microseconds) for each dirty ring full round. The value
268# equals the dirty ring memory size divided by the average dirty
269# page rate of the virtual CPU, which can be used to observe the
270# average memory load of the virtual CPU indirectly. Note that
271# zero means guest doesn't dirty memory. (Since 8.1)
15699cf5 272#
9bc6e893 273# Since: 0.14
48685a8e
MA
274##
275{ 'struct': 'MigrationInfo',
276 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
277 '*disk': 'MigrationStats',
3710586c 278 '*vfio': 'VfioStats',
48685a8e
MA
279 '*xbzrle-cache': 'XBZRLECacheStats',
280 '*total-time': 'int',
281 '*expected-downtime': 'int',
282 '*downtime': 'int',
283 '*setup-time': 'int',
284 '*cpu-throttle-percentage': 'int',
65ace060 285 '*error-desc': 'str',
3af8554b 286 '*blocked-reasons': ['str'],
fd658a7b 287 '*postcopy-blocktime': 'uint32',
76e03000 288 '*postcopy-vcpu-blocktime': ['uint32'],
9aca82ba 289 '*compression': 'CompressionStats',
15699cf5
HH
290 '*socket-address': ['SocketAddress'],
291 '*dirty-limit-throttle-time-per-round': 'uint64',
292 '*dirty-limit-ring-full-time': 'uint64'} }
48685a8e
MA
293
294##
295# @query-migrate:
296#
a937b6aa 297# Returns information about current migration process. If migration
48685a8e
MA
298# is active there will be another json-object with RAM migration
299# status and if block migration is active another one with block
300# migration status.
301#
302# Returns: @MigrationInfo
303#
9bc6e893 304# Since: 0.14
48685a8e 305#
37fa48a4 306# Examples:
48685a8e
MA
307#
308# 1. Before the first migration
309#
310# -> { "execute": "query-migrate" }
311# <- { "return": {} }
312#
313# 2. Migration is done and has succeeded
314#
315# -> { "execute": "query-migrate" }
316# <- { "return": {
317# "status": "completed",
be1d2c49 318# "total-time":12345,
319# "setup-time":12345,
320# "downtime":12345,
48685a8e
MA
321# "ram":{
322# "transferred":123,
323# "remaining":123,
324# "total":246,
48685a8e
MA
325# "duplicate":123,
326# "normal":123,
327# "normal-bytes":123456,
328# "dirty-sync-count":15
329# }
330# }
331# }
332#
333# 3. Migration is done and has failed
334#
335# -> { "execute": "query-migrate" }
336# <- { "return": { "status": "failed" } }
337#
338# 4. Migration is being performed and is not a block migration:
339#
340# -> { "execute": "query-migrate" }
341# <- {
342# "return":{
343# "status":"active",
be1d2c49 344# "total-time":12345,
345# "setup-time":12345,
346# "expected-downtime":12345,
48685a8e
MA
347# "ram":{
348# "transferred":123,
349# "remaining":123,
350# "total":246,
48685a8e
MA
351# "duplicate":123,
352# "normal":123,
353# "normal-bytes":123456,
354# "dirty-sync-count":15
355# }
356# }
357# }
358#
359# 5. Migration is being performed and is a block migration:
360#
361# -> { "execute": "query-migrate" }
362# <- {
363# "return":{
364# "status":"active",
be1d2c49 365# "total-time":12345,
366# "setup-time":12345,
367# "expected-downtime":12345,
48685a8e
MA
368# "ram":{
369# "total":1057024,
370# "remaining":1053304,
371# "transferred":3720,
48685a8e
MA
372# "duplicate":123,
373# "normal":123,
374# "normal-bytes":123456,
375# "dirty-sync-count":15
376# },
377# "disk":{
378# "total":20971520,
379# "remaining":20880384,
380# "transferred":91136
381# }
382# }
383# }
384#
385# 6. Migration is being performed and XBZRLE is active:
386#
387# -> { "execute": "query-migrate" }
388# <- {
389# "return":{
390# "status":"active",
be1d2c49 391# "total-time":12345,
392# "setup-time":12345,
393# "expected-downtime":12345,
48685a8e
MA
394# "ram":{
395# "total":1057024,
396# "remaining":1053304,
397# "transferred":3720,
48685a8e
MA
398# "duplicate":10,
399# "normal":3333,
400# "normal-bytes":3412992,
401# "dirty-sync-count":15
402# },
403# "xbzrle-cache":{
404# "cache-size":67108864,
405# "bytes":20971520,
406# "pages":2444343,
407# "cache-miss":2244,
408# "cache-miss-rate":0.123,
e460a4b1 409# "encoding-rate":80.1,
48685a8e
MA
410# "overflow":34434
411# }
412# }
413# }
48685a8e
MA
414##
415{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
416
417##
418# @MigrationCapability:
419#
420# Migration capabilities enumeration
421#
a937b6aa
MA
422# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
423# Encoding). This feature allows us to minimize migration traffic
424# for certain work loads, by sending compressed difference of the
425# pages
426#
427# @rdma-pin-all: Controls whether or not the entire VM memory
428# footprint is mlock()'d on demand or all at once. Refer to
429# docs/rdma.txt for usage. Disabled by default. (since 2.0)
430#
431# @zero-blocks: During storage migration encode blocks of zeroes
432# efficiently. This essentially saves 1MB of zeroes per block on
433# the wire. Enabling requires source and target VM to support
434# this feature. To enable it is sufficient to enable the
435# capability on the source VM. The feature is disabled by default.
436# (since 1.6)
437#
438# @compress: Use multiple compression threads to accelerate live
439# migration. This feature can help to reduce the migration
440# traffic, by sending compressed pages. Please note that if
441# compress and xbzrle are both on, compress only takes effect in
442# the ram bulk stage, after that, it will be disabled and only
443# xbzrle takes effect, this can help to minimize migration
444# traffic. The feature is disabled by default. (since 2.4 )
445#
446# @events: generate events for each migration state change (since 2.4
447# )
448#
449# @auto-converge: If enabled, QEMU will automatically throttle down
450# the guest to speed up convergence of RAM migration. (since 1.6)
451#
452# @postcopy-ram: Start executing on the migration target before all of
453# RAM has been migrated, pulling the remaining pages along as
454# needed. The capacity must have the same setting on both source
455# and target or migration will not even start. NOTE: If the
456# migration fails during postcopy the VM will fail. (since 2.6)
457#
458# @x-colo: If enabled, migration will never end, and the state of the
459# VM on the primary side will be migrated continuously to the VM
460# on secondary side, this process is called COarse-Grain LOck
461# Stepping (COLO) for Non-stop Service. (since 2.8)
462#
463# @release-ram: if enabled, qemu will free the migrated ram pages on
464# the source during postcopy-ram migration. (since 2.9)
48685a8e
MA
465#
466# @block: If enabled, QEMU will also migrate the contents of all block
a937b6aa
MA
467# devices. Default is disabled. A possible alternative uses
468# mirror jobs to a builtin NBD server on the destination, which
469# offers more flexibility. (Since 2.10)
48685a8e
MA
470#
471# @return-path: If enabled, migration will use the return path even
a937b6aa 472# for precopy. (since 2.10)
48685a8e 473#
a937b6aa
MA
474# @pause-before-switchover: Pause outgoing migration before
475# serialising device state and before disabling block IO (since
476# 2.11)
93fbd031 477#
cbfd6c95 478# @multifd: Use more than one fd for migration (since 4.0)
30126bbf 479#
55efc8c2 480# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
a937b6aa 481# (since 2.12)
55efc8c2 482#
f22f928e 483# @postcopy-blocktime: Calculate downtime for postcopy live migration
a937b6aa 484# (since 3.0)
f22f928e 485#
a937b6aa
MA
486# @late-block-activate: If enabled, the destination will not activate
487# block devices (and thus take locks) immediately at the end of
488# migration. (since 3.0)
0f073f44 489#
9e272073
MA
490# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
491# that is accessible on the destination machine. (since 4.0)
18269069 492#
b9d68df6 493# @validate-uuid: Send the UUID of the source to allow the destination
a937b6aa
MA
494# to ensure it is the same. (since 4.2)
495#
496# @background-snapshot: If enabled, the migration stream will be a
497# snapshot of the VM exactly at the point when the migration
498# procedure starts. The VM RAM is saved with running VM. (since
499# 6.0)
500#
501# @zero-copy-send: Controls behavior on sending memory pages on
502# migration. When true, enables a zero-copy mechanism for sending
503# memory pages, if host supports it. Requires that QEMU be
504# permitted to use locked memory for guest RAM pages. (since 7.1)
505#
506# @postcopy-preempt: If enabled, the migration process will allow
507# postcopy requests to preempt precopy stream, so postcopy
508# requests will be handled faster. This is a performance feature
509# and should not affect the correctness of postcopy migration.
510# (since 7.1)
1abaec9a 511#
6574232f
AH
512# @switchover-ack: If enabled, migration will not stop the source VM
513# and complete the migration until an ACK is received from the
514# destination that it's OK to do so. Exactly when this ACK is
9e272073
MA
515# sent depends on the migrated devices that use this feature. For
516# example, a device can use it to make sure some of its data is
517# sent and loaded in the destination before doing switchover.
6574232f
AH
518# This can reduce downtime if devices that support this capability
519# are present. 'return-path' capability must be enabled to use
520# it. (since 8.1)
521#
8abc8115
HH
522# @dirty-limit: If enabled, migration will use the dirty-limit
523# algorithim to throttle down guest instead of auto-converge
524# algorithim. Throttle algorithim only works when vCPU's dirtyrate
525# greater than 'vcpu-dirty-limit', read processes in guest os
526# aren't penalized any more, so this algorithim can improve
527# performance of vCPU during live migration. This is an optional
528# performance feature and should not affect the correctness of the
529# existing auto-converge algorithim. (Since 8.1)
dc623955 530#
9fb49daa 531# Features:
a937b6aa 532#
9fb49daa
MA
533# @unstable: Members @x-colo and @x-ignore-shared are experimental.
