]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - security/selinux/ss/services.c
[SCTP]: Cleanups
[mirror_ubuntu-bionic-kernel.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
7420ed23
VY
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 * Added support for NetLabel
19 *
20 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
376bd9cb 21 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
1da177e4
LT
22 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation, version 2.
27 */
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/string.h>
31#include <linux/spinlock.h>
32#include <linux/errno.h>
33#include <linux/in.h>
34#include <linux/sched.h>
35#include <linux/audit.h>
bb003079 36#include <linux/mutex.h>
7420ed23
VY
37#include <net/sock.h>
38#include <net/netlabel.h>
bb003079 39
1da177e4
LT
40#include "flask.h"
41#include "avc.h"
42#include "avc_ss.h"
43#include "security.h"
44#include "context.h"
45#include "policydb.h"
46#include "sidtab.h"
47#include "services.h"
48#include "conditional.h"
49#include "mls.h"
7420ed23
VY
50#include "objsec.h"
51#include "selinux_netlabel.h"
1da177e4
LT
52
53extern void selnl_notify_policyload(u32 seqno);
54unsigned int policydb_loaded_version;
55
56static DEFINE_RWLOCK(policy_rwlock);
57#define POLICY_RDLOCK read_lock(&policy_rwlock)
58#define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
59#define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
60#define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
61
bb003079
IM
62static DEFINE_MUTEX(load_mutex);
63#define LOAD_LOCK mutex_lock(&load_mutex)
64#define LOAD_UNLOCK mutex_unlock(&load_mutex)
1da177e4
LT
65
66static struct sidtab sidtab;
67struct policydb policydb;
68int ss_initialized = 0;
69
70/*
71 * The largest sequence number that has been used when
72 * providing an access decision to the access vector cache.
73 * The sequence number only changes when a policy change
74 * occurs.
75 */
76static u32 latest_granting = 0;
77
78/* Forward declaration. */
79static int context_struct_to_string(struct context *context, char **scontext,
80 u32 *scontext_len);
81
82/*
83 * Return the boolean value of a constraint expression
84 * when it is applied to the specified source and target
85 * security contexts.
86 *
87 * xcontext is a special beast... It is used by the validatetrans rules
88 * only. For these rules, scontext is the context before the transition,
89 * tcontext is the context after the transition, and xcontext is the context
90 * of the process performing the transition. All other callers of
91 * constraint_expr_eval should pass in NULL for xcontext.
92 */
93static int constraint_expr_eval(struct context *scontext,
94 struct context *tcontext,
95 struct context *xcontext,
96 struct constraint_expr *cexpr)
97{
98 u32 val1, val2;
99 struct context *c;
100 struct role_datum *r1, *r2;
101 struct mls_level *l1, *l2;
102 struct constraint_expr *e;
103 int s[CEXPR_MAXDEPTH];
104 int sp = -1;
105
106 for (e = cexpr; e; e = e->next) {
107 switch (e->expr_type) {
108 case CEXPR_NOT:
109 BUG_ON(sp < 0);
110 s[sp] = !s[sp];
111 break;
112 case CEXPR_AND:
113 BUG_ON(sp < 1);
114 sp--;
115 s[sp] &= s[sp+1];
116 break;
117 case CEXPR_OR:
118 BUG_ON(sp < 1);
119 sp--;
120 s[sp] |= s[sp+1];
121 break;
122 case CEXPR_ATTR:
123 if (sp == (CEXPR_MAXDEPTH-1))
124 return 0;
125 switch (e->attr) {
126 case CEXPR_USER:
127 val1 = scontext->user;
128 val2 = tcontext->user;
129 break;
130 case CEXPR_TYPE:
131 val1 = scontext->type;
132 val2 = tcontext->type;
133 break;
134 case CEXPR_ROLE:
135 val1 = scontext->role;
136 val2 = tcontext->role;
137 r1 = policydb.role_val_to_struct[val1 - 1];
138 r2 = policydb.role_val_to_struct[val2 - 1];
139 switch (e->op) {
140 case CEXPR_DOM:
141 s[++sp] = ebitmap_get_bit(&r1->dominates,
142 val2 - 1);
143 continue;
144 case CEXPR_DOMBY:
145 s[++sp] = ebitmap_get_bit(&r2->dominates,
146 val1 - 1);
147 continue;
148 case CEXPR_INCOMP:
149 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
150 val2 - 1) &&
151 !ebitmap_get_bit(&r2->dominates,
152 val1 - 1) );
153 continue;
154 default:
155 break;
156 }
157 break;
158 case CEXPR_L1L2:
159 l1 = &(scontext->range.level[0]);
160 l2 = &(tcontext->range.level[0]);
161 goto mls_ops;
162 case CEXPR_L1H2:
163 l1 = &(scontext->range.level[0]);
164 l2 = &(tcontext->range.level[1]);
165 goto mls_ops;
166 case CEXPR_H1L2:
167 l1 = &(scontext->range.level[1]);
168 l2 = &(tcontext->range.level[0]);
169 goto mls_ops;
170 case CEXPR_H1H2:
171 l1 = &(scontext->range.level[1]);
172 l2 = &(tcontext->range.level[1]);
173 goto mls_ops;
174 case CEXPR_L1H1:
175 l1 = &(scontext->range.level[0]);
176 l2 = &(scontext->range.level[1]);
177 goto mls_ops;
178 case CEXPR_L2H2:
179 l1 = &(tcontext->range.level[0]);
180 l2 = &(tcontext->range.level[1]);
181 goto mls_ops;
182mls_ops:
183 switch (e->op) {
184 case CEXPR_EQ:
185 s[++sp] = mls_level_eq(l1, l2);
186 continue;
187 case CEXPR_NEQ:
188 s[++sp] = !mls_level_eq(l1, l2);
189 continue;
190 case CEXPR_DOM:
191 s[++sp] = mls_level_dom(l1, l2);
192 continue;
193 case CEXPR_DOMBY:
194 s[++sp] = mls_level_dom(l2, l1);
195 continue;
196 case CEXPR_INCOMP:
197 s[++sp] = mls_level_incomp(l2, l1);
198 continue;
199 default:
200 BUG();
201 return 0;
202 }
203 break;
204 default:
205 BUG();
206 return 0;
207 }
208
209 switch (e->op) {
210 case CEXPR_EQ:
211 s[++sp] = (val1 == val2);
212 break;
213 case CEXPR_NEQ:
214 s[++sp] = (val1 != val2);
215 break;
216 default:
217 BUG();
218 return 0;
219 }
220 break;
221 case CEXPR_NAMES:
222 if (sp == (CEXPR_MAXDEPTH-1))
223 return 0;
224 c = scontext;
225 if (e->attr & CEXPR_TARGET)
226 c = tcontext;
227 else if (e->attr & CEXPR_XTARGET) {
228 c = xcontext;
229 if (!c) {
230 BUG();
231 return 0;
232 }
233 }
234 if (e->attr & CEXPR_USER)
235 val1 = c->user;
236 else if (e->attr & CEXPR_ROLE)
237 val1 = c->role;
238 else if (e->attr & CEXPR_TYPE)
239 val1 = c->type;
240 else {
241 BUG();
242 return 0;
243 }
244
245 switch (e->op) {
246 case CEXPR_EQ:
247 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
248 break;
249 case CEXPR_NEQ:
250 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
251 break;
252 default:
253 BUG();
254 return 0;
255 }
256 break;
257 default:
258 BUG();
259 return 0;
260 }
261 }
262
263 BUG_ON(sp != 0);
264 return s[0];
265}
266
267/*
268 * Compute access vectors based on a context structure pair for
269 * the permissions in a particular class.
