]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Fix texinfo syntax errors.
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
d45952a0 75@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
ef4c3856 84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
52c00a5f 94@end itemize
386405f7 95
d9aedc32 96For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 97
debc7065 98@node Installation
5b9f457a
FB
99@chapter Installation
100
15a34c63
FB
101If you want to compile QEMU yourself, see @ref{compilation}.
102
debc7065
FB
103@menu
104* install_linux:: Linux
105* install_windows:: Windows
106* install_mac:: Macintosh
107@end menu
108
109@node install_linux
1f673135
FB
110@section Linux
111
7c3fc84d
FB
112If a precompiled package is available for your distribution - you just
113have to install it. Otherwise, see @ref{compilation}.
5b9f457a 114
debc7065 115@node install_windows
1f673135 116@section Windows
8cd0ac2f 117
15a34c63 118Download the experimental binary installer at
debc7065 119@url{http://www.free.oszoo.org/@/download.html}.
d691f669 120
debc7065 121@node install_mac
1f673135 122@section Mac OS X
d691f669 123
15a34c63 124Download the experimental binary installer at
debc7065 125@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 126
debc7065 127@node QEMU PC System emulator
3f9f3aa1 128@chapter QEMU PC System emulator
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
134* pcsys_keys:: Keys
135* pcsys_monitor:: QEMU Monitor
136* disk_images:: Disk Images
137* pcsys_network:: Network emulation
138* direct_linux_boot:: Direct Linux Boot
139* pcsys_usb:: USB emulation
f858dcae 140* vnc_security:: VNC security
debc7065
FB
141* gdb_usage:: GDB usage
142* pcsys_os_specific:: Target OS specific information
143@end menu
144
145@node pcsys_introduction
0806e3f6
FB
146@section Introduction
147
148@c man begin DESCRIPTION
149
3f9f3aa1
FB
150The QEMU PC System emulator simulates the
151following peripherals:
0806e3f6
FB
152
153@itemize @minus
5fafdf24 154@item
15a34c63 155i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 156@item
15a34c63
FB
157Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158extensions (hardware level, including all non standard modes).
0806e3f6
FB
159@item
160PS/2 mouse and keyboard
5fafdf24 161@item
15a34c63 1622 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
163@item
164Floppy disk
5fafdf24 165@item
c4a7060c 166PCI/ISA PCI network adapters
0806e3f6 167@item
05d5818c
FB
168Serial ports
169@item
c0fe3827
FB
170Creative SoundBlaster 16 sound card
171@item
172ENSONIQ AudioPCI ES1370 sound card
173@item
e5c9a13e
AZ
174Intel 82801AA AC97 Audio compatible sound card
175@item
c0fe3827 176Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 177@item
26463dbc
AZ
178Gravis Ultrasound GF1 sound card
179@item
cc53d26d 180CS4231A compatible sound card
181@item
b389dbfb 182PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
183@end itemize
184
3f9f3aa1
FB
185SMP is supported with up to 255 CPUs.
186
1d1f8c33 187Note that adlib, gus and cs4231a are only available when QEMU was
188configured with --audio-card-list option containing the name(s) of
e5178e8d 189required card(s).
c0fe3827 190
15a34c63
FB
191QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192VGA BIOS.
193
c0fe3827
FB
194QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195
26463dbc
AZ
196QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197by Tibor "TS" Schütz.
423d65f4 198
cc53d26d 199CS4231A is the chip used in Windows Sound System and GUSMAX products
200
0806e3f6
FB
201@c man end
202
debc7065 203@node pcsys_quickstart
1eb20527
FB
204@section Quick Start
205
285dc330 206Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
207
208@example
285dc330 209qemu linux.img
0806e3f6
FB
210@end example
211
212Linux should boot and give you a prompt.
213
6cc721cf 214@node sec_invocation
ec410fc9
FB
215@section Invocation
216
217@example
0806e3f6 218@c man begin SYNOPSIS
89dfe898 219usage: qemu [options] [@var{disk_image}]
0806e3f6 220@c man end
ec410fc9
FB
221@end example
222
0806e3f6 223@c man begin OPTIONS
d2c639d6
BS
224@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225targets do not need a disk image.
ec410fc9
FB
226
227General options:
228@table @option
d2c639d6
BS
229@item -h
230Display help and exit
231
89dfe898
TS
232@item -M @var{machine}
233Select the emulated @var{machine} (@code{-M ?} for list)
3dbbdc25 234
d2c639d6
BS
235@item -cpu @var{model}
236Select CPU model (-cpu ? for list and additional feature selection)
237
238@item -smp @var{n}
239Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241to 4.
242
89dfe898
TS
243@item -fda @var{file}
244@item -fdb @var{file}
debc7065 245Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
19cb3738 246use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
2be3bc02 247
89dfe898
TS
248@item -hda @var{file}
249@item -hdb @var{file}
250@item -hdc @var{file}
251@item -hdd @var{file}
debc7065 252Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
1f47a922 253
89dfe898
TS
254@item -cdrom @var{file}
255Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
be3edd95 256@option{-cdrom} at the same time). You can use the host CD-ROM by
19cb3738 257using @file{/dev/cdrom} as filename (@pxref{host_drives}).
181f1558 258
e0e7ada1
AZ
259@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260
261Define a new drive. Valid options are:
262
263@table @code
264@item file=@var{file}
265This option defines which disk image (@pxref{disk_images}) to use with
609497ab
AZ
266this drive. If the filename contains comma, you must double it
267(for instance, "file=my,,file" to use file "my,file").
e0e7ada1
AZ
268@item if=@var{interface}
269This option defines on which type on interface the drive is connected.
6e02c38d 270Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
e0e7ada1
AZ
271@item bus=@var{bus},unit=@var{unit}
272These options define where is connected the drive by defining the bus number and
273the unit id.
274@item index=@var{index}
275This option defines where is connected the drive by using an index in the list
276of available connectors of a given interface type.
277@item media=@var{media}
278This option defines the type of the media: disk or cdrom.
279@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280These options have the same definition as they have in @option{-hdachs}.
281@item snapshot=@var{snapshot}
282@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
33f00271 283@item cache=@var{cache}
9f7965c7 284@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
1e72d3b7
AJ
285@item format=@var{format}
286Specify which disk @var{format} will be used rather than detecting
287the format. Can be used to specifiy format=raw to avoid interpreting
288an untrusted format header.
fa879c64
AL
289@item serial=@var{serial}
290This option specifies the serial number to assign to the device.
e0e7ada1
AZ
291@end table
292
9f7965c7
AL
293By default, writethrough caching is used for all block device. This means that
294the host page cache will be used to read and write data but write notification
295will be sent to the guest only when the data has been reported as written by
296the storage subsystem.
297
298Writeback caching will report data writes as completed as soon as the data is
299present in the host page cache. This is safe as long as you trust your host.
300If your host crashes or loses power, then the guest may experience data
301corruption. When using the @option{-snapshot} option, writeback caching is
302used by default.
303
304The host page can be avoided entirely with @option{cache=none}. This will
305attempt to do disk IO directly to the guests memory. QEMU may still perform
306an internal copy of the data.
307
4dc822d7
AL
308Some block drivers perform badly with @option{cache=writethrough}, most notably,
309qcow2. If performance is more important than correctness,
310@option{cache=writeback} should be used with qcow2. By default, if no explicit
311caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312used. For all other disk types, @option{cache=writethrough} is the default.
313
e0e7ada1
AZ
314Instead of @option{-cdrom} you can use:
315@example
316qemu -drive file=file,index=2,media=cdrom
317@end example
318
319Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320use:
321@example
322qemu -drive file=file,index=0,media=disk
323qemu -drive file=file,index=1,media=disk
324qemu -drive file=file,index=2,media=disk
325qemu -drive file=file,index=3,media=disk
326@end example
327
328You can connect a CDROM to the slave of ide0:
329@example
330qemu -drive file=file,if=ide,index=1,media=cdrom
331@end example
332
333If you don't specify the "file=" argument, you define an empty drive:
334@example
335qemu -drive if=ide,index=1,media=cdrom
336@end example
337
338You can connect a SCSI disk with unit ID 6 on the bus #0:
339@example
340qemu -drive file=file,if=scsi,bus=0,unit=6
341@end example
342
343Instead of @option{-fda}, @option{-fdb}, you can use:
344@example
345qemu -drive file=file,index=0,if=floppy
346qemu -drive file=file,index=1,if=floppy
347@end example
348
349By default, @var{interface} is "ide" and @var{index} is automatically
350incremented:
351@example
352qemu -drive file=a -drive file=b"
353@end example
354is interpreted like:
355@example
356qemu -hda a -hdb b
357@end example
358
d2c639d6
BS
359@item -mtdblock file
360Use 'file' as on-board Flash memory image.
361
362@item -sd file
363Use 'file' as SecureDigital card image.
364
365@item -pflash file
366Use 'file' as a parallel flash image.
367
eec85c2a
TS
368@item -boot [a|c|d|n]
369Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370is the default.
1f47a922 371
181f1558 372@item -snapshot
1f47a922
FB
373Write to temporary files instead of disk image files. In this case,
374the raw disk image you use is not written back. You can however force
42550fde 375the write back by pressing @key{C-a s} (@pxref{disk_images}).
ec410fc9 376
89dfe898 377@item -m @var{megs}
00f82b8a
AJ
378Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
379a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380gigabytes respectively.
ec410fc9 381
d2c639d6 382@item -k @var{language}
34a3d239 383
d2c639d6
BS
384Use keyboard layout @var{language} (for example @code{fr} for
385French). This option is only needed where it is not easy to get raw PC
386keycodes (e.g. on Macs, with some X11 servers or with a VNC
387display). You don't normally need to use it on PC/Linux or PC/Windows
388hosts.
389
390The available layouts are:
391@example
392ar de-ch es fo fr-ca hu ja mk no pt-br sv
393da en-gb et fr fr-ch is lt nl pl ru th
394de en-us fi fr-be hr it lv nl-be pt sl tr
395@end example
396
397The default is @code{en-us}.
3f9f3aa1 398
1d14ffa9
FB
399@item -audio-help
400
401Will show the audio subsystem help: list of drivers, tunable
402parameters.
403
89dfe898 404@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
1d14ffa9
FB
405
406Enable audio and selected sound hardware. Use ? to print all
407available sound hardware.
408
409@example
9b3469cc 410qemu -soundhw sb16,adlib disk.img
411qemu -soundhw es1370 disk.img
412qemu -soundhw ac97 disk.img
413qemu -soundhw all disk.img
1d14ffa9
FB
414qemu -soundhw ?
415@end example
a8c490cd 416
e5c9a13e
AZ
417Note that Linux's i810_audio OSS kernel (for AC97) module might
418require manually specifying clocking.
419
420@example
421modprobe i810_audio clocking=48000
422@end example
423
d2c639d6 424@end table
15a34c63 425
d2c639d6
BS
426USB options:
427@table @option
7e0af5d0 428
d2c639d6
BS
429@item -usb
430Enable the USB driver (will be the default soon)
f7cce898 431
d2c639d6
BS
432@item -usbdevice @var{devname}
433Add the USB device @var{devname}. @xref{usb_devices}.
71e3ceb8 434
d2c639d6 435@table @code
9d0a8e6f 436
d2c639d6
BS
437@item mouse
438Virtual Mouse. This will override the PS/2 mouse emulation when activated.
73822ec8 439
d2c639d6
BS
440@item tablet
441Pointer device that uses absolute coordinates (like a touchscreen). This
442means qemu is able to report the mouse position without having to grab the
443mouse. Also overrides the PS/2 mouse emulation when activated.
444
445@item disk:[format=@var{format}]:file
446Mass storage device based on file. The optional @var{format} argument
447will be used rather than detecting the format. Can be used to specifiy
448format=raw to avoid interpreting an untrusted format header.
449
450@item host:bus.addr
451Pass through the host device identified by bus.addr (Linux only).
452
453@item host:vendor_id:product_id
454Pass through the host device identified by vendor_id:product_id (Linux only).
455
456@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457Serial converter to host character device @var{dev}, see @code{-serial} for the
458available devices.
459
460@item braille
461Braille device. This will use BrlAPI to display the braille output on a real
462or fake device.
463
464@item net:options
465Network adapter that supports CDC ethernet and RNDIS protocols.
466
467@end table
9ae02555 468
89dfe898
TS
469@item -name @var{name}
470Sets the @var{name} of the guest.
1addc7c5 471This name will be displayed in the SDL window caption.
89dfe898 472The @var{name} will also be used for the VNC server.
c35734b2 473
d2c639d6
BS
474@item -uuid @var{uuid}
475Set system UUID.