534#
48685a8e
MA
535# Since: 1.2
536##
537{ 'enum': 'MigrationCapability',
538 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
9fb49daa
MA
539 'compress', 'events', 'postcopy-ram',
540 { 'name': 'x-colo', 'features': [ 'unstable' ] },
541 'release-ram',
cbfd6c95 542 'block', 'return-path', 'pause-before-switchover', 'multifd',
18269069 543 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
9fb49daa 544 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
1abaec9a 545 'validate-uuid', 'background-snapshot',
dc623955
HH
546 'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
547 'dirty-limit'] }
48685a8e
MA
548
549##
550# @MigrationCapabilityStatus:
551#
552# Migration capability information
553#
554# @capability: capability enum
555#
556# @state: capability state bool
557#
558# Since: 1.2
559##
560{ 'struct': 'MigrationCapabilityStatus',
fd658a7b 561 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
48685a8e
MA
562
563##
564# @migrate-set-capabilities:
565#
566# Enable/Disable the following migration capabilities (like xbzrle)
567#
568# @capabilities: json array of capability modifications to make
569#
570# Since: 1.2
571#
572# Example:
573#
574# -> { "execute": "migrate-set-capabilities" , "arguments":
575# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
37fa48a4 576# <- { "return": {} }
48685a8e
MA
577##
578{ 'command': 'migrate-set-capabilities',
579 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
580
581##
582# @query-migrate-capabilities:
583#
584# Returns information about the current migration capabilities status
585#
d93ed1bd 586# Returns: @MigrationCapabilityStatus
48685a8e
MA
587#
588# Since: 1.2
589#
590# Example:
591#
592# -> { "execute": "query-migrate-capabilities" }
593# <- { "return": [
594# {"state": false, "capability": "xbzrle"},
595# {"state": false, "capability": "rdma-pin-all"},
596# {"state": false, "capability": "auto-converge"},
597# {"state": false, "capability": "zero-blocks"},
598# {"state": false, "capability": "compress"},
599# {"state": true, "capability": "events"},
600# {"state": false, "capability": "postcopy-ram"},
601# {"state": false, "capability": "x-colo"}
602# ]}
48685a8e
MA
603##
604{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
605
96eef042
JQ
606##
607# @MultiFDCompression:
608#
609# An enumeration of multifd compression methods.
610#
611# @none: no compression.
a937b6aa 612#
7ec2c2b3 613# @zlib: use zlib compression method.
a937b6aa 614#
87dc6f5f 615# @zstd: use zstd compression method.
96eef042
JQ
616#
617# Since: 5.0
96eef042
JQ
618##
619{ 'enum': 'MultiFDCompression',
87dc6f5f 620 'data': [ 'none', 'zlib',
8a9f1e1d 621 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
96eef042 622
6e9f21a2
PK
623##
624# @BitmapMigrationBitmapAliasTransform:
625#
a937b6aa
MA
626# @persistent: If present, the bitmap will be made persistent or
627# transient depending on this parameter.
6e9f21a2
PK
628#
629# Since: 6.0
630##
631{ 'struct': 'BitmapMigrationBitmapAliasTransform',
632 'data': {
633 '*persistent': 'bool'
634 } }
635
31e4c354
HR
636##
637# @BitmapMigrationBitmapAlias:
638#
639# @name: The name of the bitmap.
640#
641# @alias: An alias name for migration (for example the bitmap name on
a937b6aa 642# the opposite site).
31e4c354 643#
a937b6aa
MA
644# @transform: Allows the modification of the migrated bitmap. (since
645# 6.0)
6e9f21a2 646#
31e4c354
HR
647# Since: 5.2
648##
649{ 'struct': 'BitmapMigrationBitmapAlias',
650 'data': {
651 'name': 'str',
6e9f21a2
PK
652 'alias': 'str',
653 '*transform': 'BitmapMigrationBitmapAliasTransform'
31e4c354
HR
654 } }
655
656##
657# @BitmapMigrationNodeAlias:
658#
659# Maps a block node name and the bitmaps it has to aliases for dirty
660# bitmap migration.
661#
662# @node-name: A block node name.
663#
a937b6aa
MA
664# @alias: An alias block node name for migration (for example the node
665# name on the opposite site).
31e4c354
HR
666#
667# @bitmaps: Mappings for the bitmaps on this node.
668#
669# Since: 5.2
670##
671{ 'struct': 'BitmapMigrationNodeAlias',
672 'data': {
673 'node-name': 'str',
674 'alias': 'str',
675 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
676 } }
677
48685a8e
MA
678##
679# @MigrationParameter:
680#
681# Migration parameters enumeration
682#
a937b6aa
MA
683# @announce-initial: Initial delay (in milliseconds) before sending
684# the first announce (Since 4.0)
ee3d96ba 685#
a937b6aa
MA
686# @announce-max: Maximum delay (in milliseconds) between packets in
687# the announcement (Since 4.0)
ee3d96ba 688#
a937b6aa
MA
689# @announce-rounds: Number of self-announce packets sent after
690# migration (Since 4.0)
ee3d96ba 691#
a937b6aa
MA
692# @announce-step: Increase in delay (in milliseconds) between
693# subsequent packets in the announcement (Since 4.0)
ee3d96ba 694#
a937b6aa
MA
695# @compress-level: Set the compression level to be used in live
696# migration, the compression level is an integer between 0 and 9,
697# where 0 means no compression, 1 means the best compression
698# speed, and 9 means best compression ratio which will consume
699# more CPU.
48685a8e 700#
a937b6aa
MA
701# @compress-threads: Set compression thread count to be used in live
702# migration, the compression thread count is an integer between 1
703# and 255.
48685a8e 704#
a937b6aa
MA
705# @compress-wait-thread: Controls behavior when all compression
706# threads are currently busy. If true (default), wait for a free
707# compression thread to become available; otherwise, send the page
708# uncompressed. (Since 3.1)
1d58872a 709#
a937b6aa
MA
710# @decompress-threads: Set decompression thread count to be used in
711# live migration, the decompression thread count is an integer
712# between 1 and 255. Usually, decompression is at least 4 times as
713# fast as compression, so set the decompress-threads to the number
714# about 1/4 of compress-threads is adequate.
48685a8e 715#
a937b6aa
MA
716# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
717# bytes_xfer_period to trigger throttling. It is expressed as
718# percentage. The default value is 50. (Since 5.0)
dc14a470 719#
a937b6aa
MA
720# @cpu-throttle-initial: Initial percentage of time guest cpus are
721# throttled when migration auto-converge is activated. The
722# default value is 20. (Since 2.7)
48685a8e
MA
723#
724# @cpu-throttle-increment: throttle percentage increase each time
a937b6aa
MA
725# auto-converge detects that migration is not making progress.
726# The default value is 10. (Since 2.7)
727#
728# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
729# the tail stage of throttling, the Guest is very sensitive to CPU
730# percentage while the @cpu-throttle -increment is excessive
731# usually at tail stage. If this parameter is true, we will
732# compute the ideal CPU percentage used by the Guest, which may
733# exactly make the dirty rate match the dirty rate threshold.
734# Then we will choose a smaller throttle increment between the one
735# specified by @cpu-throttle-increment and the one generated by
736# ideal CPU percentage. Therefore, it is compatible to
737# traditional throttling, meanwhile the throttle increment won't
738# be excessive at tail stage. The default value is false. (Since
739# 5.1)
740#
741# @tls-creds: ID of the 'tls-creds' object that provides credentials
742# for establishing a TLS connection over the migration data
743# channel. On the outgoing side of the migration, the credentials
744# must be for a 'client' endpoint, while for the incoming side the
745# credentials must be for a 'server' endpoint. Setting this will
746# enable TLS for all migrations. The default is unset, resulting
747# in unsecured migration at the QEMU level. (Since 2.7)
748#
749# @tls-hostname: hostname of the target host for the migration. This
750# is required when using x509 based TLS credentials and the
751# migration URI does not already include a hostname. For example
752# if using fd: or exec: based migration, the hostname must be
753# provided so that the server's x509 certificate identity can be
754# validated. (Since 2.7)
755#
756# @tls-authz: ID of the 'authz' object subclass that provides access
757# control checking of the TLS x509 certificate distinguished name.
758# This object is only resolved at time of use, so can be deleted
759# and recreated on the fly while the migration server is active.
760# If missing, it will default to denying access (Since 4.0)
761#
762# @max-bandwidth: to set maximum speed for migration. maximum speed
763# in bytes per second. (Since 2.8)
764#
765# @downtime-limit: set maximum tolerated downtime for migration.
766# maximum downtime in milliseconds (Since 2.8)
767#
768# @x-checkpoint-delay: The delay time (in ms) between two COLO
769# checkpoints in periodic mode. (Since 2.8)
48685a8e
MA
770#
771# @block-incremental: Affects how much storage is migrated when the
a937b6aa
MA
772# block migration capability is enabled. When false, the entire
773# storage backing chain is migrated into a flattened image at the
774# destination; when true, only the active qcow2 layer is migrated
775# and the destination must already have access to the same backing
776# chain as was used on the source. (since 2.10)
48685a8e 777#
cbfd6c95 778# @multifd-channels: Number of channels used to migrate data in
a937b6aa
MA
779# parallel. This is the same number that the number of sockets
780# used for migration. The default value is 2 (since 4.0)
4075fb1c 781#
73af8dd8 782# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
a937b6aa
MA
783# needs to be a multiple of the target page size and a power of 2
784# (Since 2.11)
73af8dd8 785#
a937b6aa
MA
786# @max-postcopy-bandwidth: Background transfer bandwidth during
787# postcopy. Defaults to 0 (unlimited). In bytes per second.
