]> git.proxmox.com Git - mirror_qemu.git/blame - qapi/misc.json
tests/check-qjson: fix a leak
[mirror_qemu.git] / qapi / misc.json
CommitLineData
112ed241
MA
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
b47aa7b3
LE
8{ 'include': 'common.json' }
9
112ed241
MA
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
02130314
PX
15# Arguments:
16#
17# @enable: An optional list of QMPCapability values to enable. The
18# client must not enable any capability that is not
19# mentioned in the QMP greeting message. If the field is not
20# provided, it means no QMP capabilities will be enabled.
21# (since 2.12)
112ed241
MA
22#
23# Example:
24#
02130314
PX
25# -> { "execute": "qmp_capabilities",
26# "arguments": { "enable": [ "oob" ] } }
112ed241
MA
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
02130314
PX
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
112ed241
MA
36# Since: 0.13
37#
38##
02130314 39{ 'command': 'qmp_capabilities',
d6fe3d02
IM
40 'data': { '*enable': [ 'QMPCapability' ] },
41 'allow-preconfig': true }
02130314
PX
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
c0698212 49# @oob: QMP ability to support out-of-band requests.
02130314
PX
50# (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56 'data': [ 'oob' ] }
112ed241
MA
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major: The major version number.
64#
65# @minor: The minor version number.
66#
67# @micro: The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu: The version of QEMU. By current convention, a micro
81# version of 50 signifies a development branch. A micro version
82# greater than or equal to 90 signifies a release candidate for
83# the next minor version. A micro version of less than 50
84# signifies a stable release.
85#
86# @package: QEMU will always set this field to an empty string. Downstream
87# versions of QEMU should set this to a non-empty string. The
88# exact format depends on the downstream however it highly
89# recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns: A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109# "return":{
110# "qemu":{
111# "major":0,
112# "minor":11,
113# "micro":5
114# },
115# "package":""
116# }
117# }
118#
119##
a87706c8
IM
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121 'allow-preconfig': true }
112ed241
MA
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147# "return":[
148# {
149# "name":"query-balloon"
150# },
151# {
152# "name":"system_powerdown"
153# }
154# ]
155# }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
d6fe3d02
IM
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161 'allow-preconfig': true }
112ed241
MA
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169# normally. Guest time may be delayed, unless the OS has explicit
170# handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate. Guest time will be
173# delayed due to the late tick
174#
175# @merge: merge the missed tick(s) into one tick and inject. Guest time
176# may be delayed, depending on how the OS reacts to the merging
177# of ticks
178#
179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180# guest time should not be delayed once catchup is complete.
181#
182# Since: 2.0
183##
184{ 'enum': 'LostTickPolicy',
185 'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187##
188# @add_client:
189#
190# Allow client connections for VNC, Spice and socket based
191# character devices to be passed in to QEMU via SCM_RIGHTS.
192#
193# @protocol: protocol name. Valid names are "vnc", "spice" or the
194# name of a character device (eg. from -chardev id=XXXX)
195#
196# @fdname: file descriptor name previously passed via 'getfd' command
197#
198# @skipauth: whether to skip authentication. Only applies
199# to "vnc" and "spice" protocols
200#
201# @tls: whether to perform TLS. Only applies to the "spice"
202# protocol
203#
204# Returns: nothing on success.
205#
206# Since: 0.14.0
207#
208# Example:
209#
210# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211# "fdname": "myclient" } }
212# <- { "return": {} }
213#
214##
215{ 'command': 'add_client',
216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217 '*tls': 'bool' } }
218
219##
220# @NameInfo:
221#
222# Guest name information.
223#
224# @name: The name of the guest
225#
226# Since: 0.14.0
227##
228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230##
231# @query-name:
232#
233# Return the name information of a guest.
234#
235# Returns: @NameInfo of the guest
236#
237# Since: 0.14.0
238#
239# Example:
240#
241# -> { "execute": "query-name" }
242# <- { "return": { "name": "qemu-name" } }
243#
244##
a87706c8 245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
112ed241
MA
246
247##
248# @KvmInfo:
249#
250# Information about support for KVM acceleration
251#
252# @enabled: true if KVM acceleration is active
253#
254# @present: true if KVM acceleration is built into this executable
255#
256# Since: 0.14.0
257##
258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260##
261# @query-kvm:
262#
263# Returns information about KVM acceleration
264#
265# Returns: @KvmInfo
266#
267# Since: 0.14.0
268#
269# Example:
270#
271# -> { "execute": "query-kvm" }
272# <- { "return": { "enabled": true, "present": true } }
273#
274##
275{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277##
278# @UuidInfo:
279#
280# Guest UUID information (Universally Unique Identifier).
281#
282# @UUID: the UUID of the guest
283#
284# Since: 0.14.0
285#
286# Notes: If no UUID was specified for the guest, a null UUID is returned.
287##
288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290##
291# @query-uuid:
292#
293# Query the guest UUID information.
294#
295# Returns: The @UuidInfo for the guest
296#
297# Since: 0.14.0
298#
299# Example:
300#
301# -> { "execute": "query-uuid" }
302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303#
304##
a87706c8 305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
112ed241
MA
306
307##
308# @EventInfo:
309#
310# Information about a QMP event
311#
312# @name: The event name
313#
314# Since: 1.2.0
315##
316{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318##
319# @query-events:
320#
321# Return a list of supported QMP events by this server
322#
323# Returns: A list of @EventInfo for all supported events
324#
325# Since: 1.2.0
326#
327# Example:
328#
329# -> { "execute": "query-events" }
330# <- {
331# "return": [
332# {
333# "name":"SHUTDOWN"
334# },
335# {
336# "name":"RESET"
337# }
338# ]
339# }
340#
341# Note: This example has been shortened as the real response is too long.
342#
343##
344{ 'command': 'query-events', 'returns': ['EventInfo'] }
345
346##
347# @CpuInfoArch:
348#
349# An enumeration of cpu types that enable additional information during
350# @query-cpus and @query-cpus-fast.
351#
352# @s390: since 2.12
353#
25fa194b
MC
354# @riscv: since 2.12
355#
112ed241
MA
356# Since: 2.6
357##
358{ 'enum': 'CpuInfoArch',
25fa194b 359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
112ed241
MA
360
361##
362# @CpuInfo:
363#
364# Information about a virtual CPU
365#
366# @CPU: the index of the virtual CPU
367#
368# @current: this only exists for backwards compatibility and should be ignored
369#
370# @halted: true if the virtual CPU is in the halt state. Halt usually refers
371# to a processor specific low power mode.
372#
373# @qom_path: path to the CPU object in the QOM tree (since 2.4)
374#
375# @thread_id: ID of the underlying host thread
376#
377# @props: properties describing to which node/socket/core/thread
378# virtual CPU belongs to, provided if supported by board (since 2.10)
379#
380# @arch: architecture of the cpu, which determines which additional fields
381# will be listed (since 2.6)
382#
383# Since: 0.14.0
384#
385# Notes: @halted is a transient state that changes frequently. By the time the
386# data is sent to the client, the guest may no longer be halted.
387##
388{ 'union': 'CpuInfo',
389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390 'qom_path': 'str', 'thread_id': 'int',
391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392 'discriminator': 'arch',
393 'data': { 'x86': 'CpuInfoX86',
394 'sparc': 'CpuInfoSPARC',
395 'ppc': 'CpuInfoPPC',
396 'mips': 'CpuInfoMIPS',
397 'tricore': 'CpuInfoTricore',
398 's390': 'CpuInfoS390',
29cd0403 399 'riscv': 'CpuInfoRISCV' } }
112ed241
MA
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
25fa194b
MC
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
112ed241
MA
469##
470# @CpuS390State:
471#
472# An enumeration of cpu states that can be assumed by a virtual
473# S390 CPU
474#
475# Since: 2.12
476##
477{ 'enum': 'CpuS390State',
478 'prefix': 'S390_CPU_STATE',
479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481##
482# @CpuInfoS390:
483#
484# Additional information about a virtual S390 CPU
485#
486# @cpu-state: the virtual CPU's state
487#
488# Since: 2.12
489##
490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492##
493# @query-cpus:
494#
495# Returns a list of information about each virtual CPU.
496#
497# This command causes vCPU threads to exit to userspace, which causes
498# a small interruption to guest CPU execution. This will have a negative
499# impact on realtime guests and other latency sensitive guest workloads.
500# It is recommended to use @query-cpus-fast instead of this command to
501# avoid the vCPU interruption.
502#
503# Returns: a list of @CpuInfo for each virtual CPU
504#
505# Since: 0.14.0
506#
507# Example:
508#
509# -> { "execute": "query-cpus" }
510# <- { "return": [
511# {
512# "CPU":0,
513# "current":true,
514# "halted":false,
515# "qom_path":"/machine/unattached/device[0]",
516# "arch":"x86",
517# "pc":3227107138,
518# "thread_id":3134
519# },
520# {
521# "CPU":1,
522# "current":false,
523# "halted":true,
524# "qom_path":"/machine/unattached/device[2]",
525# "arch":"x86",
526# "pc":7108165,
527# "thread_id":3135
528# }
529# ]
530# }
531#
532# Notes: This interface is deprecated (since 2.12.0), and it is strongly
533# recommended that you avoid using it. Use @query-cpus-fast to
534# obtain information about virtual CPUs.
535#
536##
537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539##
540# @CpuInfoFast:
541#
542# Information about a virtual CPU
543#
544# @cpu-index: index of the virtual CPU
545#
546# @qom-path: path to the CPU object in the QOM tree
547#
548# @thread-id: ID of the underlying host thread
549#
550# @props: properties describing to which node/socket/core/thread
551# virtual CPU belongs to, provided if supported by board
552#
51f63ec7 553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
6ffa3ab4 554# of @target
daa9d2bc 555#
6ffa3ab4 556# @target: the QEMU system emulation target, which determines which
51f63ec7 557# additional fields will be listed (since 3.0)
112ed241
MA
558#
559# Since: 2.12
560#
561##
daa9d2bc
LE
562{ 'union' : 'CpuInfoFast',
563 'base' : { 'cpu-index' : 'int',
564 'qom-path' : 'str',
565 'thread-id' : 'int',
566 '*props' : 'CpuInstanceProperties',
567 'arch' : 'CpuInfoArch',
568 'target' : 'SysEmuTarget' },
569 'discriminator' : 'target',
29cd0403 570 'data' : { 's390x' : 'CpuInfoS390' } }
112ed241
MA
571
572##
573# @query-cpus-fast:
574#
575# Returns information about all virtual CPUs. This command does not
576# incur a performance penalty and should be used in production
577# instead of query-cpus.
