]> git.proxmox.com Git - mirror_qemu.git/blame - qapi/misc.json
qapi: Split machine-target.json off target.json and misc.json
[mirror_qemu.git] / qapi / misc.json
CommitLineData
112ed241
MA
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
b47aa7b3
LE
8{ 'include': 'common.json' }
9
112ed241
MA
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
02130314
PX
15# Arguments:
16#
17# @enable: An optional list of QMPCapability values to enable. The
18# client must not enable any capability that is not
19# mentioned in the QMP greeting message. If the field is not
20# provided, it means no QMP capabilities will be enabled.
21# (since 2.12)
112ed241
MA
22#
23# Example:
24#
02130314
PX
25# -> { "execute": "qmp_capabilities",
26# "arguments": { "enable": [ "oob" ] } }
112ed241
MA
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
02130314
PX
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
112ed241
MA
36# Since: 0.13
37#
38##
02130314 39{ 'command': 'qmp_capabilities',
d6fe3d02
IM
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
02130314
PX
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
c0698212 49# @oob: QMP ability to support out-of-band requests.
02130314
PX
50# (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
112ed241
MA
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major: The major version number.
64#
65# @minor: The minor version number.
66#
67# @micro: The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu: The version of QEMU. By current convention, a micro
81# version of 50 signifies a development branch. A micro version
82# greater than or equal to 90 signifies a release candidate for
83# the next minor version. A micro version of less than 50
84# signifies a stable release.
85#
86# @package: QEMU will always set this field to an empty string. Downstream
87# versions of QEMU should set this to a non-empty string. The
88# exact format depends on the downstream however it highly
89# recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns: A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109# "return":{
110# "qemu":{
111# "major":0,
112# "minor":11,
113# "micro":5
114# },
115# "package":""
116# }
117# }
118#
119##
a87706c8
IM
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
112ed241
MA
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147# "return":[
148# {
149# "name":"query-balloon"
150# },
151# {
152# "name":"system_powerdown"
153# }
154# ]
155# }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
d6fe3d02
IM
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
112ed241
MA
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169# normally. Guest time may be delayed, unless the OS has explicit
170# handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate. Guest time will be
173# delayed due to the late tick
174#
112ed241
MA
175# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
176# guest time should not be delayed once catchup is complete.
177#
178# Since: 2.0
179##
180{ 'enum': 'LostTickPolicy',
4d209102 181 'data': ['discard', 'delay', 'slew' ] }
112ed241
MA
182
183##
184# @add_client:
185#
186# Allow client connections for VNC, Spice and socket based
187# character devices to be passed in to QEMU via SCM_RIGHTS.
188#
189# @protocol: protocol name. Valid names are "vnc", "spice" or the
190# name of a character device (eg. from -chardev id=XXXX)
191#
192# @fdname: file descriptor name previously passed via 'getfd' command
193#
194# @skipauth: whether to skip authentication. Only applies
195# to "vnc" and "spice" protocols
196#
197# @tls: whether to perform TLS. Only applies to the "spice"
198# protocol
199#
200# Returns: nothing on success.
201#
202# Since: 0.14.0
203#
204# Example:
205#
206# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
207# "fdname": "myclient" } }
208# <- { "return": {} }
209#
210##
211{ 'command': 'add_client',
212 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
213 '*tls': 'bool' } }
214
215##
216# @NameInfo:
217#
218# Guest name information.
219#
220# @name: The name of the guest
221#
222# Since: 0.14.0
223##
224{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
225
226##
227# @query-name:
228#
229# Return the name information of a guest.
230#
231# Returns: @NameInfo of the guest
232#
233# Since: 0.14.0
234#
235# Example:
236#
237# -> { "execute": "query-name" }
238# <- { "return": { "name": "qemu-name" } }
239#
240##
a87706c8 241{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
112ed241
MA
242
243##
244# @KvmInfo:
245#
246# Information about support for KVM acceleration
247#
248# @enabled: true if KVM acceleration is active
249#
250# @present: true if KVM acceleration is built into this executable
251#
252# Since: 0.14.0
253##
254{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
255
256##
257# @query-kvm:
258#
259# Returns information about KVM acceleration
260#
261# Returns: @KvmInfo
262#
263# Since: 0.14.0
264#
265# Example:
266#
267# -> { "execute": "query-kvm" }
268# <- { "return": { "enabled": true, "present": true } }
269#
270##
271{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
272
273##
274# @UuidInfo:
275#
276# Guest UUID information (Universally Unique Identifier).
277#
278# @UUID: the UUID of the guest
279#
280# Since: 0.14.0
281#
282# Notes: If no UUID was specified for the guest, a null UUID is returned.
283##
284{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
285
286##
287# @query-uuid:
288#
289# Query the guest UUID information.
290#
291# Returns: The @UuidInfo for the guest
292#
293# Since: 0.14.0
294#
295# Example:
296#
297# -> { "execute": "query-uuid" }
298# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
299#
300##
a87706c8 301{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
112ed241
MA
302
303##
304# @EventInfo:
305#
306# Information about a QMP event
307#
308# @name: The event name
309#
310# Since: 1.2.0
311##
312{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
313
314##
315# @query-events:
316#
9d7b7086 317# Return information on QMP events.
112ed241 318#
9d7b7086 319# Returns: A list of @EventInfo.
112ed241
MA
320#
321# Since: 1.2.0
322#
9d7b7086
MA
323# Note: This command is deprecated, because its output doesn't reflect
324# compile-time configuration. Use query-qmp-schema instead.
325#
112ed241
MA
326# Example:
327#
328# -> { "execute": "query-events" }
329# <- {
330# "return": [
331# {
332# "name":"SHUTDOWN"
333# },
334# {
335# "name":"RESET"
336# }
337# ]
338# }
339#
340# Note: This example has been shortened as the real response is too long.