270 */
271static int context_struct_compute_av(struct context *scontext,
272 struct context *tcontext,
273 u16 tclass,
274 u32 requested,
275 struct av_decision *avd)
276{
277 struct constraint_node *constraint;
278 struct role_allow *ra;
279 struct avtab_key avkey;
782ebb99 280 struct avtab_node *node;
1da177e4 281 struct class_datum *tclass_datum;
782ebb99
SS
282 struct ebitmap *sattr, *tattr;
283 struct ebitmap_node *snode, *tnode;
284 unsigned int i, j;
1da177e4
LT
285
286 /*
287 * Remap extended Netlink classes for old policy versions.
288 * Do this here rather than socket_type_to_security_class()
289 * in case a newer policy version is loaded, allowing sockets
290 * to remain in the correct class.
291 */
292 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
293 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
294 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
295 tclass = SECCLASS_NETLINK_SOCKET;
296
297 if (!tclass || tclass > policydb.p_classes.nprim) {
298 printk(KERN_ERR "security_compute_av: unrecognized class %d\n",
299 tclass);
300 return -EINVAL;
301 }
302 tclass_datum = policydb.class_val_to_struct[tclass - 1];
303
304 /*
305 * Initialize the access vectors to the default values.
306 */
307 avd->allowed = 0;
308 avd->decided = 0xffffffff;
309 avd->auditallow = 0;
310 avd->auditdeny = 0xffffffff;
311 avd->seqno = latest_granting;
312
313 /*
314 * If a specific type enforcement rule was defined for
315 * this permission check, then use it.
316 */
1da177e4 317 avkey.target_class = tclass;
782ebb99
SS
318 avkey.specified = AVTAB_AV;
319 sattr = &policydb.type_attr_map[scontext->type - 1];
320 tattr = &policydb.type_attr_map[tcontext->type - 1];
321 ebitmap_for_each_bit(sattr, snode, i) {
322 if (!ebitmap_node_get_bit(snode, i))
323 continue;
324 ebitmap_for_each_bit(tattr, tnode, j) {
325 if (!ebitmap_node_get_bit(tnode, j))
326 continue;
327 avkey.source_type = i + 1;
328 avkey.target_type = j + 1;
329 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
330 node != NULL;
331 node = avtab_search_node_next(node, avkey.specified)) {
332 if (node->key.specified == AVTAB_ALLOWED)
333 avd->allowed |= node->datum.data;
334 else if (node->key.specified == AVTAB_AUDITALLOW)
335 avd->auditallow |= node->datum.data;
336 else if (node->key.specified == AVTAB_AUDITDENY)
337 avd->auditdeny &= node->datum.data;
338 }
1da177e4 339
782ebb99
SS
340 /* Check conditional av table for additional permissions */
341 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
342
343 }
344 }
1da177e4
LT
345
346 /*
347 * Remove any permissions prohibited by a constraint (this includes
348 * the MLS policy).
349 */
350 constraint = tclass_datum->constraints;
351 while (constraint) {
352 if ((constraint->permissions & (avd->allowed)) &&
353 !constraint_expr_eval(scontext, tcontext, NULL,
354 constraint->expr)) {
355 avd->allowed = (avd->allowed) & ~(constraint->permissions);
356 }
357 constraint = constraint->next;
358 }
359
360 /*
361 * If checking process transition permission and the
362 * role is changing, then check the (current_role, new_role)
363 * pair.
364 */
365 if (tclass == SECCLASS_PROCESS &&
366 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
367 scontext->role != tcontext->role) {
368 for (ra = policydb.role_allow; ra; ra = ra->next) {
369 if (scontext->role == ra->role &&
370 tcontext->role == ra->new_role)
371 break;
372 }
373 if (!ra)
374 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
375 PROCESS__DYNTRANSITION);
376 }
377
378 return 0;
379}
380
381static int security_validtrans_handle_fail(struct context *ocontext,
382 struct context *ncontext,
383 struct context *tcontext,
384 u16 tclass)
385{
386 char *o = NULL, *n = NULL, *t = NULL;
387 u32 olen, nlen, tlen;
388
389 if (context_struct_to_string(ocontext, &o, &olen) < 0)
390 goto out;
391 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
392 goto out;
393 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
394 goto out;
9ad9ad38 395 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
396 "security_validate_transition: denied for"
397 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
398 o, n, t, policydb.p_class_val_to_name[tclass-1]);
399out:
400 kfree(o);
401 kfree(n);
402 kfree(t);
403
404 if (!selinux_enforcing)
405 return 0;
406 return -EPERM;
407}
408
409int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
410 u16 tclass)
411{
412 struct context *ocontext;
413 struct context *ncontext;
414 struct context *tcontext;
415 struct class_datum *tclass_datum;
416 struct constraint_node *constraint;
417 int rc = 0;
418
419 if (!ss_initialized)
420 return 0;
421
422 POLICY_RDLOCK;
423
424 /*
425 * Remap extended Netlink classes for old policy versions.