578#
579# Returns: list of @CpuInfoFast
580#
581# Since: 2.12
582#
583# Example:
584#
585# -> { "execute": "query-cpus-fast" }
586# <- { "return": [
587# {
588# "thread-id": 25627,
589# "props": {
590# "core-id": 0,
591# "thread-id": 0,
592# "socket-id": 0
593# },
594# "qom-path": "/machine/unattached/device[0]",
595# "arch":"x86",
daa9d2bc 596# "target":"x86_64",
112ed241
MA
597# "cpu-index": 0
598# },
599# {
600# "thread-id": 25628,
601# "props": {
602# "core-id": 0,
603# "thread-id": 0,
604# "socket-id": 1
605# },
606# "qom-path": "/machine/unattached/device[2]",
607# "arch":"x86",
daa9d2bc 608# "target":"x86_64",
112ed241
MA
609# "cpu-index": 1
610# }
611# ]
612# }
613##
614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616##
617# @IOThreadInfo:
618#
619# Information about an iothread
620#
621# @id: the identifier of the iothread
622#
623# @thread-id: ID of the underlying host thread
624#
625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626# (since 2.9)
627#
628# @poll-grow: how many ns will be added to polling time, 0 means that it's not
629# configured (since 2.9)
630#
631# @poll-shrink: how many ns will be removed from polling time, 0 means that
632# it's not configured (since 2.9)
633#
634# Since: 2.0
635##
636{ 'struct': 'IOThreadInfo',
637 'data': {'id': 'str',
638 'thread-id': 'int',
639 'poll-max-ns': 'int',
640 'poll-grow': 'int',
641 'poll-shrink': 'int' } }
642
643##
644# @query-iothreads:
645#
646# Returns a list of information about each iothread.
647#
648# Note: this list excludes the QEMU main loop thread, which is not declared
649# using the -object iothread command-line option. It is always the main thread
650# of the process.
651#
652# Returns: a list of @IOThreadInfo for each iothread
653#
654# Since: 2.0
655#
656# Example:
657#
658# -> { "execute": "query-iothreads" }
659# <- { "return": [
660# {
661# "id":"iothread0",
662# "thread-id":3134
663# },
664# {
665# "id":"iothread1",
666# "thread-id":3135
667# }
668# ]
669# }
670#
671##
a87706c8
IM
672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673 'allow-preconfig': true }
112ed241
MA
674
675##
676# @BalloonInfo:
677#
678# Information about the guest balloon device.
679#
680# @actual: the number of bytes the balloon currently contains
681#
682# Since: 0.14.0
683#
684##
685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687##
688# @query-balloon:
689#
690# Return information about the balloon device.
691#
692# Returns: @BalloonInfo on success
693#
694# If the balloon driver is enabled but not functional because the KVM
695# kernel module cannot support it, KvmMissingCap
696#
697# If no balloon device is present, DeviceNotActive
698#
699# Since: 0.14.0
700#
701# Example:
702#
703# -> { "execute": "query-balloon" }
704# <- { "return": {
705# "actual": 1073741824,
706# }
707# }
708#
709##
710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712##
713# @BALLOON_CHANGE:
714#
715# Emitted when the guest changes the actual BALLOON level. This value is
716# equivalent to the @actual field return by the 'query-balloon' command
717#
718# @actual: actual level of the guest memory balloon in bytes
719#
720# Note: this event is rate-limited.
721#
722# Since: 1.2
723#
724# Example:
725#
726# <- { "event": "BALLOON_CHANGE",
727# "data": { "actual": 944766976 },
728# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729#
730##
731{ 'event': 'BALLOON_CHANGE',
732 'data': { 'actual': 'int' } }
733
734##
735# @PciMemoryRange:
736#
737# A PCI device memory region
738#
739# @base: the starting address (guest physical)
740#
741# @limit: the ending address (guest physical)
742#
743# Since: 0.14.0
744##
745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747##
748# @PciMemoryRegion:
749#
750# Information about a PCI device I/O region.
751#
752# @bar: the index of the Base Address Register for this region
753#
754# @type: 'io' if the region is a PIO region
755# 'memory' if the region is a MMIO region
756#
757# @size: memory size
758#
759# @prefetch: if @type is 'memory', true if the memory is prefetchable
760#
761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762#
763# Since: 0.14.0
764##
765{ 'struct': 'PciMemoryRegion',
766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769##
770# @PciBusInfo:
771#
772# Information about a bus of a PCI Bridge device
773#
774# @number: primary bus interface number. This should be the number of the
775# bus the device resides on.
776#
777# @secondary: secondary bus interface number. This is the number of the
778# main bus for the bridge
779#
780# @subordinate: This is the highest number bus that resides below the
781# bridge.
782#
783# @io_range: The PIO range for all devices on this bridge
784#
785# @memory_range: The MMIO range for all devices on this bridge
786#
787# @prefetchable_range: The range of prefetchable MMIO for all devices on
788# this bridge
789#
790# Since: 2.4
791##
792{ 'struct': 'PciBusInfo',
793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794 'io_range': 'PciMemoryRange',
795 'memory_range': 'PciMemoryRange',
796 'prefetchable_range': 'PciMemoryRange' } }
797
798##
799# @PciBridgeInfo:
800#
801# Information about a PCI Bridge device
802#
803# @bus: information about the bus the device resides on
804#
805# @devices: a list of @PciDeviceInfo for each device on this bridge
806#
807# Since: 0.14.0
808##
809{ 'struct': 'PciBridgeInfo',
810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812##
813# @PciDeviceClass:
814#
815# Information about the Class of a PCI device
816#
817# @desc: a string description of the device's class
818#
819# @class: the class code of the device
820#
821# Since: 2.4
822##
823{ 'struct': 'PciDeviceClass',
824 'data': {'*desc': 'str', 'class': 'int'} }
825
826##
827# @PciDeviceId:
828#
829# Information about the Id of a PCI device
830#
831# @device: the PCI device id
832#
833# @vendor: the PCI vendor id
834#
5383a705
DL
835# @subsystem: the PCI subsystem id (since 3.1)
836#
837# @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
838#
112ed241
MA
839# Since: 2.4
840##
841{ 'struct': 'PciDeviceId',
5383a705
DL
842 'data': {'device': 'int', 'vendor': 'int', 'subsystem': 'int',
843 'subsystem-vendor': 'int'} }
112ed241
MA
844
845##
846# @PciDeviceInfo:
847#
848# Information about a PCI device
849#
850# @bus: the bus number of the device
851#
852# @slot: the slot the device is located in
853#
854# @function: the function of the slot used by the device
855#
856# @class_info: the class of the device
857#
858# @id: the PCI device id
859#
860# @irq: if an IRQ is assigned to the device, the IRQ number
861#
862# @qdev_id: the device name of the PCI device
863#
864# @pci_bridge: if the device is a PCI bridge, the bridge information
865#
866# @regions: a list of the PCI I/O regions associated with the device
867#
868# Notes: the contents of @class_info.desc are not stable and should only be
869# treated as informational.
870#
871# Since: 0.14.0
872##
873{ 'struct': 'PciDeviceInfo',
874 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
875 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
876 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
877 'regions': ['PciMemoryRegion']} }
878
879##
880# @PciInfo:
881#
882# Information about a PCI bus
883#
884# @bus: the bus index
885#
886# @devices: a list of devices on this bus
887#
888# Since: 0.14.0
889##
890{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
891
892##
893# @query-pci:
894#
895# Return information about the PCI bus topology of the guest.
896#
897# Returns: a list of @PciInfo for each PCI bus. Each bus is
898# represented by a json-object, which has a key with a json-array of
899# all PCI devices attached to it. Each device is represented by a
900# json-object.
901#
902# Since: 0.14.0
903#
904# Example:
905#
906# -> { "execute": "query-pci" }
907# <- { "return": [
908# {
909# "bus": 0,
910# "devices": [
911# {
912# "bus": 0,
913# "qdev_id": "",
914# "slot": 0,
915# "class_info": {
916# "class": 1536,
917# "desc": "Host bridge"
918# },
919# "id": {
920# "device": 32902,
921# "vendor": 4663
922# },
923# "function": 0,
924# "regions": [
925# ]
926# },
927# {
928# "bus": 0,
929# "qdev_id": "",
930# "slot": 1,
931# "class_info": {
932# "class": 1537,
933# "desc": "ISA bridge"
934# },
935# "id": {
936# "device": 32902,
937# "vendor": 28672
938# },
939# "function": 0,
940# "regions": [
941# ]
942# },
943# {
944# "bus": 0,
945# "qdev_id": "",
946# "slot": 1,
947# "class_info": {
948# "class": 257,
949# "desc": "IDE controller"
950# },
951# "id": {
952# "device": 32902,
953# "vendor": 28688
954# },
955# "function": 1,
956# "regions": [
957# {
958# "bar": 4,
959# "size": 16,
960# "address": 49152,
961# "type": "io"
962# }
963# ]
964# },
965# {
966# "bus": 0,
967# "qdev_id": "",
968# "slot": 2,
969# "class_info": {
970# "class": 768,
971# "desc": "VGA controller"
972# },
973# "id": {
974# "device": 4115,
975# "vendor": 184
976# },
977# "function": 0,
978# "regions": [
979# {
980# "prefetch": true,
981# "mem_type_64": false,
982# "bar": 0,
983# "size": 33554432,
984# "address": 4026531840,
985# "type": "memory"
986# },
987# {
988# "prefetch": false,
989# "mem_type_64": false,
990# "bar": 1,
991# "size": 4096,
992# "address": 4060086272,
993# "type": "memory"
994# },
995# {
996# "prefetch": false,
997# "mem_type_64": false,
998# "bar": 6,
999# "size": 65536,
1000# "address": -1,
1001# "type": "memory"
1002# }
1003# ]
1004# },
1005# {
1006# "bus": 0,
1007# "qdev_id": "",
1008# "irq": 11,
1009# "slot": 4,
1010# "class_info": {
1011# "class": 1280,
1012# "desc": "RAM controller"
1013# },
1014# "id": {
1015# "device": 6900,
1016# "vendor": 4098
1017# },
1018# "function": 0,
1019# "regions": [
1020# {
1021# "bar": 0,
1022# "size": 32,
1023# "address": 49280,
1024# "type": "io"
1025# }
1026# ]
1027# }
1028# ]
1029# }
1030# ]
1031# }
1032#
1033# Note: This example has been shortened as the real response is too long.
1034#
1035##
1036{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1037
1038##
1039# @quit:
1040#
1041# This command will cause the QEMU process to exit gracefully. While every
1042# attempt is made to send the QMP response before terminating, this is not
1043# guaranteed. When using this interface, a premature EOF would not be
1044# unexpected.
1045#
1046# Since: 0.14.0
1047#
1048# Example:
1049#
1050# -> { "execute": "quit" }
1051# <- { "return": {} }
1052##
1053{ 'command': 'quit' }
1054
1055##
1056# @stop:
1057#
1058# Stop all guest VCPU execution.
1059#
1060# Since: 0.14.0
1061#
1062# Notes: This function will succeed even if the guest is already in the stopped
1063# state. In "inmigrate" state, it will ensure that the guest
1064# remains paused once migration finishes, as if the -S option was
1065# passed on the command line.
1066#
1067# Example:
1068#
1069# -> { "execute": "stop" }
1070# <- { "return": {} }
1071#
1072##
1073{ 'command': 'stop' }
1074
1075##
1076# @system_reset:
1077#
1078# Performs a hard reset of a guest.
1079#
1080# Since: 0.14.0
1081#
1082# Example:
1083#
1084# -> { "execute": "system_reset" }
1085# <- { "return": {} }
1086#
1087##
1088{ 'command': 'system_reset' }
1089
1090##
1091# @system_powerdown:
1092#
1093# Requests that a guest perform a powerdown operation.
1094#
1095# Since: 0.14.0
1096#
1097# Notes: A guest may or may not respond to this command. This command
1098# returning does not indicate that a guest has accepted the request or
1099# that it has shut down. Many guests will respond to this command by
1100# prompting the user in some way.
