]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Documentation: Use UTF-8 encoding and fix one wrong encoding
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065
FB
39* compilation:: Compilation from the sources
40* Index::
41@end menu
42@end ifnottex
43
44@contents
45
46@node Introduction
386405f7
FB
47@chapter Introduction
48
debc7065
FB
49@menu
50* intro_features:: Features
51@end menu
52
53@node intro_features
322d0c66 54@section Features
386405f7 55
1f673135
FB
56QEMU is a FAST! processor emulator using dynamic translation to
57achieve good emulation speed.
1eb20527
FB
58
59QEMU has two operating modes:
0806e3f6
FB
60
61@itemize @minus
62
5fafdf24 63@item
1f673135 64Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
65example a PC), including one or several processors and various
66peripherals. It can be used to launch different Operating Systems
67without rebooting the PC or to debug system code.
1eb20527 68
5fafdf24 69@item
83195237
FB
70User mode emulation. In this mode, QEMU can launch
71processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
72launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
73to ease cross-compilation and cross-debugging.
1eb20527
FB
74
75@end itemize
76
7c3fc84d 77QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 78performance.
322d0c66 79
52c00a5f
FB
80For system emulation, the following hardware targets are supported:
81@itemize
9d0a8e6f 82@item PC (x86 or x86_64 processor)
3f9f3aa1 83@item ISA PC (old style PC without PCI bus)
52c00a5f 84@item PREP (PowerPC processor)
d45952a0 85@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 86@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 87@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 88@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 89@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 90@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
91@item ARM Integrator/CP (ARM)
92@item ARM Versatile baseboard (ARM)
0ef849d7 93@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 94@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
95@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
96@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 97@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 98@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 99@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 100@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 101@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
102@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
103@item Siemens SX1 smartphone (OMAP310 processor)
4af39611 104@item Syborg SVP base model (ARM Cortex-A8).
48c50a62
EI
105@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
106@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
52c00a5f 107@end itemize
386405f7 108
48c50a62 109For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 110
debc7065 111@node Installation
5b9f457a
FB
112@chapter Installation
113
15a34c63
FB
114If you want to compile QEMU yourself, see @ref{compilation}.
115
debc7065
FB
116@menu
117* install_linux:: Linux
118* install_windows:: Windows
119* install_mac:: Macintosh
120@end menu
121
122@node install_linux
1f673135
FB
123@section Linux
124
7c3fc84d
FB
125If a precompiled package is available for your distribution - you just
126have to install it. Otherwise, see @ref{compilation}.
5b9f457a 127
debc7065 128@node install_windows
1f673135 129@section Windows
8cd0ac2f 130
15a34c63 131Download the experimental binary installer at
debc7065 132@url{http://www.free.oszoo.org/@/download.html}.
d691f669 133
debc7065 134@node install_mac
1f673135 135@section Mac OS X
d691f669 136
15a34c63 137Download the experimental binary installer at
debc7065 138@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 139
debc7065 140@node QEMU PC System emulator
3f9f3aa1 141@chapter QEMU PC System emulator
1eb20527 142
debc7065
FB
143@menu
144* pcsys_introduction:: Introduction
145* pcsys_quickstart:: Quick Start
146* sec_invocation:: Invocation
147* pcsys_keys:: Keys
148* pcsys_monitor:: QEMU Monitor
149* disk_images:: Disk Images
150* pcsys_network:: Network emulation
151* direct_linux_boot:: Direct Linux Boot
152* pcsys_usb:: USB emulation
f858dcae 153* vnc_security:: VNC security
debc7065
FB
154* gdb_usage:: GDB usage
155* pcsys_os_specific:: Target OS specific information
156@end menu
157
158@node pcsys_introduction
0806e3f6
FB
159@section Introduction
160
161@c man begin DESCRIPTION
162
3f9f3aa1
FB
163The QEMU PC System emulator simulates the
164following peripherals:
0806e3f6
FB
165
166@itemize @minus
5fafdf24 167@item
15a34c63 168i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 169@item
15a34c63
FB
170Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
171extensions (hardware level, including all non standard modes).
0806e3f6
FB
172@item
173PS/2 mouse and keyboard
5fafdf24 174@item
15a34c63 1752 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
176@item
177Floppy disk
5fafdf24 178@item
3a2eeac0 179PCI and ISA network adapters
0806e3f6 180@item
05d5818c
FB
181Serial ports
182@item
c0fe3827
FB
183Creative SoundBlaster 16 sound card
184@item
185ENSONIQ AudioPCI ES1370 sound card
186@item
e5c9a13e
AZ
187Intel 82801AA AC97 Audio compatible sound card
188@item
c0fe3827 189Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 190@item
26463dbc
AZ
191Gravis Ultrasound GF1 sound card
192@item
cc53d26d 193CS4231A compatible sound card
194@item
b389dbfb 195PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
196@end itemize
197
3f9f3aa1
FB
198SMP is supported with up to 255 CPUs.
199
1d1f8c33 200Note that adlib, gus and cs4231a are only available when QEMU was
201configured with --audio-card-list option containing the name(s) of
e5178e8d 202required card(s).
c0fe3827 203
15a34c63
FB
204QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
205VGA BIOS.
206
c0fe3827
FB
207QEMU uses YM3812 emulation by Tatsuyuki Satoh.
208
26463dbc
AZ
209QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
210by Tibor "TS" Schütz.
423d65f4 211
720036a5 212Not that, by default, GUS shares IRQ(7) with parallel ports and so
213qemu must be told to not have parallel ports to have working GUS
214
215@example
216qemu dos.img -soundhw gus -parallel none
217@end example
218
219Alternatively:
220@example
221qemu dos.img -device gus,irq=5
222@end example
223
224Or some other unclaimed IRQ.
225
cc53d26d 226CS4231A is the chip used in Windows Sound System and GUSMAX products
227
0806e3f6
FB
228@c man end
229
debc7065 230@node pcsys_quickstart
1eb20527
FB
231@section Quick Start
232
285dc330 233Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
234
235@example
285dc330 236qemu linux.img
0806e3f6
FB
237@end example
238
239Linux should boot and give you a prompt.
240
6cc721cf 241@node sec_invocation
ec410fc9
FB
242@section Invocation
243
244@example
0806e3f6 245@c man begin SYNOPSIS
89dfe898 246usage: qemu [options] [@var{disk_image}]
0806e3f6 247@c man end
ec410fc9
FB
248@end example
249
0806e3f6 250@c man begin OPTIONS
d2c639d6
BS
251@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
252targets do not need a disk image.
ec410fc9 253
5824d651 254@include qemu-options.texi
ec410fc9 255
3e11db9a
FB
256@c man end
257
debc7065 258@node pcsys_keys
3e11db9a
FB
259@section Keys
260
261@c man begin OPTIONS
262
a1b74fe8
FB
263During the graphical emulation, you can use the following keys:
264@table @key
f9859310 265@item Ctrl-Alt-f
a1b74fe8 266Toggle full screen
a0a821a4 267
c4a735f9 268@item Ctrl-Alt-u
269Restore the screen's un-scaled dimensions
270
f9859310 271@item Ctrl-Alt-n
a0a821a4
FB
272Switch to virtual console 'n'. Standard console mappings are:
273@table @emph
274@item 1
275Target system display
276@item 2
277Monitor
278@item 3
279Serial port
a1b74fe8
FB
280@end table
281
f9859310 282@item Ctrl-Alt
a0a821a4
FB
283Toggle mouse and keyboard grab.
284@end table
285
3e11db9a
FB
286In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
287@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
288
a0a821a4
FB
289During emulation, if you are using the @option{-nographic} option, use
290@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
291
292@table @key
a1b74fe8 293@item Ctrl-a h
d2c639d6 294@item Ctrl-a ?
ec410fc9 295Print this help
3b46e624 296@item Ctrl-a x
366dfc52 297Exit emulator
3b46e624 298@item Ctrl-a s
1f47a922 299Save disk data back to file (if -snapshot)
20d8a3ed 300@item Ctrl-a t
d2c639d6 301Toggle console timestamps
a1b74fe8 302@item Ctrl-a b
1f673135 303Send break (magic sysrq in Linux)
a1b74fe8 304@item Ctrl-a c
1f673135 305Switch between console and monitor
a1b74fe8
FB
306@item Ctrl-a Ctrl-a
307Send Ctrl-a
ec410fc9 308@end table
0806e3f6
FB
309@c man end
310
311@ignore
312
1f673135
FB
313@c man begin SEEALSO
314The HTML documentation of QEMU for more precise information and Linux
315user mode emulator invocation.
316@c man end
317
318@c man begin AUTHOR
319Fabrice Bellard
320@c man end
321
322@end ignore
323
debc7065 324@node pcsys_monitor
1f673135
FB
325@section QEMU Monitor
326
327The QEMU monitor is used to give complex commands to the QEMU
328emulator. You can use it to:
329
330@itemize @minus
331
332@item
e598752a 333Remove or insert removable media images
89dfe898 334(such as CD-ROM or floppies).
1f673135 335
5fafdf24 336@item
1f673135
FB
337Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
338from a disk file.
