]> git.proxmox.com Git - mirror_qemu.git/blame - qapi/migration.json
sphinx/qapidoc: Do not emit TODO sections into user manuals
[mirror_qemu.git] / qapi / migration.json
CommitLineData
48685a8e 1# -*- Mode: Python -*-
f7160f32 2# vim: filetype=python
48685a8e
MA
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
9aca82ba 10{ 'include': 'sockets.json' }
48685a8e
MA
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the target VM
20#
21# @total: total amount of bytes involved in the migration process
22#
23# @duplicate: number of duplicate (zero) pages (since 1.2)
24#
25# @skipped: number of skipped zero pages (since 1.5)
26#
27# @normal: number of normal pages (since 1.2)
28#
29# @normal-bytes: number of normal bytes sent (since 1.2)
30#
31# @dirty-pages-rate: number of pages dirtied by second by the
26ec4e53 32# guest (since 1.3)
48685a8e
MA
33#
34# @mbps: throughput in megabits/sec. (since 1.6)
35#
36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37#
38# @postcopy-requests: The number of page requests received from the destination
26ec4e53 39# (since 2.7)
48685a8e
MA
40#
41# @page-size: The number of bytes per page for the various page-based
26ec4e53 42# statistics (since 2.10)
48685a8e 43#
a61c45bd
JQ
44# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45#
aecbfe9c 46# @pages-per-second: the number of memory pages transferred per second
26ec4e53 47# (Since 4.0)
aecbfe9c 48#
ae680668
DE
49# @precopy-bytes: The number of bytes sent in the pre-copy phase
50# (since 7.0).
51#
52# @downtime-bytes: The number of bytes sent while the guest is paused
53# (since 7.0).
54#
55# @postcopy-bytes: The number of bytes sent during the post-copy phase
56# (since 7.0).
57#
cf20c897
LB
58# @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59# not avoid copying dirty pages. This is between
60# 0 and @dirty-sync-count * @multifd-channels.
61# (since 7.1)
9bc6e893 62# Since: 0.14
48685a8e
MA
63##
64{ 'struct': 'MigrationStats',
65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68 'mbps' : 'number', 'dirty-sync-count' : 'int',
a61c45bd 69 'postcopy-requests' : 'int', 'page-size' : 'int',
ae680668
DE
70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
cf20c897
LB
72 'postcopy-bytes' : 'uint64',
73 'dirty-sync-missed-zero-copy' : 'uint64' } }
48685a8e
MA
74
75##
76# @XBZRLECacheStats:
77#
78# Detailed XBZRLE migration cache statistics
79#
80# @cache-size: XBZRLE cache size
81#
82# @bytes: amount of bytes already transferred to the target VM
83#
84# @pages: amount of pages transferred to the target VM
85#
86# @cache-miss: number of cache miss
87#
88# @cache-miss-rate: rate of cache miss (since 2.1)
89#
e460a4b1
WW
90# @encoding-rate: rate of encoded bytes (since 5.1)
91#
48685a8e
MA
92# @overflow: number of overflows
93#
94# Since: 1.2
95##
96{ 'struct': 'XBZRLECacheStats',
8b9407a0 97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
48685a8e 98 'cache-miss': 'int', 'cache-miss-rate': 'number',
e460a4b1 99 'encoding-rate': 'number', 'overflow': 'int' } }
48685a8e 100
76e03000
XG
101##
102# @CompressionStats:
103#
104# Detailed migration compression statistics
105#
106# @pages: amount of pages compressed and transferred to the target VM
107#
108# @busy: count of times that no free thread was available to compress data
109#
110# @busy-rate: rate of thread busy
111#
112# @compressed-size: amount of bytes after compression
113#
114# @compression-rate: rate of compressed size
115#
116# Since: 3.1
117##
118{ 'struct': 'CompressionStats',
119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
dbb28bc8 120 'compressed-size': 'int', 'compression-rate': 'number' } }
76e03000 121
48685a8e
MA
122##
123# @MigrationStatus:
124#
125# An enumeration of migration status.
126#
127# @none: no migration has ever happened.
128#
129# @setup: migration process has been initiated.
130#
131# @cancelling: in the process of cancelling migration.
132#
133# @cancelled: cancelling migration is finished.
134#
135# @active: in the process of doing migration.
136#
137# @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138#
51f63ec7 139# @postcopy-paused: during postcopy but paused. (since 3.0)
a688d2c1 140#
51f63ec7 141# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
135b87b4 142#
48685a8e
MA
143# @completed: migration is finished.
144#
145# @failed: some error occurred during migration process.
146#
147# @colo: VM is in the process of fault tolerance, VM can not get into this
148# state unless colo capability is enabled for migration. (since 2.8)
149#
31e06077
DDAG
150# @pre-switchover: Paused before device serialisation. (since 2.11)
151#
152# @device: During device serialisation when pause-before-switchover is enabled
26ec4e53 153# (since 2.11)
31e06077 154#
c7e0acd5
JF
155# @wait-unplug: wait for device unplug request by guest OS to be completed.
156# (since 4.2)
157#
48685a8e 158# Since: 2.3
48685a8e
MA
159##
160{ 'enum': 'MigrationStatus',
161 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
a688d2c1 162 'active', 'postcopy-active', 'postcopy-paused',
135b87b4 163 'postcopy-recover', 'completed', 'failed', 'colo',
c7e0acd5 164 'pre-switchover', 'device', 'wait-unplug' ] }
3710586c
KW
165##
166# @VfioStats:
167#
168# Detailed VFIO devices migration statistics
169#
170# @transferred: amount of bytes transferred to the target VM by VFIO devices
171#
172# Since: 5.2
3710586c
KW
173##
174{ 'struct': 'VfioStats',
175 'data': {'transferred': 'int' } }
48685a8e
MA
176
177##
178# @MigrationInfo:
179#
180# Information about current migration process.
181#
182# @status: @MigrationStatus describing the current migration status.
183# If this field is not returned, no migration process
184# has been initiated
185#
186# @ram: @MigrationStats containing detailed migration
187# status, only returned if status is 'active' or
188# 'completed'(since 1.2)
189#
190# @disk: @MigrationStats containing detailed disk migration
191# status, only returned if status is 'active' and it is a block
192# migration
193#
194# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195# migration statistics, only returned if XBZRLE feature is on and
196# status is 'active' or 'completed' (since 1.2)
197#
198# @total-time: total amount of milliseconds since migration started.
26ec4e53
PM
199# If migration has ended, it returns the total migration
200# time. (since 1.2)
48685a8e
MA
201#
202# @downtime: only present when migration finishes correctly
26ec4e53
PM
203# total downtime in milliseconds for the guest.
204# (since 1.3)
48685a8e
MA
205#
206# @expected-downtime: only present while migration is active
26ec4e53
PM
207# expected downtime in milliseconds for the guest in last walk
208# of the dirty bitmap. (since 1.3)
48685a8e 209#
a660eed4
PM
210# @setup-time: amount of setup time in milliseconds *before* the
211# iterations begin but *after* the QMP command is issued. This is designed
26ec4e53
PM
212# to provide an accounting of any activities (such as RDMA pinning) which
213# may be expensive, but do not actually occur during the iterative
214# migration rounds themselves. (since 1.6)
48685a8e
MA
215#
216# @cpu-throttle-percentage: percentage of time guest cpus are being
26ec4e53
PM
217# throttled during auto-converge. This is only present when auto-converge
218# has started throttling guest cpus. (Since 2.7)
48685a8e
MA
219#
220# @error-desc: the human readable error description string, when
221# @status is 'failed'. Clients should not attempt to parse the
222# error strings. (Since 2.7)
65ace060
AP
223#
224# @postcopy-blocktime: total time when all vCPU were blocked during postcopy
26ec4e53
PM
225# live migration. This is only present when the postcopy-blocktime
226# migration capability is enabled. (Since 3.0)
65ace060 227#
5e50cae4 228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is
26ec4e53
PM
229# only present when the postcopy-blocktime migration capability
230# is enabled. (Since 3.0)
65ace060 231#
76e03000 232# @compression: migration compression statistics, only returned if compression
26ec4e53 233# feature is on and status is 'active' or 'completed' (Since 3.1)
48685a8e 234#
9aca82ba
JQ
235# @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236#
3710586c
KW
237# @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238# only returned if VFIO device is present, migration is supported by all
239# VFIO devices and status is 'active' or 'completed' (since 5.2)
240#
e11ce6c0
MA
241# @blocked-reasons: A list of reasons an outgoing migration is blocked.
242# Present and non-empty when migration is blocked.
243# (since 6.0)
244#
9bc6e893 245# Since: 0.14
48685a8e
MA
246##
247{ 'struct': 'MigrationInfo',
248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249 '*disk': 'MigrationStats',
3710586c 250 '*vfio': 'VfioStats',
48685a8e
MA
251 '*xbzrle-cache': 'XBZRLECacheStats',
252 '*total-time': 'int',
253 '*expected-downtime': 'int',
254 '*downtime': 'int',
255 '*setup-time': 'int',
256 '*cpu-throttle-percentage': 'int',
65ace060 257 '*error-desc': 'str',
3af8554b 258 '*blocked-reasons': ['str'],
65ace060 259 '*postcopy-blocktime' : 'uint32',
76e03000 260 '*postcopy-vcpu-blocktime': ['uint32'],
9aca82ba
JQ
261 '*compression': 'CompressionStats',
262 '*socket-address': ['SocketAddress'] } }
48685a8e
MA
263
264##
265# @query-migrate:
266#
267# Returns information about current migration process. If migration
268# is active there will be another json-object with RAM migration
269# status and if block migration is active another one with block
270# migration status.