426 * Do this here rather than socket_type_to_security_class()
427 * in case a newer policy version is loaded, allowing sockets
428 * to remain in the correct class.
429 */
430 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
431 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
432 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
433 tclass = SECCLASS_NETLINK_SOCKET;
434
435 if (!tclass || tclass > policydb.p_classes.nprim) {
436 printk(KERN_ERR "security_validate_transition: "
437 "unrecognized class %d\n", tclass);
438 rc = -EINVAL;
439 goto out;
440 }
441 tclass_datum = policydb.class_val_to_struct[tclass - 1];
442
443 ocontext = sidtab_search(&sidtab, oldsid);
444 if (!ocontext) {
445 printk(KERN_ERR "security_validate_transition: "
446 " unrecognized SID %d\n", oldsid);
447 rc = -EINVAL;
448 goto out;
449 }
450
451 ncontext = sidtab_search(&sidtab, newsid);
452 if (!ncontext) {
453 printk(KERN_ERR "security_validate_transition: "
454 " unrecognized SID %d\n", newsid);
455 rc = -EINVAL;
456 goto out;
457 }
458
459 tcontext = sidtab_search(&sidtab, tasksid);
460 if (!tcontext) {
461 printk(KERN_ERR "security_validate_transition: "
462 " unrecognized SID %d\n", tasksid);
463 rc = -EINVAL;
464 goto out;
465 }
466
467 constraint = tclass_datum->validatetrans;
468 while (constraint) {
469 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
470 constraint->expr)) {
471 rc = security_validtrans_handle_fail(ocontext, ncontext,
472 tcontext, tclass);
473 goto out;
474 }
475 constraint = constraint->next;
476 }
477
478out:
479 POLICY_RDUNLOCK;
480 return rc;
481}
482
483/**
484 * security_compute_av - Compute access vector decisions.
485 * @ssid: source security identifier
486 * @tsid: target security identifier
487 * @tclass: target security class
488 * @requested: requested permissions
489 * @avd: access vector decisions
490 *
491 * Compute a set of access vector decisions based on the
492 * SID pair (@ssid, @tsid) for the permissions in @tclass.
493 * Return -%EINVAL if any of the parameters are invalid or %0
494 * if the access vector decisions were computed successfully.
495 */
496int security_compute_av(u32 ssid,
497 u32 tsid,
498 u16 tclass,
499 u32 requested,
500 struct av_decision *avd)
501{
502 struct context *scontext = NULL, *tcontext = NULL;
503 int rc = 0;
504
505 if (!ss_initialized) {
4c443d1b
SS
506 avd->allowed = 0xffffffff;
507 avd->decided = 0xffffffff;
1da177e4
LT
508 avd->auditallow = 0;
509 avd->auditdeny = 0xffffffff;
510 avd->seqno = latest_granting;
511 return 0;
512 }
513
514 POLICY_RDLOCK;
515
516 scontext = sidtab_search(&sidtab, ssid);
517 if (!scontext) {
518 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
519 ssid);
520 rc = -EINVAL;
521 goto out;
522 }
523 tcontext = sidtab_search(&sidtab, tsid);
524 if (!tcontext) {
525 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
526 tsid);
527 rc = -EINVAL;
528 goto out;
529 }
530
531 rc = context_struct_compute_av(scontext, tcontext, tclass,
532 requested, avd);
533out:
534 POLICY_RDUNLOCK;
535 return rc;
536}
537
538/*
539 * Write the security context string representation of
540 * the context structure `context' into a dynamically
541 * allocated string of the correct size. Set `*scontext'
542 * to point to this string and set `*scontext_len' to
543 * the length of the string.
544 */
545static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
546{
547 char *scontextp;
548
549 *scontext = NULL;
550 *scontext_len = 0;
551
552 /* Compute the size of the context. */
553 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
554 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
555 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
556 *scontext_len += mls_compute_context_len(context);
557
558 /* Allocate space for the context; caller must free this space. */
559 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
560 if (!scontextp) {
561 return -ENOMEM;
562 }
563 *scontext = scontextp;
564
565 /*
566 * Copy the user name, role name and type name into the context.
567 */
568 sprintf(scontextp, "%s:%s:%s",
569 policydb.p_user_val_to_name[context->user - 1],
570 policydb.p_role_val_to_name[context->role - 1],
571 policydb.p_type_val_to_name[context->type - 1]);
572 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
573 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
574 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
575
576 mls_sid_to_context(context, &scontextp);
577
578 *scontextp = 0;
579
580 return 0;
581}
582
583#include "initial_sid_to_string.h"
584
585/**
586 * security_sid_to_context - Obtain a context for a given SID.
587 * @sid: security identifier, SID
588 * @scontext: security context
589 * @scontext_len: length in bytes
590 *
591 * Write the string representation of the context associated with @sid
592 * into a dynamically allocated string of the correct size. Set @scontext
593 * to point to this string and set @scontext_len to the length of the string.
594 */
595int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
596{
597 struct context *context;
598 int rc = 0;
599
600 if (!ss_initialized) {
601 if (sid <= SECINITSID_NUM) {
602 char *scontextp;
603
604 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
605 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
0cccca06
SH
606 if (!scontextp) {
607 rc = -ENOMEM;
608 goto out;
609 }
1da177e4
LT
610 strcpy(scontextp, initial_sid_to_string[sid]);
611 *scontext = scontextp;
612 goto out;
613 }
614 printk(KERN_ERR "security_sid_to_context: called before initial "
615 "load_policy on unknown SID %d\n", sid);
616 rc = -EINVAL;
617 goto out;
618 }
619 POLICY_RDLOCK;
620 context = sidtab_search(&sidtab, sid);
621 if (!context) {
622 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
623 "%d\n", sid);
624 rc = -EINVAL;
625 goto out_unlock;
626 }
627 rc = context_struct_to_string(context, scontext, scontext_len);
628out_unlock:
629 POLICY_RDUNLOCK;
630out:
631 return rc;
632
633}
634
f5c1d5b2 635static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
1da177e4
LT
636{
637 char *scontext2;
638 struct context context;
639 struct role_datum *role;
640 struct type_datum *typdatum;
641 struct user_datum *usrdatum;
642 char *scontextp, *p, oldc;
643 int rc = 0;
644
645 if (!ss_initialized) {
646 int i;
647
648 for (i = 1; i < SECINITSID_NUM; i++) {
649 if (!strcmp(initial_sid_to_string[i], scontext)) {
650 *sid = i;
651 goto out;
652 }
653 }
654 *sid = SECINITSID_KERNEL;
655 goto out;
656 }
657 *sid = SECSID_NULL;
658
659 /* Copy the string so that we can modify the copy as we parse it.