1101# Example:
1102#
1103# -> { "execute": "system_powerdown" }
1104# <- { "return": {} }
1105#
1106##
1107{ 'command': 'system_powerdown' }
1108
1109##
1110# @cpu-add:
1111#
1112# Adds CPU with specified ID
1113#
1114# @id: ID of CPU to be created, valid values [0..max_cpus)
1115#
1116# Returns: Nothing on success
1117#
1118# Since: 1.5
1119#
1120# Example:
1121#
1122# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1123# <- { "return": {} }
1124#
1125##
1126{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1127
1128##
1129# @memsave:
1130#
1131# Save a portion of guest memory to a file.
1132#
1133# @val: the virtual address of the guest to start from
1134#
1135# @size: the size of memory region to save
1136#
1137# @filename: the file to save the memory to as binary data
1138#
1139# @cpu-index: the index of the virtual CPU to use for translating the
1140# virtual address (defaults to CPU 0)
1141#
1142# Returns: Nothing on success
1143#
1144# Since: 0.14.0
1145#
1146# Notes: Errors were not reliably returned until 1.1
1147#
1148# Example:
1149#
1150# -> { "execute": "memsave",
1151# "arguments": { "val": 10,
1152# "size": 100,
1153# "filename": "/tmp/virtual-mem-dump" } }
1154# <- { "return": {} }
1155#
1156##
1157{ 'command': 'memsave',
1158 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1159
1160##
1161# @pmemsave:
1162#
1163# Save a portion of guest physical memory to a file.
1164#
1165# @val: the physical address of the guest to start from
1166#
1167# @size: the size of memory region to save
1168#
1169# @filename: the file to save the memory to as binary data
1170#
1171# Returns: Nothing on success
1172#
1173# Since: 0.14.0
1174#
1175# Notes: Errors were not reliably returned until 1.1
1176#
1177# Example:
1178#
1179# -> { "execute": "pmemsave",
1180# "arguments": { "val": 10,
1181# "size": 100,
1182# "filename": "/tmp/physical-mem-dump" } }
1183# <- { "return": {} }
1184#
1185##
1186{ 'command': 'pmemsave',
1187 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1188
1189##
1190# @cont:
1191#
1192# Resume guest VCPU execution.
1193#
1194# Since: 0.14.0
1195#
1196# Returns: If successful, nothing
1197#
1198# Notes: This command will succeed if the guest is currently running. It
1199# will also succeed if the guest is in the "inmigrate" state; in
1200# this case, the effect of the command is to make sure the guest
1201# starts once migration finishes, removing the effect of the -S
1202# command line option if it was passed.
1203#
1204# Example:
1205#
1206# -> { "execute": "cont" }
1207# <- { "return": {} }
1208#
1209##
1210{ 'command': 'cont' }
1211
047f7038 1212##
361ac948 1213# @x-exit-preconfig:
047f7038
IM
1214#
1215# Exit from "preconfig" state
1216#
1217# This command makes QEMU exit the preconfig state and proceed with
1218# VM initialization using configuration data provided on the command line
1219# and via the QMP monitor during the preconfig state. The command is only
1220# available during the preconfig state (i.e. when the --preconfig command
1221# line option was in use).
1222#
1223# Since 3.0
1224#
1225# Returns: nothing
1226#
1227# Example:
1228#
361ac948 1229# -> { "execute": "x-exit-preconfig" }
047f7038
IM
1230# <- { "return": {} }
1231#
1232##
361ac948 1233{ 'command': 'x-exit-preconfig', 'allow-preconfig': true }
047f7038 1234
112ed241
MA
1235##
1236# @system_wakeup:
1237#
1238# Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1239#
1240# Since: 1.1
1241#
1242# Returns: nothing.
1243#
1244# Example:
1245#
1246# -> { "execute": "system_wakeup" }
1247# <- { "return": {} }
1248#
1249##
1250{ 'command': 'system_wakeup' }
1251
1252##
1253# @inject-nmi:
1254#
1255# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1256# The command fails when the guest doesn't support injecting.
1257#
1258# Returns: If successful, nothing
1259#
1260# Since: 0.14.0
1261#
1262# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1263#
1264# Example:
1265#
1266# -> { "execute": "inject-nmi" }
1267# <- { "return": {} }
1268#
1269##
1270{ 'command': 'inject-nmi' }
1271
1272##
1273# @balloon:
1274#
1275# Request the balloon driver to change its balloon size.
1276#
1277# @value: the target size of the balloon in bytes
1278#
1279# Returns: Nothing on success
1280# If the balloon driver is enabled but not functional because the KVM
1281# kernel module cannot support it, KvmMissingCap
1282# If no balloon device is present, DeviceNotActive
1283#
1284# Notes: This command just issues a request to the guest. When it returns,
1285# the balloon size may not have changed. A guest can change the balloon
1286# size independent of this command.
1287#
1288# Since: 0.14.0
1289#
1290# Example:
1291#
1292# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1293# <- { "return": {} }
1294#
1295##
1296{ 'command': 'balloon', 'data': {'value': 'int'} }
1297
1298##
1299# @human-monitor-command:
1300#
1301# Execute a command on the human monitor and return the output.
1302#
1303# @command-line: the command to execute in the human monitor
1304#
1305# @cpu-index: The CPU to use for commands that require an implicit CPU
1306#
1307# Returns: the output of the command as a string
1308#
1309# Since: 0.14.0
1310#
1311# Notes: This command only exists as a stop-gap. Its use is highly
1312# discouraged. The semantics of this command are not
1313# guaranteed: this means that command names, arguments and
1314# responses can change or be removed at ANY time. Applications
1315# that rely on long term stability guarantees should NOT
1316# use this command.
1317#
1318# Known limitations:
1319#
1320# * This command is stateless, this means that commands that depend
1321# on state information (such as getfd) might not work
1322#
1323# * Commands that prompt the user for data don't currently work
1324#
1325# Example:
1326#
1327# -> { "execute": "human-monitor-command",
1328# "arguments": { "command-line": "info kvm" } }
1329# <- { "return": "kvm support: enabled\r\n" }
1330#
1331##
1332{ 'command': 'human-monitor-command',
1333 'data': {'command-line': 'str', '*cpu-index': 'int'},
1334 'returns': 'str' }
1335
1336##
1337# @ObjectPropertyInfo:
1338#
1339# @name: the name of the property
1340#
1341# @type: the type of the property. This will typically come in one of four
1342# forms:
1343#
1344# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1345# These types are mapped to the appropriate JSON type.
1346#
1347# 2) A child type in the form 'child<subtype>' where subtype is a qdev
1348# device type name. Child properties create the composition tree.
1349#
1350# 3) A link type in the form 'link<subtype>' where subtype is a qdev
1351# device type name. Link properties form the device model graph.
1352#
35f63767
AK
1353# @description: if specified, the description of the property.
1354#
112ed241
MA
1355# Since: 1.2
1356##
1357{ 'struct': 'ObjectPropertyInfo',
35f63767 1358 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
112ed241
MA
1359
1360##
1361# @qom-list:
1362#
1363# This command will list any properties of a object given a path in the object
1364# model.
1365#
1366# @path: the path within the object model. See @qom-get for a description of
1367# this parameter.
1368#
1369# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1370# object.
1371#
1372# Since: 1.2
1373##
1374{ 'command': 'qom-list',
1375 'data': { 'path': 'str' },
a87706c8
IM
1376 'returns': [ 'ObjectPropertyInfo' ],
1377 'allow-preconfig': true }
112ed241
MA
1378
1379##
1380# @qom-get:
1381#
1382# This command will get a property from a object model path and return the
1383# value.
1384#
1385# @path: The path within the object model. There are two forms of supported
1386# paths--absolute and partial paths.
1387#
1388# Absolute paths are derived from the root object and can follow child<>
1389# or link<> properties. Since they can follow link<> properties, they
1390# can be arbitrarily long. Absolute paths look like absolute filenames
1391# and are prefixed with a leading slash.
1392#
1393# Partial paths look like relative filenames. They do not begin
1394# with a prefix. The matching rules for partial paths are subtle but
1395# designed to make specifying objects easy. At each level of the
1396# composition tree, the partial path is matched as an absolute path.
1397# The first match is not returned. At least two matches are searched
1398# for. A successful result is only returned if only one match is
1399# found. If more than one match is found, a flag is return to
1400# indicate that the match was ambiguous.
1401#
1402# @property: The property name to read
1403#
1404# Returns: The property value. The type depends on the property
1405# type. child<> and link<> properties are returned as #str
1406# pathnames. All integer property types (u8, u16, etc) are
1407# returned as #int.
1408#
1409# Since: 1.2
1410##
1411{ 'command': 'qom-get',
1412 'data': { 'path': 'str', 'property': 'str' },
a87706c8
IM
1413 'returns': 'any',
1414 'allow-preconfig': true }
112ed241
MA
1415
1416##
1417# @qom-set:
1418#
1419# This command will set a property from a object model path.
1420#
1421# @path: see @qom-get for a description of this parameter
1422#
1423# @property: the property name to set
1424#
1425# @value: a value who's type is appropriate for the property type. See @qom-get
1426# for a description of type mapping.
1427#
1428# Since: 1.2
1429##
1430{ 'command': 'qom-set',
a87706c8
IM
1431 'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1432 'allow-preconfig': true }
112ed241
MA
1433
1434##
1435# @change:
1436#
1437# This command is multiple commands multiplexed together.
1438#
1439# @device: This is normally the name of a block device but it may also be 'vnc'.
1440# when it's 'vnc', then sub command depends on @target
1441#
1442# @target: If @device is a block device, then this is the new filename.
1443# If @device is 'vnc', then if the value 'password' selects the vnc
1444# change password command. Otherwise, this specifies a new server URI
1445# address to listen to for VNC connections.
1446#
1447# @arg: If @device is a block device, then this is an optional format to open
1448# the device with.
1449# If @device is 'vnc' and @target is 'password', this is the new VNC
1450# password to set. See change-vnc-password for additional notes.
1451#
1452# Returns: Nothing on success.
1453# If @device is not a valid block device, DeviceNotFound
1454#
1455# Notes: This interface is deprecated, and it is strongly recommended that you
1456# avoid using it. For changing block devices, use
1457# blockdev-change-medium; for changing VNC parameters, use
1458# change-vnc-password.
1459#
1460# Since: 0.14.0
1461#
1462# Example:
1463#
1464# 1. Change a removable medium
1465#
1466# -> { "execute": "change",
1467# "arguments": { "device": "ide1-cd0",
1468# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1469# <- { "return": {} }
1470#
1471# 2. Change VNC password
1472#
1473# -> { "execute": "change",
1474# "arguments": { "device": "vnc", "target": "password",
1475# "arg": "foobar1" } }
1476# <- { "return": {} }
1477#
1478##
1479{ 'command': 'change',
1480 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1481
1482##
1483# @ObjectTypeInfo:
1484#
1485# This structure describes a search result from @qom-list-types
1486#
1487# @name: the type name found in the search
1488#
1489# @abstract: the type is abstract and can't be directly instantiated.
1490# Omitted if false. (since 2.10)
1491#
1492# @parent: Name of parent type, if any (since 2.10)
1493#
1494# Since: 1.1
1495##
1496{ 'struct': 'ObjectTypeInfo',
1497 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1498
1499##
1500# @qom-list-types:
1501#
1502# This command will return a list of types given search parameters
1503#
1504# @implements: if specified, only return types that implement this type name
1505#
1506# @abstract: if true, include abstract types in the results
1507#
1508# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1509#
1510# Since: 1.1
1511##
1512{ 'command': 'qom-list-types',
1513 'data': { '*implements': 'str', '*abstract': 'bool' },
a87706c8
IM
1514 'returns': [ 'ObjectTypeInfo' ],
1515 'allow-preconfig': true }
112ed241 1516
112ed241
MA
1517##
1518# @device-list-properties:
1519#
1520# List properties associated with a device.