271#
272# Returns: @MigrationInfo
273#
9bc6e893 274# Since: 0.14
48685a8e 275#
37fa48a4 276# Examples:
48685a8e
MA
277#
278# 1. Before the first migration
279#
280# -> { "execute": "query-migrate" }
281# <- { "return": {} }
282#
283# 2. Migration is done and has succeeded
284#
285# -> { "execute": "query-migrate" }
286# <- { "return": {
287# "status": "completed",
be1d2c49 288# "total-time":12345,
289# "setup-time":12345,
290# "downtime":12345,
48685a8e
MA
291# "ram":{
292# "transferred":123,
293# "remaining":123,
294# "total":246,
48685a8e
MA
295# "duplicate":123,
296# "normal":123,
297# "normal-bytes":123456,
298# "dirty-sync-count":15
299# }
300# }
301# }
302#
303# 3. Migration is done and has failed
304#
305# -> { "execute": "query-migrate" }
306# <- { "return": { "status": "failed" } }
307#
308# 4. Migration is being performed and is not a block migration:
309#
310# -> { "execute": "query-migrate" }
311# <- {
312# "return":{
313# "status":"active",
be1d2c49 314# "total-time":12345,
315# "setup-time":12345,
316# "expected-downtime":12345,
48685a8e
MA
317# "ram":{
318# "transferred":123,
319# "remaining":123,
320# "total":246,
48685a8e
MA
321# "duplicate":123,
322# "normal":123,
323# "normal-bytes":123456,
324# "dirty-sync-count":15
325# }
326# }
327# }
328#
329# 5. Migration is being performed and is a block migration:
330#
331# -> { "execute": "query-migrate" }
332# <- {
333# "return":{
334# "status":"active",
be1d2c49 335# "total-time":12345,
336# "setup-time":12345,
337# "expected-downtime":12345,
48685a8e
MA
338# "ram":{
339# "total":1057024,
340# "remaining":1053304,
341# "transferred":3720,
48685a8e
MA
342# "duplicate":123,
343# "normal":123,
344# "normal-bytes":123456,
345# "dirty-sync-count":15
346# },
347# "disk":{
348# "total":20971520,
349# "remaining":20880384,
350# "transferred":91136
351# }
352# }
353# }
354#
355# 6. Migration is being performed and XBZRLE is active:
356#
357# -> { "execute": "query-migrate" }
358# <- {
359# "return":{
360# "status":"active",
be1d2c49 361# "total-time":12345,
362# "setup-time":12345,
363# "expected-downtime":12345,
48685a8e
MA
364# "ram":{
365# "total":1057024,
366# "remaining":1053304,
367# "transferred":3720,
48685a8e
MA
368# "duplicate":10,
369# "normal":3333,
370# "normal-bytes":3412992,
371# "dirty-sync-count":15
372# },
373# "xbzrle-cache":{
374# "cache-size":67108864,
375# "bytes":20971520,
376# "pages":2444343,
377# "cache-miss":2244,
378# "cache-miss-rate":0.123,
e460a4b1 379# "encoding-rate":80.1,
48685a8e
MA
380# "overflow":34434
381# }
382# }
383# }
384#
385##
386{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388##
389# @MigrationCapability:
390#
391# Migration capabilities enumeration
392#
393# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394# This feature allows us to minimize migration traffic for certain work
395# loads, by sending compressed difference of the pages
396#
397# @rdma-pin-all: Controls whether or not the entire VM memory footprint is
26ec4e53
PM
398# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399# Disabled by default. (since 2.0)
48685a8e
MA
400#
401# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
26ec4e53
PM
402# essentially saves 1MB of zeroes per block on the wire. Enabling requires
403# source and target VM to support this feature. To enable it is sufficient
404# to enable the capability on the source VM. The feature is disabled by
405# default. (since 1.6)
48685a8e
MA
406#
407# @compress: Use multiple compression threads to accelerate live migration.
26ec4e53
PM
408# This feature can help to reduce the migration traffic, by sending
409# compressed pages. Please note that if compress and xbzrle are both
410# on, compress only takes effect in the ram bulk stage, after that,
411# it will be disabled and only xbzrle takes effect, this can help to
412# minimize migration traffic. The feature is disabled by default.
413# (since 2.4 )
48685a8e
MA
414#
415# @events: generate events for each migration state change
416# (since 2.4 )
417#
418# @auto-converge: If enabled, QEMU will automatically throttle down the guest
26ec4e53 419# to speed up convergence of RAM migration. (since 1.6)
48685a8e
MA
420#
421# @postcopy-ram: Start executing on the migration target before all of RAM has
26ec4e53
PM
422# been migrated, pulling the remaining pages along as needed. The
423# capacity must have the same setting on both source and target
424# or migration will not even start. NOTE: If the migration fails during
425# postcopy the VM will fail. (since 2.6)
48685a8e
MA
426#
427# @x-colo: If enabled, migration will never end, and the state of the VM on the
26ec4e53
PM
428# primary side will be migrated continuously to the VM on secondary
429# side, this process is called COarse-Grain LOck Stepping (COLO) for
430# Non-stop Service. (since 2.8)
48685a8e
MA
431#
432# @release-ram: if enabled, qemu will free the migrated ram pages on the source
26ec4e53 433# during postcopy-ram migration. (since 2.9)
48685a8e
MA
434#
435# @block: If enabled, QEMU will also migrate the contents of all block
26ec4e53
PM
436# devices. Default is disabled. A possible alternative uses
437# mirror jobs to a builtin NBD server on the destination, which
438# offers more flexibility.
439# (Since 2.10)
48685a8e
MA
440#
441# @return-path: If enabled, migration will use the return path even
442# for precopy. (since 2.10)
443#
93fbd031 444# @pause-before-switchover: Pause outgoing migration before serialising device
26ec4e53 445# state and before disabling block IO (since 2.11)
93fbd031 446#
cbfd6c95 447# @multifd: Use more than one fd for migration (since 4.0)
30126bbf 448#
55efc8c2
VSO
449# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450# (since 2.12)
451#
f22f928e 452# @postcopy-blocktime: Calculate downtime for postcopy live migration
26ec4e53 453# (since 3.0)
f22f928e 454#
0f073f44 455# @late-block-activate: If enabled, the destination will not activate block
26ec4e53
PM
456# devices (and thus take locks) immediately at the end of migration.
457# (since 3.0)
0f073f44 458#
18269069
YK
459# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460#
b9d68df6
YK
461# @validate-uuid: Send the UUID of the source to allow the destination
462# to ensure it is the same. (since 4.2)
463#
6e8c25b4
AG
464# @background-snapshot: If enabled, the migration stream will be a snapshot
465# of the VM exactly at the point when the migration
466# procedure starts. The VM RAM is saved with running VM.
467# (since 6.0)
468#
1abaec9a
LB
469# @zero-copy-send: Controls behavior on sending memory pages on migration.
470# When true, enables a zero-copy mechanism for sending
471# memory pages, if host supports it.
472# Requires that QEMU be permitted to use locked memory
473# for guest RAM pages.
474# (since 7.1)
ce5b0f4a
PX
475# @postcopy-preempt: If enabled, the migration process will allow postcopy
476# requests to preempt precopy stream, so postcopy requests
477# will be handled faster. This is a performance feature and
478# should not affect the correctness of postcopy migration.
479# (since 7.1)
1abaec9a 480#
9fb49daa
MA
481# Features:
482# @unstable: Members @x-colo and @x-ignore-shared are experimental.
483#
48685a8e
MA
484# Since: 1.2
485##
486{ 'enum': 'MigrationCapability',
487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
9fb49daa
MA
488 'compress', 'events', 'postcopy-ram',
489 { 'name': 'x-colo', 'features': [ 'unstable' ] },
490 'release-ram',
cbfd6c95 491 'block', 'return-path', 'pause-before-switchover', 'multifd',
18269069 492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
9fb49daa 493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
1abaec9a 494 'validate-uuid', 'background-snapshot',
ce5b0f4a 495 'zero-copy-send', 'postcopy-preempt'] }
48685a8e
MA
496
497##
498# @MigrationCapabilityStatus:
499#
500# Migration capability information
501#
502# @capability: capability enum
503#
504# @state: capability state bool
505#
506# Since: 1.2
507##
508{ 'struct': 'MigrationCapabilityStatus',
509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511##
512# @migrate-set-capabilities:
513#
514# Enable/Disable the following migration capabilities (like xbzrle)
515#
516# @capabilities: json array of capability modifications to make
517#
518# Since: 1.2
519#
520# Example:
521#
522# -> { "execute": "migrate-set-capabilities" , "arguments":
523# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
37fa48a4 524# <- { "return": {} }
48685a8e
MA
525#
526##
527{ 'command': 'migrate-set-capabilities',
528 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
529
530##
531# @query-migrate-capabilities:
532#
533# Returns information about the current migration capabilities status
534#
d93ed1bd 535# Returns: @MigrationCapabilityStatus
48685a8e
MA
536#
537# Since: 1.2
538#
539# Example:
540#
541# -> { "execute": "query-migrate-capabilities" }
542# <- { "return": [
543# {"state": false, "capability": "xbzrle"},
544# {"state": false, "capability": "rdma-pin-all"},
545# {"state": false, "capability": "auto-converge"},
546# {"state": false, "capability": "zero-blocks"},
547# {"state": false, "capability": "compress"},
548# {"state": true, "capability": "events"},
549# {"state": false, "capability": "postcopy-ram"},
550# {"state": false, "capability": "x-colo"}
551# ]}
552#
553##
554{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
555
96eef042
JQ
556##
557# @MultiFDCompression:
558#
559# An enumeration of multifd compression methods.
560#
561# @none: no compression.
7ec2c2b3 562# @zlib: use zlib compression method.
87dc6f5f 563# @zstd: use zstd compression method.