476
0806e3f6
FB
477@end table
478
f858dcae
TS
479Display options:
480@table @option
481
482@item -nographic
483
484Normally, QEMU uses SDL to display the VGA output. With this option,
485you can totally disable graphical output so that QEMU is a simple
486command line application. The emulated serial port is redirected on
487the console. Therefore, you can still use QEMU to debug a Linux kernel
488with a serial console.
489
052caf70
AJ
490@item -curses
491
492Normally, QEMU uses SDL to display the VGA output. With this option,
493QEMU can display the VGA output when in text mode using a
494curses/ncurses interface. Nothing is displayed in graphical mode.
495
f858dcae
TS
496@item -no-frame
497
498Do not use decorations for SDL windows and start them using the whole
499available screen space. This makes the using QEMU in a dedicated desktop
500workspace more convenient.
501
d2c639d6
BS
502@item -alt-grab
503
504Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505
99aa9e4c
AJ
506@item -no-quit
507
508Disable SDL window close capability.
509
d2c639d6
BS
510@item -sdl
511
512Enable SDL.
513
514@item -portrait
515
516Rotate graphical output 90 deg left (only PXA LCD).
517
518@item -vga @var{type}
519Select type of VGA card to emulate. Valid values for @var{type} are
520@table @code
521@item cirrus
522Cirrus Logic GD5446 Video card. All Windows versions starting from
523Windows 95 should recognize and use this graphic card. For optimal
524performances, use 16 bit color depth in the guest and the host OS.
525(This one is the default)
526@item std
527Standard VGA card with Bochs VBE extensions. If your guest OS
528supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529to use high resolution modes (>= 1280x1024x16) then you should use
530this option.
531@item vmware
532VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533recent XFree86/XOrg server or Windows guest with a driver for this
534card.
535@item none
536Disable VGA card.
537@end table
538
f858dcae
TS
539@item -full-screen
540Start in full screen.
541
89dfe898 542@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
f858dcae
TS
543
544Normally, QEMU uses SDL to display the VGA output. With this option,
545you can have QEMU listen on VNC display @var{display} and redirect the VGA
546display over the VNC session. It is very useful to enable the usb
547tablet device when using this option (option @option{-usbdevice
548tablet}). When using the VNC display, you must use the @option{-k}
549parameter to set the keyboard layout if you are not using en-us. Valid
550syntax for the @var{display} is
551
552@table @code
553
3aa3eea3 554@item @var{host}:@var{d}
f858dcae 555
3aa3eea3
AZ
556TCP connections will only be allowed from @var{host} on display @var{d}.
557By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558be omitted in which case the server will accept connections from any host.
f858dcae 559
3aa3eea3 560@item @code{unix}:@var{path}
f858dcae
TS
561
562Connections will be allowed over UNIX domain sockets where @var{path} is the
563location of a unix socket to listen for connections on.
564
89dfe898 565@item none
f858dcae 566
3aa3eea3
AZ
567VNC is initialized but not started. The monitor @code{change} command
568can be used to later start the VNC server.
f858dcae
TS
569
570@end table
571
572Following the @var{display} value there may be one or more @var{option} flags
573separated by commas. Valid options are
574
575@table @code
576
3aa3eea3
AZ
577@item reverse
578
579Connect to a listening VNC client via a ``reverse'' connection. The
580client is specified by the @var{display}. For reverse network
581connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582is a TCP port number, not a display number.
583
89dfe898 584@item password
f858dcae
TS
585
586Require that password based authentication is used for client connections.
587The password must be set separately using the @code{change} command in the
588@ref{pcsys_monitor}
589
89dfe898 590@item tls
f858dcae
TS
591
592Require that client use TLS when communicating with the VNC server. This
593uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594attack. It is recommended that this option be combined with either the
595@var{x509} or @var{x509verify} options.
596
89dfe898 597@item x509=@var{/path/to/certificate/dir}
f858dcae 598
89dfe898 599Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
600for negotiating the TLS session. The server will send its x509 certificate
601to the client. It is recommended that a password be set on the VNC server
602to provide authentication of the client when this is used. The path following
603this option specifies where the x509 certificates are to be loaded from.
604See the @ref{vnc_security} section for details on generating certificates.
605
89dfe898 606@item x509verify=@var{/path/to/certificate/dir}
f858dcae 607
89dfe898 608Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
609for negotiating the TLS session. The server will send its x509 certificate
610to the client, and request that the client send its own x509 certificate.
611The server will validate the client's certificate against the CA certificate,
612and reject clients when validation fails. If the certificate authority is
613trusted, this is a sufficient authentication mechanism. You may still wish
614to set a password on the VNC server as a second authentication layer. The
615path following this option specifies where the x509 certificates are to
616be loaded from. See the @ref{vnc_security} section for details on generating
617certificates.
618
2f9606b3
AL
619@item sasl
620
621Require that the client use SASL to authenticate with the VNC server.
622The exact choice of authentication method used is controlled from the
623system / user's SASL configuration file for the 'qemu' service. This
624is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
625unprivileged user, an environment variable SASL_CONF_PATH can be used
626to make it search alternate locations for the service config.
627While some SASL auth methods can also provide data encryption (eg GSSAPI),
628it is recommended that SASL always be combined with the 'tls' and
629'x509' settings to enable use of SSL and server certificates. This
630ensures a data encryption preventing compromise of authentication
631credentials. See the @ref{vnc_security} section for details on using
632SASL authentication.
633
76655d6d
AL
634@item acl
635
636Turn on access control lists for checking of the x509 client certificate
637and SASL party. For x509 certs, the ACL check is made against the
638certificate's distinguished name. This is something that looks like
639@code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
640made against the username, which depending on the SASL plugin, may
9e995645 641include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
76655d6d
AL
642When the @option{acl} flag is set, the initial access list will be
643empty, with a @code{deny} policy. Thus no one will be allowed to
644use the VNC server until the ACLs have been loaded. This can be
645achieved using the @code{acl} monitor command.
646
f858dcae
TS
647@end table
648
b389dbfb
FB
649@end table
650
1f673135
FB
651Network options:
652
653@table @option
654
7a9f6e4a 655@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
41d03949 656Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
c4a7060c 657= 0 is the default). The NIC is an ne2k_pci by default on the PC
7a9f6e4a
AL
658target. Optionally, the MAC address can be changed to @var{addr}
659and a @var{name} can be assigned for use in monitor commands. If no
41d03949 660@option{-net} option is specified, a single NIC is created.
549444e1
AZ
661Qemu can emulate several different models of network card.
662Valid values for @var{type} are
663@code{i82551}, @code{i82557b}, @code{i82559er},
664@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
9ad97e65 665@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
c4a7060c
BS
666Not all devices are supported on all targets. Use -net nic,model=?
667for a list of available devices for your target.
41d03949 668
7a9f6e4a 669@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
7e89463d 670Use the user mode network stack which requires no administrator
4be456f1 671privilege to run. @option{hostname=name} can be used to specify the client
115defd1 672hostname reported by the builtin DHCP server.
41d03949 673
8ca9217d
AL
674@item -net channel,@var{port}:@var{dev}
675Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
676
7a9f6e4a 677@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
030370a2
AJ
678Connect the host TAP network interface @var{name} to VLAN @var{n}, use
679the network script @var{file} to configure it and the network script
680@var{dfile} to deconfigure it. If @var{name} is not provided, the OS
681automatically provides one. @option{fd}=@var{h} can be used to specify
682the handle of an already opened host TAP interface. The default network
683configure script is @file{/etc/qemu-ifup} and the default network
684deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
685or @option{downscript=no} to disable script execution. Example:
1f673135 686
41d03949
FB
687@example
688qemu linux.img -net nic -net tap
689@end example
690
691More complicated example (two NICs, each one connected to a TAP device)
692@example
693qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
694 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
695@end example
3f1a88f4 696
3f1a88f4 697
7a9f6e4a 698@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1f673135 699
41d03949
FB
700Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
701machine using a TCP socket connection. If @option{listen} is
702specified, QEMU waits for incoming connections on @var{port}
703(@var{host} is optional). @option{connect} is used to connect to
89dfe898 704another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
3d830459 705specifies an already opened TCP socket.
1f673135 706
41d03949
FB
707Example:
708@example
709# launch a first QEMU instance
debc7065
FB
710qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
711 -net socket,listen=:1234
712# connect the VLAN 0 of this instance to the VLAN 0
713# of the first instance
714qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
715 -net socket,connect=127.0.0.1:1234
41d03949 716@end example
52c00a5f 717
7a9f6e4a 718@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
3d830459
FB
719
720Create a VLAN @var{n} shared with another QEMU virtual
5fafdf24 721machines using a UDP multicast socket, effectively making a bus for
3d830459
FB
722every QEMU with same multicast address @var{maddr} and @var{port}.
723NOTES:
724@enumerate
5fafdf24
TS
725@item
726Several QEMU can be running on different hosts and share same bus (assuming
3d830459
FB
727correct multicast setup for these hosts).
728@item
729mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
730@url{http://user-mode-linux.sf.net}.
4be456f1
TS
731@item
732Use @option{fd=h} to specify an already opened UDP multicast socket.
3d830459
FB
733@end enumerate
734
735Example:
736@example
737# launch one QEMU instance
debc7065
FB
738qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
739 -net socket,mcast=230.0.0.1:1234
3d830459 740# launch another QEMU instance on same "bus"
debc7065
FB
741qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
742 -net socket,mcast=230.0.0.1:1234
3d830459 743# launch yet another QEMU instance on same "bus"
debc7065
FB
744qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
745 -net socket,mcast=230.0.0.1:1234
3d830459
FB
746@end example
747
748Example (User Mode Linux compat.):
749@example
debc7065
FB
750# launch QEMU instance (note mcast address selected
751# is UML's default)
752qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
753 -net socket,mcast=239.192.168.1:1102
3d830459
FB
754# launch UML
755/path/to/linux ubd0=/path/to/root_fs eth0=mcast
756@end example
8a16d273 757
7a9f6e4a 758@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
8a16d273
TS
759Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
760listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
761and MODE @var{octalmode} to change default ownership and permissions for
762communication port. This option is available only if QEMU has been compiled
763with vde support enabled.
764
765Example:
766@example
767# launch vde switch
768vde_switch -F -sock /tmp/myswitch
769# launch QEMU instance
770qemu linux.img -net nic -net vde,sock=/tmp/myswitch
771@end example
3d830459 772
41d03949
FB
773@item -net none
774Indicate that no network devices should be configured. It is used to
039af320
FB
775override the default configuration (@option{-net nic -net user}) which
776is activated if no @option{-net} options are provided.
52c00a5f 777
89dfe898 778@item -tftp @var{dir}
9bf05444 779When using the user mode network stack, activate a built-in TFTP
0db1137d
TS
780server. The files in @var{dir} will be exposed as the root of a TFTP server.
781The TFTP client on the guest must be configured in binary mode (use the command
782@code{bin} of the Unix TFTP client). The host IP address on the guest is as
783usual 10.0.2.2.
9bf05444 784
89dfe898 785@item -bootp @var{file}
47d5d01a
TS
786When using the user mode network stack, broadcast @var{file} as the BOOTP
787filename. In conjunction with @option{-tftp}, this can be used to network boot
788a guest from a local directory.
789
790Example (using pxelinux):
791@example
792qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
793@end example
794
89dfe898 795@item -smb @var{dir}
2518bd0d 796When using the user mode network stack, activate a built-in SMB
89dfe898 797server so that Windows OSes can access to the host files in @file{@var{dir}}
2518bd0d
FB
798transparently.
799
800In the guest Windows OS, the line:
801@example
80210.0.2.4 smbserver
803@end example
804must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
805or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
806
89dfe898 807Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2518bd0d
FB
808
809Note that a SAMBA server must be installed on the host OS in
366dfc52 810@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6cc721cf 8112.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
2518bd0d 812
89dfe898 813@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
9bf05444
FB
814
815When using the user mode network stack, redirect incoming TCP or UDP
816connections to the host port @var{host-port} to the guest
817@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
818is not specified, its value is 10.0.2.15 (default address given by the
819built-in DHCP server).
820
821For example, to redirect host X11 connection from screen 1 to guest
822screen 0, use the following:
823
824@example
825# on the host
826qemu -redir tcp:6001::6000 [...]
827# this host xterm should open in the guest X11 server
828xterm -display :1
829@end example
830
831To redirect telnet connections from host port 5555 to telnet port on
832the guest, use the following:
833
834@example
835# on the host
836qemu -redir tcp:5555::23 [...]
837telnet localhost 5555
838@end example
839
840Then when you use on the host @code{telnet localhost 5555}, you
841connect to the guest telnet server.
842
1f673135
FB
843@end table
844
2d564691
AZ
845Bluetooth(R) options:
846@table @option
847
848@item -bt hci[...]