660 The string should already by null terminated, but we append a
661 null suffix to the copy to avoid problems with the existing
662 attr package, which doesn't view the null terminator as part
663 of the attribute value. */
664 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
665 if (!scontext2) {
666 rc = -ENOMEM;
667 goto out;
668 }
669 memcpy(scontext2, scontext, scontext_len);
670 scontext2[scontext_len] = 0;
671
672 context_init(&context);
673 *sid = SECSID_NULL;
674
675 POLICY_RDLOCK;
676
677 /* Parse the security context. */
678
679 rc = -EINVAL;
680 scontextp = (char *) scontext2;
681
682 /* Extract the user. */
683 p = scontextp;
684 while (*p && *p != ':')
685 p++;
686
687 if (*p == 0)
688 goto out_unlock;
689
690 *p++ = 0;
691
692 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
693 if (!usrdatum)
694 goto out_unlock;
695
696 context.user = usrdatum->value;
697
698 /* Extract role. */
699 scontextp = p;
700 while (*p && *p != ':')
701 p++;
702
703 if (*p == 0)
704 goto out_unlock;
705
706 *p++ = 0;
707
708 role = hashtab_search(policydb.p_roles.table, scontextp);
709 if (!role)
710 goto out_unlock;
711 context.role = role->value;
712
713 /* Extract type. */
714 scontextp = p;
715 while (*p && *p != ':')
716 p++;
717 oldc = *p;
718 *p++ = 0;
719
720 typdatum = hashtab_search(policydb.p_types.table, scontextp);
721 if (!typdatum)
722 goto out_unlock;
723
724 context.type = typdatum->value;
725
f5c1d5b2 726 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
1da177e4
LT
727 if (rc)
728 goto out_unlock;
729
730 if ((p - scontext2) < scontext_len) {
731 rc = -EINVAL;
732 goto out_unlock;
733 }
734
735 /* Check the validity of the new context. */
736 if (!policydb_context_isvalid(&policydb, &context)) {
737 rc = -EINVAL;
738 goto out_unlock;
739 }
740 /* Obtain the new sid. */
741 rc = sidtab_context_to_sid(&sidtab, &context, sid);
742out_unlock:
743 POLICY_RDUNLOCK;
744 context_destroy(&context);
745 kfree(scontext2);
746out:
747 return rc;
748}
749
f5c1d5b2
JM
750/**
751 * security_context_to_sid - Obtain a SID for a given security context.
752 * @scontext: security context
753 * @scontext_len: length in bytes
754 * @sid: security identifier, SID
755 *
756 * Obtains a SID associated with the security context that
757 * has the string representation specified by @scontext.
758 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
759 * memory is available, or 0 on success.
760 */
761int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
762{
763 return security_context_to_sid_core(scontext, scontext_len,
764 sid, SECSID_NULL);
765}
766
767/**
768 * security_context_to_sid_default - Obtain a SID for a given security context,
769 * falling back to specified default if needed.
770 *
771 * @scontext: security context
772 * @scontext_len: length in bytes
773 * @sid: security identifier, SID
774 * @def_sid: default SID to assign on errror
775 *
776 * Obtains a SID associated with the security context that
777 * has the string representation specified by @scontext.
778 * The default SID is passed to the MLS layer to be used to allow
779 * kernel labeling of the MLS field if the MLS field is not present
780 * (for upgrading to MLS without full relabel).
781 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
782 * memory is available, or 0 on success.
783 */
784int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
785{
786 return security_context_to_sid_core(scontext, scontext_len,
787 sid, def_sid);
788}
789
1da177e4
LT
790static int compute_sid_handle_invalid_context(
791 struct context *scontext,
792 struct context *tcontext,
793 u16 tclass,
794 struct context *newcontext)
795{
796 char *s = NULL, *t = NULL, *n = NULL;
797 u32 slen, tlen, nlen;
798
799 if (context_struct_to_string(scontext, &s, &slen) < 0)
800 goto out;
801 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
802 goto out;
803 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
804 goto out;
9ad9ad38 805 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
806 "security_compute_sid: invalid context %s"
807 " for scontext=%s"
808 " tcontext=%s"
809 " tclass=%s",
810 n, s, t, policydb.p_class_val_to_name[tclass-1]);
811out:
812 kfree(s);
813 kfree(t);
814 kfree(n);
815 if (!selinux_enforcing)
816 return 0;
817 return -EACCES;
818}
819
820static int security_compute_sid(u32 ssid,
821 u32 tsid,
822 u16 tclass,
823 u32 specified,
824 u32 *out_sid)
825{
826 struct context *scontext = NULL, *tcontext = NULL, newcontext;
827 struct role_trans *roletr = NULL;
828 struct avtab_key avkey;
829 struct avtab_datum *avdatum;
830 struct avtab_node *node;
1da177e4
LT
831 int rc = 0;
832
833 if (!ss_initialized) {
834 switch (tclass) {
835 case SECCLASS_PROCESS:
836 *out_sid = ssid;
837 break;
838 default:
839 *out_sid = tsid;
840 break;
841 }
842 goto out;
843 }
844
851f8a69
VY
845 context_init(&newcontext);
846
1da177e4
LT
847 POLICY_RDLOCK;
848
849 scontext = sidtab_search(&sidtab, ssid);
850 if (!scontext) {
851 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
852 ssid);
853 rc = -EINVAL;
854 goto out_unlock;
855 }
856 tcontext = sidtab_search(&sidtab, tsid);
857 if (!tcontext) {
858 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
859 tsid);
860 rc = -EINVAL;
861 goto out_unlock;
862 }
863
1da177e4
LT
864 /* Set the user identity. */
865 switch (specified) {
866 case AVTAB_TRANSITION:
867 case AVTAB_CHANGE:
868 /* Use the process user identity. */
869 newcontext.user = scontext->user;
870 break;
871 case AVTAB_MEMBER:
872 /* Use the related object owner. */
873 newcontext.user = tcontext->user;
874 break;
875 }
876
877 /* Set the role and type to default values. */
878 switch (tclass) {
879 case SECCLASS_PROCESS:
880 /* Use the current role and type of process. */
881 newcontext.role = scontext->role;
882 newcontext.type = scontext->type;
883 break;
884 default:
885 /* Use the well-defined object role. */
886 newcontext.role = OBJECT_R_VAL;
887 /* Use the type of the related object. */
888 newcontext.type = tcontext->type;
889 }
890
891 /* Look for a type transition/member/change rule. */
892 avkey.source_type = scontext->type;
893 avkey.target_type = tcontext->type;
894 avkey.target_class = tclass;
782ebb99
SS
895 avkey.specified = specified;
896 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
897
898 /* If no permanent rule, also check for enabled conditional rules */
899 if(!avdatum) {
782ebb99 900 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1da177e4 901 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
782ebb99 902 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
903 avdatum = &node->datum;
904 break;
905 }
906 }
907 }
908
782ebb99 909 if (avdatum) {
1da177e4 910 /* Use the type from the type transition/member/change rule. */
782ebb99 911 newcontext.type = avdatum->data;
1da177e4
LT
912 }
913
914 /* Check for class-specific changes. */
915 switch (tclass) {
916 case SECCLASS_PROCESS:
917 if (specified & AVTAB_TRANSITION) {
918 /* Look for a role transition rule. */
919 for (roletr = policydb.role_tr; roletr;
920 roletr = roletr->next) {
921 if (roletr->role == scontext->role &&
922 roletr->type == tcontext->type) {
923 /* Use the role transition rule. */
924 newcontext.role = roletr->new_role;
925 break;
926 }
927 }
928 }
929 break;
930 default:
931 break;
932 }
933
934 /* Set the MLS attributes.