1521#
1522# @typename: the type name of a device
1523#
35f63767 1524# Returns: a list of ObjectPropertyInfo describing a devices properties
112ed241 1525#
24ed1172
AK
1526# Note: objects can create properties at runtime, for example to describe
1527# links between different devices and/or objects. These properties
1528# are not included in the output of this command.
1529#
112ed241
MA
1530# Since: 1.2
1531##
1532{ 'command': 'device-list-properties',
1533 'data': { 'typename': 'str'},
35f63767 1534 'returns': [ 'ObjectPropertyInfo' ] }
112ed241 1535
961c47bb
AK
1536##
1537# @qom-list-properties:
1538#
1539# List properties associated with a QOM object.
1540#
1541# @typename: the type name of an object
1542#
24ed1172
AK
1543# Note: objects can create properties at runtime, for example to describe
1544# links between different devices and/or objects. These properties
1545# are not included in the output of this command.
1546#
961c47bb
AK
1547# Returns: a list of ObjectPropertyInfo describing object properties
1548#
1549# Since: 2.12
1550##
1551{ 'command': 'qom-list-properties',
1552 'data': { 'typename': 'str'},
a87706c8
IM
1553 'returns': [ 'ObjectPropertyInfo' ],
1554 'allow-preconfig': true }
961c47bb 1555
112ed241
MA
1556##
1557# @xen-set-global-dirty-log:
1558#
1559# Enable or disable the global dirty log mode.
1560#
1561# @enable: true to enable, false to disable.
1562#
1563# Returns: nothing
1564#
1565# Since: 1.3
1566#
1567# Example:
1568#
1569# -> { "execute": "xen-set-global-dirty-log",
1570# "arguments": { "enable": true } }
1571# <- { "return": {} }
1572#
1573##
1574{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1575
1576##
1577# @device_add:
1578#
1579# @driver: the name of the new device's driver
1580#
1581# @bus: the device's parent bus (device tree path)
1582#
1583# @id: the device's ID, must be unique
1584#
1585# Additional arguments depend on the type.
1586#
1587# Add a device.
1588#
1589# Notes:
1590# 1. For detailed information about this command, please refer to the
1591# 'docs/qdev-device-use.txt' file.
1592#
1593# 2. It's possible to list device properties by running QEMU with the
1594# "-device DEVICE,help" command-line argument, where DEVICE is the
1595# device's name
1596#
1597# Example:
1598#
1599# -> { "execute": "device_add",
1600# "arguments": { "driver": "e1000", "id": "net1",
1601# "bus": "pci.0",
1602# "mac": "52:54:00:12:34:56" } }
1603# <- { "return": {} }
1604#
1605# TODO: This command effectively bypasses QAPI completely due to its
1606# "additional arguments" business. It shouldn't have been added to
1607# the schema in this form. It should be qapified properly, or
1608# replaced by a properly qapified command.
1609#
1610# Since: 0.13
1611##
1612{ 'command': 'device_add',
1613 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1614 'gen': false } # so we can get the additional arguments
1615
1616##
1617# @device_del:
1618#
1619# Remove a device from a guest
1620#
1621# @id: the device's ID or QOM path
1622#
1623# Returns: Nothing on success
1624# If @id is not a valid device, DeviceNotFound
1625#
1626# Notes: When this command completes, the device may not be removed from the
1627# guest. Hot removal is an operation that requires guest cooperation.
1628# This command merely requests that the guest begin the hot removal
1629# process. Completion of the device removal process is signaled with a
1630# DEVICE_DELETED event. Guest reset will automatically complete removal
1631# for all devices.
1632#
1633# Since: 0.14.0
1634#
1635# Example:
1636#
1637# -> { "execute": "device_del",
1638# "arguments": { "id": "net1" } }
1639# <- { "return": {} }
1640#
1641# -> { "execute": "device_del",
1642# "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1643# <- { "return": {} }
1644#
1645##
1646{ 'command': 'device_del', 'data': {'id': 'str'} }
1647
1648##
1649# @DEVICE_DELETED:
1650#
1651# Emitted whenever the device removal completion is acknowledged by the guest.
1652# At this point, it's safe to reuse the specified device ID. Device removal can
1653# be initiated by the guest or by HMP/QMP commands.
1654#
1655# @device: device name
1656#
1657# @path: device path
1658#
1659# Since: 1.5
1660#
1661# Example:
1662#
1663# <- { "event": "DEVICE_DELETED",
1664# "data": { "device": "virtio-net-pci-0",
1665# "path": "/machine/peripheral/virtio-net-pci-0" },
1666# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1667#
1668##
1669{ 'event': 'DEVICE_DELETED',
1670 'data': { '*device': 'str', 'path': 'str' } }
1671
1672##
1673# @DumpGuestMemoryFormat:
1674#
1675# An enumeration of guest-memory-dump's format.
1676#
1677# @elf: elf format
1678#
1679# @kdump-zlib: kdump-compressed format with zlib-compressed
1680#
1681# @kdump-lzo: kdump-compressed format with lzo-compressed
1682#
1683# @kdump-snappy: kdump-compressed format with snappy-compressed
1684#
2da91b54
VP
1685# @win-dmp: Windows full crashdump format,
1686# can be used instead of ELF converting (since 2.13)
1687#
112ed241
MA
1688# Since: 2.0
1689##
1690{ 'enum': 'DumpGuestMemoryFormat',
2da91b54 1691 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
112ed241
MA
1692
1693##
1694# @dump-guest-memory:
1695#
1696# Dump guest's memory to vmcore. It is a synchronous operation that can take
1697# very long depending on the amount of guest memory.
1698#
1699# @paging: if true, do paging to get guest's memory mapping. This allows
1700# using gdb to process the core file.
1701#
1702# IMPORTANT: this option can make QEMU allocate several gigabytes
1703# of RAM. This can happen for a large guest, or a
1704# malicious guest pretending to be large.
1705#
1706# Also, paging=true has the following limitations:
1707#
1708# 1. The guest may be in a catastrophic state or can have corrupted
1709# memory, which cannot be trusted
1710# 2. The guest can be in real-mode even if paging is enabled. For
1711# example, the guest uses ACPI to sleep, and ACPI sleep state
1712# goes in real-mode
1713# 3. Currently only supported on i386 and x86_64.
1714#
1715# @protocol: the filename or file descriptor of the vmcore. The supported
1716# protocols are:
1717#
1718# 1. file: the protocol starts with "file:", and the following
1719# string is the file's path.
1720# 2. fd: the protocol starts with "fd:", and the following string
1721# is the fd's name.
1722#
1723# @detach: if true, QMP will return immediately rather than
1724# waiting for the dump to finish. The user can track progress
1725# using "query-dump". (since 2.6).
1726#
1727# @begin: if specified, the starting physical address.
1728#
1729# @length: if specified, the memory size, in bytes. If you don't
1730# want to dump all guest's memory, please specify the start @begin
1731# and @length
1732#
1733# @format: if specified, the format of guest memory dump. But non-elf
1734# format is conflict with paging and filter, ie. @paging, @begin and
1735# @length is not allowed to be specified with non-elf @format at the
1736# same time (since 2.0)
1737#
1738# Note: All boolean arguments default to false
1739#
1740# Returns: nothing on success
1741#
1742# Since: 1.2
1743#
1744# Example:
1745#
1746# -> { "execute": "dump-guest-memory",
1747# "arguments": { "protocol": "fd:dump" } }
1748# <- { "return": {} }
1749#
1750##
1751{ 'command': 'dump-guest-memory',
1752 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1753 '*begin': 'int', '*length': 'int',
1754 '*format': 'DumpGuestMemoryFormat'} }
1755
1756##
1757# @DumpStatus:
1758#
1759# Describe the status of a long-running background guest memory dump.
1760#
1761# @none: no dump-guest-memory has started yet.
1762#
1763# @active: there is one dump running in background.
1764#
1765# @completed: the last dump has finished successfully.
1766#
1767# @failed: the last dump has failed.
1768#
1769# Since: 2.6
1770##
1771{ 'enum': 'DumpStatus',
1772 'data': [ 'none', 'active', 'completed', 'failed' ] }
1773
1774##
1775# @DumpQueryResult:
1776#
1777# The result format for 'query-dump'.
1778#
1779# @status: enum of @DumpStatus, which shows current dump status
1780#
1781# @completed: bytes written in latest dump (uncompressed)
1782#
1783# @total: total bytes to be written in latest dump (uncompressed)
1784#
1785# Since: 2.6
1786##
1787{ 'struct': 'DumpQueryResult',
1788 'data': { 'status': 'DumpStatus',
1789 'completed': 'int',
1790 'total': 'int' } }
1791
1792##
1793# @query-dump:
1794#
1795# Query latest dump status.
1796#
1797# Returns: A @DumpStatus object showing the dump status.
1798#
1799# Since: 2.6
1800#
1801# Example:
1802#
1803# -> { "execute": "query-dump" }
1804# <- { "return": { "status": "active", "completed": 1024000,
1805# "total": 2048000 } }
1806#
1807##
1808{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1809
1810##
1811# @DUMP_COMPLETED:
1812#
1813# Emitted when background dump has completed
1814#
eb815e24 1815# @result: final dump status
112ed241
MA
1816#
1817# @error: human-readable error string that provides
1818# hint on why dump failed. Only presents on failure. The
1819# user should not try to interpret the error string.
1820#
1821# Since: 2.6
1822#
1823# Example:
1824#
1825# { "event": "DUMP_COMPLETED",
1826# "data": {"result": {"total": 1090650112, "status": "completed",
1827# "completed": 1090650112} } }
1828#
1829##
1830{ 'event': 'DUMP_COMPLETED' ,
1831 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1832
1833##
1834# @DumpGuestMemoryCapability:
1835#
1836# A list of the available formats for dump-guest-memory
1837#
1838# Since: 2.0
1839##
1840{ 'struct': 'DumpGuestMemoryCapability',
1841 'data': {
1842 'formats': ['DumpGuestMemoryFormat'] } }
1843
1844##
1845# @query-dump-guest-memory-capability:
1846#
1847# Returns the available formats for dump-guest-memory
1848#
1849# Returns: A @DumpGuestMemoryCapability object listing available formats for
1850# dump-guest-memory
1851#
1852# Since: 2.0
1853#
1854# Example:
1855#
1856# -> { "execute": "query-dump-guest-memory-capability" }
1857# <- { "return": { "formats":
1858# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1859#
1860##
1861{ 'command': 'query-dump-guest-memory-capability',
1862 'returns': 'DumpGuestMemoryCapability' }
1863
1864##
1865# @dump-skeys:
1866#
1867# Dump guest's storage keys
1868#
1869# @filename: the path to the file to dump to
1870#
1871# This command is only supported on s390 architecture.
1872#
1873# Since: 2.5
1874#
1875# Example:
1876#
1877# -> { "execute": "dump-skeys",
1878# "arguments": { "filename": "/tmp/skeys" } }
1879# <- { "return": {} }
1880#
1881##
1882{ 'command': 'dump-skeys',
1883 'data': { 'filename': 'str' } }
1884
1885##
1886# @object-add:
1887#
1888# Create a QOM object.