788# (Since 3.0)
4cbc9c7f 789#
a937b6aa
MA
790# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
791# (Since 3.1)
ee3d96ba 792#
a937b6aa
MA
793# @multifd-compression: Which compression method to use. Defaults to
794# none. (Since 5.0)
96eef042 795#
9004db48 796# @multifd-zlib-level: Set the compression level to be used in live
a937b6aa
MA
797# migration, the compression level is an integer between 0 and 9,
798# where 0 means no compression, 1 means the best compression
799# speed, and 9 means best compression ratio which will consume
800# more CPU. Defaults to 1. (Since 5.0)
9004db48 801#
6a9ad154 802# @multifd-zstd-level: Set the compression level to be used in live
a937b6aa
MA
803# migration, the compression level is an integer between 0 and 20,
804# where 0 means no compression, 1 means the best compression
805# speed, and 20 means best compression ratio which will consume
806# more CPU. Defaults to 1. (Since 5.0)
abb6295b 807#
31e4c354 808# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
a937b6aa
MA
809# aliases for the purpose of dirty bitmap migration. Such aliases
810# may for example be the corresponding names on the opposite site.
811# The mapping must be one-to-one, but not necessarily complete: On
812# the source, unmapped bitmaps and all bitmaps on unmapped nodes
813# will be ignored. On the destination, encountering an unmapped
814# alias in the incoming migration stream will result in a report,
815# and all further bitmap migration data will then be discarded.
816# Note that the destination does not know about bitmaps it does
817# not receive, so there is no limitation or requirement regarding
818# the number of bitmaps received, or how they are named, or on
819# which nodes they are placed. By default (when this parameter
820# has never been set), bitmap names are mapped to themselves.
821# Nodes are mapped to their block device name if there is one, and
822# to their node name otherwise. (Since 5.2)
31e4c354 823#
8abc8115
HH
824# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
825# limit during live migration. Should be in the range 1 to 1000ms.
826# Defaults to 1000ms. (Since 8.1)
4d807857 827#
09f9ec99 828# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
8abc8115 829# Defaults to 1. (Since 8.1)
09f9ec99 830#
9fb49daa 831# Features:
a937b6aa 832#
4d807857 833# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
8abc8115 834# are experimental.
9fb49daa 835#
48685a8e
MA
836# Since: 2.4
837##
838{ 'enum': 'MigrationParameter',
ee3d96ba
DDAG
839 'data': ['announce-initial', 'announce-max',
840 'announce-rounds', 'announce-step',
841 'compress-level', 'compress-threads', 'decompress-threads',
dc14a470 842 'compress-wait-thread', 'throttle-trigger-threshold',
48685a8e 843 'cpu-throttle-initial', 'cpu-throttle-increment',
cbbf8182 844 'cpu-throttle-tailslow',
d2f1d29b 845 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
9fb49daa
MA
846 'downtime-limit',
847 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
848 'block-incremental',
cbfd6c95 849 'multifd-channels',
4cbc9c7f 850 'xbzrle-cache-size', 'max-postcopy-bandwidth',
9004db48 851 'max-cpu-throttle', 'multifd-compression',
4d807857
HH
852 'multifd-zlib-level', 'multifd-zstd-level',
853 'block-bitmap-mapping',
09f9ec99
HH
854 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
855 'vcpu-dirty-limit'] }
48685a8e
MA
856
857##
858# @MigrateSetParameters:
859#
a937b6aa
MA
860# @announce-initial: Initial delay (in milliseconds) before sending
861# the first announce (Since 4.0)
ee3d96ba 862#
a937b6aa
MA
863# @announce-max: Maximum delay (in milliseconds) between packets in
864# the announcement (Since 4.0)
ee3d96ba 865#
a937b6aa
MA
866# @announce-rounds: Number of self-announce packets sent after
867# migration (Since 4.0)
ee3d96ba 868#
a937b6aa
MA
869# @announce-step: Increase in delay (in milliseconds) between
870# subsequent packets in the announcement (Since 4.0)
ee3d96ba 871#
48685a8e
MA
872# @compress-level: compression level
873#
874# @compress-threads: compression thread count
875#
a937b6aa
MA
876# @compress-wait-thread: Controls behavior when all compression
877# threads are currently busy. If true (default), wait for a free
878# compression thread to become available; otherwise, send the page
879# uncompressed. (Since 3.1)
1d58872a 880#
48685a8e
MA
881# @decompress-threads: decompression thread count
882#
a937b6aa
MA
883# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
884# bytes_xfer_period to trigger throttling. It is expressed as
885# percentage. The default value is 50. (Since 5.0)
dc14a470 886#
48685a8e 887# @cpu-throttle-initial: Initial percentage of time guest cpus are
a937b6aa
MA
888# throttled when migration auto-converge is activated. The
889# default value is 20. (Since 2.7)
48685a8e
MA
890#
891# @cpu-throttle-increment: throttle percentage increase each time
a937b6aa
MA
892# auto-converge detects that migration is not making progress.
893# The default value is 10. (Since 2.7)
894#
895# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
896# the tail stage of throttling, the Guest is very sensitive to CPU
897# percentage while the @cpu-throttle -increment is excessive
898# usually at tail stage. If this parameter is true, we will
899# compute the ideal CPU percentage used by the Guest, which may
900# exactly make the dirty rate match the dirty rate threshold.
901# Then we will choose a smaller throttle increment between the one
902# specified by @cpu-throttle-increment and the one generated by
903# ideal CPU percentage. Therefore, it is compatible to
904# traditional throttling, meanwhile the throttle increment won't
905# be excessive at tail stage. The default value is false. (Since
906# 5.1)
cbbf8182 907#
48685a8e 908# @tls-creds: ID of the 'tls-creds' object that provides credentials
a937b6aa
MA
909# for establishing a TLS connection over the migration data
910# channel. On the outgoing side of the migration, the credentials
911# must be for a 'client' endpoint, while for the incoming side the
912# credentials must be for a 'server' endpoint. Setting this to a
913# non-empty string enables TLS for all migrations. An empty
914# string means that QEMU will use plain text mode for migration,
915# rather than TLS (Since 2.9) Previously (since 2.7), this was
916# reported by omitting tls-creds instead.
917#
918# @tls-hostname: hostname of the target host for the migration. This
919# is required when using x509 based TLS credentials and the
920# migration URI does not already include a hostname. For example
921# if using fd: or exec: based migration, the hostname must be
922# provided so that the server's x509 certificate identity can be
923# validated. (Since 2.7) An empty string means that QEMU will use
924# the hostname associated with the migration URI, if any. (Since
925# 2.9) Previously (since 2.7), this was reported by omitting
926# tls-hostname instead.
927#
928# @max-bandwidth: to set maximum speed for migration. maximum speed
929# in bytes per second. (Since 2.8)
930#
931# @downtime-limit: set maximum tolerated downtime for migration.
932# maximum downtime in milliseconds (Since 2.8)
933#
934# @x-checkpoint-delay: the delay time between two COLO checkpoints.
935# (Since 2.8)
48685a8e
MA
936#
937# @block-incremental: Affects how much storage is migrated when the
a937b6aa
MA
938# block migration capability is enabled. When false, the entire
939# storage backing chain is migrated into a flattened image at the
940# destination; when true, only the active qcow2 layer is migrated
941# and the destination must already have access to the same backing
942# chain as was used on the source. (since 2.10)
48685a8e 943#
cbfd6c95 944# @multifd-channels: Number of channels used to migrate data in
a937b6aa
MA
945# parallel. This is the same number that the number of sockets
946# used for migration. The default value is 2 (since 4.0)
4075fb1c 947#
73af8dd8 948# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
a937b6aa
MA
949# needs to be a multiple of the target page size and a power of 2
950# (Since 2.11)
7e555c6c 951#
a937b6aa
MA
952# @max-postcopy-bandwidth: Background transfer bandwidth during
953# postcopy. Defaults to 0 (unlimited). In bytes per second.
954# (Since 3.0)
4cbc9c7f 955#
a937b6aa
MA
956# @max-cpu-throttle: maximum cpu throttle percentage. The default
957# value is 99. (Since 3.1)
4cbc9c7f 958#
a937b6aa
MA
959# @multifd-compression: Which compression method to use. Defaults to
960# none. (Since 5.0)
96eef042 961#
9004db48 962# @multifd-zlib-level: Set the compression level to be used in live
a937b6aa
MA
963# migration, the compression level is an integer between 0 and 9,
964# where 0 means no compression, 1 means the best compression
965# speed, and 9 means best compression ratio which will consume
966# more CPU. Defaults to 1. (Since 5.0)
9004db48 967#
6a9ad154 968# @multifd-zstd-level: Set the compression level to be used in live
a937b6aa
MA
969# migration, the compression level is an integer between 0 and 20,
970# where 0 means no compression, 1 means the best compression
971# speed, and 20 means best compression ratio which will consume
972# more CPU. Defaults to 1. (Since 5.0)
6a9ad154 973#
31e4c354 974# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
a937b6aa
MA
975# aliases for the purpose of dirty bitmap migration. Such aliases
976# may for example be the corresponding names on the opposite site.
977# The mapping must be one-to-one, but not necessarily complete: On
978# the source, unmapped bitmaps and all bitmaps on unmapped nodes
979# will be ignored. On the destination, encountering an unmapped
980# alias in the incoming migration stream will result in a report,
981# and all further bitmap migration data will then be discarded.
982# Note that the destination does not know about bitmaps it does
983# not receive, so there is no limitation or requirement regarding
984# the number of bitmaps received, or how they are named, or on
985# which nodes they are placed. By default (when this parameter
986# has never been set), bitmap names are mapped to themselves.