339
340@item Inspect the VM state without an external debugger.
341
342@end itemize
343
344@subsection Commands
345
346The following commands are available:
347
2313086a 348@include qemu-monitor.texi
0806e3f6 349
1f673135
FB
350@subsection Integer expressions
351
352The monitor understands integers expressions for every integer
353argument. You can use register names to get the value of specifics
354CPU registers by prefixing them with @emph{$}.
ec410fc9 355
1f47a922
FB
356@node disk_images
357@section Disk Images
358
acd935ef
FB
359Since version 0.6.1, QEMU supports many disk image formats, including
360growable disk images (their size increase as non empty sectors are
13a2e80f
FB
361written), compressed and encrypted disk images. Version 0.8.3 added
362the new qcow2 disk image format which is essential to support VM
363snapshots.
1f47a922 364
debc7065
FB
365@menu
366* disk_images_quickstart:: Quick start for disk image creation
367* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 368* vm_snapshots:: VM snapshots
debc7065 369* qemu_img_invocation:: qemu-img Invocation
975b092b 370* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 371* host_drives:: Using host drives
debc7065 372* disk_images_fat_images:: Virtual FAT disk images
75818250 373* disk_images_nbd:: NBD access
debc7065
FB
374@end menu
375
376@node disk_images_quickstart
acd935ef
FB
377@subsection Quick start for disk image creation
378
379You can create a disk image with the command:
1f47a922 380@example
acd935ef 381qemu-img create myimage.img mysize
1f47a922 382@end example
acd935ef
FB
383where @var{myimage.img} is the disk image filename and @var{mysize} is its
384size in kilobytes. You can add an @code{M} suffix to give the size in
385megabytes and a @code{G} suffix for gigabytes.
386
debc7065 387See @ref{qemu_img_invocation} for more information.
1f47a922 388
debc7065 389@node disk_images_snapshot_mode
1f47a922
FB
390@subsection Snapshot mode
391
392If you use the option @option{-snapshot}, all disk images are
393considered as read only. When sectors in written, they are written in
394a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
395write back to the raw disk images by using the @code{commit} monitor
396command (or @key{C-a s} in the serial console).
1f47a922 397
13a2e80f
FB
398@node vm_snapshots
399@subsection VM snapshots
400
401VM snapshots are snapshots of the complete virtual machine including
402CPU state, RAM, device state and the content of all the writable
403disks. In order to use VM snapshots, you must have at least one non
404removable and writable block device using the @code{qcow2} disk image
405format. Normally this device is the first virtual hard drive.
406
407Use the monitor command @code{savevm} to create a new VM snapshot or
408replace an existing one. A human readable name can be assigned to each
19d36792 409snapshot in addition to its numerical ID.
13a2e80f
FB
410
411Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
412a VM snapshot. @code{info snapshots} lists the available snapshots
413with their associated information:
414
415@example
416(qemu) info snapshots
417Snapshot devices: hda
418Snapshot list (from hda):
419ID TAG VM SIZE DATE VM CLOCK
4201 start 41M 2006-08-06 12:38:02 00:00:14.954
4212 40M 2006-08-06 12:43:29 00:00:18.633
4223 msys 40M 2006-08-06 12:44:04 00:00:23.514
423@end example
424
425A VM snapshot is made of a VM state info (its size is shown in
426@code{info snapshots}) and a snapshot of every writable disk image.
427The VM state info is stored in the first @code{qcow2} non removable
428and writable block device. The disk image snapshots are stored in
429every disk image. The size of a snapshot in a disk image is difficult
430to evaluate and is not shown by @code{info snapshots} because the
431associated disk sectors are shared among all the snapshots to save
19d36792
FB
432disk space (otherwise each snapshot would need a full copy of all the
433disk images).
13a2e80f
FB
434
435When using the (unrelated) @code{-snapshot} option
436(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
437but they are deleted as soon as you exit QEMU.
438
439VM snapshots currently have the following known limitations:
440@itemize
5fafdf24 441@item
13a2e80f
FB
442They cannot cope with removable devices if they are removed or
443inserted after a snapshot is done.
5fafdf24 444@item
13a2e80f
FB
445A few device drivers still have incomplete snapshot support so their
446state is not saved or restored properly (in particular USB).
447@end itemize
448
acd935ef
FB
449@node qemu_img_invocation
450@subsection @code{qemu-img} Invocation
1f47a922 451
acd935ef 452@include qemu-img.texi
05efe46e 453
975b092b
TS
454@node qemu_nbd_invocation
455@subsection @code{qemu-nbd} Invocation
456
457@include qemu-nbd.texi
458
19cb3738
FB
459@node host_drives
460@subsection Using host drives
461
462In addition to disk image files, QEMU can directly access host
463devices. We describe here the usage for QEMU version >= 0.8.3.
464
465@subsubsection Linux
466
467On Linux, you can directly use the host device filename instead of a
4be456f1 468disk image filename provided you have enough privileges to access
19cb3738
FB
469it. For example, use @file{/dev/cdrom} to access to the CDROM or
470@file{/dev/fd0} for the floppy.
471
f542086d 472@table @code
19cb3738
FB
473@item CD
474You can specify a CDROM device even if no CDROM is loaded. QEMU has
475specific code to detect CDROM insertion or removal. CDROM ejection by
476the guest OS is supported. Currently only data CDs are supported.
477@item Floppy
478You can specify a floppy device even if no floppy is loaded. Floppy
479removal is currently not detected accurately (if you change floppy
480without doing floppy access while the floppy is not loaded, the guest
481OS will think that the same floppy is loaded).
482@item Hard disks
483Hard disks can be used. Normally you must specify the whole disk
484(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
485see it as a partitioned disk. WARNING: unless you know what you do, it
486is better to only make READ-ONLY accesses to the hard disk otherwise
487you may corrupt your host data (use the @option{-snapshot} command
488line option or modify the device permissions accordingly).
489@end table
490
491@subsubsection Windows
492
01781963
FB
493@table @code
494@item CD
4be456f1 495The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
496alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
497supported as an alias to the first CDROM drive.
19cb3738 498
e598752a 499Currently there is no specific code to handle removable media, so it
19cb3738
FB
500is better to use the @code{change} or @code{eject} monitor commands to
501change or eject media.
01781963 502@item Hard disks
89dfe898 503Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
504where @var{N} is the drive number (0 is the first hard disk).
505
506WARNING: unless you know what you do, it is better to only make
507READ-ONLY accesses to the hard disk otherwise you may corrupt your
508host data (use the @option{-snapshot} command line so that the
509modifications are written in a temporary file).
510@end table
511
19cb3738
FB
512
513@subsubsection Mac OS X
514
5fafdf24 515@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 516
e598752a 517Currently there is no specific code to handle removable media, so it
19cb3738
FB
518is better to use the @code{change} or @code{eject} monitor commands to
519change or eject media.
520
debc7065 521@node disk_images_fat_images
2c6cadd4
FB
522@subsection Virtual FAT disk images
523
524QEMU can automatically create a virtual FAT disk image from a
525directory tree. In order to use it, just type:
526
5fafdf24 527@example
2c6cadd4
FB
528qemu linux.img -hdb fat:/my_directory
529@end example
530
531Then you access access to all the files in the @file{/my_directory}
532directory without having to copy them in a disk image or to export
533them via SAMBA or NFS. The default access is @emph{read-only}.
534
535Floppies can be emulated with the @code{:floppy:} option:
536
5fafdf24 537@example
2c6cadd4
FB
538qemu linux.img -fda fat:floppy:/my_directory
539@end example
540
541A read/write support is available for testing (beta stage) with the
542@code{:rw:} option:
543
5fafdf24 544@example
2c6cadd4
FB
545qemu linux.img -fda fat:floppy:rw:/my_directory
546@end example
547
548What you should @emph{never} do:
549@itemize
550@item use non-ASCII filenames ;
551@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
552@item expect it to work when loadvm'ing ;
553@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
554@end itemize
555
75818250
TS
556@node disk_images_nbd
557@subsection NBD access
558
559QEMU can access directly to block device exported using the Network Block Device
560protocol.
561
562@example
563qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
564@end example
565
566If the NBD server is located on the same host, you can use an unix socket instead
567of an inet socket:
568
569@example
570qemu linux.img -hdb nbd:unix:/tmp/my_socket
571@end example
572
573In this case, the block device must be exported using qemu-nbd:
574
575@example
576qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
577@end example
578
579The use of qemu-nbd allows to share a disk between several guests:
580@example
581qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
582@end example
583
584and then you can use it with two guests:
585@example
586qemu linux1.img -hdb nbd:unix:/tmp/my_socket
587qemu linux2.img -hdb nbd:unix:/tmp/my_socket
588@end example
589
debc7065 590@node pcsys_network
9d4fb82e
FB
591@section Network emulation
592
4be456f1 593QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
594target) and can connect them to an arbitrary number of Virtual Local
595Area Networks (VLANs). Host TAP devices can be connected to any QEMU
596VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 597simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
598network stack can replace the TAP device to have a basic network
599connection.
