]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Fix typo
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
d45952a0 75@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
ef4c3856 84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
4af39611 94@item Syborg SVP base model (ARM Cortex-A8).
48c50a62
EI
95@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
52c00a5f 97@end itemize
386405f7 98
48c50a62 99For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 100
debc7065 101@node Installation
5b9f457a
FB
102@chapter Installation
103
15a34c63
FB
104If you want to compile QEMU yourself, see @ref{compilation}.
105
debc7065
FB
106@menu
107* install_linux:: Linux
108* install_windows:: Windows
109* install_mac:: Macintosh
110@end menu
111
112@node install_linux
1f673135
FB
113@section Linux
114
7c3fc84d
FB
115If a precompiled package is available for your distribution - you just
116have to install it. Otherwise, see @ref{compilation}.
5b9f457a 117
debc7065 118@node install_windows
1f673135 119@section Windows
8cd0ac2f 120
15a34c63 121Download the experimental binary installer at
debc7065 122@url{http://www.free.oszoo.org/@/download.html}.
d691f669 123
debc7065 124@node install_mac
1f673135 125@section Mac OS X
d691f669 126
15a34c63 127Download the experimental binary installer at
debc7065 128@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 129
debc7065 130@node QEMU PC System emulator
3f9f3aa1 131@chapter QEMU PC System emulator
1eb20527 132
debc7065
FB
133@menu
134* pcsys_introduction:: Introduction
135* pcsys_quickstart:: Quick Start
136* sec_invocation:: Invocation
137* pcsys_keys:: Keys
138* pcsys_monitor:: QEMU Monitor
139* disk_images:: Disk Images
140* pcsys_network:: Network emulation
141* direct_linux_boot:: Direct Linux Boot
142* pcsys_usb:: USB emulation
f858dcae 143* vnc_security:: VNC security
debc7065
FB
144* gdb_usage:: GDB usage
145* pcsys_os_specific:: Target OS specific information
146@end menu
147
148@node pcsys_introduction
0806e3f6
FB
149@section Introduction
150
151@c man begin DESCRIPTION
152
3f9f3aa1
FB
153The QEMU PC System emulator simulates the
154following peripherals:
0806e3f6
FB
155
156@itemize @minus
5fafdf24 157@item
15a34c63 158i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 159@item
15a34c63
FB
160Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161extensions (hardware level, including all non standard modes).
0806e3f6
FB
162@item
163PS/2 mouse and keyboard
5fafdf24 164@item
15a34c63 1652 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
166@item
167Floppy disk
5fafdf24 168@item
c4a7060c 169PCI/ISA PCI network adapters
0806e3f6 170@item
05d5818c
FB
171Serial ports
172@item
c0fe3827
FB
173Creative SoundBlaster 16 sound card
174@item
175ENSONIQ AudioPCI ES1370 sound card
176@item
e5c9a13e
AZ
177Intel 82801AA AC97 Audio compatible sound card
178@item
c0fe3827 179Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 180@item
26463dbc
AZ
181Gravis Ultrasound GF1 sound card
182@item
cc53d26d 183CS4231A compatible sound card
184@item
b389dbfb 185PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
186@end itemize
187
3f9f3aa1
FB
188SMP is supported with up to 255 CPUs.
189
1d1f8c33 190Note that adlib, gus and cs4231a are only available when QEMU was
191configured with --audio-card-list option containing the name(s) of
e5178e8d 192required card(s).
c0fe3827 193
15a34c63
FB
194QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195VGA BIOS.
196
c0fe3827
FB
197QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198
26463dbc
AZ
199QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200by Tibor "TS" Schütz.
423d65f4 201
cc53d26d 202CS4231A is the chip used in Windows Sound System and GUSMAX products
203
0806e3f6
FB
204@c man end
205
debc7065 206@node pcsys_quickstart
1eb20527
FB
207@section Quick Start
208
285dc330 209Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
210
211@example
285dc330 212qemu linux.img
0806e3f6
FB
213@end example
214
215Linux should boot and give you a prompt.
216
6cc721cf 217@node sec_invocation
ec410fc9
FB
218@section Invocation
219
220@example
0806e3f6 221@c man begin SYNOPSIS
89dfe898 222usage: qemu [options] [@var{disk_image}]
0806e3f6 223@c man end
ec410fc9
FB
224@end example
225
0806e3f6 226@c man begin OPTIONS
d2c639d6
BS
227@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
228targets do not need a disk image.
ec410fc9 229
5824d651 230@include qemu-options.texi
ec410fc9 231
3e11db9a
FB
232@c man end
233
debc7065 234@node pcsys_keys
3e11db9a
FB
235@section Keys
236
237@c man begin OPTIONS
238
a1b74fe8
FB
239During the graphical emulation, you can use the following keys:
240@table @key
f9859310 241@item Ctrl-Alt-f
a1b74fe8 242Toggle full screen
a0a821a4 243
f9859310 244@item Ctrl-Alt-n
a0a821a4
FB
245Switch to virtual console 'n'. Standard console mappings are:
246@table @emph
247@item 1
248Target system display
249@item 2
250Monitor
251@item 3
252Serial port
a1b74fe8
FB
253@end table
254
f9859310 255@item Ctrl-Alt
a0a821a4
FB
256Toggle mouse and keyboard grab.
257@end table
258
3e11db9a
FB
259In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
260@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
261
a0a821a4
FB
262During emulation, if you are using the @option{-nographic} option, use
263@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
264
265@table @key
a1b74fe8 266@item Ctrl-a h
d2c639d6 267@item Ctrl-a ?
ec410fc9 268Print this help
3b46e624 269@item Ctrl-a x
366dfc52 270Exit emulator
3b46e624 271@item Ctrl-a s
1f47a922 272Save disk data back to file (if -snapshot)
20d8a3ed 273@item Ctrl-a t
d2c639d6 274Toggle console timestamps
a1b74fe8 275@item Ctrl-a b
1f673135 276Send break (magic sysrq in Linux)
a1b74fe8 277@item Ctrl-a c
1f673135 278Switch between console and monitor
a1b74fe8
FB
279@item Ctrl-a Ctrl-a
280Send Ctrl-a
ec410fc9 281@end table
0806e3f6
FB
282@c man end
283
284@ignore
285
1f673135
FB
286@c man begin SEEALSO
287The HTML documentation of QEMU for more precise information and Linux
288user mode emulator invocation.
289@c man end
290
291@c man begin AUTHOR
292Fabrice Bellard
293@c man end
294
295@end ignore
296
debc7065 297@node pcsys_monitor
1f673135
FB
298@section QEMU Monitor
299
300The QEMU monitor is used to give complex commands to the QEMU
301emulator. You can use it to:
302
303@itemize @minus
304
305@item
e598752a 306Remove or insert removable media images
89dfe898 307(such as CD-ROM or floppies).
1f673135 308
5fafdf24 309@item
1f673135
FB
310Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
311from a disk file.
312
313@item Inspect the VM state without an external debugger.
314
315@end itemize
316
317@subsection Commands
318
319The following commands are available:
320
321@table @option
322
89dfe898 323@item help or ? [@var{cmd}]
1f673135
FB
324Show the help for all commands or just for command @var{cmd}.
325
3b46e624 326@item commit
89dfe898 327Commit changes to the disk images (if -snapshot is used).
1f673135 328
89dfe898
TS
329@item info @var{subcommand}
330Show various information about the system state.