341#
342##
343{ 'command': 'query-events', 'returns': ['EventInfo'] }
344
112ed241
MA
345##
346# @IOThreadInfo:
347#
348# Information about an iothread
349#
350# @id: the identifier of the iothread
351#
352# @thread-id: ID of the underlying host thread
353#
354# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
355# (since 2.9)
356#
357# @poll-grow: how many ns will be added to polling time, 0 means that it's not
358# configured (since 2.9)
359#
360# @poll-shrink: how many ns will be removed from polling time, 0 means that
361# it's not configured (since 2.9)
362#
363# Since: 2.0
364##
365{ 'struct': 'IOThreadInfo',
366 'data': {'id': 'str',
367 'thread-id': 'int',
368 'poll-max-ns': 'int',
369 'poll-grow': 'int',
370 'poll-shrink': 'int' } }
371
372##
373# @query-iothreads:
374#
375# Returns a list of information about each iothread.
376#
377# Note: this list excludes the QEMU main loop thread, which is not declared
378# using the -object iothread command-line option. It is always the main thread
379# of the process.
380#
381# Returns: a list of @IOThreadInfo for each iothread
382#
383# Since: 2.0
384#
385# Example:
386#
387# -> { "execute": "query-iothreads" }
388# <- { "return": [
389# {
390# "id":"iothread0",
391# "thread-id":3134
392# },
393# {
394# "id":"iothread1",
395# "thread-id":3135
396# }
397# ]
398# }
399#
400##
a87706c8
IM
401{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
402 'allow-preconfig': true }
112ed241
MA
403
404##
405# @BalloonInfo:
406#
407# Information about the guest balloon device.
408#
409# @actual: the number of bytes the balloon currently contains
410#
411# Since: 0.14.0
412#
413##
414{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
415
416##
417# @query-balloon:
418#
419# Return information about the balloon device.
420#
421# Returns: @BalloonInfo on success
422#
423# If the balloon driver is enabled but not functional because the KVM
424# kernel module cannot support it, KvmMissingCap
425#
426# If no balloon device is present, DeviceNotActive
427#
428# Since: 0.14.0
429#
430# Example:
431#
432# -> { "execute": "query-balloon" }
433# <- { "return": {
434# "actual": 1073741824,
435# }
436# }
437#
438##
439{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
440
441##
442# @BALLOON_CHANGE:
443#
444# Emitted when the guest changes the actual BALLOON level. This value is
445# equivalent to the @actual field return by the 'query-balloon' command
446#
447# @actual: actual level of the guest memory balloon in bytes
448#
449# Note: this event is rate-limited.
450#
451# Since: 1.2
452#
453# Example:
454#
455# <- { "event": "BALLOON_CHANGE",
456# "data": { "actual": 944766976 },
457# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
458#
459##
460{ 'event': 'BALLOON_CHANGE',
461 'data': { 'actual': 'int' } }
462
463##
464# @PciMemoryRange:
465#
466# A PCI device memory region
467#
468# @base: the starting address (guest physical)
469#
470# @limit: the ending address (guest physical)
471#
472# Since: 0.14.0
473##
474{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
475
476##
477# @PciMemoryRegion:
478#
479# Information about a PCI device I/O region.
480#
481# @bar: the index of the Base Address Register for this region
482#
483# @type: 'io' if the region is a PIO region
484# 'memory' if the region is a MMIO region
485#
486# @size: memory size
487#
488# @prefetch: if @type is 'memory', true if the memory is prefetchable
489#
490# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
491#
492# Since: 0.14.0
493##
494{ 'struct': 'PciMemoryRegion',
495 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
496 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
497
498##
499# @PciBusInfo:
500#
501# Information about a bus of a PCI Bridge device
502#
503# @number: primary bus interface number. This should be the number of the
504# bus the device resides on.
505#
506# @secondary: secondary bus interface number. This is the number of the
507# main bus for the bridge
508#
509# @subordinate: This is the highest number bus that resides below the
510# bridge.
511#
512# @io_range: The PIO range for all devices on this bridge
513#
514# @memory_range: The MMIO range for all devices on this bridge
515#
516# @prefetchable_range: The range of prefetchable MMIO for all devices on
517# this bridge
518#
519# Since: 2.4
520##
521{ 'struct': 'PciBusInfo',
522 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
523 'io_range': 'PciMemoryRange',
524 'memory_range': 'PciMemoryRange',
525 'prefetchable_range': 'PciMemoryRange' } }
526
527##
528# @PciBridgeInfo:
529#
530# Information about a PCI Bridge device
531#
532# @bus: information about the bus the device resides on
533#
534# @devices: a list of @PciDeviceInfo for each device on this bridge
535#
536# Since: 0.14.0
537##
538{ 'struct': 'PciBridgeInfo',
539 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
540
541##
542# @PciDeviceClass:
543#
544# Information about the Class of a PCI device
545#
546# @desc: a string description of the device's class
547#
548# @class: the class code of the device
549#
550# Since: 2.4
551##
552{ 'struct': 'PciDeviceClass',
553 'data': {'*desc': 'str', 'class': 'int'} }
554
555##
556# @PciDeviceId:
557#
558# Information about the Id of a PCI device
559#
560# @device: the PCI device id
561#
562# @vendor: the PCI vendor id
563#
5383a705
DL
564# @subsystem: the PCI subsystem id (since 3.1)
565#
566# @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
567#
112ed241
MA
568# Since: 2.4
569##
570{ 'struct': 'PciDeviceId',
18613dc6
DL
571 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
572 '*subsystem-vendor': 'int'} }
112ed241
MA
573
574##
575# @PciDeviceInfo:
576#
577# Information about a PCI device
578#
579# @bus: the bus number of the device
580#
581# @slot: the slot the device is located in
582#
583# @function: the function of the slot used by the device
584#
585# @class_info: the class of the device
586#
587# @id: the PCI device id
588#
589# @irq: if an IRQ is assigned to the device, the IRQ number
590#
591# @qdev_id: the device name of the PCI device
592#
593# @pci_bridge: if the device is a PCI bridge, the bridge information
594#
595# @regions: a list of the PCI I/O regions associated with the device
596#
597# Notes: the contents of @class_info.desc are not stable and should only be
598# treated as informational.