600
601@subsection VLANs
9d4fb82e 602
41d03949
FB
603QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
604connection between several network devices. These devices can be for
605example QEMU virtual Ethernet cards or virtual Host ethernet devices
606(TAP devices).
9d4fb82e 607
41d03949
FB
608@subsection Using TAP network interfaces
609
610This is the standard way to connect QEMU to a real network. QEMU adds
611a virtual network device on your host (called @code{tapN}), and you
612can then configure it as if it was a real ethernet card.
9d4fb82e 613
8f40c388
FB
614@subsubsection Linux host
615
9d4fb82e
FB
616As an example, you can download the @file{linux-test-xxx.tar.gz}
617archive and copy the script @file{qemu-ifup} in @file{/etc} and
618configure properly @code{sudo} so that the command @code{ifconfig}
619contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 620that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
621device @file{/dev/net/tun} must be present.
622
ee0f4751
FB
623See @ref{sec_invocation} to have examples of command lines using the
624TAP network interfaces.
9d4fb82e 625
8f40c388
FB
626@subsubsection Windows host
627
628There is a virtual ethernet driver for Windows 2000/XP systems, called
629TAP-Win32. But it is not included in standard QEMU for Windows,
630so you will need to get it separately. It is part of OpenVPN package,
631so download OpenVPN from : @url{http://openvpn.net/}.
632
9d4fb82e
FB
633@subsection Using the user mode network stack
634
41d03949
FB
635By using the option @option{-net user} (default configuration if no
636@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 637network stack (you don't need root privilege to use the virtual
41d03949 638network). The virtual network configuration is the following:
9d4fb82e
FB
639
640@example
641
41d03949
FB
642 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
643 | (10.0.2.2)
9d4fb82e 644 |
2518bd0d 645 ----> DNS server (10.0.2.3)
3b46e624 646 |
2518bd0d 647 ----> SMB server (10.0.2.4)
9d4fb82e
FB
648@end example
649
650The QEMU VM behaves as if it was behind a firewall which blocks all
651incoming connections. You can use a DHCP client to automatically
41d03949
FB
652configure the network in the QEMU VM. The DHCP server assign addresses
653to the hosts starting from 10.0.2.15.
9d4fb82e
FB
654
655In order to check that the user mode network is working, you can ping
656the address 10.0.2.2 and verify that you got an address in the range
65710.0.2.x from the QEMU virtual DHCP server.
658
b415a407 659Note that @code{ping} is not supported reliably to the internet as it
4be456f1 660would require root privileges. It means you can only ping the local
b415a407
FB
661router (10.0.2.2).
662
9bf05444
FB
663When using the built-in TFTP server, the router is also the TFTP
664server.
665
666When using the @option{-redir} option, TCP or UDP connections can be
667redirected from the host to the guest. It allows for example to
668redirect X11, telnet or SSH connections.
443f1376 669
41d03949
FB
670@subsection Connecting VLANs between QEMU instances
671
672Using the @option{-net socket} option, it is possible to make VLANs
673that span several QEMU instances. See @ref{sec_invocation} to have a
674basic example.
675
9d4fb82e
FB
676@node direct_linux_boot
677@section Direct Linux Boot
1f673135
FB
678
679This section explains how to launch a Linux kernel inside QEMU without
680having to make a full bootable image. It is very useful for fast Linux
ee0f4751 681kernel testing.
1f673135 682
ee0f4751 683The syntax is:
1f673135 684@example
ee0f4751 685qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
686@end example
687
ee0f4751
FB
688Use @option{-kernel} to provide the Linux kernel image and
689@option{-append} to give the kernel command line arguments. The
690@option{-initrd} option can be used to provide an INITRD image.
1f673135 691
ee0f4751
FB
692When using the direct Linux boot, a disk image for the first hard disk
693@file{hda} is required because its boot sector is used to launch the
694Linux kernel.
1f673135 695
ee0f4751
FB
696If you do not need graphical output, you can disable it and redirect
697the virtual serial port and the QEMU monitor to the console with the
698@option{-nographic} option. The typical command line is:
1f673135 699@example
ee0f4751
FB
700qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
701 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
702@end example
703
ee0f4751
FB
704Use @key{Ctrl-a c} to switch between the serial console and the
705monitor (@pxref{pcsys_keys}).
1f673135 706
debc7065 707@node pcsys_usb
b389dbfb
FB
708@section USB emulation
709
0aff66b5
PB
710QEMU emulates a PCI UHCI USB controller. You can virtually plug
711virtual USB devices or real host USB devices (experimental, works only
712on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 713as necessary to connect multiple USB devices.
b389dbfb 714
0aff66b5
PB
715@menu
716* usb_devices::
717* host_usb_devices::
718@end menu
719@node usb_devices
720@subsection Connecting USB devices
b389dbfb 721
0aff66b5
PB
722USB devices can be connected with the @option{-usbdevice} commandline option
723or the @code{usb_add} monitor command. Available devices are:
b389dbfb 724
db380c06
AZ
725@table @code
726@item mouse
0aff66b5 727Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 728@item tablet
c6d46c20 729Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
730This means qemu is able to report the mouse position without having
731to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 732@item disk:@var{file}
0aff66b5 733Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 734@item host:@var{bus.addr}
0aff66b5
PB
735Pass through the host device identified by @var{bus.addr}
736(Linux only)
db380c06 737@item host:@var{vendor_id:product_id}
0aff66b5
PB
738Pass through the host device identified by @var{vendor_id:product_id}
739(Linux only)
db380c06 740@item wacom-tablet
f6d2a316
AZ
741Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
742above but it can be used with the tslib library because in addition to touch
743coordinates it reports touch pressure.
db380c06 744@item keyboard
47b2d338 745Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
746@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
747Serial converter. This emulates an FTDI FT232BM chip connected to host character
748device @var{dev}. The available character devices are the same as for the
749@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 750used to override the default 0403:6001. For instance,
db380c06
AZ
751@example
752usb_add serial:productid=FA00:tcp:192.168.0.2:4444
753@end example
754will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
755serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
756@item braille
757Braille device. This will use BrlAPI to display the braille output on a real
758or fake device.
9ad97e65
AZ
759@item net:@var{options}
760Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
761specifies NIC options as with @code{-net nic,}@var{options} (see description).
762For instance, user-mode networking can be used with
6c9f886c 763@example
9ad97e65 764qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
765@end example
766Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
767@item bt[:@var{hci-type}]
768Bluetooth dongle whose type is specified in the same format as with
769the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
770no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
771This USB device implements the USB Transport Layer of HCI. Example
772usage:
773@example
774qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
775@end example
0aff66b5 776@end table
b389dbfb 777
0aff66b5 778@node host_usb_devices
b389dbfb
FB
779@subsection Using host USB devices on a Linux host
780
781WARNING: this is an experimental feature. QEMU will slow down when
782using it. USB devices requiring real time streaming (i.e. USB Video
783Cameras) are not supported yet.
784
785@enumerate
5fafdf24 786@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
787is actually using the USB device. A simple way to do that is simply to
788disable the corresponding kernel module by renaming it from @file{mydriver.o}
789to @file{mydriver.o.disabled}.
790
791@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
792@example
793ls /proc/bus/usb
794001 devices drivers
795@end example
796
797@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
798@example
799chown -R myuid /proc/bus/usb
800@end example
801
802@item Launch QEMU and do in the monitor:
5fafdf24 803@example
b389dbfb
FB
804info usbhost
805 Device 1.2, speed 480 Mb/s
806 Class 00: USB device 1234:5678, USB DISK
807@end example
808You should see the list of the devices you can use (Never try to use
809hubs, it won't work).
810
811@item Add the device in QEMU by using:
5fafdf24 812@example
b389dbfb
FB
813usb_add host:1234:5678
814@end example
815
816Normally the guest OS should report that a new USB device is
817plugged. You can use the option @option{-usbdevice} to do the same.
818
819@item Now you can try to use the host USB device in QEMU.
820
821@end enumerate
822
823When relaunching QEMU, you may have to unplug and plug again the USB
824device to make it work again (this is a bug).
825
f858dcae
TS
826@node vnc_security
827@section VNC security
828
829The VNC server capability provides access to the graphical console
830of the guest VM across the network. This has a number of security
831considerations depending on the deployment scenarios.
832
833@menu
834* vnc_sec_none::
835* vnc_sec_password::
836* vnc_sec_certificate::
837* vnc_sec_certificate_verify::
838* vnc_sec_certificate_pw::
2f9606b3
AL
839* vnc_sec_sasl::
840* vnc_sec_certificate_sasl::
f858dcae 841* vnc_generate_cert::
2f9606b3 842* vnc_setup_sasl::
f858dcae
TS
843@end menu
844@node vnc_sec_none
845@subsection Without passwords
846
847The simplest VNC server setup does not include any form of authentication.
848For this setup it is recommended to restrict it to listen on a UNIX domain
849socket only. For example
850
851@example
852qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
853@end example
854
855This ensures that only users on local box with read/write access to that
856path can access the VNC server. To securely access the VNC server from a
857remote machine, a combination of netcat+ssh can be used to provide a secure
858tunnel.