987# Nodes are mapped to their block device name if there is one, and
988# to their node name otherwise. (Since 5.2)
31e4c354 989#
8abc8115
HH
990# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
991# limit during live migration. Should be in the range 1 to 1000ms.
992# Defaults to 1000ms. (Since 8.1)
4d807857 993#
09f9ec99 994# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
8abc8115 995# Defaults to 1. (Since 8.1)
09f9ec99 996#
9fb49daa 997# Features:
a937b6aa 998#
4d807857 999# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
8abc8115 1000# are experimental.
9fb49daa 1001#
56266c6d 1002# TODO: either fuse back into MigrationParameters, or make
a937b6aa 1003# MigrationParameters members mandatory
56266c6d 1004#
48685a8e
MA
1005# Since: 2.4
1006##
48685a8e 1007{ 'struct': 'MigrateSetParameters',
ee3d96ba
DDAG
1008 'data': { '*announce-initial': 'size',
1009 '*announce-max': 'size',
1010 '*announce-rounds': 'size',
1011 '*announce-step': 'size',
ec17de0a
MA
1012 '*compress-level': 'uint8',
1013 '*compress-threads': 'uint8',
1d58872a 1014 '*compress-wait-thread': 'bool',
ec17de0a
MA
1015 '*decompress-threads': 'uint8',
1016 '*throttle-trigger-threshold': 'uint8',
1017 '*cpu-throttle-initial': 'uint8',
1018 '*cpu-throttle-increment': 'uint8',
cbbf8182 1019 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
1020 '*tls-creds': 'StrOrNull',
1021 '*tls-hostname': 'StrOrNull',
d2f1d29b 1022 '*tls-authz': 'StrOrNull',
ec17de0a
MA
1023 '*max-bandwidth': 'size',
1024 '*downtime-limit': 'uint64',
9fb49daa
MA
1025 '*x-checkpoint-delay': { 'type': 'uint32',
1026 'features': [ 'unstable' ] },
4075fb1c 1027 '*block-incremental': 'bool',
ec17de0a 1028 '*multifd-channels': 'uint8',
7e555c6c 1029 '*xbzrle-cache-size': 'size',
4cbc9c7f 1030 '*max-postcopy-bandwidth': 'size',
ec17de0a 1031 '*max-cpu-throttle': 'uint8',
9004db48 1032 '*multifd-compression': 'MultiFDCompression',
ec17de0a
MA
1033 '*multifd-zlib-level': 'uint8',
1034 '*multifd-zstd-level': 'uint8',
4d807857
HH
1035 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1036 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
09f9ec99
HH
1037 'features': [ 'unstable' ] },
1038 '*vcpu-dirty-limit': 'uint64'} }
48685a8e
MA
1039
1040##
1041# @migrate-set-parameters:
1042#
1043# Set various migration parameters.
1044#
1045# Since: 2.4
1046#
1047# Example:
1048#
1049# -> { "execute": "migrate-set-parameters" ,
1050# "arguments": { "compress-level": 1 } }
37fa48a4 1051# <- { "return": {} }
48685a8e
MA
1052##
1053{ 'command': 'migrate-set-parameters', 'boxed': true,
1054 'data': 'MigrateSetParameters' }
1055
1056##
1057# @MigrationParameters:
1058#
1059# The optional members aren't actually optional.
1060#
a937b6aa
MA
1061# @announce-initial: Initial delay (in milliseconds) before sending
1062# the first announce (Since 4.0)
ee3d96ba 1063#
a937b6aa
MA
1064# @announce-max: Maximum delay (in milliseconds) between packets in
1065# the announcement (Since 4.0)
ee3d96ba 1066#
a937b6aa
MA
1067# @announce-rounds: Number of self-announce packets sent after
1068# migration (Since 4.0)
ee3d96ba 1069#
a937b6aa
MA
1070# @announce-step: Increase in delay (in milliseconds) between
1071# subsequent packets in the announcement (Since 4.0)
ee3d96ba 1072#
48685a8e
MA
1073# @compress-level: compression level
1074#
1075# @compress-threads: compression thread count
1076#
a937b6aa
MA
1077# @compress-wait-thread: Controls behavior when all compression
1078# threads are currently busy. If true (default), wait for a free
1079# compression thread to become available; otherwise, send the page
1080# uncompressed. (Since 3.1)
1d58872a 1081#
48685a8e
MA
1082# @decompress-threads: decompression thread count
1083#
a937b6aa
MA
1084# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1085# bytes_xfer_period to trigger throttling. It is expressed as
1086# percentage. The default value is 50. (Since 5.0)
dc14a470 1087#
48685a8e 1088# @cpu-throttle-initial: Initial percentage of time guest cpus are
a937b6aa
MA
1089# throttled when migration auto-converge is activated. (Since
1090# 2.7)
48685a8e
MA
1091#
1092# @cpu-throttle-increment: throttle percentage increase each time
a937b6aa
MA
1093# auto-converge detects that migration is not making progress.
1094# (Since 2.7)
1095#
1096# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1097# the tail stage of throttling, the Guest is very sensitive to CPU
1098# percentage while the @cpu-throttle -increment is excessive
1099# usually at tail stage. If this parameter is true, we will
1100# compute the ideal CPU percentage used by the Guest, which may
1101# exactly make the dirty rate match the dirty rate threshold.
1102# Then we will choose a smaller throttle increment between the one
1103# specified by @cpu-throttle-increment and the one generated by
1104# ideal CPU percentage. Therefore, it is compatible to
1105# traditional throttling, meanwhile the throttle increment won't
1106# be excessive at tail stage. The default value is false. (Since
1107# 5.1)
cbbf8182 1108#
48685a8e 1109# @tls-creds: ID of the 'tls-creds' object that provides credentials
a937b6aa
MA
1110# for establishing a TLS connection over the migration data
1111# channel. On the outgoing side of the migration, the credentials
1112# must be for a 'client' endpoint, while for the incoming side the
1113# credentials must be for a 'server' endpoint. An empty string
1114# means that QEMU will use plain text mode for migration, rather
1115# than TLS (Since 2.7) Note: 2.8 reports this by omitting
1116# tls-creds instead.
1117#
1118# @tls-hostname: hostname of the target host for the migration. This
1119# is required when using x509 based TLS credentials and the
1120# migration URI does not already include a hostname. For example
1121# if using fd: or exec: based migration, the hostname must be
1122# provided so that the server's x509 certificate identity can be
1123# validated. (Since 2.7) An empty string means that QEMU will use
1124# the hostname associated with the migration URI, if any. (Since
1125# 2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1126#
1127# @tls-authz: ID of the 'authz' object subclass that provides access
1128# control checking of the TLS x509 certificate distinguished name.
1129# (Since 4.0)
1130#
1131# @max-bandwidth: to set maximum speed for migration. maximum speed
1132# in bytes per second. (Since 2.8)
1133#
1134# @downtime-limit: set maximum tolerated downtime for migration.
1135# maximum downtime in milliseconds (Since 2.8)
1136#
1137# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1138# (Since 2.8)
48685a8e
MA
1139#
1140# @block-incremental: Affects how much storage is migrated when the
a937b6aa
MA
1141# block migration capability is enabled. When false, the entire
1142# storage backing chain is migrated into a flattened image at the
1143# destination; when true, only the active qcow2 layer is migrated
1144# and the destination must already have access to the same backing
1145# chain as was used on the source. (since 2.10)
48685a8e 1146#
cbfd6c95 1147# @multifd-channels: Number of channels used to migrate data in
a937b6aa
MA
1148# parallel. This is the same number that the number of sockets
1149# used for migration. The default value is 2 (since 4.0)
4075fb1c 1150#
73af8dd8 1151# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
a937b6aa
MA
1152# needs to be a multiple of the target page size and a power of 2
1153# (Since 2.11)
7e555c6c 1154#
a937b6aa
MA
1155# @max-postcopy-bandwidth: Background transfer bandwidth during
1156# postcopy. Defaults to 0 (unlimited). In bytes per second.
1157# (Since 3.0)
4cbc9c7f 1158#
a937b6aa
MA
1159# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99.
1160# (Since 3.1)
4cbc9c7f 1161#
a937b6aa
MA
1162# @multifd-compression: Which compression method to use. Defaults to
1163# none. (Since 5.0)
96eef042 1164#
9004db48 1165# @multifd-zlib-level: Set the compression level to be used in live
a937b6aa
MA
1166# migration, the compression level is an integer between 0 and 9,
1167# where 0 means no compression, 1 means the best compression
1168# speed, and 9 means best compression ratio which will consume
1169# more CPU. Defaults to 1. (Since 5.0)
9004db48 1170#
6a9ad154 1171# @multifd-zstd-level: Set the compression level to be used in live
a937b6aa
MA
1172# migration, the compression level is an integer between 0 and 20,
1173# where 0 means no compression, 1 means the best compression
1174# speed, and 20 means best compression ratio which will consume
1175# more CPU. Defaults to 1. (Since 5.0)
6a9ad154 1176#
31e4c354 1177# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
a937b6aa
MA
1178# aliases for the purpose of dirty bitmap migration. Such aliases
1179# may for example be the corresponding names on the opposite site.
1180# The mapping must be one-to-one, but not necessarily complete: On
1181# the source, unmapped bitmaps and all bitmaps on unmapped nodes
1182# will be ignored. On the destination, encountering an unmapped
1183# alias in the incoming migration stream will result in a report,
1184# and all further bitmap migration data will then be discarded.
1185# Note that the destination does not know about bitmaps it does
1186# not receive, so there is no limitation or requirement regarding
1187# the number of bitmaps received, or how they are named, or on
1188# which nodes they are placed. By default (when this parameter
1189# has never been set), bitmap names are mapped to themselves.