599#
600# Since: 0.14.0
601##
602{ 'struct': 'PciDeviceInfo',
603 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
604 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
605 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
606 'regions': ['PciMemoryRegion']} }
607
608##
609# @PciInfo:
610#
611# Information about a PCI bus
612#
613# @bus: the bus index
614#
615# @devices: a list of devices on this bus
616#
617# Since: 0.14.0
618##
619{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
620
621##
622# @query-pci:
623#
624# Return information about the PCI bus topology of the guest.
625#
626# Returns: a list of @PciInfo for each PCI bus. Each bus is
627# represented by a json-object, which has a key with a json-array of
628# all PCI devices attached to it. Each device is represented by a
629# json-object.
630#
631# Since: 0.14.0
632#
633# Example:
634#
635# -> { "execute": "query-pci" }
636# <- { "return": [
637# {
638# "bus": 0,
639# "devices": [
640# {
641# "bus": 0,
642# "qdev_id": "",
643# "slot": 0,
644# "class_info": {
645# "class": 1536,
646# "desc": "Host bridge"
647# },
648# "id": {
649# "device": 32902,
650# "vendor": 4663
651# },
652# "function": 0,
653# "regions": [
654# ]
655# },
656# {
657# "bus": 0,
658# "qdev_id": "",
659# "slot": 1,
660# "class_info": {
661# "class": 1537,
662# "desc": "ISA bridge"
663# },
664# "id": {
665# "device": 32902,
666# "vendor": 28672
667# },
668# "function": 0,
669# "regions": [
670# ]
671# },
672# {
673# "bus": 0,
674# "qdev_id": "",
675# "slot": 1,
676# "class_info": {
677# "class": 257,
678# "desc": "IDE controller"
679# },
680# "id": {
681# "device": 32902,
682# "vendor": 28688
683# },
684# "function": 1,
685# "regions": [
686# {
687# "bar": 4,
688# "size": 16,
689# "address": 49152,
690# "type": "io"
691# }
692# ]
693# },
694# {
695# "bus": 0,
696# "qdev_id": "",
697# "slot": 2,
698# "class_info": {
699# "class": 768,
700# "desc": "VGA controller"
701# },
702# "id": {
703# "device": 4115,
704# "vendor": 184
705# },
706# "function": 0,
707# "regions": [
708# {
709# "prefetch": true,
710# "mem_type_64": false,
711# "bar": 0,
712# "size": 33554432,
713# "address": 4026531840,
714# "type": "memory"
715# },
716# {
717# "prefetch": false,
718# "mem_type_64": false,
719# "bar": 1,
720# "size": 4096,
721# "address": 4060086272,
722# "type": "memory"
723# },
724# {
725# "prefetch": false,
726# "mem_type_64": false,
727# "bar": 6,
728# "size": 65536,
729# "address": -1,
730# "type": "memory"
731# }
732# ]
733# },
734# {
735# "bus": 0,
736# "qdev_id": "",
737# "irq": 11,
738# "slot": 4,
739# "class_info": {
740# "class": 1280,
741# "desc": "RAM controller"
742# },
743# "id": {
744# "device": 6900,
745# "vendor": 4098
746# },
747# "function": 0,
748# "regions": [
749# {
750# "bar": 0,
751# "size": 32,
752# "address": 49280,
753# "type": "io"
754# }
755# ]
756# }
757# ]
758# }
759# ]
760# }
761#
762# Note: This example has been shortened as the real response is too long.
763#
764##
765{ 'command': 'query-pci', 'returns': ['PciInfo'] }
766
767##
768# @quit:
769#
770# This command will cause the QEMU process to exit gracefully. While every
771# attempt is made to send the QMP response before terminating, this is not
772# guaranteed. When using this interface, a premature EOF would not be
773# unexpected.
774#
775# Since: 0.14.0
776#
777# Example:
778#
779# -> { "execute": "quit" }
780# <- { "return": {} }
781##
782{ 'command': 'quit' }
783
784##
785# @stop:
786#
787# Stop all guest VCPU execution.
788#
789# Since: 0.14.0
790#
791# Notes: This function will succeed even if the guest is already in the stopped
792# state. In "inmigrate" state, it will ensure that the guest
793# remains paused once migration finishes, as if the -S option was
794# passed on the command line.
795#
796# Example:
797#
798# -> { "execute": "stop" }
799# <- { "return": {} }
800#
801##
802{ 'command': 'stop' }
803
804##
805# @system_reset:
806#
807# Performs a hard reset of a guest.
808#
809# Since: 0.14.0
810#
811# Example:
812#
813# -> { "execute": "system_reset" }
814# <- { "return": {} }
815#
816##
817{ 'command': 'system_reset' }
818
819##
820# @system_powerdown:
821#
822# Requests that a guest perform a powerdown operation.
823#
824# Since: 0.14.0
825#
826# Notes: A guest may or may not respond to this command. This command
827# returning does not indicate that a guest has accepted the request or
828# that it has shut down. Many guests will respond to this command by
829# prompting the user in some way.
830# Example:
831#
832# -> { "execute": "system_powerdown" }
833# <- { "return": {} }
834#
835##
836{ 'command': 'system_powerdown' }
837
112ed241
MA
838##
839# @memsave:
840#
841# Save a portion of guest memory to a file.
842#
843# @val: the virtual address of the guest to start from
844#
845# @size: the size of memory region to save
846#
847# @filename: the file to save the memory to as binary data
848#
849# @cpu-index: the index of the virtual CPU to use for translating the
850# virtual address (defaults to CPU 0)
851#
852# Returns: Nothing on success
853#
854# Since: 0.14.0
855#
856# Notes: Errors were not reliably returned until 1.1
857#
858# Example:
859#
860# -> { "execute": "memsave",
861# "arguments": { "val": 10,
862# "size": 100,
863# "filename": "/tmp/virtual-mem-dump" } }
864# <- { "return": {} }
865#
866##
867{ 'command': 'memsave',
868 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
869
870##
871# @pmemsave:
872#
873# Save a portion of guest physical memory to a file.