849Defines the function of the corresponding Bluetooth HCI. -bt options
850are matched with the HCIs present in the chosen machine type. For
851example when emulating a machine with only one HCI built into it, only
852the first @code{-bt hci[...]} option is valid and defines the HCI's
853logic. The Transport Layer is decided by the machine type. Currently
854the machines @code{n800} and @code{n810} have one HCI and all other
855machines have none.
856
857@anchor{bt-hcis}
858The following three types are recognized:
859
860@table @code
861@item -bt hci,null
862(default) The corresponding Bluetooth HCI assumes no internal logic
863and will not respond to any HCI commands or emit events.
864
865@item -bt hci,host[:@var{id}]
866(@code{bluez} only) The corresponding HCI passes commands / events
867to / from the physical HCI identified by the name @var{id} (default:
868@code{hci0}) on the computer running QEMU. Only available on @code{bluez}
869capable systems like Linux.
870
871@item -bt hci[,vlan=@var{n}]
872Add a virtual, standard HCI that will participate in the Bluetooth
873scatternet @var{n} (default @code{0}). Similarly to @option{-net}
874VLANs, devices inside a bluetooth network @var{n} can only communicate
875with other devices in the same network (scatternet).
876@end table
877
878@item -bt vhci[,vlan=@var{n}]
879(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
880to the host bluetooth stack instead of to the emulated target. This
881allows the host and target machines to participate in a common scatternet
882and communicate. Requires the Linux @code{vhci} driver installed. Can
883be used as following:
884
885@example
886qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
887@end example
888
889@item -bt device:@var{dev}[,vlan=@var{n}]
890Emulate a bluetooth device @var{dev} and place it in network @var{n}
891(default @code{0}). QEMU can only emulate one type of bluetooth devices
892currently:
893
894@table @code
895@item keyboard
896Virtual wireless keyboard implementing the HIDP bluetooth profile.
897@end table
898
899@end table
900
d2c639d6
BS
901i386 target only:
902
903@table @option
904
905@item -win2k-hack
906Use it when installing Windows 2000 to avoid a disk full bug. After
907Windows 2000 is installed, you no longer need this option (this option
908slows down the IDE transfers).
909
910@item -rtc-td-hack
911Use it if you experience time drift problem in Windows with ACPI HAL.
912This option will try to figure out how many timer interrupts were not
913processed by the Windows guest and will re-inject them.
914
915@item -no-fd-bootchk
916Disable boot signature checking for floppy disks in Bochs BIOS. It may
917be needed to boot from old floppy disks.
918
919@item -no-acpi
920Disable ACPI (Advanced Configuration and Power Interface) support. Use
921it if your guest OS complains about ACPI problems (PC target machine
922only).
923
924@item -no-hpet
925Disable HPET support.
926
8a92ea2f
AL
927@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
928Add ACPI table with specified header fields and context from specified files.
929
d2c639d6
BS
930@end table
931
41d03949 932Linux boot specific: When using these options, you can use a given
1f673135
FB
933Linux kernel without installing it in the disk image. It can be useful
934for easier testing of various kernels.
935
0806e3f6
FB
936@table @option
937
89dfe898 938@item -kernel @var{bzImage}
0806e3f6
FB
939Use @var{bzImage} as kernel image.
940
89dfe898 941@item -append @var{cmdline}
0806e3f6
FB
942Use @var{cmdline} as kernel command line
943
89dfe898 944@item -initrd @var{file}
0806e3f6
FB
945Use @var{file} as initial ram disk.
946
ec410fc9
FB
947@end table
948
15a34c63 949Debug/Expert options:
ec410fc9 950@table @option
a0a821a4 951
89dfe898 952@item -serial @var{dev}
0bab00f3
FB
953Redirect the virtual serial port to host character device
954@var{dev}. The default device is @code{vc} in graphical mode and
955@code{stdio} in non graphical mode.
956
d2c639d6 957This option can be used several times to simulate up to 4 serial
0bab00f3
FB
958ports.
959
c03b0f0f
FB
960Use @code{-serial none} to disable all serial ports.
961
0bab00f3 962Available character devices are:
a0a821a4 963@table @code
af3a9031
TS
964@item vc[:WxH]
965Virtual console. Optionally, a width and height can be given in pixel with
966@example
967vc:800x600
968@end example
969It is also possible to specify width or height in characters:
970@example
971vc:80Cx24C
972@end example
a0a821a4
FB
973@item pty
974[Linux only] Pseudo TTY (a new PTY is automatically allocated)
c03b0f0f
FB
975@item none
976No device is allocated.
a0a821a4
FB
977@item null
978void device
f8d179e3 979@item /dev/XXX
e57a8c0e 980[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
f8d179e3 981parameters are set according to the emulated ones.
89dfe898 982@item /dev/parport@var{N}
e57a8c0e 983[Linux only, parallel port only] Use host parallel port
5867c88a 984@var{N}. Currently SPP and EPP parallel port features can be used.
89dfe898
TS
985@item file:@var{filename}
986Write output to @var{filename}. No character can be read.
a0a821a4
FB
987@item stdio
988[Unix only] standard input/output
89dfe898 989@item pipe:@var{filename}
0bab00f3 990name pipe @var{filename}
89dfe898 991@item COM@var{n}
0bab00f3 992[Windows only] Use host serial port @var{n}
89dfe898
TS
993@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
994This implements UDP Net Console.
995When @var{remote_host} or @var{src_ip} are not specified
996they default to @code{0.0.0.0}.
997When not using a specified @var{src_port} a random port is automatically chosen.
aa71cf80
AJ
998@item msmouse
999Three button serial mouse. Configure the guest to use Microsoft protocol.
951f1351
FB
1000
1001If you just want a simple readonly console you can use @code{netcat} or
1002@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1003@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1004will appear in the netconsole session.
0bab00f3
FB
1005
1006If you plan to send characters back via netconsole or you want to stop
1007and start qemu a lot of times, you should have qemu use the same
1008source port each time by using something like @code{-serial
951f1351 1009udp::4555@@:4556} to qemu. Another approach is to use a patched
0bab00f3
FB
1010version of netcat which can listen to a TCP port and send and receive
1011characters via udp. If you have a patched version of netcat which
1012activates telnet remote echo and single char transfer, then you can
1013use the following options to step up a netcat redirector to allow
1014telnet on port 5555 to access the qemu port.
1015@table @code
951f1351
FB
1016@item Qemu Options:
1017-serial udp::4555@@:4556
1018@item netcat options:
1019-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1020@item telnet options:
1021localhost 5555
1022@end table
1023
1024
89dfe898 1025@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
951f1351
FB
1026The TCP Net Console has two modes of operation. It can send the serial
1027I/O to a location or wait for a connection from a location. By default
1028the TCP Net Console is sent to @var{host} at the @var{port}. If you use
f542086d
FB
1029the @var{server} option QEMU will wait for a client socket application
1030to connect to the port before continuing, unless the @code{nowait}
f7499989 1031option was specified. The @code{nodelay} option disables the Nagle buffering
4be456f1 1032algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
951f1351
FB
1033one TCP connection at a time is accepted. You can use @code{telnet} to
1034connect to the corresponding character device.
1035@table @code
1036@item Example to send tcp console to 192.168.0.2 port 4444
1037-serial tcp:192.168.0.2:4444
1038@item Example to listen and wait on port 4444 for connection
1039-serial tcp::4444,server
1040@item Example to not wait and listen on ip 192.168.0.100 port 4444
1041-serial tcp:192.168.0.100:4444,server,nowait
a0a821a4 1042@end table
a0a821a4 1043
89dfe898 1044@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
951f1351
FB
1045The telnet protocol is used instead of raw tcp sockets. The options
1046work the same as if you had specified @code{-serial tcp}. The
1047difference is that the port acts like a telnet server or client using
1048telnet option negotiation. This will also allow you to send the
1049MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1050sequence. Typically in unix telnet you do it with Control-] and then
1051type "send break" followed by pressing the enter key.
0bab00f3 1052
89dfe898 1053@item unix:@var{path}[,server][,nowait]
ffd843bc
TS
1054A unix domain socket is used instead of a tcp socket. The option works the
1055same as if you had specified @code{-serial tcp} except the unix domain socket
1056@var{path} is used for connections.
1057
89dfe898 1058@item mon:@var{dev_string}
20d8a3ed
TS
1059This is a special option to allow the monitor to be multiplexed onto
1060another serial port. The monitor is accessed with key sequence of
1061@key{Control-a} and then pressing @key{c}. See monitor access
1062@ref{pcsys_keys} in the -nographic section for more keys.
1063@var{dev_string} should be any one of the serial devices specified
1064above. An example to multiplex the monitor onto a telnet server
1065listening on port 4444 would be:
1066@table @code
1067@item -serial mon:telnet::4444,server,nowait
1068@end table
1069
2e4d9fb1
AJ
1070@item braille
1071Braille device. This will use BrlAPI to display the braille output on a real
1072or fake device.
1073
0bab00f3 1074@end table
05d5818c 1075
89dfe898 1076@item -parallel @var{dev}
e57a8c0e
FB
1077Redirect the virtual parallel port to host device @var{dev} (same
1078devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1079be used to use hardware devices connected on the corresponding host
1080parallel port.
1081
1082This option can be used several times to simulate up to 3 parallel
1083ports.
1084
c03b0f0f
FB
1085Use @code{-parallel none} to disable all parallel ports.
1086
89dfe898 1087@item -monitor @var{dev}
a0a821a4
FB
1088Redirect the monitor to host device @var{dev} (same devices as the
1089serial port).
1090The default device is @code{vc} in graphical mode and @code{stdio} in
1091non graphical mode.
1092
d2c639d6
BS
1093@item -pidfile @var{file}
1094Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1095from a script.
1096
1097@item -S
1098Do not start CPU at startup (you must type 'c' in the monitor).
20d8a3ed 1099
ec410fc9 1100@item -s
5fafdf24 1101Wait gdb connection to port 1234 (@pxref{gdb_usage}).
d2c639d6 1102
89dfe898 1103@item -p @var{port}
4046d913
PB
1104Change gdb connection port. @var{port} can be either a decimal number
1105to specify a TCP port, or a host device (same devices as the serial port).
d2c639d6 1106
3b46e624 1107@item -d
9d4520d0 1108Output log in /tmp/qemu.log
89dfe898 1109@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
46d4767d
FB
1110Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1111@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1112translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
4be456f1 1113all those parameters. This option is useful for old MS-DOS disk
46d4767d 1114images.
7c3fc84d 1115
d2c639d6 1116@item -L @var{path}
87b47350
FB
1117Set the directory for the BIOS, VGA BIOS and keymaps.
1118
d2c639d6
BS
1119@item -bios @var{file}
1120Set the filename for the BIOS.
3cb0853a 1121
d2c639d6
BS
1122@item -kernel-kqemu
1123Enable KQEMU full virtualization (default is user mode only).
1124
1125@item -no-kqemu
1126Disable KQEMU kernel module usage. KQEMU options are only available if
1127KQEMU support is enabled when compiling.
1128
1129@item -enable-kvm
1130Enable KVM full virtualization support. This option is only available
1131if KVM support is enabled when compiling.
3c656346 1132
d1beab82
FB
1133@item -no-reboot
1134Exit instead of rebooting.
1135
99aa9e4c
AJ
1136@item -no-shutdown
1137Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1138This allows for instance switching to monitor to commit changes to the
1139disk image.
1140
d2c639d6 1141@item -loadvm @var{file}
d63d307f 1142Start right away with a saved state (@code{loadvm} in monitor)
8e71621f 1143
d2c639d6
BS
1144@item -daemonize
1145Daemonize the QEMU process after initialization. QEMU will not detach from
1146standard IO until it is ready to receive connections on any of its devices.
1147This option is a useful way for external programs to launch QEMU without having
1148to cope with initialization race conditions.
a87295e8 1149
d2c639d6
BS
1150@item -option-rom @var{file}
1151Load the contents of @var{file} as an option ROM.
1152This option is useful to load things like EtherBoot.
a87295e8 1153
d2c639d6
BS
1154@item -clock @var{method}
1155Force the use of the given methods for timer alarm. To see what timers
1156are available use -clock ?.
1157
1158@item -localtime
1159Set the real time clock to local time (the default is to UTC
1160time). This option is needed to have correct date in MS-DOS or
1161Windows.
1162
1163@item -startdate @var{date}
1164Set the initial date of the real time clock. Valid formats for
1165@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1166@code{2006-06-17}. The default value is @code{now}.
2e70f6ef
PB
1167
1168@item -icount [N|auto]
1169Enable virtual instruction counter. The virtual cpu will execute one
1170instruction every 2^N ns of virtual time. If @code{auto} is specified
1171then the virtual cpu speed will be automatically adjusted to keep virtual
1172time within a few seconds of real time.