96eef042
JQ
564#
565# Since: 5.0
96eef042
JQ
566##
567{ 'enum': 'MultiFDCompression',
87dc6f5f 568 'data': [ 'none', 'zlib',
8a9f1e1d 569 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
96eef042 570
6e9f21a2
PK
571##
572# @BitmapMigrationBitmapAliasTransform:
573#
574# @persistent: If present, the bitmap will be made persistent
575# or transient depending on this parameter.
576#
577# Since: 6.0
578##
579{ 'struct': 'BitmapMigrationBitmapAliasTransform',
580 'data': {
581 '*persistent': 'bool'
582 } }
583
31e4c354
HR
584##
585# @BitmapMigrationBitmapAlias:
586#
587# @name: The name of the bitmap.
588#
589# @alias: An alias name for migration (for example the bitmap name on
590# the opposite site).
591#
6e9f21a2
PK
592# @transform: Allows the modification of the migrated bitmap.
593# (since 6.0)
594#
31e4c354
HR
595# Since: 5.2
596##
597{ 'struct': 'BitmapMigrationBitmapAlias',
598 'data': {
599 'name': 'str',
6e9f21a2
PK
600 'alias': 'str',
601 '*transform': 'BitmapMigrationBitmapAliasTransform'
31e4c354
HR
602 } }
603
604##
605# @BitmapMigrationNodeAlias:
606#
607# Maps a block node name and the bitmaps it has to aliases for dirty
608# bitmap migration.
609#
610# @node-name: A block node name.
611#
612# @alias: An alias block node name for migration (for example the
613# node name on the opposite site).
614#
615# @bitmaps: Mappings for the bitmaps on this node.
616#
617# Since: 5.2
618##
619{ 'struct': 'BitmapMigrationNodeAlias',
620 'data': {
621 'node-name': 'str',
622 'alias': 'str',
623 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
624 } }
625
48685a8e
MA
626##
627# @MigrationParameter:
628#
629# Migration parameters enumeration
630#
ee3d96ba 631# @announce-initial: Initial delay (in milliseconds) before sending the first
26ec4e53 632# announce (Since 4.0)
ee3d96ba
DDAG
633#
634# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 635# announcement (Since 4.0)
ee3d96ba
DDAG
636#
637# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 638# (Since 4.0)
ee3d96ba
DDAG
639#
640# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 641# packets in the announcement (Since 4.0)
ee3d96ba 642#
48685a8e 643# @compress-level: Set the compression level to be used in live migration,
26ec4e53
PM
644# the compression level is an integer between 0 and 9, where 0 means
645# no compression, 1 means the best compression speed, and 9 means best
646# compression ratio which will consume more CPU.
48685a8e
MA
647#
648# @compress-threads: Set compression thread count to be used in live migration,
26ec4e53 649# the compression thread count is an integer between 1 and 255.
48685a8e 650#
1d58872a
XG
651# @compress-wait-thread: Controls behavior when all compression threads are
652# currently busy. If true (default), wait for a free
653# compression thread to become available; otherwise,
654# send the page uncompressed. (Since 3.1)
655#
48685a8e 656# @decompress-threads: Set decompression thread count to be used in live
26ec4e53
PM
657# migration, the decompression thread count is an integer between 1
658# and 255. Usually, decompression is at least 4 times as fast as
659# compression, so set the decompress-threads to the number about 1/4
660# of compress-threads is adequate.
48685a8e 661#
dc14a470
KZ
662# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
663# to trigger throttling. It is expressed as percentage.
664# The default value is 50. (Since 5.0)
665#
48685a8e
MA
666# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
667# when migration auto-converge is activated. The
668# default value is 20. (Since 2.7)
669#
670# @cpu-throttle-increment: throttle percentage increase each time
671# auto-converge detects that migration is not making
672# progress. The default value is 10. (Since 2.7)
673#
cbbf8182
KZ
674# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
675# At the tail stage of throttling, the Guest is very
676# sensitive to CPU percentage while the @cpu-throttle
677# -increment is excessive usually at tail stage.
678# If this parameter is true, we will compute the ideal
679# CPU percentage used by the Guest, which may exactly make
680# the dirty rate match the dirty rate threshold. Then we
681# will choose a smaller throttle increment between the
682# one specified by @cpu-throttle-increment and the one
683# generated by ideal CPU percentage.
684# Therefore, it is compatible to traditional throttling,
685# meanwhile the throttle increment won't be excessive
686# at tail stage.
687# The default value is false. (Since 5.1)
688#
48685a8e
MA
689# @tls-creds: ID of the 'tls-creds' object that provides credentials for
690# establishing a TLS connection over the migration data channel.
691# On the outgoing side of the migration, the credentials must
692# be for a 'client' endpoint, while for the incoming side the
693# credentials must be for a 'server' endpoint. Setting this
694# will enable TLS for all migrations. The default is unset,
695# resulting in unsecured migration at the QEMU level. (Since 2.7)
696#
697# @tls-hostname: hostname of the target host for the migration. This is
698# required when using x509 based TLS credentials and the
699# migration URI does not already include a hostname. For
700# example if using fd: or exec: based migration, the
701# hostname must be provided so that the server's x509
702# certificate identity can be validated. (Since 2.7)
703#
d2f1d29b
DB
704# @tls-authz: ID of the 'authz' object subclass that provides access control
705# checking of the TLS x509 certificate distinguished name.
706# This object is only resolved at time of use, so can be deleted
707# and recreated on the fly while the migration server is active.
708# If missing, it will default to denying access (Since 4.0)
709#
48685a8e
MA
710# @max-bandwidth: to set maximum speed for migration. maximum speed in
711# bytes per second. (Since 2.8)
712#
713# @downtime-limit: set maximum tolerated downtime for migration. maximum
714# downtime in milliseconds (Since 2.8)
715#
716# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
26ec4e53 717# periodic mode. (Since 2.8)
48685a8e
MA
718#
719# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
720# block migration capability is enabled. When false, the entire
721# storage backing chain is migrated into a flattened image at
722# the destination; when true, only the active qcow2 layer is
723# migrated and the destination must already have access to the
724# same backing chain as was used on the source. (since 2.10)
48685a8e 725#
cbfd6c95
JQ
726# @multifd-channels: Number of channels used to migrate data in
727# parallel. This is the same number that the
728# number of sockets used for migration. The
729# default value is 2 (since 4.0)
4075fb1c 730#
73af8dd8
JQ
731# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
732# needs to be a multiple of the target page size
733# and a power of 2
734# (Since 2.11)
735#
7e555c6c 736# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
737# Defaults to 0 (unlimited). In bytes per second.
738# (Since 3.0)
4cbc9c7f
LQ
739#
740# @max-cpu-throttle: maximum cpu throttle percentage.
741# Defaults to 99. (Since 3.1)
ee3d96ba 742#
96eef042
JQ
743# @multifd-compression: Which compression method to use.
744# Defaults to none. (Since 5.0)
745#
9004db48 746# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
747# migration, the compression level is an integer between 0
748# and 9, where 0 means no compression, 1 means the best
749# compression speed, and 9 means best compression ratio which
750# will consume more CPU.
751# Defaults to 1. (Since 5.0)
9004db48 752#
6a9ad154 753# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
754# migration, the compression level is an integer between 0
755# and 20, where 0 means no compression, 1 means the best
756# compression speed, and 20 means best compression ratio which
757# will consume more CPU.
758# Defaults to 1. (Since 5.0)
6a9ad154 759#
abb6295b 760#
31e4c354 761# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
762# aliases for the purpose of dirty bitmap migration. Such
763# aliases may for example be the corresponding names on the
764# opposite site.
765# The mapping must be one-to-one, but not necessarily
766# complete: On the source, unmapped bitmaps and all bitmaps
767# on unmapped nodes will be ignored. On the destination,
768# encountering an unmapped alias in the incoming migration
769# stream will result in a report, and all further bitmap
770# migration data will then be discarded.
771# Note that the destination does not know about bitmaps it
772# does not receive, so there is no limitation or requirement
773# regarding the number of bitmaps received, or how they are
774# named, or on which nodes they are placed.
775# By default (when this parameter has never been set), bitmap
776# names are mapped to themselves. Nodes are mapped to their
777# block device name if there is one, and to their node name
778# otherwise. (Since 5.2)
31e4c354 779#
9fb49daa
MA
780# Features:
781# @unstable: Member @x-checkpoint-delay is experimental.
782#
48685a8e
MA
783# Since: 2.4
784##
785{ 'enum': 'MigrationParameter',
ee3d96ba
DDAG
786 'data': ['announce-initial', 'announce-max',
787 'announce-rounds', 'announce-step',
788 'compress-level', 'compress-threads', 'decompress-threads',
dc14a470 789 'compress-wait-thread', 'throttle-trigger-threshold',
48685a8e 790 'cpu-throttle-initial', 'cpu-throttle-increment',
cbbf8182 791 'cpu-throttle-tailslow',
d2f1d29b 792 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
9fb49daa
MA
793 'downtime-limit',
794 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
795 'block-incremental',
cbfd6c95 796 'multifd-channels',
4cbc9c7f 797 'xbzrle-cache-size', 'max-postcopy-bandwidth',
9004db48 798 'max-cpu-throttle', 'multifd-compression',
31e4c354
HR
799 'multifd-zlib-level' ,'multifd-zstd-level',
800 'block-bitmap-mapping' ] }
48685a8e
MA
801
802##
803# @MigrateSetParameters:
804#
ee3d96ba 805# @announce-initial: Initial delay (in milliseconds) before sending the first
26ec4e53 806# announce (Since 4.0)
ee3d96ba
DDAG
807#
808# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 809# announcement (Since 4.0)
ee3d96ba
DDAG
810#
811# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 812# (Since 4.0)
ee3d96ba
DDAG
813#
814# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 815# packets in the announcement (Since 4.0)
ee3d96ba 816#
48685a8e
MA
817# @compress-level: compression level
818#
819# @compress-threads: compression thread count
820#
1d58872a
XG
821# @compress-wait-thread: Controls behavior when all compression threads are
822# currently busy. If true (default), wait for a free
823# compression thread to become available; otherwise,
824# send the page uncompressed. (Since 3.1)
825#
48685a8e
MA
826# @decompress-threads: decompression thread count
827#
dc14a470
KZ
828# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
829# to trigger throttling. It is expressed as percentage.