874#
875# @val: the physical address of the guest to start from
876#
877# @size: the size of memory region to save
878#
879# @filename: the file to save the memory to as binary data
880#
881# Returns: Nothing on success
882#
883# Since: 0.14.0
884#
885# Notes: Errors were not reliably returned until 1.1
886#
887# Example:
888#
889# -> { "execute": "pmemsave",
890# "arguments": { "val": 10,
891# "size": 100,
892# "filename": "/tmp/physical-mem-dump" } }
893# <- { "return": {} }
894#
895##
896{ 'command': 'pmemsave',
897 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
898
899##
900# @cont:
901#
902# Resume guest VCPU execution.
903#
904# Since: 0.14.0
905#
906# Returns: If successful, nothing
907#
908# Notes: This command will succeed if the guest is currently running. It
909# will also succeed if the guest is in the "inmigrate" state; in
910# this case, the effect of the command is to make sure the guest
911# starts once migration finishes, removing the effect of the -S
912# command line option if it was passed.
913#
914# Example:
915#
916# -> { "execute": "cont" }
917# <- { "return": {} }
918#
919##
920{ 'command': 'cont' }
921
047f7038 922##
361ac948 923# @x-exit-preconfig:
047f7038
IM
924#
925# Exit from "preconfig" state
926#
927# This command makes QEMU exit the preconfig state and proceed with
928# VM initialization using configuration data provided on the command line
929# and via the QMP monitor during the preconfig state. The command is only
930# available during the preconfig state (i.e. when the --preconfig command
931# line option was in use).
932#
933# Since 3.0
934#
935# Returns: nothing
936#
937# Example:
938#
361ac948 939# -> { "execute": "x-exit-preconfig" }
047f7038
IM
940# <- { "return": {} }
941#
942##
361ac948 943{ 'command': 'x-exit-preconfig', 'allow-preconfig': true }
047f7038 944
112ed241
MA
945##
946# @system_wakeup:
947#
fb064112
DHB
948# Wake up guest from suspend. If the guest has wake-up from suspend
949# support enabled (wakeup-suspend-support flag from
950# query-current-machine), wake-up guest from suspend if the guest is
951# in SUSPENDED state. Return an error otherwise.
112ed241
MA
952#
953# Since: 1.1
954#
955# Returns: nothing.
956#
fb064112
DHB
957# Note: prior to 4.0, this command does nothing in case the guest
958# isn't suspended.
959#
112ed241
MA
960# Example:
961#
962# -> { "execute": "system_wakeup" }
963# <- { "return": {} }
964#
965##
966{ 'command': 'system_wakeup' }
967
968##
969# @inject-nmi:
970#
971# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
972# The command fails when the guest doesn't support injecting.
973#
974# Returns: If successful, nothing
975#
976# Since: 0.14.0
977#
978# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
979#
980# Example:
981#
982# -> { "execute": "inject-nmi" }
983# <- { "return": {} }
984#
985##
986{ 'command': 'inject-nmi' }
987
988##
989# @balloon:
990#
991# Request the balloon driver to change its balloon size.
992#
993# @value: the target size of the balloon in bytes
994#
995# Returns: Nothing on success
996# If the balloon driver is enabled but not functional because the KVM
997# kernel module cannot support it, KvmMissingCap
998# If no balloon device is present, DeviceNotActive
999#
1000# Notes: This command just issues a request to the guest. When it returns,
1001# the balloon size may not have changed. A guest can change the balloon
1002# size independent of this command.
1003#
1004# Since: 0.14.0
1005#
1006# Example:
1007#
1008# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1009# <- { "return": {} }
1010#
1011##
1012{ 'command': 'balloon', 'data': {'value': 'int'} }
1013
1014##
1015# @human-monitor-command:
1016#
1017# Execute a command on the human monitor and return the output.
1018#
1019# @command-line: the command to execute in the human monitor
1020#
1021# @cpu-index: The CPU to use for commands that require an implicit CPU
1022#
1023# Returns: the output of the command as a string
1024#
1025# Since: 0.14.0
1026#
1027# Notes: This command only exists as a stop-gap. Its use is highly
1028# discouraged. The semantics of this command are not
1029# guaranteed: this means that command names, arguments and
1030# responses can change or be removed at ANY time. Applications
1031# that rely on long term stability guarantees should NOT
1032# use this command.
1033#
1034# Known limitations:
1035#
1036# * This command is stateless, this means that commands that depend
1037# on state information (such as getfd) might not work
1038#
1039# * Commands that prompt the user for data don't currently work
1040#
1041# Example:
1042#
1043# -> { "execute": "human-monitor-command",
1044# "arguments": { "command-line": "info kvm" } }
1045# <- { "return": "kvm support: enabled\r\n" }
1046#
1047##
1048{ 'command': 'human-monitor-command',
1049 'data': {'command-line': 'str', '*cpu-index': 'int'},
1050 'returns': 'str' }
1051
112ed241
MA
1052##
1053# @change:
1054#
1055# This command is multiple commands multiplexed together.
1056#
1057# @device: This is normally the name of a block device but it may also be 'vnc'.
1058# when it's 'vnc', then sub command depends on @target
1059#
1060# @target: If @device is a block device, then this is the new filename.
1061# If @device is 'vnc', then if the value 'password' selects the vnc
1062# change password command. Otherwise, this specifies a new server URI
1063# address to listen to for VNC connections.
1064#
1065# @arg: If @device is a block device, then this is an optional format to open
1066# the device with.
1067# If @device is 'vnc' and @target is 'password', this is the new VNC
1068# password to set. See change-vnc-password for additional notes.
1069#
1070# Returns: Nothing on success.
1071# If @device is not a valid block device, DeviceNotFound
1072#
1073# Notes: This interface is deprecated, and it is strongly recommended that you
1074# avoid using it. For changing block devices, use
1075# blockdev-change-medium; for changing VNC parameters, use
1076# change-vnc-password.