935 This is done last because it may allocate memory. */
936 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
937 if (rc)
938 goto out_unlock;
939
940 /* Check the validity of the context. */
941 if (!policydb_context_isvalid(&policydb, &newcontext)) {
942 rc = compute_sid_handle_invalid_context(scontext,
943 tcontext,
944 tclass,
945 &newcontext);
946 if (rc)
947 goto out_unlock;
948 }
949 /* Obtain the sid for the context. */
950 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
951out_unlock:
952 POLICY_RDUNLOCK;
953 context_destroy(&newcontext);
954out:
955 return rc;
956}
957
958/**
959 * security_transition_sid - Compute the SID for a new subject/object.
960 * @ssid: source security identifier
961 * @tsid: target security identifier
962 * @tclass: target security class
963 * @out_sid: security identifier for new subject/object
964 *
965 * Compute a SID to use for labeling a new subject or object in the
966 * class @tclass based on a SID pair (@ssid, @tsid).
967 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
968 * if insufficient memory is available, or %0 if the new SID was
969 * computed successfully.
970 */
971int security_transition_sid(u32 ssid,
972 u32 tsid,
973 u16 tclass,
974 u32 *out_sid)
975{
976 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
977}
978
979/**
980 * security_member_sid - Compute the SID for member selection.
981 * @ssid: source security identifier
982 * @tsid: target security identifier
983 * @tclass: target security class
984 * @out_sid: security identifier for selected member
985 *
986 * Compute a SID to use when selecting a member of a polyinstantiated
987 * object of class @tclass based on a SID pair (@ssid, @tsid).
988 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
989 * if insufficient memory is available, or %0 if the SID was
990 * computed successfully.
991 */
992int security_member_sid(u32 ssid,
993 u32 tsid,
994 u16 tclass,
995 u32 *out_sid)
996{
997 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
998}
999
1000/**
1001 * security_change_sid - Compute the SID for object relabeling.
1002 * @ssid: source security identifier
1003 * @tsid: target security identifier
1004 * @tclass: target security class
1005 * @out_sid: security identifier for selected member
1006 *
1007 * Compute a SID to use for relabeling an object of class @tclass
1008 * based on a SID pair (@ssid, @tsid).
1009 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1010 * if insufficient memory is available, or %0 if the SID was
1011 * computed successfully.
1012 */
1013int security_change_sid(u32 ssid,
1014 u32 tsid,
1015 u16 tclass,
1016 u32 *out_sid)
1017{
1018 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1019}
1020
1021/*
1022 * Verify that each permission that is defined under the
1023 * existing policy is still defined with the same value
1024 * in the new policy.
1025 */
1026static int validate_perm(void *key, void *datum, void *p)
1027{
1028 struct hashtab *h;
1029 struct perm_datum *perdatum, *perdatum2;
1030 int rc = 0;
1031
1032
1033 h = p;
1034 perdatum = datum;
1035
1036 perdatum2 = hashtab_search(h, key);
1037 if (!perdatum2) {
1038 printk(KERN_ERR "security: permission %s disappeared",
1039 (char *)key);
1040 rc = -ENOENT;
1041 goto out;
1042 }
1043 if (perdatum->value != perdatum2->value) {
1044 printk(KERN_ERR "security: the value of permission %s changed",
1045 (char *)key);
1046 rc = -EINVAL;
1047 }
1048out:
1049 return rc;
1050}
1051
1052/*
1053 * Verify that each class that is defined under the
1054 * existing policy is still defined with the same
1055 * attributes in the new policy.