830# The default value is 50. (Since 5.0)
831#
48685a8e
MA
832# @cpu-throttle-initial: Initial percentage of time guest cpus are
833# throttled when migration auto-converge is activated.
834# The default value is 20. (Since 2.7)
835#
836# @cpu-throttle-increment: throttle percentage increase each time
837# auto-converge detects that migration is not making
838# progress. The default value is 10. (Since 2.7)
839#
cbbf8182
KZ
840# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
841# At the tail stage of throttling, the Guest is very
842# sensitive to CPU percentage while the @cpu-throttle
843# -increment is excessive usually at tail stage.
844# If this parameter is true, we will compute the ideal
845# CPU percentage used by the Guest, which may exactly make
846# the dirty rate match the dirty rate threshold. Then we
847# will choose a smaller throttle increment between the
848# one specified by @cpu-throttle-increment and the one
849# generated by ideal CPU percentage.
850# Therefore, it is compatible to traditional throttling,
851# meanwhile the throttle increment won't be excessive
852# at tail stage.
853# The default value is false. (Since 5.1)
854#
48685a8e
MA
855# @tls-creds: ID of the 'tls-creds' object that provides credentials
856# for establishing a TLS connection over the migration data
857# channel. On the outgoing side of the migration, the credentials
858# must be for a 'client' endpoint, while for the incoming side the
859# credentials must be for a 'server' endpoint. Setting this
860# to a non-empty string enables TLS for all migrations.
861# An empty string means that QEMU will use plain text mode for
862# migration, rather than TLS (Since 2.9)
863# Previously (since 2.7), this was reported by omitting
864# tls-creds instead.
865#
866# @tls-hostname: hostname of the target host for the migration. This
867# is required when using x509 based TLS credentials and the
868# migration URI does not already include a hostname. For
869# example if using fd: or exec: based migration, the
870# hostname must be provided so that the server's x509
871# certificate identity can be validated. (Since 2.7)
872# An empty string means that QEMU will use the hostname
873# associated with the migration URI, if any. (Since 2.9)
874# Previously (since 2.7), this was reported by omitting
875# tls-hostname instead.
876#
877# @max-bandwidth: to set maximum speed for migration. maximum speed in
878# bytes per second. (Since 2.8)
879#
880# @downtime-limit: set maximum tolerated downtime for migration. maximum
881# downtime in milliseconds (Since 2.8)
882#
883# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
884#
885# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
886# block migration capability is enabled. When false, the entire
887# storage backing chain is migrated into a flattened image at
888# the destination; when true, only the active qcow2 layer is
889# migrated and the destination must already have access to the
890# same backing chain as was used on the source. (since 2.10)
48685a8e 891#
cbfd6c95
JQ
892# @multifd-channels: Number of channels used to migrate data in
893# parallel. This is the same number that the
894# number of sockets used for migration. The
895# default value is 2 (since 4.0)
4075fb1c 896#
73af8dd8
JQ
897# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
898# needs to be a multiple of the target page size
899# and a power of 2
900# (Since 2.11)
7e555c6c
DDAG
901#
902# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
903# Defaults to 0 (unlimited). In bytes per second.
904# (Since 3.0)
4cbc9c7f
LQ
905#
906# @max-cpu-throttle: maximum cpu throttle percentage.
907# The default value is 99. (Since 3.1)
908#
96eef042
JQ
909# @multifd-compression: Which compression method to use.
910# Defaults to none. (Since 5.0)
911#
9004db48 912# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
913# migration, the compression level is an integer between 0
914# and 9, where 0 means no compression, 1 means the best
915# compression speed, and 9 means best compression ratio which
916# will consume more CPU.
917# Defaults to 1. (Since 5.0)
9004db48 918#
6a9ad154 919# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
920# migration, the compression level is an integer between 0
921# and 20, where 0 means no compression, 1 means the best
922# compression speed, and 20 means best compression ratio which
923# will consume more CPU.
924# Defaults to 1. (Since 5.0)
6a9ad154 925#
31e4c354 926# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
927# aliases for the purpose of dirty bitmap migration. Such
928# aliases may for example be the corresponding names on the
929# opposite site.
930# The mapping must be one-to-one, but not necessarily
931# complete: On the source, unmapped bitmaps and all bitmaps
932# on unmapped nodes will be ignored. On the destination,
933# encountering an unmapped alias in the incoming migration
934# stream will result in a report, and all further bitmap
935# migration data will then be discarded.
936# Note that the destination does not know about bitmaps it
937# does not receive, so there is no limitation or requirement
938# regarding the number of bitmaps received, or how they are
939# named, or on which nodes they are placed.
940# By default (when this parameter has never been set), bitmap
941# names are mapped to themselves. Nodes are mapped to their
942# block device name if there is one, and to their node name
943# otherwise. (Since 5.2)
31e4c354 944#
9fb49daa
MA
945# Features:
946# @unstable: Member @x-checkpoint-delay is experimental.
947#
48685a8e
MA
948# Since: 2.4
949##
950# TODO either fuse back into MigrationParameters, or make
951# MigrationParameters members mandatory
952{ 'struct': 'MigrateSetParameters',
ee3d96ba
DDAG
953 'data': { '*announce-initial': 'size',
954 '*announce-max': 'size',
955 '*announce-rounds': 'size',
956 '*announce-step': 'size',
ec17de0a
MA
957 '*compress-level': 'uint8',
958 '*compress-threads': 'uint8',
1d58872a 959 '*compress-wait-thread': 'bool',
ec17de0a
MA
960 '*decompress-threads': 'uint8',
961 '*throttle-trigger-threshold': 'uint8',
962 '*cpu-throttle-initial': 'uint8',
963 '*cpu-throttle-increment': 'uint8',
cbbf8182 964 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
965 '*tls-creds': 'StrOrNull',
966 '*tls-hostname': 'StrOrNull',
d2f1d29b 967 '*tls-authz': 'StrOrNull',
ec17de0a
MA
968 '*max-bandwidth': 'size',
969 '*downtime-limit': 'uint64',
9fb49daa
MA
970 '*x-checkpoint-delay': { 'type': 'uint32',
971 'features': [ 'unstable' ] },
4075fb1c 972 '*block-incremental': 'bool',
ec17de0a 973 '*multifd-channels': 'uint8',
7e555c6c 974 '*xbzrle-cache-size': 'size',
4cbc9c7f 975 '*max-postcopy-bandwidth': 'size',
ec17de0a 976 '*max-cpu-throttle': 'uint8',
9004db48 977 '*multifd-compression': 'MultiFDCompression',
ec17de0a
MA
978 '*multifd-zlib-level': 'uint8',
979 '*multifd-zstd-level': 'uint8',
31e4c354 980 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
48685a8e
MA
981
982##
983# @migrate-set-parameters:
984#
985# Set various migration parameters.
986#
987# Since: 2.4
988#
989# Example:
990#
991# -> { "execute": "migrate-set-parameters" ,
992# "arguments": { "compress-level": 1 } }
37fa48a4 993# <- { "return": {} }
48685a8e
MA
994#
995##
996{ 'command': 'migrate-set-parameters', 'boxed': true,
997 'data': 'MigrateSetParameters' }
998
999##
1000# @MigrationParameters:
1001#
1002# The optional members aren't actually optional.
1003#
ee3d96ba 1004# @announce-initial: Initial delay (in milliseconds) before sending the
26ec4e53 1005# first announce (Since 4.0)
ee3d96ba
DDAG
1006#
1007# @announce-max: Maximum delay (in milliseconds) between packets in the
26ec4e53 1008# announcement (Since 4.0)
ee3d96ba
DDAG
1009#
1010# @announce-rounds: Number of self-announce packets sent after migration
26ec4e53 1011# (Since 4.0)
ee3d96ba
DDAG
1012#
1013# @announce-step: Increase in delay (in milliseconds) between subsequent
26ec4e53 1014# packets in the announcement (Since 4.0)
ee3d96ba 1015#
48685a8e
MA
1016# @compress-level: compression level
1017#
1018# @compress-threads: compression thread count
1019#
1d58872a
XG
1020# @compress-wait-thread: Controls behavior when all compression threads are
1021# currently busy. If true (default), wait for a free
1022# compression thread to become available; otherwise,
1023# send the page uncompressed. (Since 3.1)
1024#
48685a8e
MA
1025# @decompress-threads: decompression thread count
1026#
dc14a470
KZ
1027# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1028# to trigger throttling. It is expressed as percentage.
1029# The default value is 50. (Since 5.0)
1030#
48685a8e
MA
1031# @cpu-throttle-initial: Initial percentage of time guest cpus are
1032# throttled when migration auto-converge is activated.
1033# (Since 2.7)
1034#
1035# @cpu-throttle-increment: throttle percentage increase each time
1036# auto-converge detects that migration is not making
1037# progress. (Since 2.7)
1038#
cbbf8182
KZ
1039# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1040# At the tail stage of throttling, the Guest is very
1041# sensitive to CPU percentage while the @cpu-throttle
1042# -increment is excessive usually at tail stage.