1077#
1078# Since: 0.14.0
1079#
1080# Example:
1081#
1082# 1. Change a removable medium
1083#
1084# -> { "execute": "change",
1085# "arguments": { "device": "ide1-cd0",
1086# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1087# <- { "return": {} }
1088#
1089# 2. Change VNC password
1090#
1091# -> { "execute": "change",
1092# "arguments": { "device": "vnc", "target": "password",
1093# "arg": "foobar1" } }
1094# <- { "return": {} }
1095#
1096##
1097{ 'command': 'change',
1098 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1099
112ed241
MA
1100##
1101# @xen-set-global-dirty-log:
1102#
1103# Enable or disable the global dirty log mode.
1104#
1105# @enable: true to enable, false to disable.
1106#
1107# Returns: nothing
1108#
1109# Since: 1.3
1110#
1111# Example:
1112#
1113# -> { "execute": "xen-set-global-dirty-log",
1114# "arguments": { "enable": true } }
1115# <- { "return": {} }
1116#
1117##
1118{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1119
112ed241
MA
1120##
1121# @DumpGuestMemoryFormat:
1122#
1123# An enumeration of guest-memory-dump's format.
1124#
1125# @elf: elf format
1126#
1127# @kdump-zlib: kdump-compressed format with zlib-compressed
1128#
1129# @kdump-lzo: kdump-compressed format with lzo-compressed
1130#
1131# @kdump-snappy: kdump-compressed format with snappy-compressed
1132#
2da91b54
VP
1133# @win-dmp: Windows full crashdump format,
1134# can be used instead of ELF converting (since 2.13)
1135#
112ed241
MA
1136# Since: 2.0
1137##
1138{ 'enum': 'DumpGuestMemoryFormat',
2da91b54 1139 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
112ed241
MA
1140
1141##
1142# @dump-guest-memory:
1143#
1144# Dump guest's memory to vmcore. It is a synchronous operation that can take
1145# very long depending on the amount of guest memory.
1146#
1147# @paging: if true, do paging to get guest's memory mapping. This allows
1148# using gdb to process the core file.
1149#
1150# IMPORTANT: this option can make QEMU allocate several gigabytes
1151# of RAM. This can happen for a large guest, or a
1152# malicious guest pretending to be large.
1153#
1154# Also, paging=true has the following limitations:
1155#
1156# 1. The guest may be in a catastrophic state or can have corrupted
1157# memory, which cannot be trusted
1158# 2. The guest can be in real-mode even if paging is enabled. For
1159# example, the guest uses ACPI to sleep, and ACPI sleep state
1160# goes in real-mode
1161# 3. Currently only supported on i386 and x86_64.
1162#
1163# @protocol: the filename or file descriptor of the vmcore. The supported
1164# protocols are:
1165#
1166# 1. file: the protocol starts with "file:", and the following
1167# string is the file's path.
1168# 2. fd: the protocol starts with "fd:", and the following string
1169# is the fd's name.
1170#
1171# @detach: if true, QMP will return immediately rather than
1172# waiting for the dump to finish. The user can track progress
1173# using "query-dump". (since 2.6).
1174#
1175# @begin: if specified, the starting physical address.
1176#
1177# @length: if specified, the memory size, in bytes. If you don't
1178# want to dump all guest's memory, please specify the start @begin
1179# and @length
1180#
1181# @format: if specified, the format of guest memory dump. But non-elf
1182# format is conflict with paging and filter, ie. @paging, @begin and
1183# @length is not allowed to be specified with non-elf @format at the
1184# same time (since 2.0)
1185#
1186# Note: All boolean arguments default to false
1187#
1188# Returns: nothing on success
1189#
1190# Since: 1.2
1191#
1192# Example:
1193#
1194# -> { "execute": "dump-guest-memory",
1195# "arguments": { "protocol": "fd:dump" } }
1196# <- { "return": {} }
1197#
1198##
1199{ 'command': 'dump-guest-memory',
1200 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1201 '*begin': 'int', '*length': 'int',
1202 '*format': 'DumpGuestMemoryFormat'} }
1203
1204##
1205# @DumpStatus:
1206#
1207# Describe the status of a long-running background guest memory dump.
1208#
1209# @none: no dump-guest-memory has started yet.
1210#
1211# @active: there is one dump running in background.
1212#
1213# @completed: the last dump has finished successfully.
1214#
1215# @failed: the last dump has failed.
1216#
1217# Since: 2.6
1218##
1219{ 'enum': 'DumpStatus',
1220 'data': [ 'none', 'active', 'completed', 'failed' ] }
1221
1222##
1223# @DumpQueryResult:
1224#
1225# The result format for 'query-dump'.
1226#
1227# @status: enum of @DumpStatus, which shows current dump status
1228#
1229# @completed: bytes written in latest dump (uncompressed)
1230#
1231# @total: total bytes to be written in latest dump (uncompressed)
1232#
1233# Since: 2.6
1234##
1235{ 'struct': 'DumpQueryResult',
1236 'data': { 'status': 'DumpStatus',
1237 'completed': 'int',
1238 'total': 'int' } }
1239
1240##
1241# @query-dump:
1242#
1243# Query latest dump status.
1244#
1245# Returns: A @DumpStatus object showing the dump status.
1246#
1247# Since: 2.6
1248#
1249# Example:
1250#
1251# -> { "execute": "query-dump" }
1252# <- { "return": { "status": "active", "completed": 1024000,
1253# "total": 2048000 } }
1254#
1255##
1256{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1257
1258##
1259# @DUMP_COMPLETED:
1260#
1261# Emitted when background dump has completed
1262#
eb815e24 1263# @result: final dump status
112ed241
MA
1264#
1265# @error: human-readable error string that provides
1266# hint on why dump failed. Only presents on failure. The
1267# user should not try to interpret the error string.