1889#
1890# @qom-type: the class name for the object to be created
1891#
1892# @id: the name of the new object
1893#
1894# @props: a dictionary of properties to be passed to the backend
1895#
1896# Returns: Nothing on success
1897# Error if @qom-type is not a valid class name
1898#
1899# Since: 2.0
1900#
1901# Example:
1902#
1903# -> { "execute": "object-add",
1904# "arguments": { "qom-type": "rng-random", "id": "rng1",
1905# "props": { "filename": "/dev/hwrng" } } }
1906# <- { "return": {} }
1907#
1908##
1909{ 'command': 'object-add',
1910 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1911
1912##
1913# @object-del:
1914#
1915# Remove a QOM object.
1916#
1917# @id: the name of the QOM object to remove
1918#
1919# Returns: Nothing on success
1920# Error if @id is not a valid id for a QOM object
1921#
1922# Since: 2.0
1923#
1924# Example:
1925#
1926# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1927# <- { "return": {} }
1928#
1929##
1930{ 'command': 'object-del', 'data': {'id': 'str'} }
1931
1932##
1933# @getfd:
1934#
1935# Receive a file descriptor via SCM rights and assign it a name
1936#
1937# @fdname: file descriptor name
1938#
1939# Returns: Nothing on success
1940#
1941# Since: 0.14.0
1942#
1943# Notes: If @fdname already exists, the file descriptor assigned to
1944# it will be closed and replaced by the received file
1945# descriptor.
1946#
1947# The 'closefd' command can be used to explicitly close the
1948# file descriptor when it is no longer needed.
1949#
1950# Example:
1951#
1952# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1953# <- { "return": {} }
1954#
1955##
1956{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1957
1958##
1959# @closefd:
1960#
1961# Close a file descriptor previously passed via SCM rights
1962#
1963# @fdname: file descriptor name
1964#
1965# Returns: Nothing on success
1966#
1967# Since: 0.14.0
1968#
1969# Example:
1970#
1971# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1972# <- { "return": {} }
1973#
1974##
1975{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1976
1977##
1978# @MachineInfo:
1979#
1980# Information describing a machine.
1981#
1982# @name: the name of the machine
1983#
1984# @alias: an alias for the machine name
1985#
1986# @is-default: whether the machine is default
1987#
1988# @cpu-max: maximum number of CPUs supported by the machine type
1989# (since 1.5.0)
1990#
1991# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1992#
1993# Since: 1.2.0
1994##
1995{ 'struct': 'MachineInfo',
1996 'data': { 'name': 'str', '*alias': 'str',
1997 '*is-default': 'bool', 'cpu-max': 'int',
1998 'hotpluggable-cpus': 'bool'} }
1999
2000##
2001# @query-machines:
2002#
2003# Return a list of supported machines
2004#
2005# Returns: a list of MachineInfo
2006#
2007# Since: 1.2.0
2008##
2009{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2010
2011##
2012# @CpuDefinitionInfo:
2013#
2014# Virtual CPU definition.
2015#
2016# @name: the name of the CPU definition
2017#
2018# @migration-safe: whether a CPU definition can be safely used for
2019# migration in combination with a QEMU compatibility machine
2020# when migrating between different QMU versions and between
2021# hosts with different sets of (hardware or software)
2022# capabilities. If not provided, information is not available
2023# and callers should not assume the CPU definition to be
2024# migration-safe. (since 2.8)
2025#
2026# @static: whether a CPU definition is static and will not change depending on
2027# QEMU version, machine type, machine options and accelerator options.
2028# A static model is always migration-safe. (since 2.8)
2029#
2030# @unavailable-features: List of properties that prevent
2031# the CPU model from running in the current
2032# host. (since 2.8)
2033# @typename: Type name that can be used as argument to @device-list-properties,
2034# to introspect properties configurable using -cpu or -global.
2035# (since 2.9)
2036#
2037# @unavailable-features is a list of QOM property names that
2038# represent CPU model attributes that prevent the CPU from running.
2039# If the QOM property is read-only, that means there's no known
2040# way to make the CPU model run in the current host. Implementations
2041# that choose not to provide specific information return the
2042# property name "type".
2043# If the property is read-write, it means that it MAY be possible
2044# to run the CPU model in the current host if that property is
2045# changed. Management software can use it as hints to suggest or
2046# choose an alternative for the user, or just to generate meaningful
2047# error messages explaining why the CPU model can't be used.
2048# If @unavailable-features is an empty list, the CPU model is
2049# runnable using the current host and machine-type.
2050# If @unavailable-features is not present, runnability
2051# information for the CPU is not available.
2052#
2053# Since: 1.2.0
2054##
2055{ 'struct': 'CpuDefinitionInfo',
2056 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2057 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2058
2059##
2060# @MemoryInfo:
2061#
2062# Actual memory information in bytes.
2063#
2064# @base-memory: size of "base" memory specified with command line
2065# option -m.
2066#
2067# @plugged-memory: size of memory that can be hot-unplugged. This field
2068# is omitted if target doesn't support memory hotplug
2069# (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2070#
2071# Since: 2.11.0
2072##
2073{ 'struct': 'MemoryInfo',
2074 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2075
2076##
2077# @query-memory-size-summary:
2078#
2079# Return the amount of initially allocated and present hotpluggable (if
2080# enabled) memory in bytes.
2081#
2082# Example:
2083#
2084# -> { "execute": "query-memory-size-summary" }
2085# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2086#
2087# Since: 2.11.0
2088##
2089{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2090
2091##
2092# @query-cpu-definitions:
2093#
2094# Return a list of supported virtual CPU definitions
2095#
2096# Returns: a list of CpuDefInfo
2097#
2098# Since: 1.2.0
2099##
2100{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2101
2102##
2103# @CpuModelInfo:
2104#
2105# Virtual CPU model.
2106#
2107# A CPU model consists of the name of a CPU definition, to which
2108# delta changes are applied (e.g. features added/removed). Most magic values
2109# that an architecture might require should be hidden behind the name.
2110# However, if required, architectures can expose relevant properties.
2111#
2112# @name: the name of the CPU definition the model is based on
2113# @props: a dictionary of QOM properties to be applied
2114#
2115# Since: 2.8.0
2116##
2117{ 'struct': 'CpuModelInfo',
2118 'data': { 'name': 'str',
2119 '*props': 'any' } }
2120
2121##
2122# @CpuModelExpansionType:
2123#
2124# An enumeration of CPU model expansion types.
2125#
2126# @static: Expand to a static CPU model, a combination of a static base
2127# model name and property delta changes. As the static base model will
2128# never change, the expanded CPU model will be the same, independent of
2129# independent of QEMU version, machine type, machine options, and
2130# accelerator options. Therefore, the resulting model can be used by
2131# tooling without having to specify a compatibility machine - e.g. when
2132# displaying the "host" model. static CPU models are migration-safe.
2133#
2134# @full: Expand all properties. The produced model is not guaranteed to be
2135# migration-safe, but allows tooling to get an insight and work with
2136# model details.
2137#
2138# Note: When a non-migration-safe CPU model is expanded in static mode, some
2139# features enabled by the CPU model may be omitted, because they can't be
2140# implemented by a static CPU model definition (e.g. cache info passthrough and
2141# PMU passthrough in x86). If you need an accurate representation of the
2142# features enabled by a non-migration-safe CPU model, use @full. If you need a
2143# static representation that will keep ABI compatibility even when changing QEMU
2144# version or machine-type, use @static (but keep in mind that some features may
2145# be omitted).
2146#
2147# Since: 2.8.0
2148##
2149{ 'enum': 'CpuModelExpansionType',
2150 'data': [ 'static', 'full' ] }
2151
2152
2153##
2154# @CpuModelExpansionInfo:
2155#
2156# The result of a cpu model expansion.
2157#
2158# @model: the expanded CpuModelInfo.
2159#
2160# Since: 2.8.0
2161##
2162{ 'struct': 'CpuModelExpansionInfo',
2163 'data': { 'model': 'CpuModelInfo' } }
2164
2165
2166##
2167# @query-cpu-model-expansion:
2168#
2169# Expands a given CPU model (or a combination of CPU model + additional options)
2170# to different granularities, allowing tooling to get an understanding what a
2171# specific CPU model looks like in QEMU under a certain configuration.
2172#
2173# This interface can be used to query the "host" CPU model.
2174#
2175# The data returned by this command may be affected by:
2176#
2177# * QEMU version: CPU models may look different depending on the QEMU version.
2178# (Except for CPU models reported as "static" in query-cpu-definitions.)
2179# * machine-type: CPU model may look different depending on the machine-type.
2180# (Except for CPU models reported as "static" in query-cpu-definitions.)
2181# * machine options (including accelerator): in some architectures, CPU models
2182# may look different depending on machine and accelerator options. (Except for
2183# CPU models reported as "static" in query-cpu-definitions.)
2184# * "-cpu" arguments and global properties: arguments to the -cpu option and
2185# global properties may affect expansion of CPU models. Using
2186# query-cpu-model-expansion while using these is not advised.
2187#
2188# Some architectures may not support all expansion types. s390x supports
2189# "full" and "static".
2190#
2191# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2192# not supported, if the model cannot be expanded, if the model contains
2193# an unknown CPU definition name, unknown properties or properties
2194# with a wrong type. Also returns an error if an expansion type is
2195# not supported.
2196#
2197# Since: 2.8.0
2198##
2199{ 'command': 'query-cpu-model-expansion',
2200 'data': { 'type': 'CpuModelExpansionType',
2201 'model': 'CpuModelInfo' },
2202 'returns': 'CpuModelExpansionInfo' }
2203
2204##
2205# @CpuModelCompareResult:
2206#
2207# An enumeration of CPU model comparison results. The result is usually
2208# calculated using e.g. CPU features or CPU generations.
2209#
2210# @incompatible: If model A is incompatible to model B, model A is not
2211# guaranteed to run where model B runs and the other way around.
2212#
2213# @identical: If model A is identical to model B, model A is guaranteed to run
2214# where model B runs and the other way around.
2215#
2216# @superset: If model A is a superset of model B, model B is guaranteed to run
2217# where model A runs. There are no guarantees about the other way.
2218#
2219# @subset: If model A is a subset of model B, model A is guaranteed to run
2220# where model B runs. There are no guarantees about the other way.
2221#
2222# Since: 2.8.0
2223##
2224{ 'enum': 'CpuModelCompareResult',
2225 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2226
2227##
2228# @CpuModelCompareInfo:
2229#
2230# The result of a CPU model comparison.
2231#
2232# @result: The result of the compare operation.
2233# @responsible-properties: List of properties that led to the comparison result
2234# not being identical.
2235#
2236# @responsible-properties is a list of QOM property names that led to
2237# both CPUs not being detected as identical. For identical models, this
2238# list is empty.
2239# If a QOM property is read-only, that means there's no known way to make the
2240# CPU models identical. If the special property name "type" is included, the
2241# models are by definition not identical and cannot be made identical.
2242#
2243# Since: 2.8.0
2244##
2245{ 'struct': 'CpuModelCompareInfo',
2246 'data': {'result': 'CpuModelCompareResult',
2247 'responsible-properties': ['str']
2248 }
2249}
2250
2251##
2252# @query-cpu-model-comparison:
2253#
2254# Compares two CPU models, returning how they compare in a specific
2255# configuration. The results indicates how both models compare regarding
2256# runnability. This result can be used by tooling to make decisions if a
2257# certain CPU model will run in a certain configuration or if a compatible
2258# CPU model has to be created by baselining.