1043# If this parameter is true, we will compute the ideal
1044# CPU percentage used by the Guest, which may exactly make
1045# the dirty rate match the dirty rate threshold. Then we
1046# will choose a smaller throttle increment between the
1047# one specified by @cpu-throttle-increment and the one
1048# generated by ideal CPU percentage.
1049# Therefore, it is compatible to traditional throttling,
1050# meanwhile the throttle increment won't be excessive
1051# at tail stage.
1052# The default value is false. (Since 5.1)
1053#
48685a8e
MA
1054# @tls-creds: ID of the 'tls-creds' object that provides credentials
1055# for establishing a TLS connection over the migration data
1056# channel. On the outgoing side of the migration, the credentials
1057# must be for a 'client' endpoint, while for the incoming side the
1058# credentials must be for a 'server' endpoint.
1059# An empty string means that QEMU will use plain text mode for
1060# migration, rather than TLS (Since 2.7)
1061# Note: 2.8 reports this by omitting tls-creds instead.
1062#
1063# @tls-hostname: hostname of the target host for the migration. This
1064# is required when using x509 based TLS credentials and the
1065# migration URI does not already include a hostname. For
1066# example if using fd: or exec: based migration, the
1067# hostname must be provided so that the server's x509
1068# certificate identity can be validated. (Since 2.7)
1069# An empty string means that QEMU will use the hostname
1070# associated with the migration URI, if any. (Since 2.9)
1071# Note: 2.8 reports this by omitting tls-hostname instead.
1072#
d2f1d29b
DB
1073# @tls-authz: ID of the 'authz' object subclass that provides access control
1074# checking of the TLS x509 certificate distinguished name. (Since
1075# 4.0)
1076#
48685a8e
MA
1077# @max-bandwidth: to set maximum speed for migration. maximum speed in
1078# bytes per second. (Since 2.8)
1079#
1080# @downtime-limit: set maximum tolerated downtime for migration. maximum
1081# downtime in milliseconds (Since 2.8)
1082#
1083# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1084#
1085# @block-incremental: Affects how much storage is migrated when the
26ec4e53
PM
1086# block migration capability is enabled. When false, the entire
1087# storage backing chain is migrated into a flattened image at
1088# the destination; when true, only the active qcow2 layer is
1089# migrated and the destination must already have access to the
1090# same backing chain as was used on the source. (since 2.10)
48685a8e 1091#
cbfd6c95
JQ
1092# @multifd-channels: Number of channels used to migrate data in
1093# parallel. This is the same number that the
1094# number of sockets used for migration.
1095# The default value is 2 (since 4.0)
4075fb1c 1096#
73af8dd8
JQ
1097# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1098# needs to be a multiple of the target page size
1099# and a power of 2
1100# (Since 2.11)
7e555c6c
DDAG
1101#
1102# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
26ec4e53
PM
1103# Defaults to 0 (unlimited). In bytes per second.
1104# (Since 3.0)
4cbc9c7f
LQ
1105#
1106# @max-cpu-throttle: maximum cpu throttle percentage.
1107# Defaults to 99.
26ec4e53 1108# (Since 3.1)
4cbc9c7f 1109#
96eef042
JQ
1110# @multifd-compression: Which compression method to use.
1111# Defaults to none. (Since 5.0)
1112#
9004db48 1113# @multifd-zlib-level: Set the compression level to be used in live
76dd0f84
PM
1114# migration, the compression level is an integer between 0
1115# and 9, where 0 means no compression, 1 means the best
1116# compression speed, and 9 means best compression ratio which
1117# will consume more CPU.
1118# Defaults to 1. (Since 5.0)
9004db48 1119#
6a9ad154 1120# @multifd-zstd-level: Set the compression level to be used in live
76dd0f84
PM
1121# migration, the compression level is an integer between 0
1122# and 20, where 0 means no compression, 1 means the best
1123# compression speed, and 20 means best compression ratio which
1124# will consume more CPU.
1125# Defaults to 1. (Since 5.0)
6a9ad154 1126#
31e4c354 1127# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
826bd069
PM
1128# aliases for the purpose of dirty bitmap migration. Such
1129# aliases may for example be the corresponding names on the
1130# opposite site.
1131# The mapping must be one-to-one, but not necessarily
1132# complete: On the source, unmapped bitmaps and all bitmaps
1133# on unmapped nodes will be ignored. On the destination,
1134# encountering an unmapped alias in the incoming migration
1135# stream will result in a report, and all further bitmap
1136# migration data will then be discarded.
1137# Note that the destination does not know about bitmaps it
1138# does not receive, so there is no limitation or requirement
1139# regarding the number of bitmaps received, or how they are
1140# named, or on which nodes they are placed.
1141# By default (when this parameter has never been set), bitmap
1142# names are mapped to themselves. Nodes are mapped to their
1143# block device name if there is one, and to their node name
1144# otherwise. (Since 5.2)
31e4c354 1145#
9fb49daa
MA
1146# Features:
1147# @unstable: Member @x-checkpoint-delay is experimental.
1148#
48685a8e
MA
1149# Since: 2.4
1150##
1151{ 'struct': 'MigrationParameters',
ee3d96ba
DDAG
1152 'data': { '*announce-initial': 'size',
1153 '*announce-max': 'size',
1154 '*announce-rounds': 'size',
1155 '*announce-step': 'size',
1156 '*compress-level': 'uint8',
741d4086 1157 '*compress-threads': 'uint8',
1d58872a 1158 '*compress-wait-thread': 'bool',
741d4086 1159 '*decompress-threads': 'uint8',
dc14a470 1160 '*throttle-trigger-threshold': 'uint8',
741d4086
JQ
1161 '*cpu-throttle-initial': 'uint8',
1162 '*cpu-throttle-increment': 'uint8',
cbbf8182 1163 '*cpu-throttle-tailslow': 'bool',
48685a8e
MA
1164 '*tls-creds': 'str',
1165 '*tls-hostname': 'str',
d2f1d29b 1166 '*tls-authz': 'str',
741d4086
JQ
1167 '*max-bandwidth': 'size',
1168 '*downtime-limit': 'uint64',
9fb49daa
MA
1169 '*x-checkpoint-delay': { 'type': 'uint32',
1170 'features': [ 'unstable' ] },
ec17de0a 1171 '*block-incremental': 'bool',
cbfd6c95 1172 '*multifd-channels': 'uint8',
7e555c6c 1173 '*xbzrle-cache-size': 'size',
dbb28bc8 1174 '*max-postcopy-bandwidth': 'size',
96eef042 1175 '*max-cpu-throttle': 'uint8',
9004db48 1176 '*multifd-compression': 'MultiFDCompression',
6a9ad154 1177 '*multifd-zlib-level': 'uint8',
31e4c354
HR
1178 '*multifd-zstd-level': 'uint8',
1179 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
48685a8e
MA
1180
1181##
1182# @query-migrate-parameters:
1183#
1184# Returns information about the current migration parameters
1185#
1186# Returns: @MigrationParameters
1187#
1188# Since: 2.4
1189#
1190# Example:
1191#
1192# -> { "execute": "query-migrate-parameters" }
1193# <- { "return": {
1194# "decompress-threads": 2,
1195# "cpu-throttle-increment": 10,
1196# "compress-threads": 8,
1197# "compress-level": 1,
1198# "cpu-throttle-initial": 20,
1199# "max-bandwidth": 33554432,
1200# "downtime-limit": 300
1201# }
1202# }
1203#
1204##
1205{ 'command': 'query-migrate-parameters',
1206 'returns': 'MigrationParameters' }
1207
48685a8e
MA
1208##
1209# @migrate-start-postcopy:
1210#
1211# Followup to a migration command to switch the migration to postcopy mode.
c2eb7f21
GK
1212# The postcopy-ram capability must be set on both source and destination
1213# before the original migration command.
48685a8e
MA
1214#
1215# Since: 2.5
1216#
1217# Example:
1218#
1219# -> { "execute": "migrate-start-postcopy" }
1220# <- { "return": {} }
1221#
1222##
1223{ 'command': 'migrate-start-postcopy' }
1224
1225##
1226# @MIGRATION:
1227#
1228# Emitted when a migration event happens
1229#
1230# @status: @MigrationStatus describing the current migration status.
1231#
1232# Since: 2.4
1233#
1234# Example:
1235#
1236# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1237# "event": "MIGRATION",
1238# "data": {"status": "completed"} }
1239#
1240##
1241{ 'event': 'MIGRATION',
1242 'data': {'status': 'MigrationStatus'}}
1243
1244##
1245# @MIGRATION_PASS:
1246#
1247# Emitted from the source side of a migration at the start of each pass
1248# (when it syncs the dirty bitmap)
1249#
1250# @pass: An incrementing count (starting at 1 on the first pass)
1251#
1252# Since: 2.6
1253#
1254# Example:
1255#
37fa48a4
MA
1256# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1257# "event": "MIGRATION_PASS", "data": {"pass": 2} }
48685a8e
MA
1258#
1259##
1260{ 'event': 'MIGRATION_PASS',
1261 'data': { 'pass': 'int' } }
1262
1263##
1264# @COLOMessage:
1265#
1266# The message transmission between Primary side and Secondary side.
1267#
1268# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1269#
1270# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1271#
1272# @checkpoint-reply: SVM gets PVM's checkpoint request
1273#
1274# @vmstate-send: VM's state will be sent by PVM.
1275#
1276# @vmstate-size: The total size of VMstate.
1277#
1278# @vmstate-received: VM's state has been received by SVM.
1279#
1280# @vmstate-loaded: VM's state has been loaded by SVM.
1281#
1282# Since: 2.8
1283##
1284{ 'enum': 'COLOMessage',
1285 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1286 'vmstate-send', 'vmstate-size', 'vmstate-received',
1287 'vmstate-loaded' ] }
1288
1289##
1290# @COLOMode:
1291#
41b6b779 1292# The COLO current mode.