1268#
1269# Since: 2.6
1270#
1271# Example:
1272#
1273# { "event": "DUMP_COMPLETED",
1274# "data": {"result": {"total": 1090650112, "status": "completed",
1275# "completed": 1090650112} } }
1276#
1277##
1278{ 'event': 'DUMP_COMPLETED' ,
1279 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1280
1281##
1282# @DumpGuestMemoryCapability:
1283#
1284# A list of the available formats for dump-guest-memory
1285#
1286# Since: 2.0
1287##
1288{ 'struct': 'DumpGuestMemoryCapability',
1289 'data': {
1290 'formats': ['DumpGuestMemoryFormat'] } }
1291
1292##
1293# @query-dump-guest-memory-capability:
1294#
1295# Returns the available formats for dump-guest-memory
1296#
1297# Returns: A @DumpGuestMemoryCapability object listing available formats for
1298# dump-guest-memory
1299#
1300# Since: 2.0
1301#
1302# Example:
1303#
1304# -> { "execute": "query-dump-guest-memory-capability" }
1305# <- { "return": { "formats":
1306# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1307#
1308##
1309{ 'command': 'query-dump-guest-memory-capability',
1310 'returns': 'DumpGuestMemoryCapability' }
1311
112ed241
MA
1312##
1313# @getfd:
1314#
1315# Receive a file descriptor via SCM rights and assign it a name
1316#
1317# @fdname: file descriptor name
1318#
1319# Returns: Nothing on success
1320#
1321# Since: 0.14.0
1322#
1323# Notes: If @fdname already exists, the file descriptor assigned to
1324# it will be closed and replaced by the received file
1325# descriptor.
1326#
1327# The 'closefd' command can be used to explicitly close the
1328# file descriptor when it is no longer needed.
1329#
1330# Example:
1331#
1332# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1333# <- { "return": {} }
1334#
1335##
1336{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1337
1338##
1339# @closefd:
1340#
1341# Close a file descriptor previously passed via SCM rights
1342#
1343# @fdname: file descriptor name
1344#
1345# Returns: Nothing on success
1346#
1347# Since: 0.14.0
1348#
1349# Example:
1350#
1351# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1352# <- { "return": {} }
1353#
1354##
1355{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1356
112ed241
MA
1357##
1358# @MemoryInfo:
1359#
1360# Actual memory information in bytes.
1361#
1362# @base-memory: size of "base" memory specified with command line
1363# option -m.
1364#
1365# @plugged-memory: size of memory that can be hot-unplugged. This field
1366# is omitted if target doesn't support memory hotplug
15cea5ae 1367# (i.e. CONFIG_MEM_DEVICE not defined at build time).
112ed241
MA
1368#
1369# Since: 2.11.0
1370##
1371{ 'struct': 'MemoryInfo',
1372 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1373
1374##
1375# @query-memory-size-summary:
1376#
1377# Return the amount of initially allocated and present hotpluggable (if
1378# enabled) memory in bytes.
1379#
1380# Example:
1381#
1382# -> { "execute": "query-memory-size-summary" }
1383# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1384#
1385# Since: 2.11.0
1386##
1387{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1388
112ed241 1389
112ed241
MA
1390##
1391# @AddfdInfo:
1392#
1393# Information about a file descriptor that was added to an fd set.
1394#
1395# @fdset-id: The ID of the fd set that @fd was added to.
1396#
1397# @fd: The file descriptor that was received via SCM rights and
1398# added to the fd set.
1399#
1400# Since: 1.2.0
1401##
1402{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
1403
1404##
1405# @add-fd:
1406#
1407# Add a file descriptor, that was passed via SCM rights, to an fd set.
1408#
1409# @fdset-id: The ID of the fd set to add the file descriptor to.
1410#
1411# @opaque: A free-form string that can be used to describe the fd.
1412#
1413# Returns: @AddfdInfo on success
1414#
1415# If file descriptor was not received, FdNotSupplied
1416#
1417# If @fdset-id is a negative value, InvalidParameterValue
1418#
1419# Notes: The list of fd sets is shared by all monitor connections.
1420#
1421# If @fdset-id is not specified, a new fd set will be created.
1422#
1423# Since: 1.2.0
1424#
1425# Example:
1426#
1427# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
1428# <- { "return": { "fdset-id": 1, "fd": 3 } }
1429#
1430##
b0ddeba2
MAL
1431{ 'command': 'add-fd',
1432 'data': { '*fdset-id': 'int',
1433 '*opaque': 'str' },
112ed241
MA
1434 'returns': 'AddfdInfo' }
1435
1436##
1437# @remove-fd:
1438#
1439# Remove a file descriptor from an fd set.
1440#
1441# @fdset-id: The ID of the fd set that the file descriptor belongs to.
1442#
1443# @fd: The file descriptor that is to be removed.
1444#
1445# Returns: Nothing on success
1446# If @fdset-id or @fd is not found, FdNotFound
1447#
1448# Since: 1.2.0
1449#
1450# Notes: The list of fd sets is shared by all monitor connections.
1451#
1452# If @fd is not specified, all file descriptors in @fdset-id
1453# will be removed.
1454#
1455# Example:
1456#
1457# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
1458# <- { "return": {} }
1459#
1460##
1461{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
1462
1463##
1464# @FdsetFdInfo:
1465#
1466# Information about a file descriptor that belongs to an fd set.
1467#
1468# @fd: The file descriptor value.
1469#
1470# @opaque: A free-form string that can be used to describe the fd.
1471#
1472# Since: 1.2.0
1473##
1474{ 'struct': 'FdsetFdInfo',
1475 'data': {'fd': 'int', '*opaque': 'str'} }
1476
1477##
1478# @FdsetInfo:
1479#
1480# Information about an fd set.
1481#
1482# @fdset-id: The ID of the fd set.
1483#
1484# @fds: A list of file descriptors that belong to this fd set.
1485#
1486# Since: 1.2.0
1487##
1488{ 'struct': 'FdsetInfo',
1489 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
1490
1491##
1492# @query-fdsets:
1493#
1494# Return information describing all fd sets.
1495#
1496# Returns: A list of @FdsetInfo
1497#
1498# Since: 1.2.0
1499#
1500# Note: The list of fd sets is shared by all monitor connections.