1056 */
1057static int validate_class(void *key, void *datum, void *p)
1058{
1059 struct policydb *newp;
1060 struct class_datum *cladatum, *cladatum2;
1061 int rc;
1062
1063 newp = p;
1064 cladatum = datum;
1065
1066 cladatum2 = hashtab_search(newp->p_classes.table, key);
1067 if (!cladatum2) {
1068 printk(KERN_ERR "security: class %s disappeared\n",
1069 (char *)key);
1070 rc = -ENOENT;
1071 goto out;
1072 }
1073 if (cladatum->value != cladatum2->value) {
1074 printk(KERN_ERR "security: the value of class %s changed\n",
1075 (char *)key);
1076 rc = -EINVAL;
1077 goto out;
1078 }
1079 if ((cladatum->comdatum && !cladatum2->comdatum) ||
1080 (!cladatum->comdatum && cladatum2->comdatum)) {
1081 printk(KERN_ERR "security: the inherits clause for the access "
1082 "vector definition for class %s changed\n", (char *)key);
1083 rc = -EINVAL;
1084 goto out;
1085 }
1086 if (cladatum->comdatum) {
1087 rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
1088 cladatum2->comdatum->permissions.table);
1089 if (rc) {
1090 printk(" in the access vector definition for class "
1091 "%s\n", (char *)key);
1092 goto out;
1093 }
1094 }
1095 rc = hashtab_map(cladatum->permissions.table, validate_perm,
1096 cladatum2->permissions.table);
1097 if (rc)
1098 printk(" in access vector definition for class %s\n",
1099 (char *)key);
1100out:
1101 return rc;
1102}
1103
1104/* Clone the SID into the new SID table. */
1105static int clone_sid(u32 sid,
1106 struct context *context,
1107 void *arg)
1108{
1109 struct sidtab *s = arg;
1110
1111 return sidtab_insert(s, sid, context);
1112}
1113
1114static inline int convert_context_handle_invalid_context(struct context *context)
1115{
1116 int rc = 0;
1117
1118 if (selinux_enforcing) {
1119 rc = -EINVAL;
1120 } else {
1121 char *s;
1122 u32 len;
1123
1124 context_struct_to_string(context, &s, &len);
1125 printk(KERN_ERR "security: context %s is invalid\n", s);
1126 kfree(s);
1127 }
1128 return rc;
1129}
1130
1131struct convert_context_args {
1132 struct policydb *oldp;
1133 struct policydb *newp;
1134};
1135
1136/*
1137 * Convert the values in the security context
1138 * structure `c' from the values specified
1139 * in the policy `p->oldp' to the values specified
1140 * in the policy `p->newp'. Verify that the
1141 * context is valid under the new policy.
1142 */
1143static int convert_context(u32 key,
1144 struct context *c,
1145 void *p)
1146{
1147 struct convert_context_args *args;
1148 struct context oldc;
1149 struct role_datum *role;
1150 struct type_datum *typdatum;
1151 struct user_datum *usrdatum;
1152 char *s;
1153 u32 len;
1154 int rc;
1155
1156 args = p;
1157
1158 rc = context_cpy(&oldc, c);
1159 if (rc)
1160 goto out;
1161
1162 rc = -EINVAL;
1163
1164 /* Convert the user. */
1165 usrdatum = hashtab_search(args->newp->p_users.table,
1166 args->oldp->p_user_val_to_name[c->user - 1]);
1167 if (!usrdatum) {
1168 goto bad;
1169 }
1170 c->user = usrdatum->value;
1171
1172 /* Convert the role. */
1173 role = hashtab_search(args->newp->p_roles.table,
1174 args->oldp->p_role_val_to_name[c->role - 1]);
1175 if (!role) {
1176 goto bad;
1177 }
1178 c->role = role->value;
1179
1180 /* Convert the type. */
1181 typdatum = hashtab_search(args->newp->p_types.table,
1182 args->oldp->p_type_val_to_name[c->type - 1]);
1183 if (!typdatum) {
1184 goto bad;
1185 }
1186 c->type = typdatum->value;
1187
1188 rc = mls_convert_context(args->oldp, args->newp, c);
1189 if (rc)
1190 goto bad;
1191
1192 /* Check the validity of the new context. */
1193 if (!policydb_context_isvalid(args->newp, c)) {
1194 rc = convert_context_handle_invalid_context(&oldc);
1195 if (rc)
1196 goto bad;
1197 }
1198
1199 context_destroy(&oldc);
1200out:
1201 return rc;
1202bad:
1203 context_struct_to_string(&oldc, &s, &len);
1204 context_destroy(&oldc);
1205 printk(KERN_ERR "security: invalidating context %s\n", s);
1206 kfree(s);
1207 goto out;
1208}
1209
1210extern void selinux_complete_init(void);
1211
1212/**
1213 * security_load_policy - Load a security policy configuration.
1214 * @data: binary policy data
1215 * @len: length of data in bytes
1216 *
1217 * Load a new set of security policy configuration data,
1218 * validate it and convert the SID table as necessary.
1219 * This function will flush the access vector cache after
1220 * loading the new policy.
1221 */
1222int security_load_policy(void *data, size_t len)
1223{
1224 struct policydb oldpolicydb, newpolicydb;
1225 struct sidtab oldsidtab, newsidtab;
1226 struct convert_context_args args;
1227 u32 seqno;
1228 int rc = 0;
1229 struct policy_file file = { data, len }, *fp = &file;
1230
1231 LOAD_LOCK;
1232
1233 if (!ss_initialized) {
1234 avtab_cache_init();
1235 if (policydb_read(&policydb, fp)) {
1236 LOAD_UNLOCK;
1237 avtab_cache_destroy();
1238 return -EINVAL;
1239 }
1240 if (policydb_load_isids(&policydb, &sidtab)) {
1241 LOAD_UNLOCK;
1242 policydb_destroy(&policydb);
1243 avtab_cache_destroy();
1244 return -EINVAL;
1245 }
1246 policydb_loaded_version = policydb.policyvers;
1247 ss_initialized = 1;
4c443d1b 1248 seqno = ++latest_granting;
1da177e4
LT
1249 LOAD_UNLOCK;
1250 selinux_complete_init();
4c443d1b
SS
1251 avc_ss_reset(seqno);
1252 selnl_notify_policyload(seqno);
7420ed23 1253 selinux_netlbl_cache_invalidate();
1da177e4
LT
1254 return 0;
1255 }
1256
1257#if 0
1258 sidtab_hash_eval(&sidtab, "sids");
1259#endif
1260
1261 if (policydb_read(&newpolicydb, fp)) {
1262 LOAD_UNLOCK;
1263 return -EINVAL;
1264 }
1265
1266 sidtab_init(&newsidtab);
1267
1268 /* Verify that the existing classes did not change. */
1269 if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1270 printk(KERN_ERR "security: the definition of an existing "
1271 "class changed\n");
1272 rc = -EINVAL;
1273 goto err;
1274 }
1275
1276 /* Clone the SID table. */
1277 sidtab_shutdown(&sidtab);
1278 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1279 rc = -ENOMEM;
1280 goto err;
1281 }
1282
1283 /* Convert the internal representations of contexts
1284 in the new SID table and remove invalid SIDs. */
1285 args.oldp = &policydb;
1286 args.newp = &newpolicydb;
1287 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1288
1289 /* Save the old policydb and SID table to free later. */
1290 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1291 sidtab_set(&oldsidtab, &sidtab);
1292
1293 /* Install the new policydb and SID table. */
1294 POLICY_WRLOCK;
1295 memcpy(&policydb, &newpolicydb, sizeof policydb);
1296 sidtab_set(&sidtab, &newsidtab);
1297 seqno = ++latest_granting;
1298 policydb_loaded_version = policydb.policyvers;
1299 POLICY_WRUNLOCK;
1300 LOAD_UNLOCK;
1301
1302 /* Free the old policydb and SID table. */
1303 policydb_destroy(&oldpolicydb);
1304 sidtab_destroy(&oldsidtab);
1305
1306 avc_ss_reset(seqno);
1307 selnl_notify_policyload(seqno);
7420ed23 1308 selinux_netlbl_cache_invalidate();
1da177e4
LT
1309
1310 return 0;
1311
1312err:
1313 LOAD_UNLOCK;
1314 sidtab_destroy(&newsidtab);
1315 policydb_destroy(&newpolicydb);
1316 return rc;
1317
1318}
1319
1320/**
1321 * security_port_sid - Obtain the SID for a port.