48685a8e 1293#
41b6b779 1294# @none: COLO is disabled.
48685a8e 1295#
41b6b779 1296# @primary: COLO node in primary side.
48685a8e 1297#
41b6b779 1298# @secondary: COLO node in slave side.
48685a8e
MA
1299#
1300# Since: 2.8
1301##
1302{ 'enum': 'COLOMode',
41b6b779 1303 'data': [ 'none', 'primary', 'secondary'] }
48685a8e
MA
1304
1305##
1306# @FailoverStatus:
1307#
1308# An enumeration of COLO failover status
1309#
1310# @none: no failover has ever happened
1311#
1312# @require: got failover requirement but not handled
1313#
1314# @active: in the process of doing failover
1315#
1316# @completed: finish the process of failover
1317#
1318# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1319#
1320# Since: 2.8
1321##
1322{ 'enum': 'FailoverStatus',
1323 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1324
9ecff6d6
HZ
1325##
1326# @COLO_EXIT:
1327#
1328# Emitted when VM finishes COLO mode due to some errors happening or
1329# at the request of users.
1330#
1331# @mode: report COLO mode when COLO exited.
1332#
1333# @reason: describes the reason for the COLO exit.
1334#
1335# Since: 3.1
1336#
1337# Example:
1338#
1339# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1340# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1341#
1342##
1343{ 'event': 'COLO_EXIT',
1344 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1345
1346##
1347# @COLOExitReason:
1348#
3a43ac47 1349# The reason for a COLO exit.
9ecff6d6 1350#
3a43ac47 1351# @none: failover has never happened. This state does not occur
26ec4e53
PM
1352# in the COLO_EXIT event, and is only visible in the result of
1353# query-colo-status.
9ecff6d6 1354#
3a43ac47 1355# @request: COLO exit is due to an external request.
9ecff6d6 1356#
3a43ac47
ZC
1357# @error: COLO exit is due to an internal error.
1358#
1359# @processing: COLO is currently handling a failover (since 4.0).
9ecff6d6
HZ
1360#
1361# Since: 3.1
1362##
1363{ 'enum': 'COLOExitReason',
3a43ac47 1364 'data': [ 'none', 'request', 'error' , 'processing' ] }
9ecff6d6 1365
48685a8e
MA
1366##
1367# @x-colo-lost-heartbeat:
1368#
1369# Tell qemu that heartbeat is lost, request it to do takeover procedures.
1370# If this command is sent to the PVM, the Primary side will exit COLO mode.
1371# If sent to the Secondary, the Secondary side will run failover work,
1372# then takes over server operation to become the service VM.
1373#
9fb49daa
MA
1374# Features:
1375# @unstable: This command is experimental.
1376#
48685a8e
MA
1377# Since: 2.8
1378#
1379# Example:
1380#
1381# -> { "execute": "x-colo-lost-heartbeat" }
1382# <- { "return": {} }
1383#
1384##
9fb49daa
MA
1385{ 'command': 'x-colo-lost-heartbeat',
1386 'features': [ 'unstable' ] }
48685a8e
MA
1387
1388##
1389# @migrate_cancel:
1390#
1391# Cancel the current executing migration process.
1392#
1393# Returns: nothing on success
1394#
1395# Notes: This command succeeds even if there is no migration process running.
1396#
9bc6e893 1397# Since: 0.14
48685a8e
MA
1398#
1399# Example:
1400#
1401# -> { "execute": "migrate_cancel" }
1402# <- { "return": {} }
1403#
1404##
1405{ 'command': 'migrate_cancel' }
1406
89cfc02c
DDAG
1407##
1408# @migrate-continue:
1409#
1410# Continue migration when it's in a paused state.
1411#
1412# @state: The state the migration is currently expected to be in
1413#
1414# Returns: nothing on success
4ae65a52 1415#
89cfc02c 1416# Since: 2.11
4ae65a52 1417#
89cfc02c
DDAG
1418# Example:
1419#
1420# -> { "execute": "migrate-continue" , "arguments":
1421# { "state": "pre-switchover" } }
1422# <- { "return": {} }
1423##
1424{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1425
48685a8e
MA
1426##
1427# @migrate:
1428#
1429# Migrates the current running guest to another Virtual Machine.
1430#
1431# @uri: the Uniform Resource Identifier of the destination VM
1432#
1433# @blk: do block migration (full disk copy)
1434#
1435# @inc: incremental disk copy migration
1436#
1437# @detach: this argument exists only for compatibility reasons and
1438# is ignored by QEMU
1439#
51f63ec7 1440# @resume: resume one paused migration, default "off". (since 3.0)
7a4da28b 1441#
48685a8e
MA
1442# Returns: nothing on success
1443#
9bc6e893 1444# Since: 0.14
48685a8e
MA
1445#
1446# Notes:
1447#
1448# 1. The 'query-migrate' command should be used to check migration's progress
1449# and final result (this information is provided by the 'status' member)
1450#
1451# 2. All boolean arguments default to false
1452#
1453# 3. The user Monitor's "detach" argument is invalid in QMP and should not
1454# be used
1455#
1456# Example:
1457#
1458# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1459# <- { "return": {} }
1460#
1461##
1462{ 'command': 'migrate',
7a4da28b
PX
1463 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1464 '*detach': 'bool', '*resume': 'bool' } }
48685a8e
MA
1465
1466##
1467# @migrate-incoming:
1468#
1469# Start an incoming migration, the qemu must have been started
1470# with -incoming defer
1471#
1472# @uri: The Uniform Resource Identifier identifying the source or
1473# address to listen on
1474#
1475# Returns: nothing on success
1476#
1477# Since: 2.3
1478#
1479# Notes:
1480#
1481# 1. It's a bad idea to use a string for the uri, but it needs to stay
1482# compatible with -incoming and the format of the uri is already exposed
1483# above libvirt.
1484#
1485# 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1486# be used.
1487#
1488# 3. The uri format is the same as for -incoming
1489#
1490# Example:
1491#
1492# -> { "execute": "migrate-incoming",
1493# "arguments": { "uri": "tcp::4446" } }
1494# <- { "return": {} }
1495#
1496##
1497{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1498
1499##
1500# @xen-save-devices-state:
1501#
1502# Save the state of all devices to file. The RAM and the block devices
1503# of the VM are not saved by this command.
1504#
1505# @filename: the file to save the state of the devices to as binary
26ec4e53
PM
1506# data. See xen-save-devices-state.txt for a description of the binary
1507# format.
48685a8e 1508#
5d6c599f 1509# @live: Optional argument to ask QEMU to treat this command as part of a live
26ec4e53 1510# migration. Default to true. (since 2.11)
5d6c599f 1511#
48685a8e
MA
1512# Returns: Nothing on success
1513#
1514# Since: 1.1
1515#
1516# Example:
1517#
1518# -> { "execute": "xen-save-devices-state",
1519# "arguments": { "filename": "/tmp/save" } }
1520# <- { "return": {} }
1521#
1522##
5d6c599f
AP
1523{ 'command': 'xen-save-devices-state',
1524 'data': {'filename': 'str', '*live':'bool' } }
48685a8e 1525
28af9ba2
PMD
1526##
1527# @xen-set-global-dirty-log:
1528#
1529# Enable or disable the global dirty log mode.
1530#
1531# @enable: true to enable, false to disable.
1532#
1533# Returns: nothing
1534#
1535# Since: 1.3
1536#
1537# Example:
1538#
1539# -> { "execute": "xen-set-global-dirty-log",
1540# "arguments": { "enable": true } }
1541# <- { "return": {} }
1542#
1543##
1544{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1545
1546##
1547# @xen-load-devices-state:
1548#
1549# Load the state of all devices from file. The RAM and the block devices
1550# of the VM are not loaded by this command.
1551#
1552# @filename: the file to load the state of the devices from as binary
1553# data. See xen-save-devices-state.txt for a description of the binary
1554# format.
1555#
1556# Since: 2.7
1557#
1558# Example:
1559#
1560# -> { "execute": "xen-load-devices-state",
1561# "arguments": { "filename": "/tmp/resume" } }
1562# <- { "return": {} }
1563#
1564##
1565{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1566
48685a8e
MA
1567##
1568# @xen-set-replication:
1569#
1570# Enable or disable replication.
1571#
1572# @enable: true to enable, false to disable.
1573#
1574# @primary: true for primary or false for secondary.
1575#
1576# @failover: true to do failover, false to stop. but cannot be
1577# specified if 'enable' is true. default value is false.
1578#
1579# Returns: nothing.
1580#
1581# Example:
1582#
1583# -> { "execute": "xen-set-replication",
1584# "arguments": {"enable": true, "primary": false} }
1585# <- { "return": {} }
1586#
1587# Since: 2.9
1588##
1589{ 'command': 'xen-set-replication',
335d10cd 1590 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
8a9f1e1d 1591 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1592
1593##
1594# @ReplicationStatus:
1595#
1596# The result format for 'query-xen-replication-status'.
1597#
1598# @error: true if an error happened, false if replication is normal.
1599#
1600# @desc: the human readable error description string, when
1601# @error is 'true'.
1602#
1603# Since: 2.9
1604##
1605{ 'struct': 'ReplicationStatus',
335d10cd 1606 'data': { 'error': 'bool', '*desc': 'str' },
8a9f1e1d 1607 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1608
1609##
1610# @query-xen-replication-status:
1611#
1612# Query replication status while the vm is running.
1613#
f4347129 1614# Returns: A @ReplicationStatus object showing the status.