1f673135
FB
331
332@table @option
d2c639d6
BS
333@item info version
334show the version of QEMU
1f673135 335@item info network
41d03949 336show the various VLANs and the associated devices
d2c639d6
BS
337@item info chardev
338show the character devices
1f673135
FB
339@item info block
340show the block devices
d2c639d6
BS
341@item info block
342show block device statistics
1f673135
FB
343@item info registers
344show the cpu registers
d2c639d6
BS
345@item info cpus
346show infos for each CPU
1f673135
FB
347@item info history
348show the command line history
d2c639d6
BS
349@item info irq
350show the interrupts statistics (if available)
351@item info pic
352show i8259 (PIC) state
b389dbfb 353@item info pci
d2c639d6
BS
354show emulated PCI device info
355@item info tlb
356show virtual to physical memory mappings (i386 only)
357@item info mem
358show the active virtual memory mappings (i386 only)
359@item info hpet
360show state of HPET (i386 only)
361@item info kqemu
362show KQEMU information
363@item info kvm
364show KVM information
b389dbfb
FB
365@item info usb
366show USB devices plugged on the virtual USB hub
367@item info usbhost
368show all USB host devices
d2c639d6
BS
369@item info profile
370show profiling information
a3c25997
FB
371@item info capture
372show information about active capturing
13a2e80f
FB
373@item info snapshots
374show list of VM snapshots
d2c639d6
BS
375@item info status
376show the current VM status (running|paused)
377@item info pcmcia
378show guest PCMCIA status
455204eb
TS
379@item info mice
380show which guest mouse is receiving events
d2c639d6
BS
381@item info vnc
382show the vnc server status
383@item info name
384show the current VM name
385@item info uuid
386show the current VM UUID
387@item info cpustats
388show CPU statistics
389@item info slirp
390show SLIRP statistics (if available)
391@item info migrate
392show migration status
393@item info balloon
394show balloon information
1f673135
FB
395@end table
396
397@item q or quit
398Quit the emulator.
399
89dfe898 400@item eject [-f] @var{device}
e598752a 401Eject a removable medium (use -f to force it).
1f673135 402
89dfe898 403@item change @var{device} @var{setting}
f858dcae 404
89dfe898 405Change the configuration of a device.
f858dcae
TS
406
407@table @option
d2c639d6 408@item change @var{diskdevice} @var{filename} [@var{format}]
f858dcae
TS
409Change the medium for a removable disk device to point to @var{filename}. eg
410
411@example
4bf27c24 412(qemu) change ide1-cd0 /path/to/some.iso
f858dcae
TS
413@end example
414
d2c639d6
BS
415@var{format} is optional.
416
89dfe898 417@item change vnc @var{display},@var{options}
f858dcae
TS
418Change the configuration of the VNC server. The valid syntax for @var{display}
419and @var{options} are described at @ref{sec_invocation}. eg
420
421@example
422(qemu) change vnc localhost:1
423@end example
424
2569da0c 425@item change vnc password [@var{password}]
f858dcae 426
2569da0c
AL
427Change the password associated with the VNC server. If the new password is not
428supplied, the monitor will prompt for it to be entered. VNC passwords are only
429significant up to 8 letters. eg
f858dcae
TS
430
431@example
432(qemu) change vnc password
433Password: ********
434@end example
435
436@end table
1f673135 437
76655d6d
AL
438@item acl @var{subcommand} @var{aclname} @var{match} @var{index}
439
440Manage access control lists for network services. There are currently
441two named access control lists, @var{vnc.x509dname} and @var{vnc.username}
442matching on the x509 client certificate distinguished name, and SASL
443username respectively.
444
445@table @option
446@item acl show <aclname>
447list all the match rules in the access control list, and the default
448policy
449@item acl policy <aclname> @code{allow|deny}
450set the default access control list policy, used in the event that
451none of the explicit rules match. The default policy at startup is
452always @code{deny}
453@item acl allow <aclname> <match> [<index>]
454add a match to the access control list, allowing access. The match will
455normally be an exact username or x509 distinguished name, but can
9e995645 456optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
76655d6d
AL
457all users in the @code{EXAMPLE.COM} kerberos realm. The match will
458normally be appended to the end of the ACL, but can be inserted
459earlier in the list if the optional @code{index} parameter is supplied.
460@item acl deny <aclname> <match> [<index>]
461add a match to the access control list, denying access. The match will
462normally be an exact username or x509 distinguished name, but can
9e995645 463optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
76655d6d
AL
464all users in the @code{EXAMPLE.COM} kerberos realm. The match will
465normally be appended to the end of the ACL, but can be inserted
466earlier in the list if the optional @code{index} parameter is supplied.
467@item acl remove <aclname> <match>
468remove the specified match rule from the access control list.
469@item acl reset <aclname>
470remove all matches from the access control list, and set the default
471policy back to @code{deny}.
472@end table
473
89dfe898 474@item screendump @var{filename}
1f673135
FB
475Save screen into PPM image @var{filename}.
476
d2c639d6
BS
477@item logfile @var{filename}
478Output logs to @var{filename}.
a3c25997 479
89dfe898 480@item log @var{item1}[,...]
1f673135
FB
481Activate logging of the specified items to @file{/tmp/qemu.log}.
482
89dfe898 483@item savevm [@var{tag}|@var{id}]
13a2e80f
FB
484Create a snapshot of the whole virtual machine. If @var{tag} is
485provided, it is used as human readable identifier. If there is already
486a snapshot with the same tag or ID, it is replaced. More info at
487@ref{vm_snapshots}.
1f673135 488
89dfe898 489@item loadvm @var{tag}|@var{id}
13a2e80f
FB
490Set the whole virtual machine to the snapshot identified by the tag
491@var{tag} or the unique snapshot ID @var{id}.
492
89dfe898 493@item delvm @var{tag}|@var{id}
13a2e80f 494Delete the snapshot identified by @var{tag} or @var{id}.
1f673135 495
1b530a6d
AJ
496@item singlestep [off]
497Run the emulation in single step mode.
498If called with option off, the emulation returns to normal mode.
499
1f673135
FB
500@item stop
501Stop emulation.
502
503@item c or cont
504Resume emulation.
505
89dfe898
TS
506@item gdbserver [@var{port}]
507Start gdbserver session (default @var{port}=1234)
1f673135 508
89dfe898 509@item x/fmt @var{addr}
1f673135
FB
510Virtual memory dump starting at @var{addr}.
511
89dfe898 512@item xp /@var{fmt} @var{addr}
1f673135
FB
513Physical memory dump starting at @var{addr}.
514
515@var{fmt} is a format which tells the command how to format the
516data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
517
518@table @var
5fafdf24 519@item count
1f673135
FB
520is the number of items to be dumped.
521
522@item format
4be456f1 523can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
524c (char) or i (asm instruction).
525
526@item size
52c00a5f
FB
527can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
528@code{h} or @code{w} can be specified with the @code{i} format to
529respectively select 16 or 32 bit code instruction size.
1f673135
FB
530
531@end table
532
5fafdf24 533Examples:
1f673135
FB
534@itemize
535@item
536Dump 10 instructions at the current instruction pointer:
5fafdf24 537@example
1f673135
FB
538(qemu) x/10i $eip
5390x90107063: ret
5400x90107064: sti
5410x90107065: lea 0x0(%esi,1),%esi
5420x90107069: lea 0x0(%edi,1),%edi
5430x90107070: ret
5440x90107071: jmp 0x90107080
5450x90107073: nop
5460x90107074: nop
5470x90107075: nop
5480x90107076: nop
549@end example
550
551@item
552Dump 80 16 bit values at the start of the video memory.
5fafdf24 553@smallexample
1f673135
FB
554(qemu) xp/80hx 0xb8000
5550x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
5560x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
5570x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
5580x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
5590x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
5600x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
5610x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
5620x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
5630x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
5640x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 565@end smallexample
1f673135
FB
566@end itemize
567
89dfe898 568@item p or print/@var{fmt} @var{expr}
1f673135
FB
569
570Print expression value. Only the @var{format} part of @var{fmt} is
571used.
0806e3f6 572
89dfe898 573@item sendkey @var{keys}
a3a91a35 574
54ae1fbd
AJ
575Send @var{keys} to the emulator. @var{keys} could be the name of the
576key or @code{#} followed by the raw value in either decimal or hexadecimal
577format. Use @code{-} to press several keys simultaneously. Example:
a3a91a35
FB
578@example
579sendkey ctrl-alt-f1
580@end example
581
582This command is useful to send keys that your graphical user interface
583intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
584
15a34c63
FB
585@item system_reset
586
587Reset the system.
588
d2c639d6 589@item system_powerdown
0ecdffbb 590
d2c639d6 591Power down the system (if supported).
0ecdffbb 592
d2c639d6
BS
593@item sum @var{addr} @var{size}
594
595Compute the checksum of a memory region.