859
860@node vnc_sec_password
861@subsection With passwords
862
863The VNC protocol has limited support for password based authentication. Since
864the protocol limits passwords to 8 characters it should not be considered
865to provide high security. The password can be fairly easily brute-forced by
866a client making repeat connections. For this reason, a VNC server using password
867authentication should be restricted to only listen on the loopback interface
34a3d239 868or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
869option, and then once QEMU is running the password is set with the monitor. Until
870the monitor is used to set the password all clients will be rejected.
871
872@example
873qemu [...OPTIONS...] -vnc :1,password -monitor stdio
874(qemu) change vnc password
875Password: ********
876(qemu)
877@end example
878
879@node vnc_sec_certificate
880@subsection With x509 certificates
881
882The QEMU VNC server also implements the VeNCrypt extension allowing use of
883TLS for encryption of the session, and x509 certificates for authentication.
884The use of x509 certificates is strongly recommended, because TLS on its
885own is susceptible to man-in-the-middle attacks. Basic x509 certificate
886support provides a secure session, but no authentication. This allows any
887client to connect, and provides an encrypted session.
888
889@example
890qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
891@end example
892
893In the above example @code{/etc/pki/qemu} should contain at least three files,
894@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
895users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
896NB the @code{server-key.pem} file should be protected with file mode 0600 to
897only be readable by the user owning it.
898
899@node vnc_sec_certificate_verify
900@subsection With x509 certificates and client verification
901
902Certificates can also provide a means to authenticate the client connecting.
903The server will request that the client provide a certificate, which it will
904then validate against the CA certificate. This is a good choice if deploying
905in an environment with a private internal certificate authority.
906
907@example
908qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
909@end example
910
911
912@node vnc_sec_certificate_pw
913@subsection With x509 certificates, client verification and passwords
914
915Finally, the previous method can be combined with VNC password authentication
916to provide two layers of authentication for clients.
917
918@example
919qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
920(qemu) change vnc password
921Password: ********
922(qemu)
923@end example
924
2f9606b3
AL
925
926@node vnc_sec_sasl
927@subsection With SASL authentication
928
929The SASL authentication method is a VNC extension, that provides an
930easily extendable, pluggable authentication method. This allows for
931integration with a wide range of authentication mechanisms, such as
932PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
933The strength of the authentication depends on the exact mechanism
934configured. If the chosen mechanism also provides a SSF layer, then
935it will encrypt the datastream as well.
936
937Refer to the later docs on how to choose the exact SASL mechanism
938used for authentication, but assuming use of one supporting SSF,
939then QEMU can be launched with:
940
941@example
942qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
943@end example
944
945@node vnc_sec_certificate_sasl
946@subsection With x509 certificates and SASL authentication
947
948If the desired SASL authentication mechanism does not supported
949SSF layers, then it is strongly advised to run it in combination
950with TLS and x509 certificates. This provides securely encrypted
951data stream, avoiding risk of compromising of the security
952credentials. This can be enabled, by combining the 'sasl' option
953with the aforementioned TLS + x509 options:
954
955@example
956qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
957@end example
958
959
f858dcae
TS
960@node vnc_generate_cert
961@subsection Generating certificates for VNC
962
963The GNU TLS packages provides a command called @code{certtool} which can
964be used to generate certificates and keys in PEM format. At a minimum it
965is neccessary to setup a certificate authority, and issue certificates to
966each server. If using certificates for authentication, then each client
967will also need to be issued a certificate. The recommendation is for the
968server to keep its certificates in either @code{/etc/pki/qemu} or for
969unprivileged users in @code{$HOME/.pki/qemu}.
970
971@menu
972* vnc_generate_ca::
973* vnc_generate_server::
974* vnc_generate_client::
975@end menu
976@node vnc_generate_ca
977@subsubsection Setup the Certificate Authority
978
979This step only needs to be performed once per organization / organizational
980unit. First the CA needs a private key. This key must be kept VERY secret
981and secure. If this key is compromised the entire trust chain of the certificates
982issued with it is lost.
983
984@example
985# certtool --generate-privkey > ca-key.pem
986@end example
987
988A CA needs to have a public certificate. For simplicity it can be a self-signed
989certificate, or one issue by a commercial certificate issuing authority. To
990generate a self-signed certificate requires one core piece of information, the
991name of the organization.
992
993@example
994# cat > ca.info <<EOF
995cn = Name of your organization
996ca
997cert_signing_key
998EOF
999# certtool --generate-self-signed \
1000 --load-privkey ca-key.pem
1001 --template ca.info \
1002 --outfile ca-cert.pem
1003@end example
1004
1005The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1006TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1007
1008@node vnc_generate_server
1009@subsubsection Issuing server certificates
1010
1011Each server (or host) needs to be issued with a key and certificate. When connecting
1012the certificate is sent to the client which validates it against the CA certificate.
1013The core piece of information for a server certificate is the hostname. This should
1014be the fully qualified hostname that the client will connect with, since the client
1015will typically also verify the hostname in the certificate. On the host holding the
1016secure CA private key:
1017
1018@example
1019# cat > server.info <<EOF
1020organization = Name of your organization
1021cn = server.foo.example.com
1022tls_www_server
1023encryption_key
1024signing_key
1025EOF
1026# certtool --generate-privkey > server-key.pem
1027# certtool --generate-certificate \
1028 --load-ca-certificate ca-cert.pem \
1029 --load-ca-privkey ca-key.pem \
1030 --load-privkey server server-key.pem \
1031 --template server.info \
1032 --outfile server-cert.pem
1033@end example
1034
1035The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1036to the server for which they were generated. The @code{server-key.pem} is security
1037sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1038
1039@node vnc_generate_client
1040@subsubsection Issuing client certificates
1041
1042If the QEMU VNC server is to use the @code{x509verify} option to validate client
1043certificates as its authentication mechanism, each client also needs to be issued
1044a certificate. The client certificate contains enough metadata to uniquely identify
1045the client, typically organization, state, city, building, etc. On the host holding
1046the secure CA private key:
1047
1048@example
1049# cat > client.info <<EOF
1050country = GB
1051state = London
1052locality = London
1053organiazation = Name of your organization
1054cn = client.foo.example.com
1055tls_www_client
1056encryption_key
1057signing_key
1058EOF
1059# certtool --generate-privkey > client-key.pem
1060# certtool --generate-certificate \
1061 --load-ca-certificate ca-cert.pem \
1062 --load-ca-privkey ca-key.pem \
1063 --load-privkey client-key.pem \
1064 --template client.info \
1065 --outfile client-cert.pem
1066@end example
1067
1068The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1069copied to the client for which they were generated.
1070
2f9606b3
AL
1071
1072@node vnc_setup_sasl
1073
1074@subsection Configuring SASL mechanisms
1075
1076The following documentation assumes use of the Cyrus SASL implementation on a
1077Linux host, but the principals should apply to any other SASL impl. When SASL
1078is enabled, the mechanism configuration will be loaded from system default
1079SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1080unprivileged user, an environment variable SASL_CONF_PATH can be used
1081to make it search alternate locations for the service config.
1082
1083The default configuration might contain
1084
1085@example
1086mech_list: digest-md5
1087sasldb_path: /etc/qemu/passwd.db
1088@end example
1089
1090This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1091Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1092in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1093command. While this mechanism is easy to configure and use, it is not
1094considered secure by modern standards, so only suitable for developers /
1095ad-hoc testing.
1096
1097A more serious deployment might use Kerberos, which is done with the 'gssapi'
1098mechanism
1099
1100@example
1101mech_list: gssapi
1102keytab: /etc/qemu/krb5.tab
1103@end example
1104
1105For this to work the administrator of your KDC must generate a Kerberos
1106principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1107replacing 'somehost.example.com' with the fully qualified host name of the
1108machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1109
1110Other configurations will be left as an exercise for the reader. It should
1111be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1112encryption. For all other mechanisms, VNC should always be configured to
1113use TLS and x509 certificates to protect security credentials from snooping.
1114
0806e3f6 1115@node gdb_usage
da415d54
FB
1116@section GDB usage
1117
1118QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1119'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1120
9d4520d0 1121In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1122gdb connection:
1123@example
debc7065
FB
1124> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1125 -append "root=/dev/hda"
da415d54
FB
1126Connected to host network interface: tun0
1127Waiting gdb connection on port 1234
1128@end example
1129
1130Then launch gdb on the 'vmlinux' executable:
1131@example
1132> gdb vmlinux
1133@end example
1134
1135In gdb, connect to QEMU:
1136@example
6c9bf893 1137(gdb) target remote localhost:1234
da415d54
FB
1138@end example
1139
1140Then you can use gdb normally. For example, type 'c' to launch the kernel:
1141@example
1142(gdb) c
1143@end example
1144
0806e3f6
FB
1145Here are some useful tips in order to use gdb on system code:
1146
1147@enumerate
1148@item
1149Use @code{info reg} to display all the CPU registers.
1150@item
1151Use @code{x/10i $eip} to display the code at the PC position.