48685a8e
MA
1615#
1616# Example:
1617#
1618# -> { "execute": "query-xen-replication-status" }
1619# <- { "return": { "error": false } }
1620#
1621# Since: 2.9
1622##
1623{ 'command': 'query-xen-replication-status',
335d10cd 1624 'returns': 'ReplicationStatus',
8a9f1e1d 1625 'if': 'CONFIG_REPLICATION' }
48685a8e
MA
1626
1627##
1628# @xen-colo-do-checkpoint:
1629#
1630# Xen uses this command to notify replication to trigger a checkpoint.
1631#
1632# Returns: nothing.
1633#
1634# Example:
1635#
1636# -> { "execute": "xen-colo-do-checkpoint" }
1637# <- { "return": {} }
1638#
1639# Since: 2.9
1640##
335d10cd 1641{ 'command': 'xen-colo-do-checkpoint',
8a9f1e1d 1642 'if': 'CONFIG_REPLICATION' }
02affd41 1643
f56c0065
ZC
1644##
1645# @COLOStatus:
1646#
1647# The result format for 'query-colo-status'.
1648#
1649# @mode: COLO running mode. If COLO is running, this field will return
1650# 'primary' or 'secondary'.
1651#
5cc8f9eb 1652# @last-mode: COLO last running mode. If COLO is running, this field
5ed0deca 1653# will return same like mode field, after failover we can
966c0d49 1654# use this field to get last colo mode. (since 4.0)
5ed0deca 1655#
f56c0065
ZC
1656# @reason: describes the reason for the COLO exit.
1657#
ea3b23e5 1658# Since: 3.1
f56c0065
ZC
1659##
1660{ 'struct': 'COLOStatus',
5cc8f9eb 1661 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
5ed0deca 1662 'reason': 'COLOExitReason' } }
f56c0065
ZC
1663
1664##
1665# @query-colo-status:
1666#
1667# Query COLO status while the vm is running.
1668#
1669# Returns: A @COLOStatus object showing the status.
1670#
1671# Example:
1672#
1673# -> { "execute": "query-colo-status" }
51ec294d 1674# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
f56c0065 1675#
ea3b23e5 1676# Since: 3.1
f56c0065
ZC
1677##
1678{ 'command': 'query-colo-status',
1679 'returns': 'COLOStatus' }
1680
02affd41
PX
1681##
1682# @migrate-recover:
1683#
1684# Provide a recovery migration stream URI.
1685#
1686# @uri: the URI to be used for the recovery of migration stream.
1687#
1688# Returns: nothing.
1689#
1690# Example:
1691#
1692# -> { "execute": "migrate-recover",
1693# "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1694# <- { "return": {} }
1695#
51f63ec7 1696# Since: 3.0
02affd41 1697##
b0ddeba2
MAL
1698{ 'command': 'migrate-recover',
1699 'data': { 'uri': 'str' },
02affd41 1700 'allow-oob': true }
bfbf89c2
PX
1701
1702##
1703# @migrate-pause:
1704#
1705# Pause a migration. Currently it only supports postcopy.
1706#
1707# Returns: nothing.
1708#
1709# Example:
1710#
1711# -> { "execute": "migrate-pause" }
1712# <- { "return": {} }
1713#
51f63ec7 1714# Since: 3.0
bfbf89c2
PX
1715##
1716{ 'command': 'migrate-pause', 'allow-oob': true }
d328e6f3
JF
1717
1718##
1719# @UNPLUG_PRIMARY:
1720#
1721# Emitted from source side of a migration when migration state is
1722# WAIT_UNPLUG. Device was unplugged by guest operating system.
1723# Device resources in QEMU are kept on standby to be able to re-plug it in case
1724# of migration failure.
1725#
1726# @device-id: QEMU device id of the unplugged device
1727#
1728# Since: 4.2
1729#
1730# Example:
4ae65a52 1731#
0df5e9a3
VT
1732# <- { "event": "UNPLUG_PRIMARY",
1733# "data": { "device-id": "hostdev0" },
1734# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
d328e6f3
JF
1735#
1736##
1737{ 'event': 'UNPLUG_PRIMARY',
1738 'data': { 'device-id': 'str' } }
7df3aa30 1739
71864ead
HH
1740##
1741# @DirtyRateVcpu:
1742#
1743# Dirty rate of vcpu.
1744#
1745# @id: vcpu index.
1746#
1747# @dirty-rate: dirty rate.
1748#
f78d4ed7 1749# Since: 6.2
71864ead
HH
1750##
1751{ 'struct': 'DirtyRateVcpu',
1752 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1753
7df3aa30
CZ
1754##
1755# @DirtyRateStatus:
1756#
1757# An enumeration of dirtyrate status.
1758#
1759# @unstarted: the dirtyrate thread has not been started.
1760#
1761# @measuring: the dirtyrate thread is measuring.
1762#
1763# @measured: the dirtyrate thread has measured and results are available.
1764#
1765# Since: 5.2
7df3aa30
CZ
1766##
1767{ 'enum': 'DirtyRateStatus',
1768 'data': [ 'unstarted', 'measuring', 'measured'] }
4c437254 1769
71864ead
HH
1770##
1771# @DirtyRateMeasureMode:
1772#
1773# An enumeration of mode of measuring dirtyrate.
1774#
1775# @page-sampling: calculate dirtyrate by sampling pages.
1776#
826b8bc8
HH
1777# @dirty-ring: calculate dirtyrate by dirty ring.
1778#
1779# @dirty-bitmap: calculate dirtyrate by dirty bitmap.
71864ead 1780#
f78d4ed7 1781# Since: 6.2
71864ead
HH
1782##
1783{ 'enum': 'DirtyRateMeasureMode',
826b8bc8 1784 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
71864ead 1785
4c437254
CZ
1786##
1787# @DirtyRateInfo:
1788#
1789# Information about current dirty page rate of vm.
1790#
b1a859cf
CZ
1791# @dirty-rate: an estimate of the dirty page rate of the VM in units of
1792# MB/s, present only when estimating the rate has completed.
4c437254
CZ
1793#
1794# @status: status containing dirtyrate query status includes
1795# 'unstarted' or 'measuring' or 'measured'
1796#
1797# @start-time: start time in units of second for calculation
1798#
1799# @calc-time: time in units of second for sample dirty pages
1800#
7afa08cd 1801# @sample-pages: page count per GB for sample dirty pages
adc903a6 1802# the default value is 512 (since 6.1)
7afa08cd 1803#
0e21bf24 1804# @mode: mode containing method of calculate dirtyrate includes
f78d4ed7 1805# 'page-sampling' and 'dirty-ring' (Since 6.2)
0e21bf24
HH
1806#
1807# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
f78d4ed7 1808# mode specified (Since 6.2)
0e21bf24 1809#
4c437254 1810# Since: 5.2
4c437254
CZ
1811##
1812{ 'struct': 'DirtyRateInfo',
b1a859cf 1813 'data': {'*dirty-rate': 'int64',
4c437254
CZ
1814 'status': 'DirtyRateStatus',
1815 'start-time': 'int64',
7afa08cd 1816 'calc-time': 'int64',
0e21bf24
HH
1817 'sample-pages': 'uint64',
1818 'mode': 'DirtyRateMeasureMode',
1819 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
4c437254
CZ
1820
1821##
1822# @calc-dirty-rate:
1823#
1824# start calculating dirty page rate for vm
1825#
1826# @calc-time: time in units of second for sample dirty pages
1827#
7afa08cd
HH
1828# @sample-pages: page count per GB for sample dirty pages
1829# the default value is 512 (since 6.1)
1830#
0e21bf24
HH
1831# @mode: mechanism of calculating dirtyrate includes
1832# 'page-sampling' and 'dirty-ring' (Since 6.1)
1833#
4c437254
CZ
1834# Since: 5.2
1835#
1836# Example:
4ae65a52 1837#
37fa48a4
MA
1838# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1839# 'sample-pages': 512} }
1840# <- { "return": {} }
4c437254
CZ
1841#
1842##
7afa08cd 1843{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
0e21bf24
HH
1844 '*sample-pages': 'int',
1845 '*mode': 'DirtyRateMeasureMode'} }
4c437254
CZ
1846
1847##
1848# @query-dirty-rate:
1849#
1850# query dirty page rate in units of MB/s for vm
1851#
1852# Since: 5.2
1853##
1854{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
0f0d83a4 1855
f3b2e38c
HH
1856##
1857# @DirtyLimitInfo:
1858#
1859# Dirty page rate limit information of a virtual CPU.
1860#
1861# @cpu-index: index of a virtual CPU.
1862#
1863# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1864# CPU, 0 means unlimited.
1865#
1866# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1867#
1868# Since: 7.1
1869#
1870##
1871{ 'struct': 'DirtyLimitInfo',
1872 'data': { 'cpu-index': 'int',
1873 'limit-rate': 'uint64',
1874 'current-rate': 'uint64' } }
1875
1876##
1877# @set-vcpu-dirty-limit:
1878#
1879# Set the upper limit of dirty page rate for virtual CPUs.
1880#
1881# Requires KVM with accelerator property "dirty-ring-size" set.
1882# A virtual CPU's dirty page rate is a measure of its memory load.
1883# To observe dirty page rates, use @calc-dirty-rate.
1884#
1885# @cpu-index: index of a virtual CPU, default is all.
1886#
1887# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1888#
1889# Since: 7.1
1890#
1891# Example:
37fa48a4
MA
1892#
1893# -> {"execute": "set-vcpu-dirty-limit"}
1894# "arguments": { "dirty-rate": 200,
1895# "cpu-index": 1 } }
1896# <- { "return": {} }
f3b2e38c
HH
1897#
1898##
1899{ 'command': 'set-vcpu-dirty-limit',
1900 'data': { '*cpu-index': 'int',
1901 'dirty-rate': 'uint64' } }
1902
1903##
1904# @cancel-vcpu-dirty-limit:
1905#
1906# Cancel the upper limit of dirty page rate for virtual CPUs.