1190# Nodes are mapped to their block device name if there is one, and
1191# to their node name otherwise. (Since 5.2)
31e4c354 1192#
8abc8115
HH
1193# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1194# limit during live migration. Should be in the range 1 to 1000ms.
1195# Defaults to 1000ms. (Since 8.1)
4d807857 1196#
09f9ec99 1197# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
8abc8115 1198# Defaults to 1. (Since 8.1)
09f9ec99 1199#
9fb49daa 1200# Features:
a937b6aa 1201#
4d807857 1202# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
8abc8115 1203# are experimental.
9fb49daa 1204#
48685a8e
MA
1205# Since: 2.4
1206##
1207{ 'struct': 'MigrationParameters',
ee3d96ba
DDAG
1208 'data': { '*announce-initial': 'size',
1209 '*announce-max': 'size',
1210 '*announce-rounds': 'size',
1211 '*announce-step': 'size',
1212 '*compress-level': 'uint8',
741d4086 1213 '*compress-threads': 'uint8',
1d58872a 1214 '*compress-wait-thread': 'bool',
741d4086 1215 '*decompress-threads': 'uint8',
dc14a470 1216 '*throttle-trigger-threshold': 'uint8',
741d4086
JQ
1217 '*cpu-throttle-initial': 'uint8',
1218 '*cpu-throttle-increment': 'uint8',
cbbf8182 1219 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
1220 '*tls-creds': 'str',
1221 '*tls-hostname': 'str',
d2f1d29b 1222 '*tls-authz': 'str',
741d4086
JQ
1223 '*max-bandwidth': 'size',
1224 '*downtime-limit': 'uint64',
9fb49daa
MA
1225 '*x-checkpoint-delay': { 'type': 'uint32',
1226 'features': [ 'unstable' ] },
ec17de0a 1227 '*block-incremental': 'bool',
cbfd6c95 1228 '*multifd-channels': 'uint8',
7e555c6c 1229 '*xbzrle-cache-size': 'size',
dbb28bc8 1230 '*max-postcopy-bandwidth': 'size',
96eef042 1231 '*max-cpu-throttle': 'uint8',
9004db48 1232 '*multifd-compression': 'MultiFDCompression',
6a9ad154 1233 '*multifd-zlib-level': 'uint8',
31e4c354 1234 '*multifd-zstd-level': 'uint8',
4d807857
HH
1235 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1236 '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
09f9ec99
HH
1237 'features': [ 'unstable' ] },
1238 '*vcpu-dirty-limit': 'uint64'} }
48685a8e
MA
1239
1240##
1241# @query-migrate-parameters:
1242#
1243# Returns information about the current migration parameters
1244#
1245# Returns: @MigrationParameters
1246#
1247# Since: 2.4
1248#
1249# Example:
1250#
1251# -> { "execute": "query-migrate-parameters" }
1252# <- { "return": {
1253# "decompress-threads": 2,
1254# "cpu-throttle-increment": 10,
1255# "compress-threads": 8,
1256# "compress-level": 1,
1257# "cpu-throttle-initial": 20,
1258# "max-bandwidth": 33554432,
1259# "downtime-limit": 300
1260# }
1261# }
48685a8e
MA
1262##
1263{ 'command': 'query-migrate-parameters',
1264 'returns': 'MigrationParameters' }
1265
48685a8e
MA
1266##
1267# @migrate-start-postcopy:
1268#
a937b6aa
MA
1269# Followup to a migration command to switch the migration to postcopy
1270# mode. The postcopy-ram capability must be set on both source and
1271# destination before the original migration command.
48685a8e
MA
1272#
1273# Since: 2.5
1274#
1275# Example:
1276#
1277# -> { "execute": "migrate-start-postcopy" }
1278# <- { "return": {} }
48685a8e
MA
1279##
1280{ 'command': 'migrate-start-postcopy' }
1281
1282##
1283# @MIGRATION:
1284#
1285# Emitted when a migration event happens
1286#
1287# @status: @MigrationStatus describing the current migration status.
1288#
1289# Since: 2.4
1290#
1291# Example:
1292#
1293# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1294# "event": "MIGRATION",
1295# "data": {"status": "completed"} }
48685a8e
MA
1296##
1297{ 'event': 'MIGRATION',
1298 'data': {'status': 'MigrationStatus'}}
1299
1300##
1301# @MIGRATION_PASS:
1302#
a937b6aa
MA
1303# Emitted from the source side of a migration at the start of each
1304# pass (when it syncs the dirty bitmap)
48685a8e
MA
1305#
1306# @pass: An incrementing count (starting at 1 on the first pass)
1307#
1308# Since: 2.6
1309#
1310# Example:
1311#
37fa48a4
MA
1312# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1313# "event": "MIGRATION_PASS", "data": {"pass": 2} }
48685a8e
MA
1314##
1315{ 'event': 'MIGRATION_PASS',
1316 'data': { 'pass': 'int' } }
1317
1318##
1319# @COLOMessage:
1320#
1321# The message transmission between Primary side and Secondary side.
1322#
1323# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1324#
a937b6aa
MA
1325# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1326# checkpointing
48685a8e
MA
1327#
1328# @checkpoint-reply: SVM gets PVM's checkpoint request
1329#
1330# @vmstate-send: VM's state will be sent by PVM.
1331#
1332# @vmstate-size: The total size of VMstate.
1333#
1334# @vmstate-received: VM's state has been received by SVM.
1335#
1336# @vmstate-loaded: VM's state has been loaded by SVM.
1337#
1338# Since: 2.8
1339##
1340{ 'enum': 'COLOMessage',
1341 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1342 'vmstate-send', 'vmstate-size', 'vmstate-received',
1343 'vmstate-loaded' ] }
1344
1345##
1346# @COLOMode:
1347#
41b6b779 1348# The COLO current mode.
48685a8e 1349#
41b6b779 1350# @none: COLO is disabled.
48685a8e 1351#
41b6b779 1352# @primary: COLO node in primary side.
48685a8e 1353#
41b6b779 1354# @secondary: COLO node in slave side.
48685a8e
MA
1355#
1356# Since: 2.8
1357##
1358{ 'enum': 'COLOMode',
41b6b779 1359 'data': [ 'none', 'primary', 'secondary'] }
48685a8e
MA
1360
1361##
1362# @FailoverStatus:
1363#
1364# An enumeration of COLO failover status
1365#
1366# @none: no failover has ever happened
1367#
1368# @require: got failover requirement but not handled
1369#
1370# @active: in the process of doing failover
1371#
1372# @completed: finish the process of failover
1373#
a937b6aa
MA
1374# @relaunch: restart the failover process, from 'none' -> 'completed'
1375# (Since 2.9)
48685a8e
MA
1376#
1377# Since: 2.8
1378##
1379{ 'enum': 'FailoverStatus',
1380 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1381
9ecff6d6
HZ
1382##
1383# @COLO_EXIT:
1384#
1385# Emitted when VM finishes COLO mode due to some errors happening or
1386# at the request of users.
1387#
1388# @mode: report COLO mode when COLO exited.
1389#
1390# @reason: describes the reason for the COLO exit.
1391#
1392# Since: 3.1
1393#
1394# Example:
1395#
1396# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1397# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
9ecff6d6
HZ
1398##
1399{ 'event': 'COLO_EXIT',
1400 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1401
1402##
1403# @COLOExitReason:
1404#
3a43ac47 1405# The reason for a COLO exit.
9ecff6d6 1406#
a937b6aa
MA
1407# @none: failover has never happened. This state does not occur in
1408# the COLO_EXIT event, and is only visible in the result of
1409# query-colo-status.
9ecff6d6 1410#
3a43ac47 1411# @request: COLO exit is due to an external request.
9ecff6d6 1412#
3a43ac47
ZC
1413# @error: COLO exit is due to an internal error.
1414#
1415# @processing: COLO is currently handling a failover (since 4.0).
9ecff6d6
HZ
1416#
1417# Since: 3.1
1418##
1419{ 'enum': 'COLOExitReason',
3a43ac47 1420 'data': [ 'none', 'request', 'error' , 'processing' ] }
9ecff6d6 1421
48685a8e
MA
1422##
1423# @x-colo-lost-heartbeat:
1424#
a937b6aa
MA
1425# Tell qemu that heartbeat is lost, request it to do takeover
1426# procedures. If this command is sent to the PVM, the Primary side
1427# will exit COLO mode. If sent to the Secondary, the Secondary side
1428# will run failover work, then takes over server operation to become
1429# the service VM.
48685a8e 1430#
9fb49daa 1431# Features:
a937b6aa 1432#
9fb49daa
MA
1433# @unstable: This command is experimental.
1434#
48685a8e
MA
1435# Since: 2.8
1436#
1437# Example:
1438#
1439# -> { "execute": "x-colo-lost-heartbeat" }
1440# <- { "return": {} }
48685a8e 1441##
9fb49daa 1442{ 'command': 'x-colo-lost-heartbeat',
51e47cf8
VSO
1443 'features': [ 'unstable' ],
1444 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1445
1446##
1447# @migrate_cancel:
1448#
1449# Cancel the current executing migration process.
1450#
1451# Returns: nothing on success
1452#
a937b6aa
MA
1453# Notes: This command succeeds even if there is no migration process
1454# running.
48685a8e 1455#
9bc6e893 1456# Since: 0.14
48685a8e
MA
1457#
1458# Example:
1459#
1460# -> { "execute": "migrate_cancel" }
1461# <- { "return": {} }
48685a8e
MA
1462##
1463{ 'command': 'migrate_cancel' }
1464
89cfc02c
DDAG
1465##
1466# @migrate-continue:
1467#
1468# Continue migration when it's in a paused state.