0ecdffbb 596
89dfe898 597@item usb_add @var{devname}
b389dbfb 598
0aff66b5
PB
599Add the USB device @var{devname}. For details of available devices see
600@ref{usb_devices}
b389dbfb 601
89dfe898 602@item usb_del @var{devname}
b389dbfb
FB
603
604Remove the USB device @var{devname} from the QEMU virtual USB
605hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
606command @code{info usb} to see the devices you can remove.
607
d2c639d6
BS
608@item mouse_move @var{dx} @var{dy} [@var{dz}]
609Move the active mouse to the specified coordinates @var{dx} @var{dy}
610with optional scroll axis @var{dz}.
611
612@item mouse_button @var{val}
613Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
614
615@item mouse_set @var{index}
616Set which mouse device receives events at given @var{index}, index
617can be obtained with
618@example
619info mice
620@end example
621
622@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
623Capture audio into @var{filename}. Using sample rate @var{frequency}
624bits per sample @var{bits} and number of channels @var{channels}.
625
626Defaults:
627@itemize @minus
628@item Sample rate = 44100 Hz - CD quality
629@item Bits = 16
630@item Number of channels = 2 - Stereo
631@end itemize
632
633@item stopcapture @var{index}
634Stop capture with a given @var{index}, index can be obtained with
635@example
636info capture
637@end example
638
639@item memsave @var{addr} @var{size} @var{file}
640save to disk virtual memory dump starting at @var{addr} of size @var{size}.
641
642@item pmemsave @var{addr} @var{size} @var{file}
643save to disk physical memory dump starting at @var{addr} of size @var{size}.
644
645@item boot_set @var{bootdevicelist}
646
647Define new values for the boot device list. Those values will override
648the values specified on the command line through the @code{-boot} option.
649
650The values that can be specified here depend on the machine type, but are
651the same that can be specified in the @code{-boot} command line option.
652
653@item nmi @var{cpu}
654Inject an NMI on the given CPU.
655
656@item migrate [-d] @var{uri}
657Migrate to @var{uri} (using -d to not wait for completion).
658
659@item migrate_cancel
660Cancel the current VM migration.
661
662@item migrate_set_speed @var{value}
663Set maximum speed to @var{value} (in bytes) for migrations.
664
665@item balloon @var{value}
666Request VM to change its memory allocation to @var{value} (in MB).
667
668@item set_link @var{name} [up|down]
669Set link @var{name} up or down.
670
1f673135 671@end table
0806e3f6 672
1f673135
FB
673@subsection Integer expressions
674
675The monitor understands integers expressions for every integer
676argument. You can use register names to get the value of specifics
677CPU registers by prefixing them with @emph{$}.
ec410fc9 678
1f47a922
FB
679@node disk_images
680@section Disk Images
681
acd935ef
FB
682Since version 0.6.1, QEMU supports many disk image formats, including
683growable disk images (their size increase as non empty sectors are
13a2e80f
FB
684written), compressed and encrypted disk images. Version 0.8.3 added
685the new qcow2 disk image format which is essential to support VM
686snapshots.
1f47a922 687
debc7065
FB
688@menu
689* disk_images_quickstart:: Quick start for disk image creation
690* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 691* vm_snapshots:: VM snapshots
debc7065 692* qemu_img_invocation:: qemu-img Invocation
975b092b 693* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 694* host_drives:: Using host drives
debc7065 695* disk_images_fat_images:: Virtual FAT disk images
75818250 696* disk_images_nbd:: NBD access
debc7065
FB
697@end menu
698
699@node disk_images_quickstart
acd935ef
FB
700@subsection Quick start for disk image creation
701
702You can create a disk image with the command:
1f47a922 703@example
acd935ef 704qemu-img create myimage.img mysize
1f47a922 705@end example
acd935ef
FB
706where @var{myimage.img} is the disk image filename and @var{mysize} is its
707size in kilobytes. You can add an @code{M} suffix to give the size in
708megabytes and a @code{G} suffix for gigabytes.
709
debc7065 710See @ref{qemu_img_invocation} for more information.
1f47a922 711
debc7065 712@node disk_images_snapshot_mode
1f47a922
FB
713@subsection Snapshot mode
714
715If you use the option @option{-snapshot}, all disk images are
716considered as read only. When sectors in written, they are written in
717a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
718write back to the raw disk images by using the @code{commit} monitor
719command (or @key{C-a s} in the serial console).
1f47a922 720
13a2e80f
FB
721@node vm_snapshots
722@subsection VM snapshots
723
724VM snapshots are snapshots of the complete virtual machine including
725CPU state, RAM, device state and the content of all the writable
726disks. In order to use VM snapshots, you must have at least one non
727removable and writable block device using the @code{qcow2} disk image
728format. Normally this device is the first virtual hard drive.
729
730Use the monitor command @code{savevm} to create a new VM snapshot or
731replace an existing one. A human readable name can be assigned to each
19d36792 732snapshot in addition to its numerical ID.
13a2e80f
FB
733
734Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
735a VM snapshot. @code{info snapshots} lists the available snapshots
736with their associated information:
737
738@example
739(qemu) info snapshots
740Snapshot devices: hda
741Snapshot list (from hda):
742ID TAG VM SIZE DATE VM CLOCK
7431 start 41M 2006-08-06 12:38:02 00:00:14.954
7442 40M 2006-08-06 12:43:29 00:00:18.633
7453 msys 40M 2006-08-06 12:44:04 00:00:23.514
746@end example
747
748A VM snapshot is made of a VM state info (its size is shown in
749@code{info snapshots}) and a snapshot of every writable disk image.
750The VM state info is stored in the first @code{qcow2} non removable
751and writable block device. The disk image snapshots are stored in
752every disk image. The size of a snapshot in a disk image is difficult
753to evaluate and is not shown by @code{info snapshots} because the
754associated disk sectors are shared among all the snapshots to save
19d36792
FB
755disk space (otherwise each snapshot would need a full copy of all the
756disk images).
13a2e80f
FB
757
758When using the (unrelated) @code{-snapshot} option
759(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
760but they are deleted as soon as you exit QEMU.
761
762VM snapshots currently have the following known limitations:
763@itemize
5fafdf24 764@item
13a2e80f
FB
765They cannot cope with removable devices if they are removed or
766inserted after a snapshot is done.
5fafdf24 767@item
13a2e80f
FB
768A few device drivers still have incomplete snapshot support so their
769state is not saved or restored properly (in particular USB).
770@end itemize
771
acd935ef
FB
772@node qemu_img_invocation
773@subsection @code{qemu-img} Invocation
1f47a922 774
acd935ef 775@include qemu-img.texi
05efe46e 776
975b092b
TS
777@node qemu_nbd_invocation
778@subsection @code{qemu-nbd} Invocation
779
780@include qemu-nbd.texi
781
19cb3738
FB
782@node host_drives
783@subsection Using host drives
784
785In addition to disk image files, QEMU can directly access host
786devices. We describe here the usage for QEMU version >= 0.8.3.
787
788@subsubsection Linux
789
790On Linux, you can directly use the host device filename instead of a
4be456f1 791disk image filename provided you have enough privileges to access
19cb3738
FB
792it. For example, use @file{/dev/cdrom} to access to the CDROM or
793@file{/dev/fd0} for the floppy.
794
f542086d 795@table @code
19cb3738
FB
796@item CD
797You can specify a CDROM device even if no CDROM is loaded. QEMU has
798specific code to detect CDROM insertion or removal. CDROM ejection by
799the guest OS is supported. Currently only data CDs are supported.
800@item Floppy
801You can specify a floppy device even if no floppy is loaded. Floppy
802removal is currently not detected accurately (if you change floppy
803without doing floppy access while the floppy is not loaded, the guest
804OS will think that the same floppy is loaded).
805@item Hard disks
806Hard disks can be used. Normally you must specify the whole disk
807(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
808see it as a partitioned disk. WARNING: unless you know what you do, it
809is better to only make READ-ONLY accesses to the hard disk otherwise
810you may corrupt your host data (use the @option{-snapshot} command
811line option or modify the device permissions accordingly).
812@end table
813
814@subsubsection Windows
815
01781963
FB
816@table @code
817@item CD
4be456f1 818The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
819alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
820supported as an alias to the first CDROM drive.