1173
1174Note that while this option can give deterministic behavior, it does not
1175provide cycle accurate emulation. Modern CPUs contain superscalar out of
dd5d6fe9 1176order cores with complex cache hierarchies. The number of instructions
2e70f6ef 1177executed often has little or no correlation with actual performance.
d2c639d6
BS
1178
1179@item -echr numeric_ascii_value
1180Change the escape character used for switching to the monitor when using
1181monitor and serial sharing. The default is @code{0x01} when using the
1182@code{-nographic} option. @code{0x01} is equal to pressing
1183@code{Control-a}. You can select a different character from the ascii
1184control keys where 1 through 26 map to Control-a through Control-z. For
1185instance you could use the either of the following to change the escape
1186character to Control-t.
1187@table @code
1188@item -echr 0x14
1189@item -echr 20
1190@end table
1191
0858532e
AL
1192@item -chroot dir
1193Immediately before starting guest execution, chroot to the specified
1194directory. Especially useful in combination with -runas.
1195
1196@item -runas user
1197Immediately before starting guest execution, drop root privileges, switching
1198to the specified user.
1199
ec410fc9
FB
1200@end table
1201
3e11db9a
FB
1202@c man end
1203
debc7065 1204@node pcsys_keys
3e11db9a
FB
1205@section Keys
1206
1207@c man begin OPTIONS
1208
a1b74fe8
FB
1209During the graphical emulation, you can use the following keys:
1210@table @key
f9859310 1211@item Ctrl-Alt-f
a1b74fe8 1212Toggle full screen
a0a821a4 1213
f9859310 1214@item Ctrl-Alt-n
a0a821a4
FB
1215Switch to virtual console 'n'. Standard console mappings are:
1216@table @emph
1217@item 1
1218Target system display
1219@item 2
1220Monitor
1221@item 3
1222Serial port
a1b74fe8
FB
1223@end table
1224
f9859310 1225@item Ctrl-Alt
a0a821a4
FB
1226Toggle mouse and keyboard grab.
1227@end table
1228
3e11db9a
FB
1229In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1230@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1231
a0a821a4
FB
1232During emulation, if you are using the @option{-nographic} option, use
1233@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
1234
1235@table @key
a1b74fe8 1236@item Ctrl-a h
d2c639d6 1237@item Ctrl-a ?
ec410fc9 1238Print this help
3b46e624 1239@item Ctrl-a x
366dfc52 1240Exit emulator
3b46e624 1241@item Ctrl-a s
1f47a922 1242Save disk data back to file (if -snapshot)
20d8a3ed 1243@item Ctrl-a t
d2c639d6 1244Toggle console timestamps
a1b74fe8 1245@item Ctrl-a b
1f673135 1246Send break (magic sysrq in Linux)
a1b74fe8 1247@item Ctrl-a c
1f673135 1248Switch between console and monitor
a1b74fe8
FB
1249@item Ctrl-a Ctrl-a
1250Send Ctrl-a
ec410fc9 1251@end table
0806e3f6
FB
1252@c man end
1253
1254@ignore
1255
1f673135
FB
1256@c man begin SEEALSO
1257The HTML documentation of QEMU for more precise information and Linux
1258user mode emulator invocation.
1259@c man end
1260
1261@c man begin AUTHOR
1262Fabrice Bellard
1263@c man end
1264
1265@end ignore
1266
debc7065 1267@node pcsys_monitor
1f673135
FB
1268@section QEMU Monitor
1269
1270The QEMU monitor is used to give complex commands to the QEMU
1271emulator. You can use it to:
1272
1273@itemize @minus
1274
1275@item
e598752a 1276Remove or insert removable media images
89dfe898 1277(such as CD-ROM or floppies).
1f673135 1278
5fafdf24 1279@item
1f673135
FB
1280Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1281from a disk file.
1282
1283@item Inspect the VM state without an external debugger.
1284
1285@end itemize
1286
1287@subsection Commands
1288
1289The following commands are available:
1290
1291@table @option
1292
89dfe898 1293@item help or ? [@var{cmd}]
1f673135
FB
1294Show the help for all commands or just for command @var{cmd}.
1295
3b46e624 1296@item commit
89dfe898 1297Commit changes to the disk images (if -snapshot is used).
1f673135 1298
89dfe898
TS
1299@item info @var{subcommand}
1300Show various information about the system state.
1f673135
FB
1301
1302@table @option
d2c639d6
BS
1303@item info version
1304show the version of QEMU
1f673135 1305@item info network
41d03949 1306show the various VLANs and the associated devices
d2c639d6
BS
1307@item info chardev
1308show the character devices
1f673135
FB
1309@item info block
1310show the block devices
d2c639d6
BS
1311@item info block
1312show block device statistics
1f673135
FB
1313@item info registers
1314show the cpu registers
d2c639d6
BS
1315@item info cpus
1316show infos for each CPU
1f673135
FB
1317@item info history
1318show the command line history
d2c639d6
BS
1319@item info irq
1320show the interrupts statistics (if available)
1321@item info pic
1322show i8259 (PIC) state
b389dbfb 1323@item info pci
d2c639d6
BS
1324show emulated PCI device info
1325@item info tlb
1326show virtual to physical memory mappings (i386 only)
1327@item info mem
1328show the active virtual memory mappings (i386 only)
1329@item info hpet
1330show state of HPET (i386 only)
1331@item info kqemu
1332show KQEMU information
1333@item info kvm
1334show KVM information
b389dbfb
FB
1335@item info usb
1336show USB devices plugged on the virtual USB hub
1337@item info usbhost
1338show all USB host devices
d2c639d6
BS
1339@item info profile
1340show profiling information
a3c25997
FB
1341@item info capture
1342show information about active capturing
13a2e80f
FB
1343@item info snapshots
1344show list of VM snapshots
d2c639d6
BS
1345@item info status
1346show the current VM status (running|paused)
1347@item info pcmcia
1348show guest PCMCIA status
455204eb
TS
1349@item info mice
1350show which guest mouse is receiving events
d2c639d6
BS
1351@item info vnc
1352show the vnc server status
1353@item info name
1354show the current VM name
1355@item info uuid
1356show the current VM UUID
1357@item info cpustats
1358show CPU statistics
1359@item info slirp
1360show SLIRP statistics (if available)
1361@item info migrate
1362show migration status
1363@item info balloon
1364show balloon information
1f673135
FB
1365@end table
1366
1367@item q or quit
1368Quit the emulator.
1369
89dfe898 1370@item eject [-f] @var{device}
e598752a 1371Eject a removable medium (use -f to force it).
1f673135 1372
89dfe898 1373@item change @var{device} @var{setting}
f858dcae 1374
89dfe898 1375Change the configuration of a device.
f858dcae
TS
1376
1377@table @option
d2c639d6 1378@item change @var{diskdevice} @var{filename} [@var{format}]
f858dcae
TS
1379Change the medium for a removable disk device to point to @var{filename}. eg
1380
1381@example
4bf27c24 1382(qemu) change ide1-cd0 /path/to/some.iso
f858dcae
TS
1383@end example
1384
d2c639d6
BS
1385@var{format} is optional.
1386
89dfe898 1387@item change vnc @var{display},@var{options}
f858dcae
TS
1388Change the configuration of the VNC server. The valid syntax for @var{display}
1389and @var{options} are described at @ref{sec_invocation}. eg
1390
1391@example
1392(qemu) change vnc localhost:1
1393@end example
1394
2569da0c 1395@item change vnc password [@var{password}]
f858dcae 1396
2569da0c
AL
1397Change the password associated with the VNC server. If the new password is not
1398supplied, the monitor will prompt for it to be entered. VNC passwords are only
1399significant up to 8 letters. eg
f858dcae
TS
1400
1401@example
1402(qemu) change vnc password
1403Password: ********
1404@end example
1405
1406@end table
1f673135 1407
76655d6d
AL
1408@item acl @var{subcommand} @var{aclname} @var{match} @var{index}
1409
1410Manage access control lists for network services. There are currently
1411two named access control lists, @var{vnc.x509dname} and @var{vnc.username}
1412matching on the x509 client certificate distinguished name, and SASL
1413username respectively.
1414
1415@table @option
1416@item acl show <aclname>
1417list all the match rules in the access control list, and the default
1418policy
1419@item acl policy <aclname> @code{allow|deny}
1420set the default access control list policy, used in the event that
1421none of the explicit rules match. The default policy at startup is
1422always @code{deny}
1423@item acl allow <aclname> <match> [<index>]
1424add a match to the access control list, allowing access. The match will
1425normally be an exact username or x509 distinguished name, but can
9e995645 1426optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
76655d6d
AL
1427all users in the @code{EXAMPLE.COM} kerberos realm. The match will
1428normally be appended to the end of the ACL, but can be inserted
1429earlier in the list if the optional @code{index} parameter is supplied.
1430@item acl deny <aclname> <match> [<index>]
1431add a match to the access control list, denying access. The match will
1432normally be an exact username or x509 distinguished name, but can
9e995645 1433optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
76655d6d
AL
1434all users in the @code{EXAMPLE.COM} kerberos realm. The match will
1435normally be appended to the end of the ACL, but can be inserted
1436earlier in the list if the optional @code{index} parameter is supplied.
1437@item acl remove <aclname> <match>
1438remove the specified match rule from the access control list.
1439@item acl reset <aclname>
1440remove all matches from the access control list, and set the default
1441policy back to @code{deny}.
1442@end table
1443
89dfe898 1444@item screendump @var{filename}
1f673135
FB
1445Save screen into PPM image @var{filename}.
1446
d2c639d6
BS
1447@item logfile @var{filename}
1448Output logs to @var{filename}.
a3c25997 1449
89dfe898 1450@item log @var{item1}[,...]
1f673135
FB
1451Activate logging of the specified items to @file{/tmp/qemu.log}.
1452
89dfe898 1453@item savevm [@var{tag}|@var{id}]
13a2e80f
FB
1454Create a snapshot of the whole virtual machine. If @var{tag} is
1455provided, it is used as human readable identifier. If there is already
1456a snapshot with the same tag or ID, it is replaced. More info at
1457@ref{vm_snapshots}.
1f673135 1458
89dfe898 1459@item loadvm @var{tag}|@var{id}
13a2e80f
FB
1460Set the whole virtual machine to the snapshot identified by the tag
1461@var{tag} or the unique snapshot ID @var{id}.
1462
89dfe898 1463@item delvm @var{tag}|@var{id}
13a2e80f 1464Delete the snapshot identified by @var{tag} or @var{id}.
1f673135
FB
1465
1466@item stop
1467Stop emulation.
1468
1469@item c or cont
1470Resume emulation.
1471
89dfe898
TS
1472@item gdbserver [@var{port}]
1473Start gdbserver session (default @var{port}=1234)
1f673135 1474
89dfe898 1475@item x/fmt @var{addr}
1f673135
FB
1476Virtual memory dump starting at @var{addr}.
1477
89dfe898 1478@item xp /@var{fmt} @var{addr}
1f673135
FB
1479Physical memory dump starting at @var{addr}.
1480
1481@var{fmt} is a format which tells the command how to format the
1482data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1483
1484@table @var
5fafdf24 1485@item count
1f673135
FB
1486is the number of items to be dumped.
1487
1488@item format
4be456f1 1489can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
1490c (char) or i (asm instruction).
1491
1492@item size
52c00a5f
FB
1493can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1494@code{h} or @code{w} can be specified with the @code{i} format to
1495respectively select 16 or 32 bit code instruction size.
1f673135
FB
1496
1497@end table
1498
5fafdf24 1499Examples:
1f673135
FB
1500@itemize
1501@item
1502Dump 10 instructions at the current instruction pointer:
5fafdf24 1503@example
1f673135
FB
1504(qemu) x/10i $eip
15050x90107063: ret
15060x90107064: sti
15070x90107065: lea 0x0(%esi,1),%esi
15080x90107069: lea 0x0(%edi,1),%edi
15090x90107070: ret
15100x90107071: jmp 0x90107080
15110x90107073: nop
15120x90107074: nop
15130x90107075: nop
15140x90107076: nop
1515@end example
1516
1517@item
1518Dump 80 16 bit values at the start of the video memory.
5fafdf24 1519@smallexample
1f673135
FB
1520(qemu) xp/80hx 0xb8000
15210x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
15220x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
15230x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
15240x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
15250x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
15260x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
15270x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
15280x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
15290x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
15300x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 1531@end smallexample
1f673135
FB
1532@end itemize
1533
89dfe898 1534@item p or print/@var{fmt} @var{expr}
1f673135
FB
1535
1536Print expression value. Only the @var{format} part of @var{fmt} is
1537used.