1152@item
1153Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1154@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1155@end enumerate
1156
60897d36
EI
1157Advanced debugging options:
1158
1159The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1160@table @code
60897d36
EI
1161@item maintenance packet qqemu.sstepbits
1162
1163This will display the MASK bits used to control the single stepping IE:
1164@example
1165(gdb) maintenance packet qqemu.sstepbits
1166sending: "qqemu.sstepbits"
1167received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1168@end example
1169@item maintenance packet qqemu.sstep
1170
1171This will display the current value of the mask used when single stepping IE:
1172@example
1173(gdb) maintenance packet qqemu.sstep
1174sending: "qqemu.sstep"
1175received: "0x7"
1176@end example
1177@item maintenance packet Qqemu.sstep=HEX_VALUE
1178
1179This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1180@example
1181(gdb) maintenance packet Qqemu.sstep=0x5
1182sending: "qemu.sstep=0x5"
1183received: "OK"
1184@end example
94d45e44 1185@end table
60897d36 1186
debc7065 1187@node pcsys_os_specific
1a084f3d
FB
1188@section Target OS specific information
1189
1190@subsection Linux
1191
15a34c63
FB
1192To have access to SVGA graphic modes under X11, use the @code{vesa} or
1193the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1194color depth in the guest and the host OS.
1a084f3d 1195
e3371e62
FB
1196When using a 2.6 guest Linux kernel, you should add the option
1197@code{clock=pit} on the kernel command line because the 2.6 Linux
1198kernels make very strict real time clock checks by default that QEMU
1199cannot simulate exactly.
1200
7c3fc84d
FB
1201When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1202not activated because QEMU is slower with this patch. The QEMU
1203Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1204Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1205patch by default. Newer kernels don't have it.
1206
1a084f3d
FB
1207@subsection Windows
1208
1209If you have a slow host, using Windows 95 is better as it gives the
1210best speed. Windows 2000 is also a good choice.
1211
e3371e62
FB
1212@subsubsection SVGA graphic modes support
1213
1214QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1215card. All Windows versions starting from Windows 95 should recognize
1216and use this graphic card. For optimal performances, use 16 bit color
1217depth in the guest and the host OS.
1a084f3d 1218
3cb0853a
FB
1219If you are using Windows XP as guest OS and if you want to use high
1220resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
12211280x1024x16), then you should use the VESA VBE virtual graphic card
1222(option @option{-std-vga}).
1223
e3371e62
FB
1224@subsubsection CPU usage reduction
1225
1226Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1227instruction. The result is that it takes host CPU cycles even when
1228idle. You can install the utility from
1229@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1230problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1231
9d0a8e6f 1232@subsubsection Windows 2000 disk full problem
e3371e62 1233
9d0a8e6f
FB
1234Windows 2000 has a bug which gives a disk full problem during its
1235installation. When installing it, use the @option{-win2k-hack} QEMU
1236option to enable a specific workaround. After Windows 2000 is
1237installed, you no longer need this option (this option slows down the
1238IDE transfers).
e3371e62 1239
6cc721cf
FB
1240@subsubsection Windows 2000 shutdown
1241
1242Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1243can. It comes from the fact that Windows 2000 does not automatically
1244use the APM driver provided by the BIOS.
1245
1246In order to correct that, do the following (thanks to Struan
1247Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1248Add/Troubleshoot a device => Add a new device & Next => No, select the
1249hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1250(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1251correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1252
1253@subsubsection Share a directory between Unix and Windows
1254
1255See @ref{sec_invocation} about the help of the option @option{-smb}.
1256
2192c332 1257@subsubsection Windows XP security problem
e3371e62
FB
1258
1259Some releases of Windows XP install correctly but give a security
1260error when booting:
1261@example
1262A problem is preventing Windows from accurately checking the
1263license for this computer. Error code: 0x800703e6.
1264@end example
e3371e62 1265
2192c332
FB
1266The workaround is to install a service pack for XP after a boot in safe
1267mode. Then reboot, and the problem should go away. Since there is no
1268network while in safe mode, its recommended to download the full
1269installation of SP1 or SP2 and transfer that via an ISO or using the
1270vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1271
a0a821a4
FB
1272@subsection MS-DOS and FreeDOS
1273
1274@subsubsection CPU usage reduction
1275
1276DOS does not correctly use the CPU HLT instruction. The result is that
1277it takes host CPU cycles even when idle. You can install the utility
1278from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1279problem.
1280
debc7065 1281@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1282@chapter QEMU System emulator for non PC targets
1283
1284QEMU is a generic emulator and it emulates many non PC
1285machines. Most of the options are similar to the PC emulator. The
4be456f1 1286differences are mentioned in the following sections.
3f9f3aa1 1287
debc7065
FB
1288@menu
1289* QEMU PowerPC System emulator::
24d4de45
TS
1290* Sparc32 System emulator::
1291* Sparc64 System emulator::
1292* MIPS System emulator::
1293* ARM System emulator::
1294* ColdFire System emulator::
debc7065
FB
1295@end menu
1296
1297@node QEMU PowerPC System emulator
3f9f3aa1 1298@section QEMU PowerPC System emulator
1a084f3d 1299
15a34c63
FB
1300Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1301or PowerMac PowerPC system.
1a084f3d 1302
b671f9ed 1303QEMU emulates the following PowerMac peripherals:
1a084f3d 1304
15a34c63 1305@itemize @minus
5fafdf24 1306@item
006f3a48 1307UniNorth or Grackle PCI Bridge
15a34c63
FB
1308@item
1309PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1310@item
15a34c63 13112 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1312@item
15a34c63
FB
1313NE2000 PCI adapters
1314@item
1315Non Volatile RAM
1316@item
1317VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1318@end itemize
1319
b671f9ed 1320QEMU emulates the following PREP peripherals:
52c00a5f
FB
1321
1322@itemize @minus
5fafdf24 1323@item
15a34c63
FB
1324PCI Bridge
1325@item
1326PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1327@item
52c00a5f
FB
13282 IDE interfaces with hard disk and CD-ROM support
1329@item
1330Floppy disk
5fafdf24 1331@item
15a34c63 1332NE2000 network adapters
52c00a5f
FB
1333@item
1334Serial port
1335@item
1336PREP Non Volatile RAM
15a34c63
FB
1337@item
1338PC compatible keyboard and mouse.
52c00a5f
FB
1339@end itemize
1340
15a34c63 1341QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1342@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1343
992e5acd 1344Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1345for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1346v2) portable firmware implementation. The goal is to implement a 100%
1347IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1348
15a34c63
FB
1349@c man begin OPTIONS
1350
1351The following options are specific to the PowerPC emulation:
1352
1353@table @option
1354
4e257e5e 1355@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1356
1357Set the initial VGA graphic mode. The default is 800x600x15.
1358
4e257e5e 1359@item -prom-env @var{string}
95efd11c
BS
1360
1361Set OpenBIOS variables in NVRAM, for example:
1362
1363@example
1364qemu-system-ppc -prom-env 'auto-boot?=false' \
1365 -prom-env 'boot-device=hd:2,\yaboot' \
1366 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1367@end example
1368
1369These variables are not used by Open Hack'Ware.
1370
15a34c63
FB
1371@end table
1372
5fafdf24 1373@c man end
15a34c63
FB
1374
1375
52c00a5f 1376More information is available at
3f9f3aa1 1377@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1378
24d4de45
TS
1379@node Sparc32 System emulator
1380@section Sparc32 System emulator
e80cfcfc 1381
34a3d239
BS
1382Use the executable @file{qemu-system-sparc} to simulate the following
1383Sun4m architecture machines:
1384@itemize @minus
1385@item
1386SPARCstation 4
1387@item
1388SPARCstation 5
1389@item
1390SPARCstation 10
1391@item
1392SPARCstation 20
1393@item
1394SPARCserver 600MP
1395@item
1396SPARCstation LX
1397@item
1398SPARCstation Voyager
1399@item
1400SPARCclassic
1401@item
1402SPARCbook
1403@end itemize
1404
1405The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1406but Linux limits the number of usable CPUs to 4.
e80cfcfc 1407
34a3d239
BS
1408It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1409SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1410emulators are not usable yet.
1411
1412QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1413
1414@itemize @minus
3475187d 1415@item
7d85892b 1416IOMMU or IO-UNITs
e80cfcfc
FB
1417@item
1418TCX Frame buffer
5fafdf24 1419@item
e80cfcfc
FB
1420Lance (Am7990) Ethernet
1421@item
34a3d239 1422Non Volatile RAM M48T02/M48T08
e80cfcfc 1423@item
3475187d
FB
1424Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1425and power/reset logic
1426@item
1427ESP SCSI controller with hard disk and CD-ROM support
1428@item
6a3b9cc9 1429Floppy drive (not on SS-600MP)
a2502b58
BS
1430@item
1431CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1432@end itemize
1433
6a3b9cc9
BS
1434The number of peripherals is fixed in the architecture. Maximum
1435memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1436others 2047MB.