1322 * @domain: communication domain aka address family
1323 * @type: socket type
1324 * @protocol: protocol number
1325 * @port: port number
1326 * @out_sid: security identifier
1327 */
1328int security_port_sid(u16 domain,
1329 u16 type,
1330 u8 protocol,
1331 u16 port,
1332 u32 *out_sid)
1333{
1334 struct ocontext *c;
1335 int rc = 0;
1336
1337 POLICY_RDLOCK;
1338
1339 c = policydb.ocontexts[OCON_PORT];
1340 while (c) {
1341 if (c->u.port.protocol == protocol &&
1342 c->u.port.low_port <= port &&
1343 c->u.port.high_port >= port)
1344 break;
1345 c = c->next;
1346 }
1347
1348 if (c) {
1349 if (!c->sid[0]) {
1350 rc = sidtab_context_to_sid(&sidtab,
1351 &c->context[0],
1352 &c->sid[0]);
1353 if (rc)
1354 goto out;
1355 }
1356 *out_sid = c->sid[0];
1357 } else {
1358 *out_sid = SECINITSID_PORT;
1359 }
1360
1361out:
1362 POLICY_RDUNLOCK;
1363 return rc;
1364}
1365
1366/**
1367 * security_netif_sid - Obtain the SID for a network interface.
1368 * @name: interface name
1369 * @if_sid: interface SID
1370 * @msg_sid: default SID for received packets
1371 */
1372int security_netif_sid(char *name,
1373 u32 *if_sid,
1374 u32 *msg_sid)
1375{
1376 int rc = 0;
1377 struct ocontext *c;
1378
1379 POLICY_RDLOCK;
1380
1381 c = policydb.ocontexts[OCON_NETIF];
1382 while (c) {
1383 if (strcmp(name, c->u.name) == 0)
1384 break;
1385 c = c->next;
1386 }
1387
1388 if (c) {
1389 if (!c->sid[0] || !c->sid[1]) {
1390 rc = sidtab_context_to_sid(&sidtab,
1391 &c->context[0],
1392 &c->sid[0]);
1393 if (rc)
1394 goto out;
1395 rc = sidtab_context_to_sid(&sidtab,
1396 &c->context[1],
1397 &c->sid[1]);
1398 if (rc)
1399 goto out;
1400 }
1401 *if_sid = c->sid[0];
1402 *msg_sid = c->sid[1];
1403 } else {
1404 *if_sid = SECINITSID_NETIF;
1405 *msg_sid = SECINITSID_NETMSG;
1406 }
1407
1408out:
1409 POLICY_RDUNLOCK;
1410 return rc;
1411}
1412
1413static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1414{
1415 int i, fail = 0;
1416
1417 for(i = 0; i < 4; i++)
1418 if(addr[i] != (input[i] & mask[i])) {
1419 fail = 1;
1420 break;
1421 }
1422
1423 return !fail;
1424}
1425
1426/**
1427 * security_node_sid - Obtain the SID for a node (host).
1428 * @domain: communication domain aka address family
1429 * @addrp: address
1430 * @addrlen: address length in bytes
1431 * @out_sid: security identifier
1432 */
1433int security_node_sid(u16 domain,
1434 void *addrp,
1435 u32 addrlen,
1436 u32 *out_sid)
1437{
1438 int rc = 0;
1439 struct ocontext *c;
1440
1441 POLICY_RDLOCK;
1442
1443 switch (domain) {
1444 case AF_INET: {
1445 u32 addr;
1446
1447 if (addrlen != sizeof(u32)) {
1448 rc = -EINVAL;
1449 goto out;
1450 }
1451
1452 addr = *((u32 *)addrp);
1453
1454 c = policydb.ocontexts[OCON_NODE];
1455 while (c) {
1456 if (c->u.node.addr == (addr & c->u.node.mask))
1457 break;
1458 c = c->next;
1459 }
1460 break;
1461 }
1462
1463 case AF_INET6:
1464 if (addrlen != sizeof(u64) * 2) {
1465 rc = -EINVAL;
1466 goto out;
1467 }
1468 c = policydb.ocontexts[OCON_NODE6];
1469 while (c) {
1470 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1471 c->u.node6.mask))
1472 break;
1473 c = c->next;
1474 }
1475 break;
1476
1477 default:
1478 *out_sid = SECINITSID_NODE;
1479 goto out;
1480 }
1481
1482 if (c) {
1483 if (!c->sid[0]) {
1484 rc = sidtab_context_to_sid(&sidtab,
1485 &c->context[0],
1486 &c->sid[0]);
1487 if (rc)
1488 goto out;
1489 }
1490 *out_sid = c->sid[0];
1491 } else {
1492 *out_sid = SECINITSID_NODE;
1493 }
1494
1495out:
1496 POLICY_RDUNLOCK;
1497 return rc;
1498}
1499
1500#define SIDS_NEL 25
1501
1502/**
1503 * security_get_user_sids - Obtain reachable SIDs for a user.