1907#
1908# Cancel the dirty page limit for the vCPU which has been set with
1909# set-vcpu-dirty-limit command. Note that this command requires
1910# support from dirty ring, same as the "set-vcpu-dirty-limit".
1911#
1912# @cpu-index: index of a virtual CPU, default is all.
1913#
1914# Since: 7.1
1915#
1916# Example:
37fa48a4
MA
1917#
1918# -> {"execute": "cancel-vcpu-dirty-limit"},
1919# "arguments": { "cpu-index": 1 } }
1920# <- { "return": {} }
f3b2e38c
HH
1921#
1922##
1923{ 'command': 'cancel-vcpu-dirty-limit',
1924 'data': { '*cpu-index': 'int'} }
1925
1926##
1927# @query-vcpu-dirty-limit:
1928#
1929# Returns information about virtual CPU dirty page rate limits, if any.
1930#
1931# Since: 7.1
1932#
1933# Example:
37fa48a4
MA
1934#
1935# -> {"execute": "query-vcpu-dirty-limit"}
1936# <- {"return": [
1937# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
1938# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
f3b2e38c
HH
1939#
1940##
1941{ 'command': 'query-vcpu-dirty-limit',
1942 'returns': [ 'DirtyLimitInfo' ] }
1943
67132620
JJ
1944##
1945# @MigrationThreadInfo:
1946#
1947# Information about migrationthreads
1948#
1949# @name: the name of migration thread
1950#
1951# @thread-id: ID of the underlying host thread
1952#
1953# Since: 7.2
1954##
1955{ 'struct': 'MigrationThreadInfo',
1956 'data': {'name': 'str',
1957 'thread-id': 'int'} }
1958
1959##
1960# @query-migrationthreads:
1961#
1962# Returns information of migration threads
1963#
1964# data: migration thread name
1965#
7c3def93 1966# Returns: information about migration threads
67132620
JJ
1967#
1968# Since: 7.2
1969##
1970{ 'command': 'query-migrationthreads',
1971 'returns': ['MigrationThreadInfo'] }
1972
0f0d83a4
DB
1973##
1974# @snapshot-save:
1975#
1976# Save a VM snapshot
1977#
1978# @job-id: identifier for the newly created job
1979# @tag: name of the snapshot to create
1980# @vmstate: block device node name to save vmstate to
1981# @devices: list of block device node names to save a snapshot to
1982#
1983# Applications should not assume that the snapshot save is complete
1984# when this command returns. The job commands / events must be used
1985# to determine completion and to fetch details of any errors that arise.
1986#
1987# Note that execution of the guest CPUs may be stopped during the
1988# time it takes to save the snapshot. A future version of QEMU
1989# may ensure CPUs are executing continuously.
1990#
1991# It is strongly recommended that @devices contain all writable
1992# block device nodes if a consistent snapshot is required.
1993#
1994# If @tag already exists, an error will be reported
1995#
1996# Returns: nothing
1997#
1998# Example:
1999#
2000# -> { "execute": "snapshot-save",
b1ca5322 2001# "arguments": {
0f0d83a4
DB
2002# "job-id": "snapsave0",
2003# "tag": "my-snap",
2004# "vmstate": "disk0",
2005# "devices": ["disk0", "disk1"]
2006# }
2007# }
2008# <- { "return": { } }
2009# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2010# "timestamp": {"seconds": 1432121972, "microseconds": 744001},
0f0d83a4
DB
2011# "data": {"status": "created", "id": "snapsave0"}}
2012# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2013# "timestamp": {"seconds": 1432122172, "microseconds": 744001},
0f0d83a4 2014# "data": {"status": "running", "id": "snapsave0"}}
6e7a37ff
VT
2015# <- {"event": "STOP",
2016# "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2017# <- {"event": "RESUME",
2018# "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
0f0d83a4 2019# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2020# "timestamp": {"seconds": 1432122772, "microseconds": 744001},
0f0d83a4
DB
2021# "data": {"status": "waiting", "id": "snapsave0"}}
2022# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2023# "timestamp": {"seconds": 1432122972, "microseconds": 744001},
0f0d83a4
DB
2024# "data": {"status": "pending", "id": "snapsave0"}}
2025# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2026# "timestamp": {"seconds": 1432123172, "microseconds": 744001},
0f0d83a4
DB
2027# "data": {"status": "concluded", "id": "snapsave0"}}
2028# -> {"execute": "query-jobs"}
2029# <- {"return": [{"current-progress": 1,
2030# "status": "concluded",
2031# "total-progress": 1,
2032# "type": "snapshot-save",
2033# "id": "snapsave0"}]}
2034#
2035# Since: 6.0
2036##
2037{ 'command': 'snapshot-save',
2038 'data': { 'job-id': 'str',
2039 'tag': 'str',
2040 'vmstate': 'str',
2041 'devices': ['str'] } }
2042
2043##
2044# @snapshot-load:
2045#
2046# Load a VM snapshot
2047#
2048# @job-id: identifier for the newly created job
2049# @tag: name of the snapshot to load.
2050# @vmstate: block device node name to load vmstate from
2051# @devices: list of block device node names to load a snapshot from
2052#
2053# Applications should not assume that the snapshot load is complete
2054# when this command returns. The job commands / events must be used
2055# to determine completion and to fetch details of any errors that arise.
2056#
2057# Note that execution of the guest CPUs will be stopped during the
2058# time it takes to load the snapshot.
2059#
2060# It is strongly recommended that @devices contain all writable
2061# block device nodes that can have changed since the original
2062# @snapshot-save command execution.
2063#
2064# Returns: nothing
2065#
2066# Example:
2067#
2068# -> { "execute": "snapshot-load",
b1ca5322 2069# "arguments": {
0f0d83a4
DB
2070# "job-id": "snapload0",
2071# "tag": "my-snap",
2072# "vmstate": "disk0",
2073# "devices": ["disk0", "disk1"]
2074# }
2075# }
2076# <- { "return": { } }
2077# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2078# "timestamp": {"seconds": 1472124172, "microseconds": 744001},
0f0d83a4
DB
2079# "data": {"status": "created", "id": "snapload0"}}
2080# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2081# "timestamp": {"seconds": 1472125172, "microseconds": 744001},
0f0d83a4 2082# "data": {"status": "running", "id": "snapload0"}}
6e7a37ff
VT
2083# <- {"event": "STOP",
2084# "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2085# <- {"event": "RESUME",
2086# "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
0f0d83a4 2087# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2088# "timestamp": {"seconds": 1472126172, "microseconds": 744001},
0f0d83a4
DB
2089# "data": {"status": "waiting", "id": "snapload0"}}
2090# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2091# "timestamp": {"seconds": 1472127172, "microseconds": 744001},
0f0d83a4
DB
2092# "data": {"status": "pending", "id": "snapload0"}}
2093# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2094# "timestamp": {"seconds": 1472128172, "microseconds": 744001},
0f0d83a4
DB
2095# "data": {"status": "concluded", "id": "snapload0"}}
2096# -> {"execute": "query-jobs"}
2097# <- {"return": [{"current-progress": 1,
2098# "status": "concluded",
2099# "total-progress": 1,
2100# "type": "snapshot-load",
2101# "id": "snapload0"}]}
2102#
2103# Since: 6.0
2104##
2105{ 'command': 'snapshot-load',
2106 'data': { 'job-id': 'str',
2107 'tag': 'str',
2108 'vmstate': 'str',
2109 'devices': ['str'] } }
2110
2111##
2112# @snapshot-delete:
2113#
2114# Delete a VM snapshot
2115#
2116# @job-id: identifier for the newly created job
2117# @tag: name of the snapshot to delete.
2118# @devices: list of block device node names to delete a snapshot from
2119#
2120# Applications should not assume that the snapshot delete is complete
2121# when this command returns. The job commands / events must be used
2122# to determine completion and to fetch details of any errors that arise.
2123#
2124# Returns: nothing
2125#
2126# Example:
2127#
2128# -> { "execute": "snapshot-delete",
b1ca5322 2129# "arguments": {
0f0d83a4
DB
2130# "job-id": "snapdelete0",
2131# "tag": "my-snap",
2132# "devices": ["disk0", "disk1"]
2133# }
2134# }
2135# <- { "return": { } }
2136# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2137# "timestamp": {"seconds": 1442124172, "microseconds": 744001},
0f0d83a4
DB
2138# "data": {"status": "created", "id": "snapdelete0"}}
2139# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2140# "timestamp": {"seconds": 1442125172, "microseconds": 744001},
0f0d83a4
DB
2141# "data": {"status": "running", "id": "snapdelete0"}}
2142# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2143# "timestamp": {"seconds": 1442126172, "microseconds": 744001},
0f0d83a4
DB
2144# "data": {"status": "waiting", "id": "snapdelete0"}}
2145# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2146# "timestamp": {"seconds": 1442127172, "microseconds": 744001},
0f0d83a4
DB
2147# "data": {"status": "pending", "id": "snapdelete0"}}
2148# <- {"event": "JOB_STATUS_CHANGE",
6e7a37ff 2149# "timestamp": {"seconds": 1442128172, "microseconds": 744001},
0f0d83a4
DB
2150# "data": {"status": "concluded", "id": "snapdelete0"}}
2151# -> {"execute": "query-jobs"}
2152# <- {"return": [{"current-progress": 1,
2153# "status": "concluded",
2154# "total-progress": 1,
2155# "type": "snapshot-delete",
2156# "id": "snapdelete0"}]}
2157#
2158# Since: 6.0
2159##
2160{ 'command': 'snapshot-delete',
2161 'data': { 'job-id': 'str',
2162 'tag': 'str',
2163 'devices': ['str'] } }