1469#
1470# @state: The state the migration is currently expected to be in
1471#
1472# Returns: nothing on success
4ae65a52 1473#
89cfc02c 1474# Since: 2.11
4ae65a52 1475#
89cfc02c
DDAG
1476# Example:
1477#
1478# -> { "execute": "migrate-continue" , "arguments":
1479# { "state": "pre-switchover" } }
1480# <- { "return": {} }
1481##
1482{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1483
48685a8e
MA
1484##
1485# @migrate:
1486#
1487# Migrates the current running guest to another Virtual Machine.
1488#
1489# @uri: the Uniform Resource Identifier of the destination VM
1490#
1491# @blk: do block migration (full disk copy)
1492#
1493# @inc: incremental disk copy migration
1494#
a937b6aa
MA
1495# @detach: this argument exists only for compatibility reasons and is
1496# ignored by QEMU
48685a8e 1497#
51f63ec7 1498# @resume: resume one paused migration, default "off". (since 3.0)
7a4da28b 1499#
48685a8e
MA
1500# Returns: nothing on success
1501#
9bc6e893 1502# Since: 0.14
48685a8e
MA
1503#
1504# Notes:
1505#
a937b6aa
MA
1506# 1. The 'query-migrate' command should be used to check migration's
1507# progress and final result (this information is provided by the
1508# 'status' member)
48685a8e
MA
1509#
1510# 2. All boolean arguments default to false
1511#
a937b6aa
MA
1512# 3. The user Monitor's "detach" argument is invalid in QMP and should
1513# not be used
48685a8e
MA
1514#
1515# Example:
1516#
1517# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1518# <- { "return": {} }
48685a8e
MA
1519##
1520{ 'command': 'migrate',
7a4da28b
PX
1521 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1522 '*detach': 'bool', '*resume': 'bool' } }
48685a8e
MA
1523
1524##
1525# @migrate-incoming:
1526#
a937b6aa
MA
1527# Start an incoming migration, the qemu must have been started with
1528# -incoming defer
48685a8e
MA
1529#
1530# @uri: The Uniform Resource Identifier identifying the source or
a937b6aa 1531# address to listen on
48685a8e
MA
1532#
1533# Returns: nothing on success
1534#
1535# Since: 2.3
1536#
1537# Notes:
1538#
a937b6aa
MA
1539# 1. It's a bad idea to use a string for the uri, but it needs
1540# to stay compatible with -incoming and the format of the uri
1541# is already exposed above libvirt.
48685a8e 1542#
a937b6aa
MA
1543# 2. QEMU must be started with -incoming defer to allow
1544# migrate-incoming to be used.
48685a8e
MA
1545#
1546# 3. The uri format is the same as for -incoming
1547#
1548# Example:
1549#
1550# -> { "execute": "migrate-incoming",
1551# "arguments": { "uri": "tcp::4446" } }
1552# <- { "return": {} }
48685a8e
MA
1553##
1554{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1555
1556##
1557# @xen-save-devices-state:
1558#
a937b6aa
MA
1559# Save the state of all devices to file. The RAM and the block
1560# devices of the VM are not saved by this command.
48685a8e
MA
1561#
1562# @filename: the file to save the state of the devices to as binary
a937b6aa
MA
1563# data. See xen-save-devices-state.txt for a description of the
1564# binary format.
48685a8e 1565#
a937b6aa
MA
1566# @live: Optional argument to ask QEMU to treat this command as part
1567# of a live migration. Default to true. (since 2.11)
5d6c599f 1568#
48685a8e
MA
1569# Returns: Nothing on success
1570#
1571# Since: 1.1
1572#
1573# Example:
1574#
1575# -> { "execute": "xen-save-devices-state",
1576# "arguments": { "filename": "/tmp/save" } }
1577# <- { "return": {} }
48685a8e 1578##
5d6c599f
AP
1579{ 'command': 'xen-save-devices-state',
1580 'data': {'filename': 'str', '*live':'bool' } }
48685a8e 1581
28af9ba2
PMD
1582##
1583# @xen-set-global-dirty-log:
1584#
1585# Enable or disable the global dirty log mode.
1586#
1587# @enable: true to enable, false to disable.
1588#
1589# Returns: nothing
1590#
1591# Since: 1.3
1592#
1593# Example:
1594#
1595# -> { "execute": "xen-set-global-dirty-log",
1596# "arguments": { "enable": true } }
1597# <- { "return": {} }
28af9ba2
PMD
1598##
1599{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1600
1601##
1602# @xen-load-devices-state:
1603#
a937b6aa
MA
1604# Load the state of all devices from file. The RAM and the block
1605# devices of the VM are not loaded by this command.
28af9ba2
PMD
1606#
1607# @filename: the file to load the state of the devices from as binary
a937b6aa
MA
1608# data. See xen-save-devices-state.txt for a description of the
1609# binary format.
28af9ba2
PMD
1610#
1611# Since: 2.7
1612#
1613# Example:
1614#
1615# -> { "execute": "xen-load-devices-state",
1616# "arguments": { "filename": "/tmp/resume" } }
1617# <- { "return": {} }
28af9ba2
PMD
1618##
1619{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1620
48685a8e
MA
1621##
1622# @xen-set-replication:
1623#
1624# Enable or disable replication.
1625#
1626# @enable: true to enable, false to disable.
1627#
1628# @primary: true for primary or false for secondary.
1629#
a937b6aa
MA
1630# @failover: true to do failover, false to stop. but cannot be
1631# specified if 'enable' is true. default value is false.
48685a8e
MA
1632#
1633# Returns: nothing.
1634#
1635# Example:
1636#
1637# -> { "execute": "xen-set-replication",
1638# "arguments": {"enable": true, "primary": false} }
1639# <- { "return": {} }
1640#
1641# Since: 2.9
1642##
1643{ 'command': 'xen-set-replication',
fd658a7b 1644 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
8a9f1e1d 1645 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1646
1647##
1648# @ReplicationStatus:
1649#
1650# The result format for 'query-xen-replication-status'.
1651#
1652# @error: true if an error happened, false if replication is normal.
1653#
a937b6aa
MA
1654# @desc: the human readable error description string, when @error is
1655# 'true'.
48685a8e
MA
1656#
1657# Since: 2.9
1658##
1659{ 'struct': 'ReplicationStatus',
335d10cd 1660 'data': { 'error': 'bool', '*desc': 'str' },
8a9f1e1d 1661 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1662
1663##
1664# @query-xen-replication-status:
1665#
1666# Query replication status while the vm is running.
1667#
f4347129 1668# Returns: A @ReplicationStatus object showing the status.
48685a8e
MA
1669#
1670# Example:
1671#
1672# -> { "execute": "query-xen-replication-status" }
1673# <- { "return": { "error": false } }
1674#
1675# Since: 2.9
1676##
1677{ 'command': 'query-xen-replication-status',
335d10cd 1678 'returns': 'ReplicationStatus',
8a9f1e1d 1679 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1680
1681##
1682# @xen-colo-do-checkpoint:
1683#
1684# Xen uses this command to notify replication to trigger a checkpoint.
1685#
1686# Returns: nothing.
1687#
1688# Example:
1689#
1690# -> { "execute": "xen-colo-do-checkpoint" }
1691# <- { "return": {} }
1692#
1693# Since: 2.9
1694##
335d10cd 1695{ 'command': 'xen-colo-do-checkpoint',
8a9f1e1d 1696 'if': 'CONFIG_REPLICATION' }
02affd41 1697
f56c0065
ZC
1698##
1699# @COLOStatus:
1700#
1701# The result format for 'query-colo-status'.
1702#
a937b6aa
MA
1703# @mode: COLO running mode. If COLO is running, this field will
1704# return 'primary' or 'secondary'.
f56c0065 1705#
a937b6aa
MA
1706# @last-mode: COLO last running mode. If COLO is running, this field
1707# will return same like mode field, after failover we can use this
1708# field to get last colo mode. (since 4.0)
5ed0deca 1709#
f56c0065
ZC
1710# @reason: describes the reason for the COLO exit.
1711#
ea3b23e5 1712# Since: 3.1
f56c0065
ZC
1713##
1714{ 'struct': 'COLOStatus',
5cc8f9eb 1715 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
51e47cf8
VSO
1716 'reason': 'COLOExitReason' },
1717 'if': 'CONFIG_REPLICATION' }
f56c0065
ZC
1718
1719##
1720# @query-colo-status:
1721#
1722# Query COLO status while the vm is running.
1723#
1724# Returns: A @COLOStatus object showing the status.
1725#
1726# Example:
1727#
1728# -> { "execute": "query-colo-status" }
51ec294d 1729# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
f56c0065 1730#
ea3b23e5 1731# Since: 3.1
f56c0065
ZC
1732##
1733{ 'command': 'query-colo-status',
51e47cf8
VSO
1734 'returns': 'COLOStatus',
1735 'if': 'CONFIG_REPLICATION' }
f56c0065 1736
02affd41
PX
1737##
1738# @migrate-recover:
1739#
1740# Provide a recovery migration stream URI.
1741#
1742# @uri: the URI to be used for the recovery of migration stream.
1743#
1744# Returns: nothing.
1745#
1746# Example:
1747#
1748# -> { "execute": "migrate-recover",
1749# "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1750# <- { "return": {} }
1751#
51f63ec7 1752# Since: 3.0
02affd41 1753##
b0ddeba2
MAL
1754{ 'command': 'migrate-recover',
1755 'data': { 'uri': 'str' },
02affd41 1756 'allow-oob': true }
bfbf89c2
PX
1757
1758##
1759# @migrate-pause:
1760#
1761# Pause a migration. Currently it only supports postcopy.
1762#
1763# Returns: nothing.