19cb3738 821
e598752a 822Currently there is no specific code to handle removable media, so it
19cb3738
FB
823is better to use the @code{change} or @code{eject} monitor commands to
824change or eject media.
01781963 825@item Hard disks
89dfe898 826Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
827where @var{N} is the drive number (0 is the first hard disk).
828
829WARNING: unless you know what you do, it is better to only make
830READ-ONLY accesses to the hard disk otherwise you may corrupt your
831host data (use the @option{-snapshot} command line so that the
832modifications are written in a temporary file).
833@end table
834
19cb3738
FB
835
836@subsubsection Mac OS X
837
5fafdf24 838@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 839
e598752a 840Currently there is no specific code to handle removable media, so it
19cb3738
FB
841is better to use the @code{change} or @code{eject} monitor commands to
842change or eject media.
843
debc7065 844@node disk_images_fat_images
2c6cadd4
FB
845@subsection Virtual FAT disk images
846
847QEMU can automatically create a virtual FAT disk image from a
848directory tree. In order to use it, just type:
849
5fafdf24 850@example
2c6cadd4
FB
851qemu linux.img -hdb fat:/my_directory
852@end example
853
854Then you access access to all the files in the @file{/my_directory}
855directory without having to copy them in a disk image or to export
856them via SAMBA or NFS. The default access is @emph{read-only}.
857
858Floppies can be emulated with the @code{:floppy:} option:
859
5fafdf24 860@example
2c6cadd4
FB
861qemu linux.img -fda fat:floppy:/my_directory
862@end example
863
864A read/write support is available for testing (beta stage) with the
865@code{:rw:} option:
866
5fafdf24 867@example
2c6cadd4
FB
868qemu linux.img -fda fat:floppy:rw:/my_directory
869@end example
870
871What you should @emph{never} do:
872@itemize
873@item use non-ASCII filenames ;
874@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
875@item expect it to work when loadvm'ing ;
876@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
877@end itemize
878
75818250
TS
879@node disk_images_nbd
880@subsection NBD access
881
882QEMU can access directly to block device exported using the Network Block Device
883protocol.
884
885@example
886qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
887@end example
888
889If the NBD server is located on the same host, you can use an unix socket instead
890of an inet socket:
891
892@example
893qemu linux.img -hdb nbd:unix:/tmp/my_socket
894@end example
895
896In this case, the block device must be exported using qemu-nbd:
897
898@example
899qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
900@end example
901
902The use of qemu-nbd allows to share a disk between several guests:
903@example
904qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
905@end example
906
907and then you can use it with two guests:
908@example
909qemu linux1.img -hdb nbd:unix:/tmp/my_socket
910qemu linux2.img -hdb nbd:unix:/tmp/my_socket
911@end example
912
debc7065 913@node pcsys_network
9d4fb82e
FB
914@section Network emulation
915
4be456f1 916QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
917target) and can connect them to an arbitrary number of Virtual Local
918Area Networks (VLANs). Host TAP devices can be connected to any QEMU
919VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 920simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
921network stack can replace the TAP device to have a basic network
922connection.
923
924@subsection VLANs
9d4fb82e 925
41d03949
FB
926QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
927connection between several network devices. These devices can be for
928example QEMU virtual Ethernet cards or virtual Host ethernet devices
929(TAP devices).
9d4fb82e 930
41d03949
FB
931@subsection Using TAP network interfaces
932
933This is the standard way to connect QEMU to a real network. QEMU adds
934a virtual network device on your host (called @code{tapN}), and you
935can then configure it as if it was a real ethernet card.
9d4fb82e 936
8f40c388
FB
937@subsubsection Linux host
938
9d4fb82e
FB
939As an example, you can download the @file{linux-test-xxx.tar.gz}
940archive and copy the script @file{qemu-ifup} in @file{/etc} and
941configure properly @code{sudo} so that the command @code{ifconfig}
942contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 943that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
944device @file{/dev/net/tun} must be present.
945
ee0f4751
FB
946See @ref{sec_invocation} to have examples of command lines using the
947TAP network interfaces.
9d4fb82e 948
8f40c388
FB
949@subsubsection Windows host
950
951There is a virtual ethernet driver for Windows 2000/XP systems, called
952TAP-Win32. But it is not included in standard QEMU for Windows,
953so you will need to get it separately. It is part of OpenVPN package,
954so download OpenVPN from : @url{http://openvpn.net/}.
955
9d4fb82e
FB
956@subsection Using the user mode network stack
957
41d03949
FB
958By using the option @option{-net user} (default configuration if no
959@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 960network stack (you don't need root privilege to use the virtual
41d03949 961network). The virtual network configuration is the following:
9d4fb82e
FB
962
963@example
964
41d03949
FB
965 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
966 | (10.0.2.2)
9d4fb82e 967 |
2518bd0d 968 ----> DNS server (10.0.2.3)
3b46e624 969 |
2518bd0d 970 ----> SMB server (10.0.2.4)
9d4fb82e
FB
971@end example
972
973The QEMU VM behaves as if it was behind a firewall which blocks all
974incoming connections. You can use a DHCP client to automatically
41d03949
FB
975configure the network in the QEMU VM. The DHCP server assign addresses
976to the hosts starting from 10.0.2.15.
9d4fb82e
FB
977
978In order to check that the user mode network is working, you can ping
979the address 10.0.2.2 and verify that you got an address in the range
98010.0.2.x from the QEMU virtual DHCP server.
981
b415a407 982Note that @code{ping} is not supported reliably to the internet as it
4be456f1 983would require root privileges. It means you can only ping the local
b415a407
FB
984router (10.0.2.2).
985
9bf05444
FB
986When using the built-in TFTP server, the router is also the TFTP
987server.
988
989When using the @option{-redir} option, TCP or UDP connections can be
990redirected from the host to the guest. It allows for example to
991redirect X11, telnet or SSH connections.
443f1376 992
41d03949
FB
993@subsection Connecting VLANs between QEMU instances
994
995Using the @option{-net socket} option, it is possible to make VLANs
996that span several QEMU instances. See @ref{sec_invocation} to have a
997basic example.
998
9d4fb82e
FB
999@node direct_linux_boot
1000@section Direct Linux Boot
1f673135
FB
1001
1002This section explains how to launch a Linux kernel inside QEMU without
1003having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1004kernel testing.
1f673135 1005
ee0f4751 1006The syntax is:
1f673135 1007@example
ee0f4751 1008qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1009@end example
1010
ee0f4751
FB
1011Use @option{-kernel} to provide the Linux kernel image and
1012@option{-append} to give the kernel command line arguments. The
1013@option{-initrd} option can be used to provide an INITRD image.
1f673135 1014
ee0f4751
FB
1015When using the direct Linux boot, a disk image for the first hard disk
1016@file{hda} is required because its boot sector is used to launch the
1017Linux kernel.
1f673135 1018
ee0f4751
FB
1019If you do not need graphical output, you can disable it and redirect
1020the virtual serial port and the QEMU monitor to the console with the
1021@option{-nographic} option. The typical command line is:
1f673135 1022@example
ee0f4751
FB
1023qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1024 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1025@end example
1026
ee0f4751
FB
1027Use @key{Ctrl-a c} to switch between the serial console and the
1028monitor (@pxref{pcsys_keys}).
1f673135 1029
debc7065 1030@node pcsys_usb
b389dbfb
FB
1031@section USB emulation
1032
0aff66b5
PB
1033QEMU emulates a PCI UHCI USB controller. You can virtually plug
1034virtual USB devices or real host USB devices (experimental, works only
1035on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1036as necessary to connect multiple USB devices.
b389dbfb 1037
0aff66b5
PB
1038@menu
1039* usb_devices::
1040* host_usb_devices::
1041@end menu
1042@node usb_devices
1043@subsection Connecting USB devices
b389dbfb 1044
0aff66b5
PB
1045USB devices can be connected with the @option{-usbdevice} commandline option
1046or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1047
db380c06
AZ
1048@table @code
1049@item mouse
0aff66b5 1050Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1051@item tablet
c6d46c20 1052Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1053This means qemu is able to report the mouse position without having
1054to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1055@item disk:@var{file}
0aff66b5 1056Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1057@item host:@var{bus.addr}
0aff66b5
PB
1058Pass through the host device identified by @var{bus.addr}
1059(Linux only)
db380c06 1060@item host:@var{vendor_id:product_id}
0aff66b5
PB
1061Pass through the host device identified by @var{vendor_id:product_id}
1062(Linux only)
db380c06 1063@item wacom-tablet
f6d2a316
AZ
1064Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1065above but it can be used with the tslib library because in addition to touch
1066coordinates it reports touch pressure.
db380c06 1067@item keyboard
47b2d338 1068Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1069@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1070Serial converter. This emulates an FTDI FT232BM chip connected to host character
1071device @var{dev}. The available character devices are the same as for the
1072@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 1073used to override the default 0403:6001. For instance,
db380c06
AZ
1074@example
1075usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1076@end example
1077will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1078serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1079@item braille
1080Braille device. This will use BrlAPI to display the braille output on a real
1081or fake device.