0806e3f6 1538
89dfe898 1539@item sendkey @var{keys}
a3a91a35 1540
54ae1fbd
AJ
1541Send @var{keys} to the emulator. @var{keys} could be the name of the
1542key or @code{#} followed by the raw value in either decimal or hexadecimal
1543format. Use @code{-} to press several keys simultaneously. Example:
a3a91a35
FB
1544@example
1545sendkey ctrl-alt-f1
1546@end example
1547
1548This command is useful to send keys that your graphical user interface
1549intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1550
15a34c63
FB
1551@item system_reset
1552
1553Reset the system.
1554
d2c639d6 1555@item system_powerdown
0ecdffbb 1556
d2c639d6 1557Power down the system (if supported).
0ecdffbb 1558
d2c639d6
BS
1559@item sum @var{addr} @var{size}
1560
1561Compute the checksum of a memory region.
0ecdffbb 1562
89dfe898 1563@item usb_add @var{devname}
b389dbfb 1564
0aff66b5
PB
1565Add the USB device @var{devname}. For details of available devices see
1566@ref{usb_devices}
b389dbfb 1567
89dfe898 1568@item usb_del @var{devname}
b389dbfb
FB
1569
1570Remove the USB device @var{devname} from the QEMU virtual USB
1571hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1572command @code{info usb} to see the devices you can remove.
1573
d2c639d6
BS
1574@item mouse_move @var{dx} @var{dy} [@var{dz}]
1575Move the active mouse to the specified coordinates @var{dx} @var{dy}
1576with optional scroll axis @var{dz}.
1577
1578@item mouse_button @var{val}
1579Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1580
1581@item mouse_set @var{index}
1582Set which mouse device receives events at given @var{index}, index
1583can be obtained with
1584@example
1585info mice
1586@end example
1587
1588@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1589Capture audio into @var{filename}. Using sample rate @var{frequency}
1590bits per sample @var{bits} and number of channels @var{channels}.
1591
1592Defaults:
1593@itemize @minus
1594@item Sample rate = 44100 Hz - CD quality
1595@item Bits = 16
1596@item Number of channels = 2 - Stereo
1597@end itemize
1598
1599@item stopcapture @var{index}
1600Stop capture with a given @var{index}, index can be obtained with
1601@example
1602info capture
1603@end example
1604
1605@item memsave @var{addr} @var{size} @var{file}
1606save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1607
1608@item pmemsave @var{addr} @var{size} @var{file}
1609save to disk physical memory dump starting at @var{addr} of size @var{size}.
1610
1611@item boot_set @var{bootdevicelist}
1612
1613Define new values for the boot device list. Those values will override
1614the values specified on the command line through the @code{-boot} option.
1615
1616The values that can be specified here depend on the machine type, but are
1617the same that can be specified in the @code{-boot} command line option.
1618
1619@item nmi @var{cpu}
1620Inject an NMI on the given CPU.
1621
1622@item migrate [-d] @var{uri}
1623Migrate to @var{uri} (using -d to not wait for completion).
1624
1625@item migrate_cancel
1626Cancel the current VM migration.
1627
1628@item migrate_set_speed @var{value}
1629Set maximum speed to @var{value} (in bytes) for migrations.
1630
1631@item balloon @var{value}
1632Request VM to change its memory allocation to @var{value} (in MB).
1633
1634@item set_link @var{name} [up|down]
1635Set link @var{name} up or down.
1636
1f673135 1637@end table
0806e3f6 1638
1f673135
FB
1639@subsection Integer expressions
1640
1641The monitor understands integers expressions for every integer
1642argument. You can use register names to get the value of specifics
1643CPU registers by prefixing them with @emph{$}.
ec410fc9 1644
1f47a922
FB
1645@node disk_images
1646@section Disk Images
1647
acd935ef
FB
1648Since version 0.6.1, QEMU supports many disk image formats, including
1649growable disk images (their size increase as non empty sectors are
13a2e80f
FB
1650written), compressed and encrypted disk images. Version 0.8.3 added
1651the new qcow2 disk image format which is essential to support VM
1652snapshots.
1f47a922 1653
debc7065
FB
1654@menu
1655* disk_images_quickstart:: Quick start for disk image creation
1656* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 1657* vm_snapshots:: VM snapshots
debc7065 1658* qemu_img_invocation:: qemu-img Invocation
975b092b 1659* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 1660* host_drives:: Using host drives
debc7065 1661* disk_images_fat_images:: Virtual FAT disk images
75818250 1662* disk_images_nbd:: NBD access
debc7065
FB
1663@end menu
1664
1665@node disk_images_quickstart
acd935ef
FB
1666@subsection Quick start for disk image creation
1667
1668You can create a disk image with the command:
1f47a922 1669@example
acd935ef 1670qemu-img create myimage.img mysize
1f47a922 1671@end example
acd935ef
FB
1672where @var{myimage.img} is the disk image filename and @var{mysize} is its
1673size in kilobytes. You can add an @code{M} suffix to give the size in
1674megabytes and a @code{G} suffix for gigabytes.
1675
debc7065 1676See @ref{qemu_img_invocation} for more information.
1f47a922 1677
debc7065 1678@node disk_images_snapshot_mode
1f47a922
FB
1679@subsection Snapshot mode
1680
1681If you use the option @option{-snapshot}, all disk images are
1682considered as read only. When sectors in written, they are written in
1683a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
1684write back to the raw disk images by using the @code{commit} monitor
1685command (or @key{C-a s} in the serial console).
1f47a922 1686
13a2e80f
FB
1687@node vm_snapshots
1688@subsection VM snapshots
1689
1690VM snapshots are snapshots of the complete virtual machine including
1691CPU state, RAM, device state and the content of all the writable
1692disks. In order to use VM snapshots, you must have at least one non
1693removable and writable block device using the @code{qcow2} disk image
1694format. Normally this device is the first virtual hard drive.
1695
1696Use the monitor command @code{savevm} to create a new VM snapshot or
1697replace an existing one. A human readable name can be assigned to each
19d36792 1698snapshot in addition to its numerical ID.
13a2e80f
FB
1699
1700Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1701a VM snapshot. @code{info snapshots} lists the available snapshots
1702with their associated information:
1703
1704@example
1705(qemu) info snapshots
1706Snapshot devices: hda
1707Snapshot list (from hda):
1708ID TAG VM SIZE DATE VM CLOCK
17091 start 41M 2006-08-06 12:38:02 00:00:14.954
17102 40M 2006-08-06 12:43:29 00:00:18.633
17113 msys 40M 2006-08-06 12:44:04 00:00:23.514
1712@end example
1713
1714A VM snapshot is made of a VM state info (its size is shown in
1715@code{info snapshots}) and a snapshot of every writable disk image.
1716The VM state info is stored in the first @code{qcow2} non removable
1717and writable block device. The disk image snapshots are stored in
1718every disk image. The size of a snapshot in a disk image is difficult
1719to evaluate and is not shown by @code{info snapshots} because the
1720associated disk sectors are shared among all the snapshots to save
19d36792
FB
1721disk space (otherwise each snapshot would need a full copy of all the
1722disk images).
13a2e80f
FB
1723
1724When using the (unrelated) @code{-snapshot} option
1725(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1726but they are deleted as soon as you exit QEMU.
1727
1728VM snapshots currently have the following known limitations:
1729@itemize
5fafdf24 1730@item
13a2e80f
FB
1731They cannot cope with removable devices if they are removed or
1732inserted after a snapshot is done.
5fafdf24 1733@item
13a2e80f
FB
1734A few device drivers still have incomplete snapshot support so their
1735state is not saved or restored properly (in particular USB).
1736@end itemize
1737
acd935ef
FB
1738@node qemu_img_invocation
1739@subsection @code{qemu-img} Invocation
1f47a922 1740
acd935ef 1741@include qemu-img.texi
05efe46e 1742
975b092b
TS
1743@node qemu_nbd_invocation
1744@subsection @code{qemu-nbd} Invocation
1745
1746@include qemu-nbd.texi
1747
19cb3738
FB
1748@node host_drives
1749@subsection Using host drives
1750
1751In addition to disk image files, QEMU can directly access host
1752devices. We describe here the usage for QEMU version >= 0.8.3.
1753
1754@subsubsection Linux
1755
1756On Linux, you can directly use the host device filename instead of a
4be456f1 1757disk image filename provided you have enough privileges to access
19cb3738
FB
1758it. For example, use @file{/dev/cdrom} to access to the CDROM or
1759@file{/dev/fd0} for the floppy.
1760
f542086d 1761@table @code
19cb3738
FB
1762@item CD
1763You can specify a CDROM device even if no CDROM is loaded. QEMU has
1764specific code to detect CDROM insertion or removal. CDROM ejection by
1765the guest OS is supported. Currently only data CDs are supported.
1766@item Floppy
1767You can specify a floppy device even if no floppy is loaded. Floppy
1768removal is currently not detected accurately (if you change floppy
1769without doing floppy access while the floppy is not loaded, the guest
1770OS will think that the same floppy is loaded).
1771@item Hard disks
1772Hard disks can be used. Normally you must specify the whole disk
1773(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1774see it as a partitioned disk. WARNING: unless you know what you do, it
1775is better to only make READ-ONLY accesses to the hard disk otherwise
1776you may corrupt your host data (use the @option{-snapshot} command
1777line option or modify the device permissions accordingly).
1778@end table
1779
1780@subsubsection Windows
1781
01781963
FB
1782@table @code
1783@item CD
4be456f1 1784The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
1785alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1786supported as an alias to the first CDROM drive.
19cb3738 1787
e598752a 1788Currently there is no specific code to handle removable media, so it
19cb3738
FB
1789is better to use the @code{change} or @code{eject} monitor commands to
1790change or eject media.
01781963 1791@item Hard disks
89dfe898 1792Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
1793where @var{N} is the drive number (0 is the first hard disk).
1794
1795WARNING: unless you know what you do, it is better to only make
1796READ-ONLY accesses to the hard disk otherwise you may corrupt your
1797host data (use the @option{-snapshot} command line so that the
1798modifications are written in a temporary file).
1799@end table
1800
19cb3738
FB
1801
1802@subsubsection Mac OS X
1803
5fafdf24 1804@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 1805
e598752a 1806Currently there is no specific code to handle removable media, so it
19cb3738
FB
1807is better to use the @code{change} or @code{eject} monitor commands to
1808change or eject media.
1809
debc7065 1810@node disk_images_fat_images
2c6cadd4
FB
1811@subsection Virtual FAT disk images
1812
1813QEMU can automatically create a virtual FAT disk image from a
1814directory tree. In order to use it, just type:
1815
5fafdf24 1816@example
2c6cadd4
FB
1817qemu linux.img -hdb fat:/my_directory
1818@end example
1819
1820Then you access access to all the files in the @file{/my_directory}
1821directory without having to copy them in a disk image or to export
1822them via SAMBA or NFS. The default access is @emph{read-only}.
1823
1824Floppies can be emulated with the @code{:floppy:} option:
1825
5fafdf24 1826@example
2c6cadd4
FB
1827qemu linux.img -fda fat:floppy:/my_directory
1828@end example
1829
1830A read/write support is available for testing (beta stage) with the
1831@code{:rw:} option:
1832
5fafdf24 1833@example
2c6cadd4
FB
1834qemu linux.img -fda fat:floppy:rw:/my_directory
1835@end example
1836
1837What you should @emph{never} do:
1838@itemize
1839@item use non-ASCII filenames ;
1840@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
1841@item expect it to work when loadvm'ing ;
1842@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
1843@end itemize
1844
75818250
TS
1845@node disk_images_nbd
1846@subsection NBD access
1847
1848QEMU can access directly to block device exported using the Network Block Device
1849protocol.
1850
1851@example
1852qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1853@end example
1854
1855If the NBD server is located on the same host, you can use an unix socket instead
1856of an inet socket:
1857
1858@example
1859qemu linux.img -hdb nbd:unix:/tmp/my_socket
1860@end example
1861
1862In this case, the block device must be exported using qemu-nbd:
1863
1864@example
1865qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1866@end example
1867
1868The use of qemu-nbd allows to share a disk between several guests:
1869@example
1870qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1871@end example
1872
1873and then you can use it with two guests:
1874@example
1875qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1876qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1877@end example
1878
debc7065 1879@node pcsys_network
9d4fb82e
FB
1880@section Network emulation
1881
4be456f1 1882QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1883target) and can connect them to an arbitrary number of Virtual Local
1884Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1885VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1886simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1887network stack can replace the TAP device to have a basic network
1888connection.