1764#
1765# Example:
1766#
1767# -> { "execute": "migrate-pause" }
1768# <- { "return": {} }
1769#
51f63ec7 1770# Since: 3.0
bfbf89c2
PX
1771##
1772{ 'command': 'migrate-pause', 'allow-oob': true }
d328e6f3
JF
1773
1774##
1775# @UNPLUG_PRIMARY:
1776#
1777# Emitted from source side of a migration when migration state is
a937b6aa
MA
1778# WAIT_UNPLUG. Device was unplugged by guest operating system. Device
1779# resources in QEMU are kept on standby to be able to re-plug it in
1780# case of migration failure.
d328e6f3
JF
1781#
1782# @device-id: QEMU device id of the unplugged device
1783#
1784# Since: 4.2
1785#
1786# Example:
4ae65a52 1787#
0df5e9a3
VT
1788# <- { "event": "UNPLUG_PRIMARY",
1789# "data": { "device-id": "hostdev0" },
1790# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
d328e6f3
JF
1791##
1792{ 'event': 'UNPLUG_PRIMARY',
1793 'data': { 'device-id': 'str' } }
7df3aa30 1794
71864ead
HH
1795##
1796# @DirtyRateVcpu:
1797#
1798# Dirty rate of vcpu.
1799#
1800# @id: vcpu index.
1801#
1802# @dirty-rate: dirty rate.
1803#
f78d4ed7 1804# Since: 6.2
71864ead
HH
1805##
1806{ 'struct': 'DirtyRateVcpu',
1807 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1808
7df3aa30
CZ
1809##
1810# @DirtyRateStatus:
1811#
5034e3d4 1812# Dirty page rate measurement status.
7df3aa30 1813#
5034e3d4 1814# @unstarted: measuring thread has not been started yet
7df3aa30 1815#
5034e3d4 1816# @measuring: measuring thread is running
7df3aa30 1817#
5034e3d4 1818# @measured: dirty page rate is measured and the results are available
7df3aa30
CZ
1819#
1820# Since: 5.2
7df3aa30
CZ
1821##
1822{ 'enum': 'DirtyRateStatus',
1823 'data': [ 'unstarted', 'measuring', 'measured'] }
4c437254 1824
71864ead
HH
1825##
1826# @DirtyRateMeasureMode:
1827#
5034e3d4
AG
1828# Method used to measure dirty page rate. Differences between
1829# available methods are explained in @calc-dirty-rate.
71864ead 1830#
5034e3d4 1831# @page-sampling: use page sampling
71864ead 1832#
5034e3d4 1833# @dirty-ring: use dirty ring
826b8bc8 1834#
5034e3d4 1835# @dirty-bitmap: use dirty bitmap
71864ead 1836#
f78d4ed7 1837# Since: 6.2
71864ead
HH
1838##
1839{ 'enum': 'DirtyRateMeasureMode',
826b8bc8 1840 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
71864ead 1841
4c437254
CZ
1842##
1843# @DirtyRateInfo:
1844#
5034e3d4 1845# Information about measured dirty page rate.
4c437254 1846#
a937b6aa 1847# @dirty-rate: an estimate of the dirty page rate of the VM in units
5034e3d4 1848# of MiB/s. Value is present only when @status is 'measured'.
4c437254 1849#
5034e3d4 1850# @status: current status of dirty page rate measurements
4c437254
CZ
1851#
1852# @start-time: start time in units of second for calculation
1853#
5034e3d4
AG
1854# @calc-time: time period for which dirty page rate was measured
1855# (in seconds)
4c437254 1856#
5034e3d4
AG
1857# @sample-pages: number of sampled pages per GiB of guest memory.
1858# Valid only in page-sampling mode (Since 6.1)
7afa08cd 1859#
5034e3d4 1860# @mode: mode that was used to measure dirty page rate (Since 6.2)
0e21bf24 1861#
5034e3d4 1862# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
a937b6aa 1863# specified (Since 6.2)
0e21bf24 1864#
4c437254 1865# Since: 5.2
4c437254
CZ
1866##
1867{ 'struct': 'DirtyRateInfo',
b1a859cf 1868 'data': {'*dirty-rate': 'int64',
4c437254
CZ
1869 'status': 'DirtyRateStatus',
1870 'start-time': 'int64',
7afa08cd 1871 'calc-time': 'int64',
0e21bf24
HH
1872 'sample-pages': 'uint64',
1873 'mode': 'DirtyRateMeasureMode',
1874 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
4c437254
CZ
1875
1876##
1877# @calc-dirty-rate:
1878#
5034e3d4
AG
1879# Start measuring dirty page rate of the VM. Results can be retrieved
1880# with @query-dirty-rate after measurements are completed.
1881#
1882# Dirty page rate is the number of pages changed in a given time
1883# period expressed in MiB/s. The following methods of calculation are
1884# available:
1885#
1886# 1. In page sampling mode, a random subset of pages are selected and
1887# hashed twice: once at the beginning of measurement time period,
1888# and once again at the end. If two hashes for some page are
1889# different, the page is counted as changed. Since this method
1890# relies on sampling and hashing, calculated dirty page rate is
1891# only an estimate of its true value. Increasing @sample-pages
1892# improves estimation quality at the cost of higher computational
1893# overhead.
1894#
1895# 2. Dirty bitmap mode captures writes to memory (for example by
1896# temporarily revoking write access to all pages) and counting page
1897# faults. Information about modified pages is collected into a
1898# bitmap, where each bit corresponds to one guest page. This mode
1899# requires that KVM accelerator property "dirty-ring-size" is *not*
1900# set.
1901#
1902# 3. Dirty ring mode is similar to dirty bitmap mode, but the
1903# information about modified pages is collected into ring buffer.
1904# This mode tracks page modification per each vCPU separately. It
1905# requires that KVM accelerator property "dirty-ring-size" is set.
1906#
1907# @calc-time: time period in units of second for which dirty page rate
1908# is calculated. Note that larger @calc-time values will
1909# typically result in smaller dirty page rates because page
1910# dirtying is a one-time event. Once some page is counted as
1911# dirty during @calc-time period, further writes to this page will
1912# not increase dirty page rate anymore.
1913#
1914# @sample-pages: number of sampled pages per each GiB of guest memory.
1915# Default value is 512. For 4KiB guest pages this corresponds to
1916# sampling ratio of 0.2%. This argument is used only in page
1917# sampling mode. (Since 6.1)
1918#
1919# @mode: mechanism for tracking dirty pages. Default value is
1920# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'.
1921# (Since 6.1)
0e21bf24 1922#
4c437254
CZ
1923# Since: 5.2
1924#
1925# Example:
4ae65a52 1926#
37fa48a4
MA
1927# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1928# 'sample-pages': 512} }
1929# <- { "return": {} }
4c437254 1930##
7afa08cd 1931{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
0e21bf24
HH
1932 '*sample-pages': 'int',
1933 '*mode': 'DirtyRateMeasureMode'} }
4c437254
CZ
1934
1935##
1936# @query-dirty-rate:
1937#
5034e3d4 1938# Query results of the most recent invocation of @calc-dirty-rate.
4c437254
CZ
1939#
1940# Since: 5.2
5034e3d4
AG
1941#
1942# Examples:
1943#
1944# 1. Measurement is in progress:
1945#
1946# <- {"status": "measuring", "sample-pages": 512,
1947# "mode": "page-sampling", "start-time": 3665220, "calc-time": 10}
1948#
1949# 2. Measurement has been completed:
1950#
1951# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
1952# "mode": "page-sampling", "start-time": 3665220, "calc-time": 10}
4c437254
CZ
1953##
1954{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
0f0d83a4 1955
f3b2e38c
HH
1956##
1957# @DirtyLimitInfo:
1958#
1959# Dirty page rate limit information of a virtual CPU.
1960#
1961# @cpu-index: index of a virtual CPU.
1962#
1963# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
a937b6aa 1964# CPU, 0 means unlimited.
f3b2e38c
HH
1965#
1966# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1967#
1968# Since: 7.1
f3b2e38c
HH
1969##
1970{ 'struct': 'DirtyLimitInfo',
1971 'data': { 'cpu-index': 'int',
1972 'limit-rate': 'uint64',
1973 'current-rate': 'uint64' } }
1974
1975##
1976# @set-vcpu-dirty-limit:
1977#
1978# Set the upper limit of dirty page rate for virtual CPUs.
1979#
a937b6aa
MA
1980# Requires KVM with accelerator property "dirty-ring-size" set. A
1981# virtual CPU's dirty page rate is a measure of its memory load. To
1982# observe dirty page rates, use @calc-dirty-rate.
f3b2e38c
HH
1983#
1984# @cpu-index: index of a virtual CPU, default is all.
1985#
1986# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1987#
1988# Since: 7.1
1989#
1990# Example:
37fa48a4
MA
1991#
1992# -> {"execute": "set-vcpu-dirty-limit"}
1993# "arguments": { "dirty-rate": 200,
1994# "cpu-index": 1 } }
1995# <- { "return": {} }
f3b2e38c
HH
1996##
1997{ 'command': 'set-vcpu-dirty-limit',
1998 'data': { '*cpu-index': 'int',
1999 'dirty-rate': 'uint64' } }
2000
2001##
2002# @cancel-vcpu-dirty-limit:
2003#
2004# Cancel the upper limit of dirty page rate for virtual CPUs.
2005#
2006# Cancel the dirty page limit for the vCPU which has been set with
a937b6aa 2007# set-vcpu-dirty-limit command. Note that this command requires
f3b2e38c
HH
2008# support from dirty ring, same as the "set-vcpu-dirty-limit".
2009#
2010# @cpu-index: index of a virtual CPU, default is all.