9ad97e65
AZ
1082@item net:@var{options}
1083Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1084specifies NIC options as with @code{-net nic,}@var{options} (see description).
1085For instance, user-mode networking can be used with
6c9f886c 1086@example
9ad97e65 1087qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1088@end example
1089Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1090@item bt[:@var{hci-type}]
1091Bluetooth dongle whose type is specified in the same format as with
1092the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1093no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1094This USB device implements the USB Transport Layer of HCI. Example
1095usage:
1096@example
1097qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1098@end example
0aff66b5 1099@end table
b389dbfb 1100
0aff66b5 1101@node host_usb_devices
b389dbfb
FB
1102@subsection Using host USB devices on a Linux host
1103
1104WARNING: this is an experimental feature. QEMU will slow down when
1105using it. USB devices requiring real time streaming (i.e. USB Video
1106Cameras) are not supported yet.
1107
1108@enumerate
5fafdf24 1109@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1110is actually using the USB device. A simple way to do that is simply to
1111disable the corresponding kernel module by renaming it from @file{mydriver.o}
1112to @file{mydriver.o.disabled}.
1113
1114@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1115@example
1116ls /proc/bus/usb
1117001 devices drivers
1118@end example
1119
1120@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1121@example
1122chown -R myuid /proc/bus/usb
1123@end example
1124
1125@item Launch QEMU and do in the monitor:
5fafdf24 1126@example
b389dbfb
FB
1127info usbhost
1128 Device 1.2, speed 480 Mb/s
1129 Class 00: USB device 1234:5678, USB DISK
1130@end example
1131You should see the list of the devices you can use (Never try to use
1132hubs, it won't work).
1133
1134@item Add the device in QEMU by using:
5fafdf24 1135@example
b389dbfb
FB
1136usb_add host:1234:5678
1137@end example
1138
1139Normally the guest OS should report that a new USB device is
1140plugged. You can use the option @option{-usbdevice} to do the same.
1141
1142@item Now you can try to use the host USB device in QEMU.
1143
1144@end enumerate
1145
1146When relaunching QEMU, you may have to unplug and plug again the USB
1147device to make it work again (this is a bug).
1148
f858dcae
TS
1149@node vnc_security
1150@section VNC security
1151
1152The VNC server capability provides access to the graphical console
1153of the guest VM across the network. This has a number of security
1154considerations depending on the deployment scenarios.
1155
1156@menu
1157* vnc_sec_none::
1158* vnc_sec_password::
1159* vnc_sec_certificate::
1160* vnc_sec_certificate_verify::
1161* vnc_sec_certificate_pw::
2f9606b3
AL
1162* vnc_sec_sasl::
1163* vnc_sec_certificate_sasl::
f858dcae 1164* vnc_generate_cert::
2f9606b3 1165* vnc_setup_sasl::
f858dcae
TS
1166@end menu
1167@node vnc_sec_none
1168@subsection Without passwords
1169
1170The simplest VNC server setup does not include any form of authentication.
1171For this setup it is recommended to restrict it to listen on a UNIX domain
1172socket only. For example
1173
1174@example
1175qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1176@end example
1177
1178This ensures that only users on local box with read/write access to that
1179path can access the VNC server. To securely access the VNC server from a
1180remote machine, a combination of netcat+ssh can be used to provide a secure
1181tunnel.
1182
1183@node vnc_sec_password
1184@subsection With passwords
1185
1186The VNC protocol has limited support for password based authentication. Since
1187the protocol limits passwords to 8 characters it should not be considered
1188to provide high security. The password can be fairly easily brute-forced by
1189a client making repeat connections. For this reason, a VNC server using password
1190authentication should be restricted to only listen on the loopback interface
34a3d239 1191or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
1192option, and then once QEMU is running the password is set with the monitor. Until
1193the monitor is used to set the password all clients will be rejected.
1194
1195@example
1196qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1197(qemu) change vnc password
1198Password: ********
1199(qemu)
1200@end example
1201
1202@node vnc_sec_certificate
1203@subsection With x509 certificates
1204
1205The QEMU VNC server also implements the VeNCrypt extension allowing use of
1206TLS for encryption of the session, and x509 certificates for authentication.
1207The use of x509 certificates is strongly recommended, because TLS on its
1208own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1209support provides a secure session, but no authentication. This allows any
1210client to connect, and provides an encrypted session.
1211
1212@example
1213qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1214@end example
1215
1216In the above example @code{/etc/pki/qemu} should contain at least three files,
1217@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1218users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1219NB the @code{server-key.pem} file should be protected with file mode 0600 to
1220only be readable by the user owning it.
1221
1222@node vnc_sec_certificate_verify
1223@subsection With x509 certificates and client verification
1224
1225Certificates can also provide a means to authenticate the client connecting.
1226The server will request that the client provide a certificate, which it will
1227then validate against the CA certificate. This is a good choice if deploying
1228in an environment with a private internal certificate authority.
1229
1230@example
1231qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1232@end example
1233
1234
1235@node vnc_sec_certificate_pw
1236@subsection With x509 certificates, client verification and passwords
1237
1238Finally, the previous method can be combined with VNC password authentication
1239to provide two layers of authentication for clients.
1240
1241@example
1242qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1243(qemu) change vnc password
1244Password: ********
1245(qemu)
1246@end example
1247
2f9606b3
AL
1248
1249@node vnc_sec_sasl
1250@subsection With SASL authentication
1251
1252The SASL authentication method is a VNC extension, that provides an
1253easily extendable, pluggable authentication method. This allows for
1254integration with a wide range of authentication mechanisms, such as
1255PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1256The strength of the authentication depends on the exact mechanism
1257configured. If the chosen mechanism also provides a SSF layer, then
1258it will encrypt the datastream as well.
1259
1260Refer to the later docs on how to choose the exact SASL mechanism
1261used for authentication, but assuming use of one supporting SSF,
1262then QEMU can be launched with:
1263
1264@example
1265qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1266@end example
1267
1268@node vnc_sec_certificate_sasl
1269@subsection With x509 certificates and SASL authentication
1270
1271If the desired SASL authentication mechanism does not supported
1272SSF layers, then it is strongly advised to run it in combination
1273with TLS and x509 certificates. This provides securely encrypted
1274data stream, avoiding risk of compromising of the security
1275credentials. This can be enabled, by combining the 'sasl' option
1276with the aforementioned TLS + x509 options:
1277
1278@example
1279qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1280@end example
1281
1282
f858dcae
TS
1283@node vnc_generate_cert
1284@subsection Generating certificates for VNC
1285
1286The GNU TLS packages provides a command called @code{certtool} which can
1287be used to generate certificates and keys in PEM format. At a minimum it
1288is neccessary to setup a certificate authority, and issue certificates to
1289each server. If using certificates for authentication, then each client
1290will also need to be issued a certificate. The recommendation is for the
1291server to keep its certificates in either @code{/etc/pki/qemu} or for
1292unprivileged users in @code{$HOME/.pki/qemu}.
1293
1294@menu
1295* vnc_generate_ca::
1296* vnc_generate_server::
1297* vnc_generate_client::
1298@end menu
1299@node vnc_generate_ca
1300@subsubsection Setup the Certificate Authority
1301
1302This step only needs to be performed once per organization / organizational
1303unit. First the CA needs a private key. This key must be kept VERY secret
1304and secure. If this key is compromised the entire trust chain of the certificates
1305issued with it is lost.