3475187d 1437
30a604f3 1438Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1439@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1440firmware implementation. The goal is to implement a 100% IEEE
14411275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1442
1443A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1444the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1445some kernel versions work. Please note that currently Solaris kernels
1446don't work probably due to interface issues between OpenBIOS and
1447Solaris.
3475187d
FB
1448
1449@c man begin OPTIONS
1450
a2502b58 1451The following options are specific to the Sparc32 emulation:
3475187d
FB
1452
1453@table @option
1454
4e257e5e 1455@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1456
a2502b58
BS
1457Set the initial TCX graphic mode. The default is 1024x768x8, currently
1458the only other possible mode is 1024x768x24.
3475187d 1459
4e257e5e 1460@item -prom-env @var{string}
66508601
BS
1461
1462Set OpenBIOS variables in NVRAM, for example:
1463
1464@example
1465qemu-system-sparc -prom-env 'auto-boot?=false' \
1466 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1467@end example
1468
34a3d239 1469@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1470
1471Set the emulated machine type. Default is SS-5.
1472
3475187d
FB
1473@end table
1474
5fafdf24 1475@c man end
3475187d 1476
24d4de45
TS
1477@node Sparc64 System emulator
1478@section Sparc64 System emulator
e80cfcfc 1479
34a3d239
BS
1480Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1481(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1482Niagara (T1) machine. The emulator is not usable for anything yet, but
1483it can launch some kernels.
b756921a 1484
c7ba218d 1485QEMU emulates the following peripherals:
83469015
FB
1486
1487@itemize @minus
1488@item
5fafdf24 1489UltraSparc IIi APB PCI Bridge
83469015
FB
1490@item
1491PCI VGA compatible card with VESA Bochs Extensions
1492@item
34a3d239
BS
1493PS/2 mouse and keyboard
1494@item
83469015
FB
1495Non Volatile RAM M48T59
1496@item
1497PC-compatible serial ports
c7ba218d
BS
1498@item
14992 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1500@item
1501Floppy disk
83469015
FB
1502@end itemize
1503
c7ba218d
BS
1504@c man begin OPTIONS
1505
1506The following options are specific to the Sparc64 emulation:
1507
1508@table @option
1509
4e257e5e 1510@item -prom-env @var{string}
34a3d239
BS
1511
1512Set OpenBIOS variables in NVRAM, for example:
1513
1514@example
1515qemu-system-sparc64 -prom-env 'auto-boot?=false'
1516@end example
1517
1518@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1519
1520Set the emulated machine type. The default is sun4u.
1521
1522@end table
1523
1524@c man end
1525
24d4de45
TS
1526@node MIPS System emulator
1527@section MIPS System emulator
9d0a8e6f 1528
d9aedc32
TS
1529Four executables cover simulation of 32 and 64-bit MIPS systems in
1530both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1531@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1532Five different machine types are emulated:
24d4de45
TS
1533
1534@itemize @minus
1535@item
1536A generic ISA PC-like machine "mips"
1537@item
1538The MIPS Malta prototype board "malta"
1539@item
d9aedc32 1540An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1541@item
f0fc6f8f 1542MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1543@item
1544A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1545@end itemize
1546
1547The generic emulation is supported by Debian 'Etch' and is able to
1548install Debian into a virtual disk image. The following devices are
1549emulated:
3f9f3aa1
FB
1550
1551@itemize @minus
5fafdf24 1552@item
6bf5b4e8 1553A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1554@item
1555PC style serial port
1556@item
24d4de45
TS
1557PC style IDE disk
1558@item
3f9f3aa1
FB
1559NE2000 network card
1560@end itemize
1561
24d4de45
TS
1562The Malta emulation supports the following devices:
1563
1564@itemize @minus
1565@item
0b64d008 1566Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1567@item
1568PIIX4 PCI/USB/SMbus controller
1569@item
1570The Multi-I/O chip's serial device
1571@item
3a2eeac0 1572PCI network cards (PCnet32 and others)
24d4de45
TS
1573@item
1574Malta FPGA serial device
1575@item
1f605a76 1576Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1577@end itemize
1578
1579The ACER Pica emulation supports:
1580
1581@itemize @minus
1582@item
1583MIPS R4000 CPU
1584@item
1585PC-style IRQ and DMA controllers
1586@item
1587PC Keyboard
1588@item
1589IDE controller
1590@end itemize
3f9f3aa1 1591
f0fc6f8f
TS
1592The mipssim pseudo board emulation provides an environment similiar
1593to what the proprietary MIPS emulator uses for running Linux.
1594It supports:
6bf5b4e8
TS
1595
1596@itemize @minus
1597@item
1598A range of MIPS CPUs, default is the 24Kf
1599@item
1600PC style serial port
1601@item
1602MIPSnet network emulation
1603@end itemize
1604
88cb0a02
AJ
1605The MIPS Magnum R4000 emulation supports:
1606
1607@itemize @minus
1608@item
1609MIPS R4000 CPU
1610@item
1611PC-style IRQ controller
1612@item
1613PC Keyboard
1614@item
1615SCSI controller
1616@item
1617G364 framebuffer
1618@end itemize
1619
1620
24d4de45
TS
1621@node ARM System emulator
1622@section ARM System emulator
3f9f3aa1
FB
1623
1624Use the executable @file{qemu-system-arm} to simulate a ARM
1625machine. The ARM Integrator/CP board is emulated with the following
1626devices:
1627
1628@itemize @minus
1629@item
9ee6e8bb 1630ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1631@item
1632Two PL011 UARTs
5fafdf24 1633@item
3f9f3aa1 1634SMC 91c111 Ethernet adapter
00a9bf19
PB
1635@item
1636PL110 LCD controller
1637@item
1638PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1639@item
1640PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1641@end itemize
1642
1643The ARM Versatile baseboard is emulated with the following devices:
1644
1645@itemize @minus
1646@item
9ee6e8bb 1647ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1648@item
1649PL190 Vectored Interrupt Controller
1650@item
1651Four PL011 UARTs
5fafdf24 1652@item
00a9bf19
PB
1653SMC 91c111 Ethernet adapter
1654@item
1655PL110 LCD controller
1656@item
1657PL050 KMI with PS/2 keyboard and mouse.
1658@item
1659PCI host bridge. Note the emulated PCI bridge only provides access to
1660PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1661This means some devices (eg. ne2k_pci NIC) are not usable, and others
1662(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1663mapped control registers.
e6de1bad
PB
1664@item
1665PCI OHCI USB controller.
1666@item
1667LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1668@item
1669PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1670@end itemize
1671
21a88941
PB
1672Several variants of the ARM RealView baseboard are emulated,
1673including the EB, PB-A8 and PBX-A9. Due to interactions with the
1674bootloader, only certain Linux kernel configurations work out
1675of the box on these boards.
1676
1677Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1678enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1679should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1680disabled and expect 1024M RAM.
1681
1682The following devices are emuilated:
d7739d75
PB
1683
1684@itemize @minus
1685@item
f7c70325 1686ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1687@item
1688ARM AMBA Generic/Distributed Interrupt Controller
1689@item
1690Four PL011 UARTs
5fafdf24 1691@item
0ef849d7 1692SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1693@item
1694PL110 LCD controller
1695@item
1696PL050 KMI with PS/2 keyboard and mouse
1697@item
1698PCI host bridge
1699@item
1700PCI OHCI USB controller
1701@item
1702LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1703@item
1704PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1705@end itemize
1706
b00052e4
AZ
1707The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1708and "Terrier") emulation includes the following peripherals:
1709
1710@itemize @minus
1711@item
1712Intel PXA270 System-on-chip (ARM V5TE core)
1713@item
1714NAND Flash memory
1715@item
1716IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1717@item
1718On-chip OHCI USB controller
1719@item
1720On-chip LCD controller
1721@item
1722On-chip Real Time Clock
1723@item
1724TI ADS7846 touchscreen controller on SSP bus
1725@item
1726Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1727@item
1728GPIO-connected keyboard controller and LEDs
1729@item
549444e1 1730Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1731@item
1732Three on-chip UARTs
1733@item
1734WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1735@end itemize
1736
02645926
AZ
1737The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1738following elements:
1739
1740@itemize @minus
1741@item
1742Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1743@item
1744ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1745@item
1746On-chip LCD controller
1747@item
1748On-chip Real Time Clock
1749@item
1750TI TSC2102i touchscreen controller / analog-digital converter / Audio
1751CODEC, connected through MicroWire and I@math{^2}S busses
1752@item
1753GPIO-connected matrix keypad
1754@item
1755Secure Digital card connected to OMAP MMC/SD host
1756@item
1757Three on-chip UARTs
1758@end itemize
1759
c30bb264
AZ
1760Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1761emulation supports the following elements:
1762
1763@itemize @minus
1764@item
1765Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1766@item
1767RAM and non-volatile OneNAND Flash memories
1768@item
1769Display connected to EPSON remote framebuffer chip and OMAP on-chip
1770display controller and a LS041y3 MIPI DBI-C controller
1771@item
1772TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1773driven through SPI bus
1774@item
1775National Semiconductor LM8323-controlled qwerty keyboard driven
1776through I@math{^2}C bus
1777@item
1778Secure Digital card connected to OMAP MMC/SD host
1779@item
1780Three OMAP on-chip UARTs and on-chip STI debugging console
1781@item
2d564691
AZ
1782A Bluetooth(R) transciever and HCI connected to an UART
1783@item
c30bb264
AZ
1784Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1785TUSB6010 chip - only USB host mode is supported
1786@item
1787TI TMP105 temperature sensor driven through I@math{^2}C bus
1788@item
1789TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1790@item
1791Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1792through CBUS
1793@end itemize
1794
9ee6e8bb
PB
1795The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1796devices:
1797
1798@itemize @minus
1799@item
1800Cortex-M3 CPU core.