2011#
2012# Since: 7.1
2013#
2014# Example:
37fa48a4
MA
2015#
2016# -> {"execute": "cancel-vcpu-dirty-limit"},
2017# "arguments": { "cpu-index": 1 } }
2018# <- { "return": {} }
f3b2e38c
HH
2019##
2020{ 'command': 'cancel-vcpu-dirty-limit',
2021 'data': { '*cpu-index': 'int'} }
2022
2023##
2024# @query-vcpu-dirty-limit:
2025#
a937b6aa
MA
2026# Returns information about virtual CPU dirty page rate limits, if
2027# any.
f3b2e38c
HH
2028#
2029# Since: 7.1
2030#
2031# Example:
37fa48a4
MA
2032#
2033# -> {"execute": "query-vcpu-dirty-limit"}
2034# <- {"return": [
2035# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2036# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
f3b2e38c
HH
2037##
2038{ 'command': 'query-vcpu-dirty-limit',
2039 'returns': [ 'DirtyLimitInfo' ] }
2040
67132620
JJ
2041##
2042# @MigrationThreadInfo:
2043#
2044# Information about migrationthreads
2045#
2046# @name: the name of migration thread
2047#
2048# @thread-id: ID of the underlying host thread
2049#
2050# Since: 7.2
2051##
2052{ 'struct': 'MigrationThreadInfo',
2053 'data': {'name': 'str',
2054 'thread-id': 'int'} }
2055
2056##
2057# @query-migrationthreads:
2058#
2059# Returns information of migration threads
2060#
2061# data: migration thread name
2062#
7c3def93 2063# Returns: information about migration threads
67132620
JJ
2064#
2065# Since: 7.2
2066##
2067{ 'command': 'query-migrationthreads',
2068 'returns': ['MigrationThreadInfo'] }
2069
0f0d83a4
DB
2070##
2071# @snapshot-save:
2072#
2073# Save a VM snapshot
2074#
2075# @job-id: identifier for the newly created job
a937b6aa 2076#
0f0d83a4 2077# @tag: name of the snapshot to create
a937b6aa 2078#
0f0d83a4 2079# @vmstate: block device node name to save vmstate to
a937b6aa 2080#
0f0d83a4
DB
2081# @devices: list of block device node names to save a snapshot to
2082#
2083# Applications should not assume that the snapshot save is complete
a937b6aa
MA
2084# when this command returns. The job commands / events must be used
2085# to determine completion and to fetch details of any errors that
2086# arise.
0f0d83a4 2087#
a937b6aa
MA
2088# Note that execution of the guest CPUs may be stopped during the time
2089# it takes to save the snapshot. A future version of QEMU may ensure
2090# CPUs are executing continuously.
0f0d83a4 2091#
a937b6aa
MA
2092# It is strongly recommended that @devices contain all writable block
2093# device nodes if a consistent snapshot is required.
0f0d83a4
DB
2094#
2095# If @tag already exists, an error will be reported
2096#
2097# Returns: nothing
2098#
2099# Example:
2100#
2101# -> { "execute": "snapshot-save",
b1ca5322 2102# "arguments": {
0f0d83a4
DB
2103# "job-id": "snapsave0",
2104# "tag": "my-snap",
2105# "vmstate": "disk0",
2106# "devices": ["disk0", "disk1"]
2107# }
2108# }
2109# <- { "return": { } }
2110# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2111# "timestamp": {"seconds": 1432121972, "microseconds": 744001},
0f0d83a4
DB
2112# "data": {"status": "created", "id": "snapsave0"}}
2113# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2114# "timestamp": {"seconds": 1432122172, "microseconds": 744001},
0f0d83a4 2115# "data": {"status": "running", "id": "snapsave0"}}
6e7a37ff
VT
2116# <- {"event": "STOP",
2117# "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2118# <- {"event": "RESUME",
2119# "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
0f0d83a4 2120# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2121# "timestamp": {"seconds": 1432122772, "microseconds": 744001},
0f0d83a4
DB
2122# "data": {"status": "waiting", "id": "snapsave0"}}
2123# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2124# "timestamp": {"seconds": 1432122972, "microseconds": 744001},
0f0d83a4
DB
2125# "data": {"status": "pending", "id": "snapsave0"}}
2126# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2127# "timestamp": {"seconds": 1432123172, "microseconds": 744001},
0f0d83a4
DB
2128# "data": {"status": "concluded", "id": "snapsave0"}}
2129# -> {"execute": "query-jobs"}
2130# <- {"return": [{"current-progress": 1,
2131# "status": "concluded",
2132# "total-progress": 1,
2133# "type": "snapshot-save",
2134# "id": "snapsave0"}]}
2135#
2136# Since: 6.0
2137##
2138{ 'command': 'snapshot-save',
2139 'data': { 'job-id': 'str',
2140 'tag': 'str',
2141 'vmstate': 'str',
2142 'devices': ['str'] } }
2143
2144##
2145# @snapshot-load:
2146#
2147# Load a VM snapshot
2148#
2149# @job-id: identifier for the newly created job
a937b6aa 2150#
0f0d83a4 2151# @tag: name of the snapshot to load.
a937b6aa 2152#
0f0d83a4 2153# @vmstate: block device node name to load vmstate from
a937b6aa 2154#
0f0d83a4
DB
2155# @devices: list of block device node names to load a snapshot from
2156#
2157# Applications should not assume that the snapshot load is complete
a937b6aa
MA
2158# when this command returns. The job commands / events must be used
2159# to determine completion and to fetch details of any errors that
2160# arise.
0f0d83a4
DB
2161#
2162# Note that execution of the guest CPUs will be stopped during the
2163# time it takes to load the snapshot.
2164#
a937b6aa
MA
2165# It is strongly recommended that @devices contain all writable block
2166# device nodes that can have changed since the original @snapshot-save
2167# command execution.
0f0d83a4
DB
2168#
2169# Returns: nothing
2170#
2171# Example:
2172#
2173# -> { "execute": "snapshot-load",
b1ca5322 2174# "arguments": {
0f0d83a4
DB
2175# "job-id": "snapload0",
2176# "tag": "my-snap",
2177# "vmstate": "disk0",
2178# "devices": ["disk0", "disk1"]
2179# }
2180# }
2181# <- { "return": { } }
2182# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2183# "timestamp": {"seconds": 1472124172, "microseconds": 744001},
0f0d83a4
DB
2184# "data": {"status": "created", "id": "snapload0"}}
2185# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2186# "timestamp": {"seconds": 1472125172, "microseconds": 744001},
0f0d83a4 2187# "data": {"status": "running", "id": "snapload0"}}
6e7a37ff
VT
2188# <- {"event": "STOP",
2189# "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2190# <- {"event": "RESUME",
2191# "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
0f0d83a4 2192# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2193# "timestamp": {"seconds": 1472126172, "microseconds": 744001},
0f0d83a4
DB
2194# "data": {"status": "waiting", "id": "snapload0"}}
2195# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2196# "timestamp": {"seconds": 1472127172, "microseconds": 744001},
0f0d83a4
DB
2197# "data": {"status": "pending", "id": "snapload0"}}
2198# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2199# "timestamp": {"seconds": 1472128172, "microseconds": 744001},
0f0d83a4
DB
2200# "data": {"status": "concluded", "id": "snapload0"}}
2201# -> {"execute": "query-jobs"}
2202# <- {"return": [{"current-progress": 1,
2203# "status": "concluded",
2204# "total-progress": 1,
2205# "type": "snapshot-load",
2206# "id": "snapload0"}]}
2207#
2208# Since: 6.0
2209##
2210{ 'command': 'snapshot-load',
2211 'data': { 'job-id': 'str',
2212 'tag': 'str',
2213 'vmstate': 'str',
2214 'devices': ['str'] } }
2215
2216##
2217# @snapshot-delete:
2218#
2219# Delete a VM snapshot
2220#
2221# @job-id: identifier for the newly created job
a937b6aa 2222#
0f0d83a4 2223# @tag: name of the snapshot to delete.
a937b6aa 2224#
0f0d83a4
DB
2225# @devices: list of block device node names to delete a snapshot from
2226#
2227# Applications should not assume that the snapshot delete is complete
a937b6aa
MA
2228# when this command returns. The job commands / events must be used
2229# to determine completion and to fetch details of any errors that
2230# arise.
0f0d83a4
DB
2231#
2232# Returns: nothing
2233#
2234# Example:
2235#
2236# -> { "execute": "snapshot-delete",
b1ca5322 2237# "arguments": {
0f0d83a4
DB
2238# "job-id": "snapdelete0",
2239# "tag": "my-snap",
2240# "devices": ["disk0", "disk1"]
2241# }
2242# }
2243# <- { "return": { } }
2244# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2245# "timestamp": {"seconds": 1442124172, "microseconds": 744001},
0f0d83a4
DB
2246# "data": {"status": "created", "id": "snapdelete0"}}
2247# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2248# "timestamp": {"seconds": 1442125172, "microseconds": 744001},
0f0d83a4
DB
2249# "data": {"status": "running", "id": "snapdelete0"}}
2250# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2251# "timestamp": {"seconds": 1442126172, "microseconds": 744001},
0f0d83a4
DB
2252# "data": {"status": "waiting", "id": "snapdelete0"}}
2253# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2254# "timestamp": {"seconds": 1442127172, "microseconds": 744001},
0f0d83a4
DB
2255# "data": {"status": "pending", "id": "snapdelete0"}}
2256# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2257# "timestamp": {"seconds": 1442128172, "microseconds": 744001},
0f0d83a4
DB
2258# "data": {"status": "concluded", "id": "snapdelete0"}}
2259# -> {"execute": "query-jobs"}
2260# <- {"return": [{"current-progress": 1,
2261# "status": "concluded",
2262# "total-progress": 1,
2263# "type": "snapshot-delete",
2264# "id": "snapdelete0"}]}
2265#
2266# Since: 6.0
2267##
2268{ 'command': 'snapshot-delete',
2269 'data': { 'job-id': 'str',
2270 'tag': 'str',
2271 'devices': ['str'] } }