1306
1307@example
1308# certtool --generate-privkey > ca-key.pem
1309@end example
1310
1311A CA needs to have a public certificate. For simplicity it can be a self-signed
1312certificate, or one issue by a commercial certificate issuing authority. To
1313generate a self-signed certificate requires one core piece of information, the
1314name of the organization.
1315
1316@example
1317# cat > ca.info <<EOF
1318cn = Name of your organization
1319ca
1320cert_signing_key
1321EOF
1322# certtool --generate-self-signed \
1323 --load-privkey ca-key.pem
1324 --template ca.info \
1325 --outfile ca-cert.pem
1326@end example
1327
1328The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1329TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1330
1331@node vnc_generate_server
1332@subsubsection Issuing server certificates
1333
1334Each server (or host) needs to be issued with a key and certificate. When connecting
1335the certificate is sent to the client which validates it against the CA certificate.
1336The core piece of information for a server certificate is the hostname. This should
1337be the fully qualified hostname that the client will connect with, since the client
1338will typically also verify the hostname in the certificate. On the host holding the
1339secure CA private key:
1340
1341@example
1342# cat > server.info <<EOF
1343organization = Name of your organization
1344cn = server.foo.example.com
1345tls_www_server
1346encryption_key
1347signing_key
1348EOF
1349# certtool --generate-privkey > server-key.pem
1350# certtool --generate-certificate \
1351 --load-ca-certificate ca-cert.pem \
1352 --load-ca-privkey ca-key.pem \
1353 --load-privkey server server-key.pem \
1354 --template server.info \
1355 --outfile server-cert.pem
1356@end example
1357
1358The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1359to the server for which they were generated. The @code{server-key.pem} is security
1360sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1361
1362@node vnc_generate_client
1363@subsubsection Issuing client certificates
1364
1365If the QEMU VNC server is to use the @code{x509verify} option to validate client
1366certificates as its authentication mechanism, each client also needs to be issued
1367a certificate. The client certificate contains enough metadata to uniquely identify
1368the client, typically organization, state, city, building, etc. On the host holding
1369the secure CA private key:
1370
1371@example
1372# cat > client.info <<EOF
1373country = GB
1374state = London
1375locality = London
1376organiazation = Name of your organization
1377cn = client.foo.example.com
1378tls_www_client
1379encryption_key
1380signing_key
1381EOF
1382# certtool --generate-privkey > client-key.pem
1383# certtool --generate-certificate \
1384 --load-ca-certificate ca-cert.pem \
1385 --load-ca-privkey ca-key.pem \
1386 --load-privkey client-key.pem \
1387 --template client.info \
1388 --outfile client-cert.pem
1389@end example
1390
1391The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1392copied to the client for which they were generated.
1393
2f9606b3
AL
1394
1395@node vnc_setup_sasl
1396
1397@subsection Configuring SASL mechanisms
1398
1399The following documentation assumes use of the Cyrus SASL implementation on a
1400Linux host, but the principals should apply to any other SASL impl. When SASL
1401is enabled, the mechanism configuration will be loaded from system default
1402SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1403unprivileged user, an environment variable SASL_CONF_PATH can be used
1404to make it search alternate locations for the service config.
1405
1406The default configuration might contain
1407
1408@example
1409mech_list: digest-md5
1410sasldb_path: /etc/qemu/passwd.db
1411@end example
1412
1413This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1414Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1415in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1416command. While this mechanism is easy to configure and use, it is not
1417considered secure by modern standards, so only suitable for developers /
1418ad-hoc testing.
1419
1420A more serious deployment might use Kerberos, which is done with the 'gssapi'
1421mechanism
1422
1423@example
1424mech_list: gssapi
1425keytab: /etc/qemu/krb5.tab
1426@end example
1427
1428For this to work the administrator of your KDC must generate a Kerberos
1429principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1430replacing 'somehost.example.com' with the fully qualified host name of the
1431machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1432
1433Other configurations will be left as an exercise for the reader. It should
1434be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1435encryption. For all other mechanisms, VNC should always be configured to
1436use TLS and x509 certificates to protect security credentials from snooping.
1437
0806e3f6 1438@node gdb_usage
da415d54
FB
1439@section GDB usage
1440
1441QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1442'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1443
9d4520d0 1444In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1445gdb connection:
1446@example
debc7065
FB
1447> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1448 -append "root=/dev/hda"
da415d54
FB
1449Connected to host network interface: tun0
1450Waiting gdb connection on port 1234
1451@end example
1452
1453Then launch gdb on the 'vmlinux' executable:
1454@example
1455> gdb vmlinux
1456@end example
1457
1458In gdb, connect to QEMU:
1459@example
6c9bf893 1460(gdb) target remote localhost:1234
da415d54
FB
1461@end example
1462
1463Then you can use gdb normally. For example, type 'c' to launch the kernel:
1464@example
1465(gdb) c
1466@end example
1467
0806e3f6
FB
1468Here are some useful tips in order to use gdb on system code:
1469
1470@enumerate
1471@item
1472Use @code{info reg} to display all the CPU registers.
1473@item
1474Use @code{x/10i $eip} to display the code at the PC position.
1475@item
1476Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1477@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1478@end enumerate
1479
60897d36
EI
1480Advanced debugging options:
1481
1482The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1483@table @code
60897d36
EI
1484@item maintenance packet qqemu.sstepbits
1485
1486This will display the MASK bits used to control the single stepping IE:
1487@example
1488(gdb) maintenance packet qqemu.sstepbits
1489sending: "qqemu.sstepbits"
1490received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1491@end example
1492@item maintenance packet qqemu.sstep
1493
1494This will display the current value of the mask used when single stepping IE:
1495@example
1496(gdb) maintenance packet qqemu.sstep
1497sending: "qqemu.sstep"
1498received: "0x7"
1499@end example
1500@item maintenance packet Qqemu.sstep=HEX_VALUE
1501
1502This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1503@example
1504(gdb) maintenance packet Qqemu.sstep=0x5
1505sending: "qemu.sstep=0x5"
1506received: "OK"
1507@end example
94d45e44 1508@end table
60897d36 1509
debc7065 1510@node pcsys_os_specific
1a084f3d
FB
1511@section Target OS specific information
1512
1513@subsection Linux
1514
15a34c63
FB
1515To have access to SVGA graphic modes under X11, use the @code{vesa} or
1516the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1517color depth in the guest and the host OS.
1a084f3d 1518
e3371e62
FB
1519When using a 2.6 guest Linux kernel, you should add the option
1520@code{clock=pit} on the kernel command line because the 2.6 Linux
1521kernels make very strict real time clock checks by default that QEMU
1522cannot simulate exactly.
1523
7c3fc84d
FB
1524When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1525not activated because QEMU is slower with this patch. The QEMU
1526Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1527Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1528patch by default. Newer kernels don't have it.
1529
1a084f3d
FB
1530@subsection Windows
1531
1532If you have a slow host, using Windows 95 is better as it gives the
1533best speed. Windows 2000 is also a good choice.
1534
e3371e62
FB
1535@subsubsection SVGA graphic modes support
1536
1537QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1538card. All Windows versions starting from Windows 95 should recognize
1539and use this graphic card. For optimal performances, use 16 bit color
1540depth in the guest and the host OS.
1a084f3d 1541
3cb0853a
FB
1542If you are using Windows XP as guest OS and if you want to use high
1543resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
15441280x1024x16), then you should use the VESA VBE virtual graphic card
1545(option @option{-std-vga}).
1546
e3371e62
FB
1547@subsubsection CPU usage reduction
1548
1549Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1550instruction. The result is that it takes host CPU cycles even when
1551idle. You can install the utility from
1552@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1553problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1554
9d0a8e6f 1555@subsubsection Windows 2000 disk full problem
e3371e62 1556
9d0a8e6f
FB
1557Windows 2000 has a bug which gives a disk full problem during its
1558installation. When installing it, use the @option{-win2k-hack} QEMU
1559option to enable a specific workaround. After Windows 2000 is
1560installed, you no longer need this option (this option slows down the
1561IDE transfers).
e3371e62 1562
6cc721cf
FB
1563@subsubsection Windows 2000 shutdown
1564
1565Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1566can. It comes from the fact that Windows 2000 does not automatically
1567use the APM driver provided by the BIOS.