1889
1890@subsection VLANs
9d4fb82e 1891
41d03949
FB
1892QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1893connection between several network devices. These devices can be for
1894example QEMU virtual Ethernet cards or virtual Host ethernet devices
1895(TAP devices).
9d4fb82e 1896
41d03949
FB
1897@subsection Using TAP network interfaces
1898
1899This is the standard way to connect QEMU to a real network. QEMU adds
1900a virtual network device on your host (called @code{tapN}), and you
1901can then configure it as if it was a real ethernet card.
9d4fb82e 1902
8f40c388
FB
1903@subsubsection Linux host
1904
9d4fb82e
FB
1905As an example, you can download the @file{linux-test-xxx.tar.gz}
1906archive and copy the script @file{qemu-ifup} in @file{/etc} and
1907configure properly @code{sudo} so that the command @code{ifconfig}
1908contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1909that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1910device @file{/dev/net/tun} must be present.
1911
ee0f4751
FB
1912See @ref{sec_invocation} to have examples of command lines using the
1913TAP network interfaces.
9d4fb82e 1914
8f40c388
FB
1915@subsubsection Windows host
1916
1917There is a virtual ethernet driver for Windows 2000/XP systems, called
1918TAP-Win32. But it is not included in standard QEMU for Windows,
1919so you will need to get it separately. It is part of OpenVPN package,
1920so download OpenVPN from : @url{http://openvpn.net/}.
1921
9d4fb82e
FB
1922@subsection Using the user mode network stack
1923
41d03949
FB
1924By using the option @option{-net user} (default configuration if no
1925@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1926network stack (you don't need root privilege to use the virtual
41d03949 1927network). The virtual network configuration is the following:
9d4fb82e
FB
1928
1929@example
1930
41d03949
FB
1931 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1932 | (10.0.2.2)
9d4fb82e 1933 |
2518bd0d 1934 ----> DNS server (10.0.2.3)
3b46e624 1935 |
2518bd0d 1936 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1937@end example
1938
1939The QEMU VM behaves as if it was behind a firewall which blocks all
1940incoming connections. You can use a DHCP client to automatically
41d03949
FB
1941configure the network in the QEMU VM. The DHCP server assign addresses
1942to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1943
1944In order to check that the user mode network is working, you can ping
1945the address 10.0.2.2 and verify that you got an address in the range
194610.0.2.x from the QEMU virtual DHCP server.
1947
b415a407 1948Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1949would require root privileges. It means you can only ping the local
b415a407
FB
1950router (10.0.2.2).
1951
9bf05444
FB
1952When using the built-in TFTP server, the router is also the TFTP
1953server.
1954
1955When using the @option{-redir} option, TCP or UDP connections can be
1956redirected from the host to the guest. It allows for example to
1957redirect X11, telnet or SSH connections.
443f1376 1958
41d03949
FB
1959@subsection Connecting VLANs between QEMU instances
1960
1961Using the @option{-net socket} option, it is possible to make VLANs
1962that span several QEMU instances. See @ref{sec_invocation} to have a
1963basic example.
1964
9d4fb82e
FB
1965@node direct_linux_boot
1966@section Direct Linux Boot
1f673135
FB
1967
1968This section explains how to launch a Linux kernel inside QEMU without
1969having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1970kernel testing.
1f673135 1971
ee0f4751 1972The syntax is:
1f673135 1973@example
ee0f4751 1974qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1975@end example
1976
ee0f4751
FB
1977Use @option{-kernel} to provide the Linux kernel image and
1978@option{-append} to give the kernel command line arguments. The
1979@option{-initrd} option can be used to provide an INITRD image.
1f673135 1980
ee0f4751
FB
1981When using the direct Linux boot, a disk image for the first hard disk
1982@file{hda} is required because its boot sector is used to launch the
1983Linux kernel.
1f673135 1984
ee0f4751
FB
1985If you do not need graphical output, you can disable it and redirect
1986the virtual serial port and the QEMU monitor to the console with the
1987@option{-nographic} option. The typical command line is:
1f673135 1988@example
ee0f4751
FB
1989qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1990 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1991@end example
1992
ee0f4751
FB
1993Use @key{Ctrl-a c} to switch between the serial console and the
1994monitor (@pxref{pcsys_keys}).
1f673135 1995
debc7065 1996@node pcsys_usb
b389dbfb
FB
1997@section USB emulation
1998
0aff66b5
PB
1999QEMU emulates a PCI UHCI USB controller. You can virtually plug
2000virtual USB devices or real host USB devices (experimental, works only
2001on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 2002as necessary to connect multiple USB devices.
b389dbfb 2003
0aff66b5
PB
2004@menu
2005* usb_devices::
2006* host_usb_devices::
2007@end menu
2008@node usb_devices
2009@subsection Connecting USB devices
b389dbfb 2010
0aff66b5
PB
2011USB devices can be connected with the @option{-usbdevice} commandline option
2012or the @code{usb_add} monitor command. Available devices are:
b389dbfb 2013
db380c06
AZ
2014@table @code
2015@item mouse
0aff66b5 2016Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 2017@item tablet
c6d46c20 2018Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
2019This means qemu is able to report the mouse position without having
2020to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 2021@item disk:@var{file}
0aff66b5 2022Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 2023@item host:@var{bus.addr}
0aff66b5
PB
2024Pass through the host device identified by @var{bus.addr}
2025(Linux only)
db380c06 2026@item host:@var{vendor_id:product_id}
0aff66b5
PB
2027Pass through the host device identified by @var{vendor_id:product_id}
2028(Linux only)
db380c06 2029@item wacom-tablet
f6d2a316
AZ
2030Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
2031above but it can be used with the tslib library because in addition to touch
2032coordinates it reports touch pressure.
db380c06 2033@item keyboard
47b2d338 2034Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
2035@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
2036Serial converter. This emulates an FTDI FT232BM chip connected to host character
2037device @var{dev}. The available character devices are the same as for the
2038@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 2039used to override the default 0403:6001. For instance,
db380c06
AZ
2040@example
2041usb_add serial:productid=FA00:tcp:192.168.0.2:4444
2042@end example
2043will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
2044serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
2045@item braille
2046Braille device. This will use BrlAPI to display the braille output on a real
2047or fake device.
9ad97e65
AZ
2048@item net:@var{options}
2049Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
2050specifies NIC options as with @code{-net nic,}@var{options} (see description).
2051For instance, user-mode networking can be used with
6c9f886c 2052@example
9ad97e65 2053qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
2054@end example
2055Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
2056@item bt[:@var{hci-type}]
2057Bluetooth dongle whose type is specified in the same format as with
2058the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
2059no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
2060This USB device implements the USB Transport Layer of HCI. Example
2061usage:
2062@example
2063qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2064@end example
0aff66b5 2065@end table
b389dbfb 2066
0aff66b5 2067@node host_usb_devices
b389dbfb
FB
2068@subsection Using host USB devices on a Linux host
2069
2070WARNING: this is an experimental feature. QEMU will slow down when
2071using it. USB devices requiring real time streaming (i.e. USB Video
2072Cameras) are not supported yet.
2073
2074@enumerate
5fafdf24 2075@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
2076is actually using the USB device. A simple way to do that is simply to
2077disable the corresponding kernel module by renaming it from @file{mydriver.o}
2078to @file{mydriver.o.disabled}.
2079
2080@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2081@example
2082ls /proc/bus/usb
2083001 devices drivers
2084@end example
2085
2086@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2087@example
2088chown -R myuid /proc/bus/usb
2089@end example
2090
2091@item Launch QEMU and do in the monitor:
5fafdf24 2092@example
b389dbfb
FB
2093info usbhost
2094 Device 1.2, speed 480 Mb/s
2095 Class 00: USB device 1234:5678, USB DISK
2096@end example
2097You should see the list of the devices you can use (Never try to use
2098hubs, it won't work).
2099
2100@item Add the device in QEMU by using:
5fafdf24 2101@example
b389dbfb
FB
2102usb_add host:1234:5678
2103@end example
2104
2105Normally the guest OS should report that a new USB device is
2106plugged. You can use the option @option{-usbdevice} to do the same.
2107
2108@item Now you can try to use the host USB device in QEMU.
2109
2110@end enumerate
2111
2112When relaunching QEMU, you may have to unplug and plug again the USB
2113device to make it work again (this is a bug).
2114
f858dcae
TS
2115@node vnc_security
2116@section VNC security
2117
2118The VNC server capability provides access to the graphical console
2119of the guest VM across the network. This has a number of security
2120considerations depending on the deployment scenarios.
2121
2122@menu
2123* vnc_sec_none::
2124* vnc_sec_password::
2125* vnc_sec_certificate::
2126* vnc_sec_certificate_verify::
2127* vnc_sec_certificate_pw::
2f9606b3
AL
2128* vnc_sec_sasl::
2129* vnc_sec_certificate_sasl::
f858dcae 2130* vnc_generate_cert::
2f9606b3 2131* vnc_setup_sasl::
f858dcae
TS
2132@end menu
2133@node vnc_sec_none
2134@subsection Without passwords
2135
2136The simplest VNC server setup does not include any form of authentication.
2137For this setup it is recommended to restrict it to listen on a UNIX domain
2138socket only. For example
2139
2140@example
2141qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2142@end example
2143
2144This ensures that only users on local box with read/write access to that
2145path can access the VNC server. To securely access the VNC server from a
2146remote machine, a combination of netcat+ssh can be used to provide a secure
2147tunnel.
2148
2149@node vnc_sec_password
2150@subsection With passwords
2151
2152The VNC protocol has limited support for password based authentication. Since
2153the protocol limits passwords to 8 characters it should not be considered
2154to provide high security. The password can be fairly easily brute-forced by
2155a client making repeat connections. For this reason, a VNC server using password
2156authentication should be restricted to only listen on the loopback interface
34a3d239 2157or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
2158option, and then once QEMU is running the password is set with the monitor. Until
2159the monitor is used to set the password all clients will be rejected.
2160
2161@example
2162qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2163(qemu) change vnc password
2164Password: ********
2165(qemu)
2166@end example
2167
2168@node vnc_sec_certificate
2169@subsection With x509 certificates
2170
2171The QEMU VNC server also implements the VeNCrypt extension allowing use of
2172TLS for encryption of the session, and x509 certificates for authentication.
2173The use of x509 certificates is strongly recommended, because TLS on its
2174own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2175support provides a secure session, but no authentication. This allows any
2176client to connect, and provides an encrypted session.
2177
2178@example
2179qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2180@end example
2181
2182In the above example @code{/etc/pki/qemu} should contain at least three files,
2183@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2184users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2185NB the @code{server-key.pem} file should be protected with file mode 0600 to
2186only be readable by the user owning it.
2187
2188@node vnc_sec_certificate_verify
2189@subsection With x509 certificates and client verification
2190
2191Certificates can also provide a means to authenticate the client connecting.
2192The server will request that the client provide a certificate, which it will
2193then validate against the CA certificate. This is a good choice if deploying
2194in an environment with a private internal certificate authority.
2195
2196@example
2197qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2198@end example
2199
2200
2201@node vnc_sec_certificate_pw
2202@subsection With x509 certificates, client verification and passwords
2203
2204Finally, the previous method can be combined with VNC password authentication
2205to provide two layers of authentication for clients.
2206
2207@example
2208qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2209(qemu) change vnc password
2210Password: ********
2211(qemu)
2212@end example
2213
2f9606b3
AL
2214
2215@node vnc_sec_sasl
2216@subsection With SASL authentication
2217
2218The SASL authentication method is a VNC extension, that provides an
2219easily extendable, pluggable authentication method. This allows for
2220integration with a wide range of authentication mechanisms, such as
2221PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
2222The strength of the authentication depends on the exact mechanism
2223configured. If the chosen mechanism also provides a SSF layer, then
2224it will encrypt the datastream as well.
2225
2226Refer to the later docs on how to choose the exact SASL mechanism
2227used for authentication, but assuming use of one supporting SSF,
2228then QEMU can be launched with:
2229
2230@example
2231qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
2232@end example
2233
2234@node vnc_sec_certificate_sasl
2235@subsection With x509 certificates and SASL authentication
2236
2237If the desired SASL authentication mechanism does not supported
2238SSF layers, then it is strongly advised to run it in combination
2239with TLS and x509 certificates. This provides securely encrypted
2240data stream, avoiding risk of compromising of the security
2241credentials. This can be enabled, by combining the 'sasl' option
2242with the aforementioned TLS + x509 options:
2243
2244@example
2245qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2246@end example
2247
2248
f858dcae
TS
2249@node vnc_generate_cert
2250@subsection Generating certificates for VNC
2251
2252The GNU TLS packages provides a command called @code{certtool} which can
2253be used to generate certificates and keys in PEM format. At a minimum it
2254is neccessary to setup a certificate authority, and issue certificates to
2255each server. If using certificates for authentication, then each client
2256will also need to be issued a certificate. The recommendation is for the
2257server to keep its certificates in either @code{/etc/pki/qemu} or for
2258unprivileged users in @code{$HOME/.pki/qemu}.