1801@item
180264k Flash and 8k SRAM.
1803@item
1804Timers, UARTs, ADC and I@math{^2}C interface.
1805@item
1806OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1807@end itemize
1808
1809The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1810devices:
1811
1812@itemize @minus
1813@item
1814Cortex-M3 CPU core.
1815@item
1816256k Flash and 64k SRAM.
1817@item
1818Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1819@item
1820OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1821@end itemize
1822
57cd6e97
AZ
1823The Freecom MusicPal internet radio emulation includes the following
1824elements:
1825
1826@itemize @minus
1827@item
1828Marvell MV88W8618 ARM core.
1829@item
183032 MB RAM, 256 KB SRAM, 8 MB flash.
1831@item
1832Up to 2 16550 UARTs
1833@item
1834MV88W8xx8 Ethernet controller
1835@item
1836MV88W8618 audio controller, WM8750 CODEC and mixer
1837@item
e080e785 1838128×64 display with brightness control
57cd6e97
AZ
1839@item
18402 buttons, 2 navigation wheels with button function
1841@end itemize
1842
997641a8
AZ
1843The Siemens SX1 models v1 and v2 (default) basic emulation.
1844The emulaton includes the following elements:
1845
1846@itemize @minus
1847@item
1848Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1849@item
1850ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1851V1
18521 Flash of 16MB and 1 Flash of 8MB
1853V2
18541 Flash of 32MB
1855@item
1856On-chip LCD controller
1857@item
1858On-chip Real Time Clock
1859@item
1860Secure Digital card connected to OMAP MMC/SD host
1861@item
1862Three on-chip UARTs
1863@end itemize
1864
4af39611
PB
1865The "Syborg" Symbian Virtual Platform base model includes the following
1866elements:
1867
1868@itemize @minus
1869@item
1870ARM Cortex-A8 CPU
1871@item
1872Interrupt controller
1873@item
1874Timer
1875@item
1876Real Time Clock
1877@item
1878Keyboard
1879@item
1880Framebuffer
1881@item
1882Touchscreen
1883@item
1884UARTs
1885@end itemize
1886
3f9f3aa1
FB
1887A Linux 2.6 test image is available on the QEMU web site. More
1888information is available in the QEMU mailing-list archive.
9d0a8e6f 1889
d2c639d6
BS
1890@c man begin OPTIONS
1891
1892The following options are specific to the ARM emulation:
1893
1894@table @option
1895
1896@item -semihosting
1897Enable semihosting syscall emulation.
1898
1899On ARM this implements the "Angel" interface.
1900
1901Note that this allows guest direct access to the host filesystem,
1902so should only be used with trusted guest OS.
1903
1904@end table
1905
24d4de45
TS
1906@node ColdFire System emulator
1907@section ColdFire System emulator
209a4e69
PB
1908
1909Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1910The emulator is able to boot a uClinux kernel.
707e011b
PB
1911
1912The M5208EVB emulation includes the following devices:
1913
1914@itemize @minus
5fafdf24 1915@item
707e011b
PB
1916MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1917@item
1918Three Two on-chip UARTs.
1919@item
1920Fast Ethernet Controller (FEC)
1921@end itemize
1922
1923The AN5206 emulation includes the following devices:
209a4e69
PB
1924
1925@itemize @minus
5fafdf24 1926@item
209a4e69
PB
1927MCF5206 ColdFire V2 Microprocessor.
1928@item
1929Two on-chip UARTs.
1930@end itemize
1931
d2c639d6
BS
1932@c man begin OPTIONS
1933
1934The following options are specific to the ARM emulation:
1935
1936@table @option
1937
1938@item -semihosting
1939Enable semihosting syscall emulation.
1940
1941On M68K this implements the "ColdFire GDB" interface used by libgloss.
1942
1943Note that this allows guest direct access to the host filesystem,
1944so should only be used with trusted guest OS.
1945
1946@end table
1947
5fafdf24
TS
1948@node QEMU User space emulator
1949@chapter QEMU User space emulator
83195237
FB
1950
1951@menu
1952* Supported Operating Systems ::
1953* Linux User space emulator::
1954* Mac OS X/Darwin User space emulator ::
84778508 1955* BSD User space emulator ::
83195237
FB
1956@end menu
1957
1958@node Supported Operating Systems
1959@section Supported Operating Systems
1960
1961The following OS are supported in user space emulation:
1962
1963@itemize @minus
1964@item
4be456f1 1965Linux (referred as qemu-linux-user)
83195237 1966@item
4be456f1 1967Mac OS X/Darwin (referred as qemu-darwin-user)
84778508
BS
1968@item
1969BSD (referred as qemu-bsd-user)
83195237
FB
1970@end itemize
1971
1972@node Linux User space emulator
1973@section Linux User space emulator
386405f7 1974
debc7065
FB
1975@menu
1976* Quick Start::
1977* Wine launch::
1978* Command line options::
79737e4a 1979* Other binaries::
debc7065
FB
1980@end menu
1981
1982@node Quick Start
83195237 1983@subsection Quick Start
df0f11a0 1984
1f673135 1985In order to launch a Linux process, QEMU needs the process executable
5fafdf24 1986itself and all the target (x86) dynamic libraries used by it.
386405f7 1987
1f673135 1988@itemize
386405f7 1989
1f673135
FB
1990@item On x86, you can just try to launch any process by using the native
1991libraries:
386405f7 1992
5fafdf24 1993@example
1f673135
FB
1994qemu-i386 -L / /bin/ls
1995@end example
386405f7 1996
1f673135
FB
1997@code{-L /} tells that the x86 dynamic linker must be searched with a
1998@file{/} prefix.
386405f7 1999
dbcf5e82
TS
2000@item Since QEMU is also a linux process, you can launch qemu with
2001qemu (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2002
5fafdf24 2003@example
1f673135
FB
2004qemu-i386 -L / qemu-i386 -L / /bin/ls
2005@end example
386405f7 2006
1f673135
FB
2007@item On non x86 CPUs, you need first to download at least an x86 glibc
2008(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2009@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2010
1f673135 2011@example
5fafdf24 2012unset LD_LIBRARY_PATH
1f673135 2013@end example
1eb87257 2014
1f673135 2015Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2016
1f673135
FB
2017@example
2018qemu-i386 tests/i386/ls
2019@end example
2020You can look at @file{qemu-binfmt-conf.sh} so that
2021QEMU is automatically launched by the Linux kernel when you try to
2022launch x86 executables. It requires the @code{binfmt_misc} module in the
2023Linux kernel.
1eb87257 2024
1f673135
FB
2025@item The x86 version of QEMU is also included. You can try weird things such as:
2026@example
debc7065
FB
2027qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2028 /usr/local/qemu-i386/bin/ls-i386
1f673135 2029@end example
1eb20527 2030
1f673135 2031@end itemize
1eb20527 2032
debc7065 2033@node Wine launch
83195237 2034@subsection Wine launch
1eb20527 2035
1f673135 2036@itemize
386405f7 2037
1f673135
FB
2038@item Ensure that you have a working QEMU with the x86 glibc
2039distribution (see previous section). In order to verify it, you must be
2040able to do:
386405f7 2041
1f673135
FB
2042@example
2043qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2044@end example
386405f7 2045
1f673135 2046@item Download the binary x86 Wine install
5fafdf24 2047(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2048
1f673135 2049@item Configure Wine on your account. Look at the provided script
debc7065 2050@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2051@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2052
1f673135 2053@item Then you can try the example @file{putty.exe}:
386405f7 2054
1f673135 2055@example
debc7065
FB
2056qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2057 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2058@end example
386405f7 2059
1f673135 2060@end itemize
fd429f2f 2061
debc7065 2062@node Command line options
83195237 2063@subsection Command line options
1eb20527 2064
1f673135 2065@example
379f6698 2066usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
1f673135 2067@end example
1eb20527 2068
1f673135
FB
2069@table @option
2070@item -h
2071Print the help
3b46e624 2072@item -L path
1f673135
FB
2073Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2074@item -s size
2075Set the x86 stack size in bytes (default=524288)
34a3d239
BS
2076@item -cpu model
2077Select CPU model (-cpu ? for list and additional feature selection)
379f6698
PB
2078@item -B offset
2079Offset guest address by the specified number of bytes. This is useful when
2080the address region rewuired by guest applications is reserved on the host.
2081Ths option is currently only supported on some hosts.