1501#
1502# Example:
1503#
1504# -> { "execute": "query-fdsets" }
1505# <- { "return": [
1506# {
1507# "fds": [
1508# {
1509# "fd": 30,
1510# "opaque": "rdonly:/path/to/file"
1511# },
1512# {
1513# "fd": 24,
1514# "opaque": "rdwr:/path/to/file"
1515# }
1516# ],
1517# "fdset-id": 1
1518# },
1519# {
1520# "fds": [
1521# {
1522# "fd": 28
1523# },
1524# {
1525# "fd": 29
1526# }
1527# ],
1528# "fdset-id": 0
1529# }
1530# ]
1531# }
1532#
1533##
1534{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
1535
1536##
1537# @TargetInfo:
1538#
1539# Information describing the QEMU target.
1540#
b47aa7b3 1541# @arch: the target architecture
112ed241
MA
1542#
1543# Since: 1.2.0
1544##
1545{ 'struct': 'TargetInfo',
b47aa7b3 1546 'data': { 'arch': 'SysEmuTarget' } }
112ed241
MA
1547
1548##
1549# @query-target:
1550#
1551# Return information about the target for this QEMU
1552#
1553# Returns: TargetInfo
1554#
1555# Since: 1.2.0
1556##
1557{ 'command': 'query-target', 'returns': 'TargetInfo' }
1558
1559##
1560# @AcpiTableOptions:
1561#
1562# Specify an ACPI table on the command line to load.
1563#
1564# At most one of @file and @data can be specified. The list of files specified
1565# by any one of them is loaded and concatenated in order. If both are omitted,
1566# @data is implied.
1567#
1568# Other fields / optargs can be used to override fields of the generic ACPI
1569# table header; refer to the ACPI specification 5.0, section 5.2.6 System
1570# Description Table Header. If a header field is not overridden, then the
1571# corresponding value from the concatenated blob is used (in case of @file), or
1572# it is filled in with a hard-coded value (in case of @data).
1573#
1574# String fields are copied into the matching ACPI member from lowest address
1575# upwards, and silently truncated / NUL-padded to length.
1576#
1577# @sig: table signature / identifier (4 bytes)
1578#
1579# @rev: table revision number (dependent on signature, 1 byte)
1580#
1581# @oem_id: OEM identifier (6 bytes)
1582#
1583# @oem_table_id: OEM table identifier (8 bytes)
1584#
1585# @oem_rev: OEM-supplied revision number (4 bytes)
1586#
1587# @asl_compiler_id: identifier of the utility that created the table
1588# (4 bytes)
1589#
1590# @asl_compiler_rev: revision number of the utility that created the
1591# table (4 bytes)
1592#
1593# @file: colon (:) separated list of pathnames to load and
1594# concatenate as table data. The resultant binary blob is expected to
1595# have an ACPI table header. At least one file is required. This field
1596# excludes @data.
1597#
1598# @data: colon (:) separated list of pathnames to load and
1599# concatenate as table data. The resultant binary blob must not have an
1600# ACPI table header. At least one file is required. This field excludes
1601# @file.
1602#
1603# Since: 1.5
1604##
1605{ 'struct': 'AcpiTableOptions',
1606 'data': {
1607 '*sig': 'str',
1608 '*rev': 'uint8',
1609 '*oem_id': 'str',
1610 '*oem_table_id': 'str',
1611 '*oem_rev': 'uint32',
1612 '*asl_compiler_id': 'str',
1613 '*asl_compiler_rev': 'uint32',
1614 '*file': 'str',
1615 '*data': 'str' }}
1616
1617##
1618# @CommandLineParameterType:
1619#
1620# Possible types for an option parameter.
1621#
1622# @string: accepts a character string
1623#
1624# @boolean: accepts "on" or "off"
1625#
1626# @number: accepts a number
1627#
1628# @size: accepts a number followed by an optional suffix (K)ilo,
1629# (M)ega, (G)iga, (T)era
1630#
1631# Since: 1.5
1632##
1633{ 'enum': 'CommandLineParameterType',
1634 'data': ['string', 'boolean', 'number', 'size'] }
1635
1636##
1637# @CommandLineParameterInfo:
1638#
1639# Details about a single parameter of a command line option.
1640#
1641# @name: parameter name
1642#
1643# @type: parameter @CommandLineParameterType
1644#
1645# @help: human readable text string, not suitable for parsing.
1646#
1647# @default: default value string (since 2.1)
1648#
1649# Since: 1.5
1650##
1651{ 'struct': 'CommandLineParameterInfo',
1652 'data': { 'name': 'str',
1653 'type': 'CommandLineParameterType',
1654 '*help': 'str',
1655 '*default': 'str' } }
1656
1657##
1658# @CommandLineOptionInfo:
1659#
1660# Details about a command line option, including its list of parameter details
1661#
1662# @option: option name
1663#
1664# @parameters: an array of @CommandLineParameterInfo
1665#
1666# Since: 1.5
1667##
1668{ 'struct': 'CommandLineOptionInfo',
1669 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
1670
1671##
1672# @query-command-line-options:
1673#
1674# Query command line option schema.
1675#
1676# @option: option name
1677#
1678# Returns: list of @CommandLineOptionInfo for all options (or for the given
1679# @option). Returns an error if the given @option doesn't exist.