2259#
2260# Usually, a CPU model is compared against the maximum possible CPU model
2261# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2262# model is identical or a subset, it will run in that configuration.
2263#
2264# The result returned by this command may be affected by:
2265#
2266# * QEMU version: CPU models may look different depending on the QEMU version.
2267# (Except for CPU models reported as "static" in query-cpu-definitions.)
2268# * machine-type: CPU model may look different depending on the machine-type.
2269# (Except for CPU models reported as "static" in query-cpu-definitions.)
2270# * machine options (including accelerator): in some architectures, CPU models
2271# may look different depending on machine and accelerator options. (Except for
2272# CPU models reported as "static" in query-cpu-definitions.)
2273# * "-cpu" arguments and global properties: arguments to the -cpu option and
2274# global properties may affect expansion of CPU models. Using
2275# query-cpu-model-expansion while using these is not advised.
2276#
2277# Some architectures may not support comparing CPU models. s390x supports
2278# comparing CPU models.
2279#
2280# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2281# not supported, if a model cannot be used, if a model contains
2282# an unknown cpu definition name, unknown properties or properties
2283# with wrong types.
2284#
2285# Since: 2.8.0
2286##
2287{ 'command': 'query-cpu-model-comparison',
2288 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2289 'returns': 'CpuModelCompareInfo' }
2290
2291##
2292# @CpuModelBaselineInfo:
2293#
2294# The result of a CPU model baseline.
2295#
2296# @model: the baselined CpuModelInfo.
2297#
2298# Since: 2.8.0
2299##
2300{ 'struct': 'CpuModelBaselineInfo',
2301 'data': { 'model': 'CpuModelInfo' } }
2302
2303##
2304# @query-cpu-model-baseline:
2305#
2306# Baseline two CPU models, creating a compatible third model. The created
2307# model will always be a static, migration-safe CPU model (see "static"
2308# CPU model expansion for details).
2309#
2310# This interface can be used by tooling to create a compatible CPU model out
2311# two CPU models. The created CPU model will be identical to or a subset of
2312# both CPU models when comparing them. Therefore, the created CPU model is
2313# guaranteed to run where the given CPU models run.
2314#
2315# The result returned by this command may be affected by:
2316#
2317# * QEMU version: CPU models may look different depending on the QEMU version.
2318# (Except for CPU models reported as "static" in query-cpu-definitions.)
2319# * machine-type: CPU model may look different depending on the machine-type.
2320# (Except for CPU models reported as "static" in query-cpu-definitions.)
2321# * machine options (including accelerator): in some architectures, CPU models
2322# may look different depending on machine and accelerator options. (Except for
2323# CPU models reported as "static" in query-cpu-definitions.)
2324# * "-cpu" arguments and global properties: arguments to the -cpu option and
2325# global properties may affect expansion of CPU models. Using
2326# query-cpu-model-expansion while using these is not advised.
2327#
2328# Some architectures may not support baselining CPU models. s390x supports
2329# baselining CPU models.
2330#
2331# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2332# not supported, if a model cannot be used, if a model contains
2333# an unknown cpu definition name, unknown properties or properties
2334# with wrong types.
2335#
2336# Since: 2.8.0
2337##
2338{ 'command': 'query-cpu-model-baseline',
2339 'data': { 'modela': 'CpuModelInfo',
2340 'modelb': 'CpuModelInfo' },
2341 'returns': 'CpuModelBaselineInfo' }
2342
2343##
2344# @AddfdInfo:
2345#
2346# Information about a file descriptor that was added to an fd set.
2347#
2348# @fdset-id: The ID of the fd set that @fd was added to.
2349#
2350# @fd: The file descriptor that was received via SCM rights and
2351# added to the fd set.
2352#
2353# Since: 1.2.0
2354##
2355{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2356
2357##
2358# @add-fd:
2359#
2360# Add a file descriptor, that was passed via SCM rights, to an fd set.
2361#
2362# @fdset-id: The ID of the fd set to add the file descriptor to.
2363#
2364# @opaque: A free-form string that can be used to describe the fd.
2365#
2366# Returns: @AddfdInfo on success
2367#
2368# If file descriptor was not received, FdNotSupplied
2369#
2370# If @fdset-id is a negative value, InvalidParameterValue
2371#
2372# Notes: The list of fd sets is shared by all monitor connections.
2373#
2374# If @fdset-id is not specified, a new fd set will be created.
2375#
2376# Since: 1.2.0
2377#
2378# Example:
2379#
2380# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2381# <- { "return": { "fdset-id": 1, "fd": 3 } }
2382#
2383##
2384{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2385 'returns': 'AddfdInfo' }
2386
2387##
2388# @remove-fd:
2389#
2390# Remove a file descriptor from an fd set.
2391#
2392# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2393#
2394# @fd: The file descriptor that is to be removed.
2395#
2396# Returns: Nothing on success
2397# If @fdset-id or @fd is not found, FdNotFound
2398#
2399# Since: 1.2.0
2400#
2401# Notes: The list of fd sets is shared by all monitor connections.
2402#
2403# If @fd is not specified, all file descriptors in @fdset-id
2404# will be removed.
2405#
2406# Example:
2407#
2408# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2409# <- { "return": {} }
2410#
2411##
2412{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2413
2414##
2415# @FdsetFdInfo:
2416#
2417# Information about a file descriptor that belongs to an fd set.
2418#
2419# @fd: The file descriptor value.
2420#
2421# @opaque: A free-form string that can be used to describe the fd.
2422#
2423# Since: 1.2.0
2424##
2425{ 'struct': 'FdsetFdInfo',
2426 'data': {'fd': 'int', '*opaque': 'str'} }
2427
2428##
2429# @FdsetInfo:
2430#
2431# Information about an fd set.
2432#
2433# @fdset-id: The ID of the fd set.
2434#
2435# @fds: A list of file descriptors that belong to this fd set.
2436#
2437# Since: 1.2.0
2438##
2439{ 'struct': 'FdsetInfo',
2440 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2441
2442##
2443# @query-fdsets:
2444#
2445# Return information describing all fd sets.
2446#
2447# Returns: A list of @FdsetInfo
2448#
2449# Since: 1.2.0
2450#
2451# Note: The list of fd sets is shared by all monitor connections.
2452#
2453# Example:
2454#
2455# -> { "execute": "query-fdsets" }
2456# <- { "return": [
2457# {
2458# "fds": [
2459# {
2460# "fd": 30,
2461# "opaque": "rdonly:/path/to/file"
2462# },
2463# {
2464# "fd": 24,
2465# "opaque": "rdwr:/path/to/file"
2466# }
2467# ],
2468# "fdset-id": 1
2469# },
2470# {
2471# "fds": [
2472# {
2473# "fd": 28
2474# },
2475# {
2476# "fd": 29
2477# }
2478# ],
2479# "fdset-id": 0
2480# }
2481# ]
2482# }
2483#
2484##
2485{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2486
2487##
2488# @TargetInfo:
2489#
2490# Information describing the QEMU target.
2491#
b47aa7b3 2492# @arch: the target architecture
112ed241
MA
2493#
2494# Since: 1.2.0
2495##
2496{ 'struct': 'TargetInfo',
b47aa7b3 2497 'data': { 'arch': 'SysEmuTarget' } }
112ed241
MA
2498
2499##
2500# @query-target:
2501#
2502# Return information about the target for this QEMU
2503#
2504# Returns: TargetInfo
2505#
2506# Since: 1.2.0
2507##
2508{ 'command': 'query-target', 'returns': 'TargetInfo' }
2509
2510##
2511# @AcpiTableOptions:
2512#
2513# Specify an ACPI table on the command line to load.
2514#
2515# At most one of @file and @data can be specified. The list of files specified
2516# by any one of them is loaded and concatenated in order. If both are omitted,
2517# @data is implied.
2518#
2519# Other fields / optargs can be used to override fields of the generic ACPI
2520# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2521# Description Table Header. If a header field is not overridden, then the
2522# corresponding value from the concatenated blob is used (in case of @file), or
2523# it is filled in with a hard-coded value (in case of @data).
2524#
2525# String fields are copied into the matching ACPI member from lowest address
2526# upwards, and silently truncated / NUL-padded to length.
2527#
2528# @sig: table signature / identifier (4 bytes)
2529#
2530# @rev: table revision number (dependent on signature, 1 byte)
2531#
2532# @oem_id: OEM identifier (6 bytes)
2533#
2534# @oem_table_id: OEM table identifier (8 bytes)
2535#
2536# @oem_rev: OEM-supplied revision number (4 bytes)
2537#
2538# @asl_compiler_id: identifier of the utility that created the table
2539# (4 bytes)
2540#
2541# @asl_compiler_rev: revision number of the utility that created the
2542# table (4 bytes)
2543#
2544# @file: colon (:) separated list of pathnames to load and
2545# concatenate as table data. The resultant binary blob is expected to
2546# have an ACPI table header. At least one file is required. This field
2547# excludes @data.
2548#
2549# @data: colon (:) separated list of pathnames to load and
2550# concatenate as table data. The resultant binary blob must not have an
2551# ACPI table header. At least one file is required. This field excludes
2552# @file.
2553#
2554# Since: 1.5
2555##
2556{ 'struct': 'AcpiTableOptions',
2557 'data': {
2558 '*sig': 'str',
2559 '*rev': 'uint8',
2560 '*oem_id': 'str',
2561 '*oem_table_id': 'str',
2562 '*oem_rev': 'uint32',
2563 '*asl_compiler_id': 'str',
2564 '*asl_compiler_rev': 'uint32',
2565 '*file': 'str',
2566 '*data': 'str' }}
2567
2568##
2569# @CommandLineParameterType:
2570#
2571# Possible types for an option parameter.
2572#
2573# @string: accepts a character string
2574#
2575# @boolean: accepts "on" or "off"
2576#
2577# @number: accepts a number
2578#
2579# @size: accepts a number followed by an optional suffix (K)ilo,
2580# (M)ega, (G)iga, (T)era
2581#
2582# Since: 1.5
2583##
2584{ 'enum': 'CommandLineParameterType',
2585 'data': ['string', 'boolean', 'number', 'size'] }
2586
2587##
2588# @CommandLineParameterInfo:
2589#
2590# Details about a single parameter of a command line option.
2591#
2592# @name: parameter name
2593#
2594# @type: parameter @CommandLineParameterType
2595#
2596# @help: human readable text string, not suitable for parsing.
2597#
2598# @default: default value string (since 2.1)
2599#
2600# Since: 1.5
2601##
2602{ 'struct': 'CommandLineParameterInfo',
2603 'data': { 'name': 'str',
2604 'type': 'CommandLineParameterType',
2605 '*help': 'str',
2606 '*default': 'str' } }
2607
2608##
2609# @CommandLineOptionInfo:
2610#
2611# Details about a command line option, including its list of parameter details
2612#
2613# @option: option name
2614#
2615# @parameters: an array of @CommandLineParameterInfo
2616#
2617# Since: 1.5
2618##
2619{ 'struct': 'CommandLineOptionInfo',
2620 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2621
2622##
2623# @query-command-line-options:
2624#
2625# Query command line option schema.
2626#
2627# @option: option name
2628#
2629# Returns: list of @CommandLineOptionInfo for all options (or for the given
2630# @option). Returns an error if the given @option doesn't exist.