386405f7
FB
2082@end table
2083
1f673135 2084Debug options:
386405f7 2085
1f673135
FB
2086@table @option
2087@item -d
2088Activate log (logfile=/tmp/qemu.log)
2089@item -p pagesize
2090Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2091@item -g port
2092Wait gdb connection to port
1b530a6d
AJ
2093@item -singlestep
2094Run the emulation in single step mode.
1f673135 2095@end table
386405f7 2096
b01bcae6
AZ
2097Environment variables:
2098
2099@table @env
2100@item QEMU_STRACE
2101Print system calls and arguments similar to the 'strace' program
2102(NOTE: the actual 'strace' program will not work because the user
2103space emulator hasn't implemented ptrace). At the moment this is
2104incomplete. All system calls that don't have a specific argument
2105format are printed with information for six arguments. Many
2106flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2107@end table
b01bcae6 2108
79737e4a 2109@node Other binaries
83195237 2110@subsection Other binaries
79737e4a
PB
2111
2112@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2113binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2114configurations), and arm-uclinux bFLT format binaries.
2115
e6e5906b
PB
2116@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2117(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2118coldfire uClinux bFLT format binaries.
2119
79737e4a
PB
2120The binary format is detected automatically.
2121
34a3d239
BS
2122@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2123
a785e42e
BS
2124@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2125(Sparc64 CPU, 32 bit ABI).
2126
2127@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2128SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2129
83195237
FB
2130@node Mac OS X/Darwin User space emulator
2131@section Mac OS X/Darwin User space emulator
2132
2133@menu
2134* Mac OS X/Darwin Status::
2135* Mac OS X/Darwin Quick Start::
2136* Mac OS X/Darwin Command line options::
2137@end menu
2138
2139@node Mac OS X/Darwin Status
2140@subsection Mac OS X/Darwin Status
2141
2142@itemize @minus
2143@item
2144target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2145@item
2146target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2147@item
dbcf5e82 2148target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
83195237
FB
2149@item
2150target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2151@end itemize
2152
2153[1] If you're host commpage can be executed by qemu.
2154
2155@node Mac OS X/Darwin Quick Start
2156@subsection Quick Start
2157
2158In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2159itself and all the target dynamic libraries used by it. If you don't have the FAT
2160libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2161CD or compile them by hand.
2162
2163@itemize
2164
2165@item On x86, you can just try to launch any process by using the native
2166libraries:
2167
5fafdf24 2168@example
dbcf5e82 2169qemu-i386 /bin/ls
83195237
FB
2170@end example
2171
2172or to run the ppc version of the executable:
2173
5fafdf24 2174@example
dbcf5e82 2175qemu-ppc /bin/ls
83195237
FB
2176@end example
2177
2178@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2179are installed:
2180
5fafdf24 2181@example
dbcf5e82 2182qemu-i386 -L /opt/x86_root/ /bin/ls
83195237
FB
2183@end example
2184
2185@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2186@file{/opt/x86_root/usr/bin/dyld}.
2187
2188@end itemize
2189
2190@node Mac OS X/Darwin Command line options
2191@subsection Command line options
2192
2193@example
dbcf5e82 2194usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
83195237
FB
2195@end example
2196
2197@table @option
2198@item -h
2199Print the help
3b46e624 2200@item -L path
83195237
FB
2201Set the library root path (default=/)
2202@item -s size
2203Set the stack size in bytes (default=524288)
2204@end table
2205
2206Debug options:
2207
2208@table @option
2209@item -d
2210Activate log (logfile=/tmp/qemu.log)
2211@item -p pagesize
2212Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2213@item -singlestep
2214Run the emulation in single step mode.
83195237
FB
2215@end table
2216
84778508
BS
2217@node BSD User space emulator
2218@section BSD User space emulator
2219
2220@menu
2221* BSD Status::
2222* BSD Quick Start::
2223* BSD Command line options::
2224@end menu
2225
2226@node BSD Status
2227@subsection BSD Status
2228
2229@itemize @minus
2230@item
2231target Sparc64 on Sparc64: Some trivial programs work.
2232@end itemize
2233
2234@node BSD Quick Start
2235@subsection Quick Start
2236
2237In order to launch a BSD process, QEMU needs the process executable
2238itself and all the target dynamic libraries used by it.
2239
2240@itemize
2241
2242@item On Sparc64, you can just try to launch any process by using the native
2243libraries:
2244
2245@example
2246qemu-sparc64 /bin/ls
2247@end example
2248
2249@end itemize
2250
2251@node BSD Command line options
2252@subsection Command line options
2253
2254@example
2255usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2256@end example
2257
2258@table @option
2259@item -h
2260Print the help
2261@item -L path
2262Set the library root path (default=/)
2263@item -s size
2264Set the stack size in bytes (default=524288)
2265@item -bsd type
2266Set the type of the emulated BSD Operating system. Valid values are
2267FreeBSD, NetBSD and OpenBSD (default).
2268@end table
2269
2270Debug options:
2271
2272@table @option
2273@item -d
2274Activate log (logfile=/tmp/qemu.log)
2275@item -p pagesize
2276Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2277@item -singlestep
2278Run the emulation in single step mode.
84778508
BS
2279@end table
2280
15a34c63
FB
2281@node compilation
2282@chapter Compilation from the sources
2283
debc7065
FB
2284@menu
2285* Linux/Unix::
2286* Windows::
2287* Cross compilation for Windows with Linux::
2288* Mac OS X::
2289@end menu
2290
2291@node Linux/Unix
7c3fc84d
FB
2292@section Linux/Unix
2293
2294@subsection Compilation
2295
2296First you must decompress the sources:
2297@example
2298cd /tmp
2299tar zxvf qemu-x.y.z.tar.gz
2300cd qemu-x.y.z
2301@end example
2302
2303Then you configure QEMU and build it (usually no options are needed):
2304@example
2305./configure
2306make
2307@end example
2308
2309Then type as root user:
2310@example
2311make install
2312@end example
2313to install QEMU in @file{/usr/local}.
2314
debc7065 2315@node Windows
15a34c63
FB
2316@section Windows
2317
2318@itemize
2319@item Install the current versions of MSYS and MinGW from
2320@url{http://www.mingw.org/}. You can find detailed installation
2321instructions in the download section and the FAQ.
2322
5fafdf24 2323@item Download
15a34c63 2324the MinGW development library of SDL 1.2.x
debc7065 2325(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2326@url{http://www.libsdl.org}. Unpack it in a temporary place and
2327edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2328correct SDL directory when invoked.
2329
d0a96f3d
ST
2330@item Install the MinGW version of zlib and make sure
2331@file{zlib.h} and @file{libz.dll.a} are in
2332MingGW's default header and linker search paths.
2333
15a34c63 2334@item Extract the current version of QEMU.
5fafdf24 2335
15a34c63
FB
2336@item Start the MSYS shell (file @file{msys.bat}).
2337
5fafdf24 2338@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2339@file{make}. If you have problems using SDL, verify that
2340@file{sdl-config} can be launched from the MSYS command line.
2341
5fafdf24 2342@item You can install QEMU in @file{Program Files/Qemu} by typing
15a34c63
FB
2343@file{make install}. Don't forget to copy @file{SDL.dll} in
2344@file{Program Files/Qemu}.
2345
2346@end itemize
2347
debc7065 2348@node Cross compilation for Windows with Linux
15a34c63
FB
2349@section Cross compilation for Windows with Linux
2350
2351@itemize
2352@item
2353Install the MinGW cross compilation tools available at
2354@url{http://www.mingw.org/}.
2355
d0a96f3d
ST
2356@item Download
2357the MinGW development library of SDL 1.2.x
2358(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2359@url{http://www.libsdl.org}. Unpack it in a temporary place and
2360edit the @file{sdl-config} script so that it gives the
2361correct SDL directory when invoked. Set up the @code{PATH} environment
2362variable so that @file{sdl-config} can be launched by
15a34c63
FB
2363the QEMU configuration script.
2364
d0a96f3d
ST
2365@item Install the MinGW version of zlib and make sure
2366@file{zlib.h} and @file{libz.dll.a} are in
2367MingGW's default header and linker search paths.
2368
5fafdf24 2369@item
15a34c63
FB
2370Configure QEMU for Windows cross compilation:
2371@example
d0a96f3d
ST
2372PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2373@end example
2374The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2375MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2376We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2377use --cross-prefix to specify the name of the cross compiler.
2378You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2379
2380Under Fedora Linux, you can run:
2381@example
2382yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2383@end example
d0a96f3d 2384to get a suitable cross compilation environment.
15a34c63 2385
5fafdf24 2386@item You can install QEMU in the installation directory by typing
d0a96f3d 2387@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2388installation directory.
15a34c63
FB
2389
2390@end itemize
2391
d0a96f3d 2392Wine can be used to launch the resulting qemu.exe compiled for Win32.
15a34c63 2393
debc7065 2394@node Mac OS X
15a34c63
FB
2395@section Mac OS X
2396
2397The Mac OS X patches are not fully merged in QEMU, so you should look
2398at the QEMU mailing list archive to have all the necessary
2399information.
2400
debc7065
FB
2401@node Index
2402@chapter Index
2403@printindex cp
2404
2405@bye