1680#
1681# Since: 1.5
1682#
1683# Example:
1684#
1685# -> { "execute": "query-command-line-options",
1686# "arguments": { "option": "option-rom" } }
1687# <- { "return": [
1688# {
1689# "parameters": [
1690# {
1691# "name": "romfile",
1692# "type": "string"
1693# },
1694# {
1695# "name": "bootindex",
1696# "type": "number"
1697# }
1698# ],
1699# "option": "option-rom"
1700# }
1701# ]
1702# }
1703#
1704##
b0ddeba2
MAL
1705{'command': 'query-command-line-options',
1706 'data': { '*option': 'str' },
d6fe3d02
IM
1707 'returns': ['CommandLineOptionInfo'],
1708 'allow-preconfig': true }
112ed241 1709
112ed241
MA
1710##
1711# @PCDIMMDeviceInfo:
1712#
1713# PCDIMMDevice state information
1714#
1715# @id: device's ID
1716#
1717# @addr: physical address, where device is mapped
1718#
1719# @size: size of memory that the device provides
1720#
1721# @slot: slot number at which device is plugged in
1722#
1723# @node: NUMA node number where device is plugged in
1724#
1725# @memdev: memory backend linked with device
1726#
1727# @hotplugged: true if device was hotplugged
1728#
1729# @hotpluggable: true if device if could be added/removed while machine is running
1730#
1731# Since: 2.1
1732##
1733{ 'struct': 'PCDIMMDeviceInfo',
1734 'data': { '*id': 'str',
1735 'addr': 'int',
1736 'size': 'int',
1737 'slot': 'int',
1738 'node': 'int',
1739 'memdev': 'str',
1740 'hotplugged': 'bool',
1741 'hotpluggable': 'bool'
1742 }
1743}
1744
1745##
1746# @MemoryDeviceInfo:
1747#
1748# Union containing information about a memory device
1749#
1750# Since: 2.1
1751##
6388e18d
HZ
1752{ 'union': 'MemoryDeviceInfo',
1753 'data': { 'dimm': 'PCDIMMDeviceInfo',
1754 'nvdimm': 'PCDIMMDeviceInfo'
1755 }
1756}
112ed241
MA
1757
1758##
1759# @query-memory-devices:
1760#
1761# Lists available memory devices and their state
1762#
1763# Since: 2.1
1764#
1765# Example:
1766#
1767# -> { "execute": "query-memory-devices" }
1768# <- { "return": [ { "data":
1769# { "addr": 5368709120,
1770# "hotpluggable": true,
1771# "hotplugged": true,
1772# "id": "d1",
1773# "memdev": "/objects/memX",
1774# "node": 0,
1775# "size": 1073741824,
1776# "slot": 0},
1777# "type": "dimm"
1778# } ] }
1779#
1780##
1781{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1782
1783##
1784# @MEM_UNPLUG_ERROR:
1785#
1786# Emitted when memory hot unplug error occurs.
1787#
1788# @device: device name
1789#
1790# @msg: Informative message
1791#
1792# Since: 2.4
1793#
1794# Example:
1795#
1796# <- { "event": "MEM_UNPLUG_ERROR"
1797# "data": { "device": "dimm1",
1798# "msg": "acpi: device unplug for unsupported device"
1799# },
1800# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1801#
1802##
1803{ 'event': 'MEM_UNPLUG_ERROR',
1804 'data': { 'device': 'str', 'msg': 'str' } }
1805
1806##
1807# @ACPISlotType:
1808#
1809# @DIMM: memory slot
1810# @CPU: logical CPU slot (since 2.7)
1811##
1812{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
1813
1814##
1815# @ACPIOSTInfo:
1816#
1817# OSPM Status Indication for a device
1818# For description of possible values of @source and @status fields
1819# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
1820#
1821# @device: device ID associated with slot
1822#
1823# @slot: slot ID, unique per slot of a given @slot-type
1824#
1825# @slot-type: type of the slot
1826#
1827# @source: an integer containing the source event
1828#
1829# @status: an integer containing the status code
1830#
1831# Since: 2.1
1832##
1833{ 'struct': 'ACPIOSTInfo',
1834 'data' : { '*device': 'str',
1835 'slot': 'str',
1836 'slot-type': 'ACPISlotType',
1837 'source': 'int',
1838 'status': 'int' } }
1839
1840##
1841# @query-acpi-ospm-status:
1842#
1843# Return a list of ACPIOSTInfo for devices that support status
1844# reporting via ACPI _OST method.
1845#
1846# Since: 2.1
1847#
1848# Example:
1849#
1850# -> { "execute": "query-acpi-ospm-status" }
1851# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
1852# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
1853# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
1854# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
1855# ]}
1856#
1857##
1858{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
1859
1860##
1861# @ACPI_DEVICE_OST:
1862#
1863# Emitted when guest executes ACPI _OST method.
1864#
eb815e24 1865# @info: OSPM Status Indication
112ed241
MA
1866#
1867# Since: 2.1
1868#
1869# Example:
1870#
1871# <- { "event": "ACPI_DEVICE_OST",
1872# "data": { "device": "d1", "slot": "0",
1873# "slot-type": "DIMM", "source": 1, "status": 0 } }
1874#
1875##
1876{ 'event': 'ACPI_DEVICE_OST',
1877 'data': { 'info': 'ACPIOSTInfo' } }
1878
112ed241
MA
1879##
1880# @ReplayMode:
1881#
1882# Mode of the replay subsystem.
1883#
1884# @none: normal execution mode. Replay or record are not enabled.
1885#
1886# @record: record mode. All non-deterministic data is written into the
1887# replay log.
1888#
1889# @play: replay mode. Non-deterministic data required for system execution
1890# is read from the log.
1891#
1892# Since: 2.5
1893##
1894{ 'enum': 'ReplayMode',
1895 'data': [ 'none', 'record', 'play' ] }
1896
1897##
1898# @xen-load-devices-state:
1899#
1900# Load the state of all devices from file. The RAM and the block devices
1901# of the VM are not loaded by this command.
1902#
1903# @filename: the file to load the state of the devices from as binary
1904# data. See xen-save-devices-state.txt for a description of the binary
1905# format.
1906#
1907# Since: 2.7
1908#
1909# Example:
1910#
1911# -> { "execute": "xen-load-devices-state",
1912# "arguments": { "filename": "/tmp/resume" } }
1913# <- { "return": {} }
1914#
1915##
1916{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1917
112ed241
MA
1918##
1919# @GuidInfo:
1920#
1921# GUID information.
1922#
1923# @guid: the globally unique identifier
1924#
1925# Since: 2.9
1926##
1927{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
1928
1929##
1930# @query-vm-generation-id:
1931#
1932# Show Virtual Machine Generation ID
1933#
1934# Since: 2.9
1935##
1936{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
08a161fd 1937