2631#
2632# Since: 1.5
2633#
2634# Example:
2635#
2636# -> { "execute": "query-command-line-options",
2637# "arguments": { "option": "option-rom" } }
2638# <- { "return": [
2639# {
2640# "parameters": [
2641# {
2642# "name": "romfile",
2643# "type": "string"
2644# },
2645# {
2646# "name": "bootindex",
2647# "type": "number"
2648# }
2649# ],
2650# "option": "option-rom"
2651# }
2652# ]
2653# }
2654#
2655##
2656{'command': 'query-command-line-options', 'data': { '*option': 'str' },
d6fe3d02
IM
2657 'returns': ['CommandLineOptionInfo'],
2658 'allow-preconfig': true }
112ed241
MA
2659
2660##
2661# @X86CPURegister32:
2662#
2663# A X86 32-bit register
2664#
2665# Since: 1.5
2666##
2667{ 'enum': 'X86CPURegister32',
2668 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2669
2670##
2671# @X86CPUFeatureWordInfo:
2672#
2673# Information about a X86 CPU feature word
2674#
2675# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2676#
2677# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2678# feature word
2679#
2680# @cpuid-register: Output register containing the feature bits
2681#
2682# @features: value of output register, containing the feature bits
2683#
2684# Since: 1.5
2685##
2686{ 'struct': 'X86CPUFeatureWordInfo',
2687 'data': { 'cpuid-input-eax': 'int',
2688 '*cpuid-input-ecx': 'int',
2689 'cpuid-register': 'X86CPURegister32',
2690 'features': 'int' } }
2691
2692##
2693# @DummyForceArrays:
2694#
2695# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2696#
2697# Since: 2.5
2698##
2699{ 'struct': 'DummyForceArrays',
2700 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2701
2702
2703##
2704# @NumaOptionsType:
2705#
2706# @node: NUMA nodes configuration
2707#
2708# @dist: NUMA distance configuration (since 2.10)
2709#
2710# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2711#
2712# Since: 2.1
2713##
2714{ 'enum': 'NumaOptionsType',
2715 'data': [ 'node', 'dist', 'cpu' ] }
2716
2717##
2718# @NumaOptions:
2719#
2720# A discriminated record of NUMA options. (for OptsVisitor)
2721#
2722# Since: 2.1
2723##
2724{ 'union': 'NumaOptions',
2725 'base': { 'type': 'NumaOptionsType' },
2726 'discriminator': 'type',
2727 'data': {
2728 'node': 'NumaNodeOptions',
2729 'dist': 'NumaDistOptions',
2730 'cpu': 'NumaCpuOptions' }}
2731
2732##
2733# @NumaNodeOptions:
2734#
2735# Create a guest NUMA node. (for OptsVisitor)
2736#
2737# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2738#
2739# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2740# if omitted)
2741#
2742# @mem: memory size of this node; mutually exclusive with @memdev.
2743# Equally divide total memory among nodes if both @mem and @memdev are
2744# omitted.
2745#
2746# @memdev: memory backend object. If specified for one node,
2747# it must be specified for all nodes.
2748#
2749# Since: 2.1
2750##
2751{ 'struct': 'NumaNodeOptions',
2752 'data': {
2753 '*nodeid': 'uint16',
2754 '*cpus': ['uint16'],
2755 '*mem': 'size',
2756 '*memdev': 'str' }}
2757
2758##
2759# @NumaDistOptions:
2760#
2761# Set the distance between 2 NUMA nodes.
2762#
2763# @src: source NUMA node.
2764#
2765# @dst: destination NUMA node.
2766#
2767# @val: NUMA distance from source node to destination node.
2768# When a node is unreachable from another node, set the distance
2769# between them to 255.
2770#
2771# Since: 2.10
2772##
2773{ 'struct': 'NumaDistOptions',
2774 'data': {
2775 'src': 'uint16',
2776 'dst': 'uint16',
2777 'val': 'uint8' }}
2778
2779##
2780# @NumaCpuOptions:
2781#
2782# Option "-numa cpu" overrides default cpu to node mapping.
2783# It accepts the same set of cpu properties as returned by
2784# query-hotpluggable-cpus[].props, where node-id could be used to
2785# override default node mapping.
2786#
2787# Since: 2.10
2788##
2789{ 'struct': 'NumaCpuOptions',
2790 'base': 'CpuInstanceProperties',
2791 'data' : {} }
2792
2793##
2794# @HostMemPolicy:
2795#
2796# Host memory policy types
2797#
2798# @default: restore default policy, remove any nondefault policy
2799#
2800# @preferred: set the preferred host nodes for allocation
2801#
2802# @bind: a strict policy that restricts memory allocation to the
2803# host nodes specified
2804#
2805# @interleave: memory allocations are interleaved across the set
2806# of host nodes specified
2807#
2808# Since: 2.1
2809##
2810{ 'enum': 'HostMemPolicy',
2811 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2812
2813##
2814# @Memdev:
2815#
2816# Information about memory backend
2817#
2818# @id: backend's ID if backend has 'id' property (since 2.9)
2819#
2820# @size: memory backend size
2821#
2822# @merge: enables or disables memory merge support
2823#
2824# @dump: includes memory backend's memory in a core dump or not
2825#
2826# @prealloc: enables or disables memory preallocation
2827#
2828# @host-nodes: host nodes for its memory policy
2829#
2830# @policy: memory policy of memory backend
2831#
2832# Since: 2.1
2833##
2834{ 'struct': 'Memdev',
2835 'data': {
2836 '*id': 'str',
2837 'size': 'size',
2838 'merge': 'bool',
2839 'dump': 'bool',
2840 'prealloc': 'bool',
2841 'host-nodes': ['uint16'],
2842 'policy': 'HostMemPolicy' }}
2843
2844##
2845# @query-memdev:
2846#
2847# Returns information for all memory backends.
2848#
2849# Returns: a list of @Memdev.
2850#
2851# Since: 2.1
2852#
2853# Example:
2854#
2855# -> { "execute": "query-memdev" }
2856# <- { "return": [
2857# {
2858# "id": "mem1",
2859# "size": 536870912,
2860# "merge": false,
2861# "dump": true,
2862# "prealloc": false,
2863# "host-nodes": [0, 1],
2864# "policy": "bind"
2865# },
2866# {
2867# "size": 536870912,
2868# "merge": false,
2869# "dump": true,
2870# "prealloc": true,
2871# "host-nodes": [2, 3],
2872# "policy": "preferred"
2873# }
2874# ]
2875# }
2876#
2877##
a87706c8 2878{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
112ed241
MA
2879
2880##
2881# @PCDIMMDeviceInfo:
2882#
2883# PCDIMMDevice state information
2884#
2885# @id: device's ID
2886#
2887# @addr: physical address, where device is mapped
2888#
2889# @size: size of memory that the device provides
2890#
2891# @slot: slot number at which device is plugged in
2892#
2893# @node: NUMA node number where device is plugged in
2894#
2895# @memdev: memory backend linked with device
2896#
2897# @hotplugged: true if device was hotplugged
2898#
2899# @hotpluggable: true if device if could be added/removed while machine is running
2900#
2901# Since: 2.1
2902##
2903{ 'struct': 'PCDIMMDeviceInfo',
2904 'data': { '*id': 'str',
2905 'addr': 'int',
2906 'size': 'int',
2907 'slot': 'int',
2908 'node': 'int',
2909 'memdev': 'str',
2910 'hotplugged': 'bool',
2911 'hotpluggable': 'bool'
2912 }
2913}
2914
2915##
2916# @MemoryDeviceInfo:
2917#
2918# Union containing information about a memory device
2919#
2920# Since: 2.1
2921##
6388e18d
HZ
2922{ 'union': 'MemoryDeviceInfo',
2923 'data': { 'dimm': 'PCDIMMDeviceInfo',
2924 'nvdimm': 'PCDIMMDeviceInfo'
2925 }
2926}
112ed241
MA
2927
2928##
2929# @query-memory-devices:
2930#
2931# Lists available memory devices and their state
2932#
2933# Since: 2.1
2934#
2935# Example:
2936#
2937# -> { "execute": "query-memory-devices" }
2938# <- { "return": [ { "data":
2939# { "addr": 5368709120,
2940# "hotpluggable": true,
2941# "hotplugged": true,
2942# "id": "d1",
2943# "memdev": "/objects/memX",
2944# "node": 0,
2945# "size": 1073741824,
2946# "slot": 0},
2947# "type": "dimm"
2948# } ] }
2949#
2950##
2951{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2952
2953##
2954# @MEM_UNPLUG_ERROR:
2955#
2956# Emitted when memory hot unplug error occurs.
2957#
2958# @device: device name
2959#
2960# @msg: Informative message
2961#
2962# Since: 2.4
2963#
2964# Example:
2965#
2966# <- { "event": "MEM_UNPLUG_ERROR"
2967# "data": { "device": "dimm1",
2968# "msg": "acpi: device unplug for unsupported device"
2969# },
2970# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2971#
2972##
2973{ 'event': 'MEM_UNPLUG_ERROR',
2974 'data': { 'device': 'str', 'msg': 'str' } }
2975
2976##
2977# @ACPISlotType:
2978#
2979# @DIMM: memory slot
2980# @CPU: logical CPU slot (since 2.7)
2981##
2982{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2983
2984##
2985# @ACPIOSTInfo:
2986#
2987# OSPM Status Indication for a device
2988# For description of possible values of @source and @status fields
2989# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2990#
2991# @device: device ID associated with slot
2992#
2993# @slot: slot ID, unique per slot of a given @slot-type
2994#
2995# @slot-type: type of the slot
2996#
2997# @source: an integer containing the source event
2998#
2999# @status: an integer containing the status code
3000#
3001# Since: 2.1
3002##
3003{ 'struct': 'ACPIOSTInfo',
3004 'data' : { '*device': 'str',
3005 'slot': 'str',
3006 'slot-type': 'ACPISlotType',
3007 'source': 'int',
3008 'status': 'int' } }
3009
3010##
3011# @query-acpi-ospm-status:
3012#
3013# Return a list of ACPIOSTInfo for devices that support status
3014# reporting via ACPI _OST method.
3015#
3016# Since: 2.1
3017#
3018# Example:
3019#
3020# -> { "execute": "query-acpi-ospm-status" }
3021# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3022# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3023# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3024# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3025# ]}
3026#
3027##
3028{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3029
3030##
3031# @ACPI_DEVICE_OST:
3032#
3033# Emitted when guest executes ACPI _OST method.
3034#
eb815e24 3035# @info: OSPM Status Indication
112ed241
MA
3036#
3037# Since: 2.1
3038#
3039# Example:
3040#
3041# <- { "event": "ACPI_DEVICE_OST",
3042# "data": { "device": "d1", "slot": "0",
3043# "slot-type": "DIMM", "source": 1, "status": 0 } }
3044#
3045##
3046{ 'event': 'ACPI_DEVICE_OST',
3047 'data': { 'info': 'ACPIOSTInfo' } }
3048
3049##
3050# @rtc-reset-reinjection:
3051#
3052# This command will reset the RTC interrupt reinjection backlog.
3053# Can be used if another mechanism to synchronize guest time
3054# is in effect, for example QEMU guest agent's guest-set-time
3055# command.
3056#
3057# Since: 2.1
3058#
3059# Example:
3060#
3061# -> { "execute": "rtc-reset-reinjection" }
3062# <- { "return": {} }
3063#
3064##
3065{ 'command': 'rtc-reset-reinjection' }
3066
3067##
3068# @RTC_CHANGE:
3069#
3070# Emitted when the guest changes the RTC time.