2259
2260@menu
2261* vnc_generate_ca::
2262* vnc_generate_server::
2263* vnc_generate_client::
2264@end menu
2265@node vnc_generate_ca
2266@subsubsection Setup the Certificate Authority
2267
2268This step only needs to be performed once per organization / organizational
2269unit. First the CA needs a private key. This key must be kept VERY secret
2270and secure. If this key is compromised the entire trust chain of the certificates
2271issued with it is lost.
2272
2273@example
2274# certtool --generate-privkey > ca-key.pem
2275@end example
2276
2277A CA needs to have a public certificate. For simplicity it can be a self-signed
2278certificate, or one issue by a commercial certificate issuing authority. To
2279generate a self-signed certificate requires one core piece of information, the
2280name of the organization.
2281
2282@example
2283# cat > ca.info <<EOF
2284cn = Name of your organization
2285ca
2286cert_signing_key
2287EOF
2288# certtool --generate-self-signed \
2289 --load-privkey ca-key.pem
2290 --template ca.info \
2291 --outfile ca-cert.pem
2292@end example
2293
2294The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2295TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2296
2297@node vnc_generate_server
2298@subsubsection Issuing server certificates
2299
2300Each server (or host) needs to be issued with a key and certificate. When connecting
2301the certificate is sent to the client which validates it against the CA certificate.
2302The core piece of information for a server certificate is the hostname. This should
2303be the fully qualified hostname that the client will connect with, since the client
2304will typically also verify the hostname in the certificate. On the host holding the
2305secure CA private key:
2306
2307@example
2308# cat > server.info <<EOF
2309organization = Name of your organization
2310cn = server.foo.example.com
2311tls_www_server
2312encryption_key
2313signing_key
2314EOF
2315# certtool --generate-privkey > server-key.pem
2316# certtool --generate-certificate \
2317 --load-ca-certificate ca-cert.pem \
2318 --load-ca-privkey ca-key.pem \
2319 --load-privkey server server-key.pem \
2320 --template server.info \
2321 --outfile server-cert.pem
2322@end example
2323
2324The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2325to the server for which they were generated. The @code{server-key.pem} is security
2326sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2327
2328@node vnc_generate_client
2329@subsubsection Issuing client certificates
2330
2331If the QEMU VNC server is to use the @code{x509verify} option to validate client
2332certificates as its authentication mechanism, each client also needs to be issued
2333a certificate. The client certificate contains enough metadata to uniquely identify
2334the client, typically organization, state, city, building, etc. On the host holding
2335the secure CA private key:
2336
2337@example
2338# cat > client.info <<EOF
2339country = GB
2340state = London
2341locality = London
2342organiazation = Name of your organization
2343cn = client.foo.example.com
2344tls_www_client
2345encryption_key
2346signing_key
2347EOF
2348# certtool --generate-privkey > client-key.pem
2349# certtool --generate-certificate \
2350 --load-ca-certificate ca-cert.pem \
2351 --load-ca-privkey ca-key.pem \
2352 --load-privkey client-key.pem \
2353 --template client.info \
2354 --outfile client-cert.pem
2355@end example
2356
2357The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2358copied to the client for which they were generated.
2359
2f9606b3
AL
2360
2361@node vnc_setup_sasl
2362
2363@subsection Configuring SASL mechanisms
2364
2365The following documentation assumes use of the Cyrus SASL implementation on a
2366Linux host, but the principals should apply to any other SASL impl. When SASL
2367is enabled, the mechanism configuration will be loaded from system default
2368SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
2369unprivileged user, an environment variable SASL_CONF_PATH can be used
2370to make it search alternate locations for the service config.
2371
2372The default configuration might contain
2373
2374@example
2375mech_list: digest-md5
2376sasldb_path: /etc/qemu/passwd.db
2377@end example
2378
2379This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
2380Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
2381in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
2382command. While this mechanism is easy to configure and use, it is not
2383considered secure by modern standards, so only suitable for developers /
2384ad-hoc testing.
2385
2386A more serious deployment might use Kerberos, which is done with the 'gssapi'
2387mechanism
2388
2389@example
2390mech_list: gssapi
2391keytab: /etc/qemu/krb5.tab
2392@end example
2393
2394For this to work the administrator of your KDC must generate a Kerberos
2395principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
2396replacing 'somehost.example.com' with the fully qualified host name of the
2397machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
2398
2399Other configurations will be left as an exercise for the reader. It should
2400be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
2401encryption. For all other mechanisms, VNC should always be configured to
2402use TLS and x509 certificates to protect security credentials from snooping.
2403
0806e3f6 2404@node gdb_usage
da415d54
FB
2405@section GDB usage
2406
2407QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 2408'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 2409
9d4520d0 2410In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
2411gdb connection:
2412@example
debc7065
FB
2413> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2414 -append "root=/dev/hda"
da415d54
FB
2415Connected to host network interface: tun0
2416Waiting gdb connection on port 1234
2417@end example
2418
2419Then launch gdb on the 'vmlinux' executable:
2420@example
2421> gdb vmlinux
2422@end example
2423
2424In gdb, connect to QEMU:
2425@example
6c9bf893 2426(gdb) target remote localhost:1234
da415d54
FB
2427@end example
2428
2429Then you can use gdb normally. For example, type 'c' to launch the kernel:
2430@example
2431(gdb) c
2432@end example
2433
0806e3f6
FB
2434Here are some useful tips in order to use gdb on system code:
2435
2436@enumerate
2437@item
2438Use @code{info reg} to display all the CPU registers.
2439@item
2440Use @code{x/10i $eip} to display the code at the PC position.
2441@item
2442Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 2443@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
2444@end enumerate
2445
60897d36
EI
2446Advanced debugging options:
2447
2448The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 2449@table @code
60897d36
EI
2450@item maintenance packet qqemu.sstepbits
2451
2452This will display the MASK bits used to control the single stepping IE:
2453@example
2454(gdb) maintenance packet qqemu.sstepbits
2455sending: "qqemu.sstepbits"
2456received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2457@end example
2458@item maintenance packet qqemu.sstep
2459
2460This will display the current value of the mask used when single stepping IE:
2461@example
2462(gdb) maintenance packet qqemu.sstep
2463sending: "qqemu.sstep"
2464received: "0x7"
2465@end example
2466@item maintenance packet Qqemu.sstep=HEX_VALUE
2467
2468This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2469@example
2470(gdb) maintenance packet Qqemu.sstep=0x5
2471sending: "qemu.sstep=0x5"
2472received: "OK"
2473@end example
94d45e44 2474@end table
60897d36 2475
debc7065 2476@node pcsys_os_specific
1a084f3d
FB
2477@section Target OS specific information
2478
2479@subsection Linux
2480
15a34c63
FB
2481To have access to SVGA graphic modes under X11, use the @code{vesa} or
2482the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2483color depth in the guest and the host OS.
1a084f3d 2484
e3371e62
FB
2485When using a 2.6 guest Linux kernel, you should add the option
2486@code{clock=pit} on the kernel command line because the 2.6 Linux
2487kernels make very strict real time clock checks by default that QEMU
2488cannot simulate exactly.
2489
7c3fc84d
FB
2490When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2491not activated because QEMU is slower with this patch. The QEMU
2492Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 2493Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
2494patch by default. Newer kernels don't have it.
2495
1a084f3d
FB
2496@subsection Windows
2497
2498If you have a slow host, using Windows 95 is better as it gives the
2499best speed. Windows 2000 is also a good choice.
2500
e3371e62
FB
2501@subsubsection SVGA graphic modes support
2502
2503QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
2504card. All Windows versions starting from Windows 95 should recognize
2505and use this graphic card. For optimal performances, use 16 bit color
2506depth in the guest and the host OS.
1a084f3d 2507
3cb0853a
FB
2508If you are using Windows XP as guest OS and if you want to use high
2509resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
25101280x1024x16), then you should use the VESA VBE virtual graphic card
2511(option @option{-std-vga}).
2512
e3371e62
FB
2513@subsubsection CPU usage reduction
2514
2515Windows 9x does not correctly use the CPU HLT
15a34c63
FB
2516instruction. The result is that it takes host CPU cycles even when
2517idle. You can install the utility from
2518@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2519problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2520
9d0a8e6f 2521@subsubsection Windows 2000 disk full problem
e3371e62 2522
9d0a8e6f
FB
2523Windows 2000 has a bug which gives a disk full problem during its
2524installation. When installing it, use the @option{-win2k-hack} QEMU
2525option to enable a specific workaround. After Windows 2000 is
2526installed, you no longer need this option (this option slows down the
2527IDE transfers).
e3371e62 2528
6cc721cf
FB
2529@subsubsection Windows 2000 shutdown
2530
2531Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2532can. It comes from the fact that Windows 2000 does not automatically
2533use the APM driver provided by the BIOS.
2534
2535In order to correct that, do the following (thanks to Struan
2536Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2537Add/Troubleshoot a device => Add a new device & Next => No, select the
2538hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2539(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2540correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2541
2542@subsubsection Share a directory between Unix and Windows
2543
2544See @ref{sec_invocation} about the help of the option @option{-smb}.
2545
2192c332 2546@subsubsection Windows XP security problem
e3371e62
FB
2547
2548Some releases of Windows XP install correctly but give a security
2549error when booting:
2550@example
2551A problem is preventing Windows from accurately checking the
2552license for this computer. Error code: 0x800703e6.
2553@end example
e3371e62 2554
2192c332
FB
2555The workaround is to install a service pack for XP after a boot in safe
2556mode. Then reboot, and the problem should go away. Since there is no
2557network while in safe mode, its recommended to download the full
2558installation of SP1 or SP2 and transfer that via an ISO or using the
2559vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2560
a0a821a4
FB
2561@subsection MS-DOS and FreeDOS
2562
2563@subsubsection CPU usage reduction
2564
2565DOS does not correctly use the CPU HLT instruction. The result is that
2566it takes host CPU cycles even when idle. You can install the utility
2567from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2568problem.
2569
debc7065 2570@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2571@chapter QEMU System emulator for non PC targets
2572
2573QEMU is a generic emulator and it emulates many non PC
2574machines. Most of the options are similar to the PC emulator. The
4be456f1 2575differences are mentioned in the following sections.
3f9f3aa1 2576
debc7065
FB
2577@menu
2578* QEMU PowerPC System emulator::
24d4de45
TS
2579* Sparc32 System emulator::
2580* Sparc64 System emulator::
2581* MIPS System emulator::
2582* ARM System emulator::
2583* ColdFire System emulator::
debc7065
FB
2584@end menu
2585
2586@node QEMU PowerPC System emulator
3f9f3aa1 2587@section QEMU PowerPC System emulator
1a084f3d 2588
15a34c63
FB
2589Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2590or PowerMac PowerPC system.
1a084f3d 2591
b671f9ed 2592QEMU emulates the following PowerMac peripherals:
1a084f3d 2593
15a34c63 2594@itemize @minus
5fafdf24 2595@item
006f3a48 2596UniNorth or Grackle PCI Bridge
15a34c63
FB
2597@item
2598PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2599@item
15a34c63 26002 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2601@item
15a34c63
FB
2602NE2000 PCI adapters
2603@item
2604Non Volatile RAM
2605@item
2606VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2607@end itemize
2608
b671f9ed 2609QEMU emulates the following PREP peripherals:
52c00a5f
FB
2610
2611@itemize @minus
5fafdf24 2612@item
15a34c63
FB
2613PCI Bridge
2614@item
2615PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2616@item
52c00a5f
FB
26172 IDE interfaces with hard disk and CD-ROM support
2618@item
2619Floppy disk
5fafdf24 2620@item
15a34c63 2621NE2000 network adapters
52c00a5f
FB
2622@item
2623Serial port
2624@item
2625PREP Non Volatile RAM
15a34c63
FB
2626@item
2627PC compatible keyboard and mouse.
52c00a5f
FB
2628@end itemize
2629
15a34c63 2630QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2631@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2632
992e5acd 2633Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2634for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2635v2) portable firmware implementation. The goal is to implement a 100%
2636IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2637
15a34c63
FB
2638@c man begin OPTIONS
2639
2640The following options are specific to the PowerPC emulation:
2641
2642@table @option
2643
3b46e624 2644@item -g WxH[xDEPTH]
15a34c63
FB
2645
2646Set the initial VGA graphic mode. The default is 800x600x15.