1568
1569In order to correct that, do the following (thanks to Struan
1570Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1571Add/Troubleshoot a device => Add a new device & Next => No, select the
1572hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1573(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1574correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1575
1576@subsubsection Share a directory between Unix and Windows
1577
1578See @ref{sec_invocation} about the help of the option @option{-smb}.
1579
2192c332 1580@subsubsection Windows XP security problem
e3371e62
FB
1581
1582Some releases of Windows XP install correctly but give a security
1583error when booting:
1584@example
1585A problem is preventing Windows from accurately checking the
1586license for this computer. Error code: 0x800703e6.
1587@end example
e3371e62 1588
2192c332
FB
1589The workaround is to install a service pack for XP after a boot in safe
1590mode. Then reboot, and the problem should go away. Since there is no
1591network while in safe mode, its recommended to download the full
1592installation of SP1 or SP2 and transfer that via an ISO or using the
1593vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1594
a0a821a4
FB
1595@subsection MS-DOS and FreeDOS
1596
1597@subsubsection CPU usage reduction
1598
1599DOS does not correctly use the CPU HLT instruction. The result is that
1600it takes host CPU cycles even when idle. You can install the utility
1601from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1602problem.
1603
debc7065 1604@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1605@chapter QEMU System emulator for non PC targets
1606
1607QEMU is a generic emulator and it emulates many non PC
1608machines. Most of the options are similar to the PC emulator. The
4be456f1 1609differences are mentioned in the following sections.
3f9f3aa1 1610
debc7065
FB
1611@menu
1612* QEMU PowerPC System emulator::
24d4de45
TS
1613* Sparc32 System emulator::
1614* Sparc64 System emulator::
1615* MIPS System emulator::
1616* ARM System emulator::
1617* ColdFire System emulator::
debc7065
FB
1618@end menu
1619
1620@node QEMU PowerPC System emulator
3f9f3aa1 1621@section QEMU PowerPC System emulator
1a084f3d 1622
15a34c63
FB
1623Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1624or PowerMac PowerPC system.
1a084f3d 1625
b671f9ed 1626QEMU emulates the following PowerMac peripherals:
1a084f3d 1627
15a34c63 1628@itemize @minus
5fafdf24 1629@item
006f3a48 1630UniNorth or Grackle PCI Bridge
15a34c63
FB
1631@item
1632PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1633@item
15a34c63 16342 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1635@item
15a34c63
FB
1636NE2000 PCI adapters
1637@item
1638Non Volatile RAM
1639@item
1640VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1641@end itemize
1642
b671f9ed 1643QEMU emulates the following PREP peripherals:
52c00a5f
FB
1644
1645@itemize @minus
5fafdf24 1646@item
15a34c63
FB
1647PCI Bridge
1648@item
1649PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1650@item
52c00a5f
FB
16512 IDE interfaces with hard disk and CD-ROM support
1652@item
1653Floppy disk
5fafdf24 1654@item
15a34c63 1655NE2000 network adapters
52c00a5f
FB
1656@item
1657Serial port
1658@item
1659PREP Non Volatile RAM
15a34c63
FB
1660@item
1661PC compatible keyboard and mouse.
52c00a5f
FB
1662@end itemize
1663
15a34c63 1664QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1665@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1666
992e5acd 1667Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1668for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1669v2) portable firmware implementation. The goal is to implement a 100%
1670IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1671
15a34c63
FB
1672@c man begin OPTIONS
1673
1674The following options are specific to the PowerPC emulation:
1675
1676@table @option
1677
3b46e624 1678@item -g WxH[xDEPTH]
15a34c63
FB
1679
1680Set the initial VGA graphic mode. The default is 800x600x15.
1681
95efd11c
BS
1682@item -prom-env string
1683
1684Set OpenBIOS variables in NVRAM, for example:
1685
1686@example
1687qemu-system-ppc -prom-env 'auto-boot?=false' \
1688 -prom-env 'boot-device=hd:2,\yaboot' \
1689 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1690@end example
1691
1692These variables are not used by Open Hack'Ware.
1693
15a34c63
FB
1694@end table
1695
5fafdf24 1696@c man end
15a34c63
FB
1697
1698
52c00a5f 1699More information is available at
3f9f3aa1 1700@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1701
24d4de45
TS
1702@node Sparc32 System emulator
1703@section Sparc32 System emulator
e80cfcfc 1704
34a3d239
BS
1705Use the executable @file{qemu-system-sparc} to simulate the following
1706Sun4m architecture machines:
1707@itemize @minus
1708@item
1709SPARCstation 4
1710@item
1711SPARCstation 5
1712@item
1713SPARCstation 10
1714@item
1715SPARCstation 20
1716@item
1717SPARCserver 600MP
1718@item
1719SPARCstation LX
1720@item
1721SPARCstation Voyager
1722@item
1723SPARCclassic
1724@item
1725SPARCbook
1726@end itemize
1727
1728The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1729but Linux limits the number of usable CPUs to 4.
e80cfcfc 1730
34a3d239
BS
1731It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1732SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1733emulators are not usable yet.
1734
1735QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1736
1737@itemize @minus
3475187d 1738@item
7d85892b 1739IOMMU or IO-UNITs
e80cfcfc
FB
1740@item
1741TCX Frame buffer
5fafdf24 1742@item
e80cfcfc
FB
1743Lance (Am7990) Ethernet
1744@item
34a3d239 1745Non Volatile RAM M48T02/M48T08
e80cfcfc 1746@item
3475187d
FB
1747Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1748and power/reset logic
1749@item
1750ESP SCSI controller with hard disk and CD-ROM support
1751@item
6a3b9cc9 1752Floppy drive (not on SS-600MP)
a2502b58
BS
1753@item
1754CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1755@end itemize
1756
6a3b9cc9
BS
1757The number of peripherals is fixed in the architecture. Maximum
1758memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1759others 2047MB.
3475187d 1760
30a604f3 1761Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1762@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1763firmware implementation. The goal is to implement a 100% IEEE
17641275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1765
1766A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1767the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1768some kernel versions work. Please note that currently Solaris kernels
1769don't work probably due to interface issues between OpenBIOS and
1770Solaris.
3475187d
FB
1771
1772@c man begin OPTIONS
1773
a2502b58 1774The following options are specific to the Sparc32 emulation:
3475187d
FB
1775
1776@table @option
1777
a2502b58 1778@item -g WxHx[xDEPTH]
3475187d 1779
a2502b58
BS
1780Set the initial TCX graphic mode. The default is 1024x768x8, currently
1781the only other possible mode is 1024x768x24.
3475187d 1782
66508601
BS
1783@item -prom-env string
1784
1785Set OpenBIOS variables in NVRAM, for example:
1786
1787@example
1788qemu-system-sparc -prom-env 'auto-boot?=false' \
1789 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1790@end example
1791
34a3d239 1792@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1793
1794Set the emulated machine type. Default is SS-5.
1795
3475187d
FB
1796@end table
1797
5fafdf24 1798@c man end
3475187d 1799
24d4de45
TS
1800@node Sparc64 System emulator
1801@section Sparc64 System emulator
e80cfcfc 1802
34a3d239
BS
1803Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1804(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1805Niagara (T1) machine. The emulator is not usable for anything yet, but
1806it can launch some kernels.
b756921a 1807
c7ba218d 1808QEMU emulates the following peripherals:
83469015
FB
1809
1810@itemize @minus
1811@item
5fafdf24 1812UltraSparc IIi APB PCI Bridge
83469015
FB
1813@item
1814PCI VGA compatible card with VESA Bochs Extensions
1815@item
34a3d239
BS
1816PS/2 mouse and keyboard
1817@item
83469015
FB
1818Non Volatile RAM M48T59
1819@item
1820PC-compatible serial ports
c7ba218d
BS
1821@item
18222 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1823@item
1824Floppy disk
83469015
FB
1825@end itemize
1826
c7ba218d
BS
1827@c man begin OPTIONS
1828
1829The following options are specific to the Sparc64 emulation:
1830
1831@table @option
1832
34a3d239
BS
1833@item -prom-env string
1834
1835Set OpenBIOS variables in NVRAM, for example:
1836
1837@example
1838qemu-system-sparc64 -prom-env 'auto-boot?=false'
1839@end example
1840
1841@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1842
1843Set the emulated machine type. The default is sun4u.