3071#
3072# @offset: offset between base RTC clock (as specified by -rtc base), and
3073# new RTC clock value
3074#
3075# Note: This event is rate-limited.
3076#
3077# Since: 0.13.0
3078#
3079# Example:
3080#
3081# <- { "event": "RTC_CHANGE",
3082# "data": { "offset": 78 },
3083# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3084#
3085##
3086{ 'event': 'RTC_CHANGE',
3087 'data': { 'offset': 'int' } }
3088
3089##
3090# @ReplayMode:
3091#
3092# Mode of the replay subsystem.
3093#
3094# @none: normal execution mode. Replay or record are not enabled.
3095#
3096# @record: record mode. All non-deterministic data is written into the
3097# replay log.
3098#
3099# @play: replay mode. Non-deterministic data required for system execution
3100# is read from the log.
3101#
3102# Since: 2.5
3103##
3104{ 'enum': 'ReplayMode',
3105 'data': [ 'none', 'record', 'play' ] }
3106
3107##
3108# @xen-load-devices-state:
3109#
3110# Load the state of all devices from file. The RAM and the block devices
3111# of the VM are not loaded by this command.
3112#
3113# @filename: the file to load the state of the devices from as binary
3114# data. See xen-save-devices-state.txt for a description of the binary
3115# format.
3116#
3117# Since: 2.7
3118#
3119# Example:
3120#
3121# -> { "execute": "xen-load-devices-state",
3122# "arguments": { "filename": "/tmp/resume" } }
3123# <- { "return": {} }
3124#
3125##
3126{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3127
3128##
3129# @GICCapability:
3130#
3131# The struct describes capability for a specific GIC (Generic
3132# Interrupt Controller) version. These bits are not only decided by
3133# QEMU/KVM software version, but also decided by the hardware that
3134# the program is running upon.
3135#
3136# @version: version of GIC to be described. Currently, only 2 and 3
3137# are supported.
3138#
3139# @emulated: whether current QEMU/hardware supports emulated GIC
3140# device in user space.
3141#
3142# @kernel: whether current QEMU/hardware supports hardware
3143# accelerated GIC device in kernel.
3144#
3145# Since: 2.6
3146##
3147{ 'struct': 'GICCapability',
3148 'data': { 'version': 'int',
3149 'emulated': 'bool',
3150 'kernel': 'bool' } }
3151
3152##
3153# @query-gic-capabilities:
3154#
3155# This command is ARM-only. It will return a list of GICCapability
3156# objects that describe its capability bits.
3157#
3158# Returns: a list of GICCapability objects.
3159#
3160# Since: 2.6
3161#
3162# Example:
3163#
3164# -> { "execute": "query-gic-capabilities" }
3165# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3166# { "version": 3, "emulated": false, "kernel": true } ] }
3167#
3168##
3169{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3170
3171##
3172# @CpuInstanceProperties:
3173#
3174# List of properties to be used for hotplugging a CPU instance,
3175# it should be passed by management with device_add command when
3176# a CPU is being hotplugged.
3177#
3178# @node-id: NUMA node ID the CPU belongs to
3179# @socket-id: socket number within node/board the CPU belongs to
3180# @core-id: core number within socket the CPU belongs to
3181# @thread-id: thread number within core the CPU belongs to
3182#
3183# Note: currently there are 4 properties that could be present
3184# but management should be prepared to pass through other
3185# properties with device_add command to allow for future
3186# interface extension. This also requires the filed names to be kept in
3187# sync with the properties passed to -device/device_add.
3188#
3189# Since: 2.7
3190##
3191{ 'struct': 'CpuInstanceProperties',
3192 'data': { '*node-id': 'int',
3193 '*socket-id': 'int',
3194 '*core-id': 'int',
3195 '*thread-id': 'int'
3196 }
3197}
3198
3199##
3200# @HotpluggableCPU:
3201#
3202# @type: CPU object type for usage with device_add command
3203# @props: list of properties to be used for hotplugging CPU
3204# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3205# @qom-path: link to existing CPU object if CPU is present or
3206# omitted if CPU is not present.
3207#
3208# Since: 2.7
3209##
3210{ 'struct': 'HotpluggableCPU',
3211 'data': { 'type': 'str',
3212 'vcpus-count': 'int',
3213 'props': 'CpuInstanceProperties',
3214 '*qom-path': 'str'
3215 }
3216}
3217
3218##
3219# @query-hotpluggable-cpus:
3220#
3221# Returns: a list of HotpluggableCPU objects.
3222#
3223# Since: 2.7
3224#
3225# Example:
3226#
3227# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3228#
3229# -> { "execute": "query-hotpluggable-cpus" }
3230# <- {"return": [
3231# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3232# "vcpus-count": 1 },
3233# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3234# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3235# ]}'
3236#
3237# For pc machine type started with -smp 1,maxcpus=2:
3238#
3239# -> { "execute": "query-hotpluggable-cpus" }
3240# <- {"return": [
3241# {
3242# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3243# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3244# },
3245# {
3246# "qom-path": "/machine/unattached/device[0]",
3247# "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3248# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3249# }
3250# ]}
3251#
3252# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3253# (Since: 2.11):
3254#
3255# -> { "execute": "query-hotpluggable-cpus" }
3256# <- {"return": [
3257# {
3258# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3259# "props": { "core-id": 1 }
3260# },
3261# {
3262# "qom-path": "/machine/unattached/device[0]",
3263# "type": "qemu-s390x-cpu", "vcpus-count": 1,
3264# "props": { "core-id": 0 }
3265# }
3266# ]}
3267#
3268##
899eaab4
IM
3269{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3270 'allow-preconfig': true }
112ed241
MA
3271
3272##
3273# @GuidInfo:
3274#
3275# GUID information.
3276#
3277# @guid: the globally unique identifier
3278#
3279# Since: 2.9
3280##
3281{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3282
3283##
3284# @query-vm-generation-id:
3285#
3286# Show Virtual Machine Generation ID
3287#
3288# Since: 2.9
3289##
3290{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
08a161fd
BS
3291
3292
3293##
3294# @SevState:
3295#
3296# An enumeration of SEV state information used during @query-sev.
3297#
3298# @uninit: The guest is uninitialized.
3299#
3300# @launch-update: The guest is currently being launched; plaintext data and
3301# register state is being imported.
3302#
3303# @launch-secret: The guest is currently being launched; ciphertext data
3304# is being imported.
3305#
3306# @running: The guest is fully launched or migrated in.
3307#
3308# @send-update: The guest is currently being migrated out to another machine.
3309#
3310# @receive-update: The guest is currently being migrated from another machine.
3311#
3312# Since: 2.12
3313##
3314{ 'enum': 'SevState',
3315 'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3316 'send-update', 'receive-update' ] }
3317
3318##
3319# @SevInfo:
3320#
3321# Information about Secure Encrypted Virtualization (SEV) support
3322#
3323# @enabled: true if SEV is active
3324#
3325# @api-major: SEV API major version
3326#
3327# @api-minor: SEV API minor version
3328#
3329# @build-id: SEV FW build id
3330#
3331# @policy: SEV policy value
3332#
3333# @state: SEV guest state
3334#
3335# @handle: SEV firmware handle
3336#
3337# Since: 2.12
3338##
3339{ 'struct': 'SevInfo',
3340 'data': { 'enabled': 'bool',
3341 'api-major': 'uint8',
3342 'api-minor' : 'uint8',
3343 'build-id' : 'uint8',
3344 'policy' : 'uint32',
3345 'state' : 'SevState',
3346 'handle' : 'uint32'
3347 }
3348}
3349
3350##
3351# @query-sev:
3352#
3353# Returns information about SEV
3354#
3355# Returns: @SevInfo
3356#
3357# Since: 2.12
3358#
3359# Example:
3360#
3361# -> { "execute": "query-sev" }
3362# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3363# "build-id" : 0, "policy" : 0, "state" : "running",
3364# "handle" : 1 } }
3365#
3366##
3367{ 'command': 'query-sev', 'returns': 'SevInfo' }
1b6a034f
BS
3368
3369##
3370# @SevLaunchMeasureInfo:
3371#
3372# SEV Guest Launch measurement information
3373#
3374# @data: the measurement value encoded in base64
3375#
3376# Since: 2.12
3377#
3378##
3379{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3380
3381##
3382# @query-sev-launch-measure:
3383#
3384# Query the SEV guest launch information.
3385#
3386# Returns: The @SevLaunchMeasureInfo for the guest
3387#
3388# Since: 2.12
3389#
3390# Example:
3391#
3392# -> { "execute": "query-sev-launch-measure" }
3393# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3394#
3395##
3396{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
31dd67f6
BS
3397
3398##
3399# @SevCapability:
3400#
3401# The struct describes capability for a Secure Encrypted Virtualization
3402# feature.
3403#
3404# @pdh: Platform Diffie-Hellman key (base64 encoded)
3405#
3406# @cert-chain: PDH certificate chain (base64 encoded)
3407#
3408# @cbitpos: C-bit location in page table entry
3409#
3410# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3411# enabled
3412#
3413# Since: 2.12
3414##
3415{ 'struct': 'SevCapability',
3416 'data': { 'pdh': 'str',
3417 'cert-chain': 'str',
3418 'cbitpos': 'int',
3419 'reduced-phys-bits': 'int'} }
3420
3421##
3422# @query-sev-capabilities:
3423#
3424# This command is used to get the SEV capabilities, and is supported on AMD
3425# X86 platforms only.
3426#
3427# Returns: SevCapability objects.
3428#
3429# Since: 2.12
3430#
3431# Example:
3432#
3433# -> { "execute": "query-sev-capabilities" }
3434# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3435# "cbitpos": 47, "reduced-phys-bits": 5}}
3436#
3437##
3438{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
8167d8bd
EB
3439
3440##
3441# @CommandDropReason:
3442#
3443# Reasons that caused one command to be dropped.
3444#
3445# @queue-full: the command queue is full. This can only occur when
3446# the client sends a new non-oob command before the
3447# response to the previous non-oob command has been
3448# received.
3449#
3450# Since: 2.12
3451##
3452{ 'enum': 'CommandDropReason',
3453 'data': [ 'queue-full' ] }
3454
3455##
3456# @COMMAND_DROPPED:
3457#
3458# Emitted when a command is dropped due to some reason. Commands can
3459# only be dropped when the oob capability is enabled.
3460#
3461# @id: The dropped command's "id" field.
d621cfe0
MA
3462# FIXME Broken by design. Events are broadcast to all monitors. If
3463# another monitor's client has a command with the same ID in flight,
3464# the event will incorrectly claim that command was dropped.
8167d8bd
EB
3465#
3466# @reason: The reason why the command is dropped.
3467#
3468# Since: 2.12
3469#
3470# Example:
3471#
3472# { "event": "COMMAND_DROPPED",
3473# "data": {"result": {"id": "libvirt-102",
3474# "reason": "queue-full" } } }
3475#
3476##
3477{ 'event': 'COMMAND_DROPPED' ,
3478 'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
469638f9 3479
f3be6781
IM
3480##
3481# @set-numa-node:
3482#
3483# Runtime equivalent of '-numa' CLI option, available at
3484# preconfigure stage to configure numa mapping before initializing
3485# machine.
3486#
3487# Since 3.0
3488##
3489{ 'command': 'set-numa-node', 'boxed': true,
3490 'data': 'NumaOptions',
3491 'allow-preconfig': true
3492}