2647
95efd11c
BS
2648@item -prom-env string
2649
2650Set OpenBIOS variables in NVRAM, for example:
2651
2652@example
2653qemu-system-ppc -prom-env 'auto-boot?=false' \
2654 -prom-env 'boot-device=hd:2,\yaboot' \
2655 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2656@end example
2657
2658These variables are not used by Open Hack'Ware.
2659
15a34c63
FB
2660@end table
2661
5fafdf24 2662@c man end
15a34c63
FB
2663
2664
52c00a5f 2665More information is available at
3f9f3aa1 2666@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2667
24d4de45
TS
2668@node Sparc32 System emulator
2669@section Sparc32 System emulator
e80cfcfc 2670
34a3d239
BS
2671Use the executable @file{qemu-system-sparc} to simulate the following
2672Sun4m architecture machines:
2673@itemize @minus
2674@item
2675SPARCstation 4
2676@item
2677SPARCstation 5
2678@item
2679SPARCstation 10
2680@item
2681SPARCstation 20
2682@item
2683SPARCserver 600MP
2684@item
2685SPARCstation LX
2686@item
2687SPARCstation Voyager
2688@item
2689SPARCclassic
2690@item
2691SPARCbook
2692@end itemize
2693
2694The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2695but Linux limits the number of usable CPUs to 4.
e80cfcfc 2696
34a3d239
BS
2697It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2698SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2699emulators are not usable yet.
2700
2701QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
2702
2703@itemize @minus
3475187d 2704@item
7d85892b 2705IOMMU or IO-UNITs
e80cfcfc
FB
2706@item
2707TCX Frame buffer
5fafdf24 2708@item
e80cfcfc
FB
2709Lance (Am7990) Ethernet
2710@item
34a3d239 2711Non Volatile RAM M48T02/M48T08
e80cfcfc 2712@item
3475187d
FB
2713Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2714and power/reset logic
2715@item
2716ESP SCSI controller with hard disk and CD-ROM support
2717@item
6a3b9cc9 2718Floppy drive (not on SS-600MP)
a2502b58
BS
2719@item
2720CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2721@end itemize
2722
6a3b9cc9
BS
2723The number of peripherals is fixed in the architecture. Maximum
2724memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2725others 2047MB.
3475187d 2726
30a604f3 2727Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2728@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2729firmware implementation. The goal is to implement a 100% IEEE
27301275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2731
2732A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
2733the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2734some kernel versions work. Please note that currently Solaris kernels
2735don't work probably due to interface issues between OpenBIOS and
2736Solaris.
3475187d
FB
2737
2738@c man begin OPTIONS
2739
a2502b58 2740The following options are specific to the Sparc32 emulation:
3475187d
FB
2741
2742@table @option
2743
a2502b58 2744@item -g WxHx[xDEPTH]
3475187d 2745
a2502b58
BS
2746Set the initial TCX graphic mode. The default is 1024x768x8, currently
2747the only other possible mode is 1024x768x24.
3475187d 2748
66508601
BS
2749@item -prom-env string
2750
2751Set OpenBIOS variables in NVRAM, for example:
2752
2753@example
2754qemu-system-sparc -prom-env 'auto-boot?=false' \
2755 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2756@end example
2757
34a3d239 2758@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
2759
2760Set the emulated machine type. Default is SS-5.
2761
3475187d
FB
2762@end table
2763
5fafdf24 2764@c man end
3475187d 2765
24d4de45
TS
2766@node Sparc64 System emulator
2767@section Sparc64 System emulator
e80cfcfc 2768
34a3d239
BS
2769Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2770(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2771Niagara (T1) machine. The emulator is not usable for anything yet, but
2772it can launch some kernels.
b756921a 2773
c7ba218d 2774QEMU emulates the following peripherals:
83469015
FB
2775
2776@itemize @minus
2777@item
5fafdf24 2778UltraSparc IIi APB PCI Bridge
83469015
FB
2779@item
2780PCI VGA compatible card with VESA Bochs Extensions
2781@item
34a3d239
BS
2782PS/2 mouse and keyboard
2783@item
83469015
FB
2784Non Volatile RAM M48T59
2785@item
2786PC-compatible serial ports
c7ba218d
BS
2787@item
27882 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2789@item
2790Floppy disk
83469015
FB
2791@end itemize
2792
c7ba218d
BS
2793@c man begin OPTIONS
2794
2795The following options are specific to the Sparc64 emulation:
2796
2797@table @option
2798
34a3d239
BS
2799@item -prom-env string
2800
2801Set OpenBIOS variables in NVRAM, for example:
2802
2803@example
2804qemu-system-sparc64 -prom-env 'auto-boot?=false'
2805@end example
2806
2807@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2808
2809Set the emulated machine type. The default is sun4u.
2810
2811@end table
2812
2813@c man end
2814
24d4de45
TS
2815@node MIPS System emulator
2816@section MIPS System emulator
9d0a8e6f 2817
d9aedc32
TS
2818Four executables cover simulation of 32 and 64-bit MIPS systems in
2819both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2820@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2821Five different machine types are emulated:
24d4de45
TS
2822
2823@itemize @minus
2824@item
2825A generic ISA PC-like machine "mips"
2826@item
2827The MIPS Malta prototype board "malta"
2828@item
d9aedc32 2829An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2830@item
f0fc6f8f 2831MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2832@item
2833A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2834@end itemize
2835
2836The generic emulation is supported by Debian 'Etch' and is able to
2837install Debian into a virtual disk image. The following devices are
2838emulated:
3f9f3aa1
FB
2839
2840@itemize @minus
5fafdf24 2841@item
6bf5b4e8 2842A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2843@item
2844PC style serial port
2845@item
24d4de45
TS
2846PC style IDE disk
2847@item
3f9f3aa1
FB
2848NE2000 network card
2849@end itemize
2850
24d4de45
TS
2851The Malta emulation supports the following devices:
2852
2853@itemize @minus
2854@item
0b64d008 2855Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2856@item
2857PIIX4 PCI/USB/SMbus controller
2858@item
2859The Multi-I/O chip's serial device
2860@item
2861PCnet32 PCI network card
2862@item
2863Malta FPGA serial device
2864@item
1f605a76 2865Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2866@end itemize
2867
2868The ACER Pica emulation supports:
2869
2870@itemize @minus
2871@item
2872MIPS R4000 CPU
2873@item
2874PC-style IRQ and DMA controllers
2875@item
2876PC Keyboard
2877@item
2878IDE controller
2879@end itemize
3f9f3aa1 2880
f0fc6f8f
TS
2881The mipssim pseudo board emulation provides an environment similiar
2882to what the proprietary MIPS emulator uses for running Linux.
2883It supports:
6bf5b4e8
TS
2884
2885@itemize @minus
2886@item
2887A range of MIPS CPUs, default is the 24Kf
2888@item
2889PC style serial port
2890@item
2891MIPSnet network emulation
2892@end itemize
2893
88cb0a02
AJ
2894The MIPS Magnum R4000 emulation supports:
2895
2896@itemize @minus
2897@item
2898MIPS R4000 CPU
2899@item
2900PC-style IRQ controller
2901@item
2902PC Keyboard
2903@item
2904SCSI controller
2905@item
2906G364 framebuffer
2907@end itemize
2908
2909
24d4de45
TS
2910@node ARM System emulator
2911@section ARM System emulator
3f9f3aa1
FB
2912
2913Use the executable @file{qemu-system-arm} to simulate a ARM
2914machine. The ARM Integrator/CP board is emulated with the following
2915devices:
2916
2917@itemize @minus
2918@item
9ee6e8bb 2919ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2920@item
2921Two PL011 UARTs
5fafdf24 2922@item
3f9f3aa1 2923SMC 91c111 Ethernet adapter
00a9bf19
PB
2924@item
2925PL110 LCD controller
2926@item
2927PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2928@item
2929PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2930@end itemize
2931
2932The ARM Versatile baseboard is emulated with the following devices:
2933
2934@itemize @minus
2935@item
9ee6e8bb 2936ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2937@item
2938PL190 Vectored Interrupt Controller
2939@item
2940Four PL011 UARTs
5fafdf24 2941@item
00a9bf19
PB
2942SMC 91c111 Ethernet adapter
2943@item
2944PL110 LCD controller
2945@item
2946PL050 KMI with PS/2 keyboard and mouse.
2947@item
2948PCI host bridge. Note the emulated PCI bridge only provides access to
2949PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2950This means some devices (eg. ne2k_pci NIC) are not usable, and others
2951(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2952mapped control registers.
e6de1bad
PB
2953@item
2954PCI OHCI USB controller.
2955@item
2956LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2957@item
2958PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2959@end itemize
2960
d7739d75
PB
2961The ARM RealView Emulation baseboard is emulated with the following devices:
2962
2963@itemize @minus
2964@item
9ee6e8bb 2965ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
2966@item
2967ARM AMBA Generic/Distributed Interrupt Controller
2968@item
2969Four PL011 UARTs
5fafdf24 2970@item
d7739d75
PB
2971SMC 91c111 Ethernet adapter
2972@item
2973PL110 LCD controller
2974@item
2975PL050 KMI with PS/2 keyboard and mouse
2976@item
2977PCI host bridge
2978@item
2979PCI OHCI USB controller
2980@item
2981LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2982@item
2983PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2984@end itemize
2985
b00052e4
AZ
2986The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2987and "Terrier") emulation includes the following peripherals:
2988
2989@itemize @minus
2990@item
2991Intel PXA270 System-on-chip (ARM V5TE core)
2992@item
2993NAND Flash memory
2994@item
2995IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2996@item
2997On-chip OHCI USB controller
2998@item
2999On-chip LCD controller
3000@item
3001On-chip Real Time Clock
3002@item
3003TI ADS7846 touchscreen controller on SSP bus
3004@item
3005Maxim MAX1111 analog-digital converter on I@math{^2}C bus
3006@item
3007GPIO-connected keyboard controller and LEDs
3008@item
549444e1 3009Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
3010@item
3011Three on-chip UARTs
3012@item
3013WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
3014@end itemize
3015
02645926
AZ
3016The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
3017following elements:
3018
3019@itemize @minus
3020@item
3021Texas Instruments OMAP310 System-on-chip (ARM 925T core)
3022@item
3023ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
3024@item
3025On-chip LCD controller
3026@item
3027On-chip Real Time Clock
3028@item
3029TI TSC2102i touchscreen controller / analog-digital converter / Audio
3030CODEC, connected through MicroWire and I@math{^2}S busses
3031@item
3032GPIO-connected matrix keypad
3033@item
3034Secure Digital card connected to OMAP MMC/SD host
3035@item
3036Three on-chip UARTs
3037@end itemize
3038
c30bb264
AZ
3039Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
3040emulation supports the following elements:
3041
3042@itemize @minus
3043@item
3044Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
3045@item
3046RAM and non-volatile OneNAND Flash memories
3047@item
3048Display connected to EPSON remote framebuffer chip and OMAP on-chip
3049display controller and a LS041y3 MIPI DBI-C controller
3050@item
3051TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
3052driven through SPI bus
3053@item
3054National Semiconductor LM8323-controlled qwerty keyboard driven
3055through I@math{^2}C bus
3056@item
3057Secure Digital card connected to OMAP MMC/SD host
3058@item
3059Three OMAP on-chip UARTs and on-chip STI debugging console
3060@item
2d564691
AZ
3061A Bluetooth(R) transciever and HCI connected to an UART
3062@item
c30bb264
AZ
3063Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
3064TUSB6010 chip - only USB host mode is supported
3065@item
3066TI TMP105 temperature sensor driven through I@math{^2}C bus
3067@item
3068TI TWL92230C power management companion with an RTC on I@math{^2}C bus
3069@item
3070Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
3071through CBUS
3072@end itemize
3073
9ee6e8bb
PB
3074The Luminary Micro Stellaris LM3S811EVB emulation includes the following
3075devices:
3076
3077@itemize @minus
3078@item
3079Cortex-M3 CPU core.
3080@item
308164k Flash and 8k SRAM.
3082@item
3083Timers, UARTs, ADC and I@math{^2}C interface.
3084@item
3085OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
3086@end itemize
3087
3088The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
3089devices:
3090
3091@itemize @minus
3092@item
3093Cortex-M3 CPU core.
3094@item
3095256k Flash and 64k SRAM.
3096@item
3097Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
3098@item
3099OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
3100@end itemize
3101
57cd6e97
AZ
3102The Freecom MusicPal internet radio emulation includes the following
3103elements:
3104
3105@itemize @minus
3106@item
3107Marvell MV88W8618 ARM core.
3108@item
310932 MB RAM, 256 KB SRAM, 8 MB flash.
3110@item
3111Up to 2 16550 UARTs
3112@item
3113MV88W8xx8 Ethernet controller
3114@item
3115MV88W8618 audio controller, WM8750 CODEC and mixer
3116@item
3117