1844
1845@end table
1846
1847@c man end
1848
24d4de45
TS
1849@node MIPS System emulator
1850@section MIPS System emulator
9d0a8e6f 1851
d9aedc32
TS
1852Four executables cover simulation of 32 and 64-bit MIPS systems in
1853both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1854@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1855Five different machine types are emulated:
24d4de45
TS
1856
1857@itemize @minus
1858@item
1859A generic ISA PC-like machine "mips"
1860@item
1861The MIPS Malta prototype board "malta"
1862@item
d9aedc32 1863An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1864@item
f0fc6f8f 1865MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1866@item
1867A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1868@end itemize
1869
1870The generic emulation is supported by Debian 'Etch' and is able to
1871install Debian into a virtual disk image. The following devices are
1872emulated:
3f9f3aa1
FB
1873
1874@itemize @minus
5fafdf24 1875@item
6bf5b4e8 1876A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1877@item
1878PC style serial port
1879@item
24d4de45
TS
1880PC style IDE disk
1881@item
3f9f3aa1
FB
1882NE2000 network card
1883@end itemize
1884
24d4de45
TS
1885The Malta emulation supports the following devices:
1886
1887@itemize @minus
1888@item
0b64d008 1889Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1890@item
1891PIIX4 PCI/USB/SMbus controller
1892@item
1893The Multi-I/O chip's serial device
1894@item
1895PCnet32 PCI network card
1896@item
1897Malta FPGA serial device
1898@item
1f605a76 1899Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1900@end itemize
1901
1902The ACER Pica emulation supports:
1903
1904@itemize @minus
1905@item
1906MIPS R4000 CPU
1907@item
1908PC-style IRQ and DMA controllers
1909@item
1910PC Keyboard
1911@item
1912IDE controller
1913@end itemize
3f9f3aa1 1914
f0fc6f8f
TS
1915The mipssim pseudo board emulation provides an environment similiar
1916to what the proprietary MIPS emulator uses for running Linux.
1917It supports:
6bf5b4e8
TS
1918
1919@itemize @minus
1920@item
1921A range of MIPS CPUs, default is the 24Kf
1922@item
1923PC style serial port
1924@item
1925MIPSnet network emulation
1926@end itemize
1927
88cb0a02
AJ
1928The MIPS Magnum R4000 emulation supports:
1929
1930@itemize @minus
1931@item
1932MIPS R4000 CPU
1933@item
1934PC-style IRQ controller
1935@item
1936PC Keyboard
1937@item
1938SCSI controller
1939@item
1940G364 framebuffer
1941@end itemize
1942
1943
24d4de45
TS
1944@node ARM System emulator
1945@section ARM System emulator
3f9f3aa1
FB
1946
1947Use the executable @file{qemu-system-arm} to simulate a ARM
1948machine. The ARM Integrator/CP board is emulated with the following
1949devices:
1950
1951@itemize @minus
1952@item
9ee6e8bb 1953ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1954@item
1955Two PL011 UARTs
5fafdf24 1956@item
3f9f3aa1 1957SMC 91c111 Ethernet adapter
00a9bf19
PB
1958@item
1959PL110 LCD controller
1960@item
1961PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1962@item
1963PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1964@end itemize
1965
1966The ARM Versatile baseboard is emulated with the following devices:
1967
1968@itemize @minus
1969@item
9ee6e8bb 1970ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1971@item
1972PL190 Vectored Interrupt Controller
1973@item
1974Four PL011 UARTs
5fafdf24 1975@item
00a9bf19
PB
1976SMC 91c111 Ethernet adapter
1977@item
1978PL110 LCD controller
1979@item
1980PL050 KMI with PS/2 keyboard and mouse.
1981@item
1982PCI host bridge. Note the emulated PCI bridge only provides access to
1983PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1984This means some devices (eg. ne2k_pci NIC) are not usable, and others
1985(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1986mapped control registers.
e6de1bad
PB
1987@item
1988PCI OHCI USB controller.
1989@item
1990LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1991@item
1992PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1993@end itemize
1994
d7739d75
PB
1995The ARM RealView Emulation baseboard is emulated with the following devices:
1996
1997@itemize @minus
1998@item
9ee6e8bb 1999ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
2000@item
2001ARM AMBA Generic/Distributed Interrupt Controller
2002@item
2003Four PL011 UARTs
5fafdf24 2004@item
d7739d75
PB
2005SMC 91c111 Ethernet adapter
2006@item
2007PL110 LCD controller
2008@item
2009PL050 KMI with PS/2 keyboard and mouse
2010@item
2011PCI host bridge
2012@item
2013PCI OHCI USB controller
2014@item
2015LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2016@item
2017PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2018@end itemize
2019
b00052e4
AZ
2020The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2021and "Terrier") emulation includes the following peripherals:
2022
2023@itemize @minus
2024@item
2025Intel PXA270 System-on-chip (ARM V5TE core)
2026@item
2027NAND Flash memory
2028@item
2029IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2030@item
2031On-chip OHCI USB controller
2032@item
2033On-chip LCD controller
2034@item
2035On-chip Real Time Clock
2036@item
2037TI ADS7846 touchscreen controller on SSP bus
2038@item
2039Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2040@item
2041GPIO-connected keyboard controller and LEDs
2042@item
549444e1 2043Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2044@item
2045Three on-chip UARTs
2046@item
2047WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2048@end itemize
2049
02645926
AZ
2050The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2051following elements:
2052
2053@itemize @minus
2054@item
2055Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2056@item
2057ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2058@item
2059On-chip LCD controller
2060@item
2061On-chip Real Time Clock
2062@item
2063TI TSC2102i touchscreen controller / analog-digital converter / Audio
2064CODEC, connected through MicroWire and I@math{^2}S busses
2065@item
2066GPIO-connected matrix keypad
2067@item
2068Secure Digital card connected to OMAP MMC/SD host
2069@item
2070Three on-chip UARTs
2071@end itemize
2072
c30bb264
AZ
2073Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2074emulation supports the following elements:
2075
2076@itemize @minus
2077@item
2078Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2079@item
2080RAM and non-volatile OneNAND Flash memories
2081@item
2082Display connected to EPSON remote framebuffer chip and OMAP on-chip
2083display controller and a LS041y3 MIPI DBI-C controller
2084@item
2085TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2086driven through SPI bus
2087@item
2088National Semiconductor LM8323-controlled qwerty keyboard driven
2089through I@math{^2}C bus
2090@item
2091Secure Digital card connected to OMAP MMC/SD host
2092@item
2093Three OMAP on-chip UARTs and on-chip STI debugging console
2094@item
2d564691
AZ
2095A Bluetooth(R) transciever and HCI connected to an UART
2096@item
c30bb264
AZ
2097Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2098TUSB6010 chip - only USB host mode is supported
2099@item
2100TI TMP105 temperature sensor driven through I@math{^2}C bus
2101@item
2102TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2103@item
2104Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2105through CBUS
2106@end itemize
2107
9ee6e8bb
PB
2108The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2109devices:
2110
2111@itemize @minus
2112@item
2113Cortex-M3 CPU core.
2114@item
211564k Flash and 8k SRAM.
2116@item
2117Timers, UARTs, ADC and I@math{^2}C interface.
2118@item
2119OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2120@end itemize
2121
2122The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2123devices:
2124
2125@itemize @minus
2126@item
2127Cortex-M3 CPU core.
2128@item
2129256k Flash and 64k SRAM.
2130@item
2131Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2132@item
2133OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2134@end itemize
2135
57cd6e97
AZ
2136The Freecom MusicPal internet radio emulation includes the following
2137elements:
2138
2139@itemize @minus
2140@item
2141Marvell MV88W8618 ARM core.
2142@item
214332 MB RAM, 256 KB SRAM, 8 MB flash.
2144@item
2145Up to 2 16550 UARTs
2146@item
2147MV88W8xx8 Ethernet controller
2148@item
2149MV88W8618 audio controller, WM8750 CODEC and mixer
2150@item
2151