1504 * @fromsid: starting SID
1505 * @username: username
1506 * @sids: array of reachable SIDs for user
1507 * @nel: number of elements in @sids
1508 *
1509 * Generate the set of SIDs for legal security contexts
1510 * for a given user that can be reached by @fromsid.
1511 * Set *@sids to point to a dynamically allocated
1512 * array containing the set of SIDs. Set *@nel to the
1513 * number of elements in the array.
1514 */
1515
1516int security_get_user_sids(u32 fromsid,
1517 char *username,
1518 u32 **sids,
1519 u32 *nel)
1520{
1521 struct context *fromcon, usercon;
1522 u32 *mysids, *mysids2, sid;
1523 u32 mynel = 0, maxnel = SIDS_NEL;
1524 struct user_datum *user;
1525 struct role_datum *role;
1526 struct av_decision avd;
782ebb99 1527 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
1528 int rc = 0, i, j;
1529
1530 if (!ss_initialized) {
1531 *sids = NULL;
1532 *nel = 0;
1533 goto out;
1534 }
1535
1536 POLICY_RDLOCK;
1537
1538 fromcon = sidtab_search(&sidtab, fromsid);
1539 if (!fromcon) {
1540 rc = -EINVAL;
1541 goto out_unlock;
1542 }
1543
1544 user = hashtab_search(policydb.p_users.table, username);
1545 if (!user) {
1546 rc = -EINVAL;
1547 goto out_unlock;
1548 }
1549 usercon.user = user->value;
1550
89d155ef 1551 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1da177e4
LT
1552 if (!mysids) {
1553 rc = -ENOMEM;
1554 goto out_unlock;
1555 }
1da177e4 1556
782ebb99
SS
1557 ebitmap_for_each_bit(&user->roles, rnode, i) {
1558 if (!ebitmap_node_get_bit(rnode, i))
1da177e4
LT
1559 continue;
1560 role = policydb.role_val_to_struct[i];
1561 usercon.role = i+1;
782ebb99
SS
1562 ebitmap_for_each_bit(&role->types, tnode, j) {
1563 if (!ebitmap_node_get_bit(tnode, j))
1da177e4
LT
1564 continue;
1565 usercon.type = j+1;
1566
1567 if (mls_setup_user_range(fromcon, user, &usercon))
1568 continue;
1569
1570 rc = context_struct_compute_av(fromcon, &usercon,
1571 SECCLASS_PROCESS,
1572 PROCESS__TRANSITION,
1573 &avd);
1574 if (rc || !(avd.allowed & PROCESS__TRANSITION))
1575 continue;
1576 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1577 if (rc) {
1578 kfree(mysids);
1579 goto out_unlock;
1580 }
1581 if (mynel < maxnel) {
1582 mysids[mynel++] = sid;
1583 } else {
1584 maxnel += SIDS_NEL;
89d155ef 1585 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1da177e4
LT
1586 if (!mysids2) {
1587 rc = -ENOMEM;
1588 kfree(mysids);
1589 goto out_unlock;
1590 }
1da177e4
LT
1591 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1592 kfree(mysids);
1593 mysids = mysids2;
1594 mysids[mynel++] = sid;
1595 }
1596 }
1597 }
1598
1599 *sids = mysids;
1600 *nel = mynel;
1601
1602out_unlock:
1603 POLICY_RDUNLOCK;
1604out:
1605 return rc;
1606}
1607
1608/**
1609 * security_genfs_sid - Obtain a SID for a file in a filesystem
1610 * @fstype: filesystem type
1611 * @path: path from root of mount
1612 * @sclass: file security class
1613 * @sid: SID for path
1614 *
1615 * Obtain a SID to use for a file in a filesystem that
1616 * cannot support xattr or use a fixed labeling behavior like
1617 * transition SIDs or task SIDs.
1618 */
1619int security_genfs_sid(const char *fstype,
1620 char *path,
1621 u16 sclass,
1622 u32 *sid)
1623{
1624 int len;
1625 struct genfs *genfs;
1626 struct ocontext *c;
1627 int rc = 0, cmp = 0;
1628
1629 POLICY_RDLOCK;
1630
1631 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1632 cmp = strcmp(fstype, genfs->fstype);
1633 if (cmp <= 0)
1634 break;
1635 }
1636
1637 if (!genfs || cmp) {
1638 *sid = SECINITSID_UNLABELED;
1639 rc = -ENOENT;
1640 goto out;
1641 }
1642
1643 for (c = genfs->head; c; c = c->next) {
1644 len = strlen(c->u.name);
1645 if ((!c->v.sclass || sclass == c->v.sclass) &&
1646 (strncmp(c->u.name, path, len) == 0))
1647 break;
1648 }
1649
1650 if (!c) {
1651 *sid = SECINITSID_UNLABELED;
1652 rc = -ENOENT;
1653 goto out;
1654 }
1655
1656 if (!c->sid[0]) {
1657 rc = sidtab_context_to_sid(&sidtab,
1658 &c->context[0],
1659 &c->sid[0]);
1660 if (rc)
1661 goto out;
1662 }
1663
1664 *sid = c->sid[0];
1665out:
1666 POLICY_RDUNLOCK;
1667 return rc;
1668}
1669
1670/**
1671 * security_fs_use - Determine how to handle labeling for a filesystem.
1672 * @fstype: filesystem type
1673 * @behavior: labeling behavior
1674 * @sid: SID for filesystem (superblock)
1675 */
1676int security_fs_use(
1677 const char *fstype,
1678 unsigned int *behavior,
1679 u32 *sid)
1680{
1681 int rc = 0;
1682 struct ocontext *c;
1683
1684 POLICY_RDLOCK;
1685
1686 c = policydb.ocontexts[OCON_FSUSE];
1687 while (c) {
1688 if (strcmp(fstype, c->u.name) == 0)
1689 break;
1690 c = c->next;
1691 }
1692
1693 if (c) {
1694 *behavior = c->v.behavior;
1695 if (!c->sid[0]) {
1696 rc = sidtab_context_to_sid(&sidtab,
1697 &c->context[0],
1698 &c->sid[0]);
1699 if (rc)
1700 goto out;
1701 }
1702 *sid = c->sid[0];
1703 } else {
1704 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1705 if (rc) {
1706 *behavior = SECURITY_FS_USE_NONE;
1707 rc = 0;
1708 } else {
1709 *behavior = SECURITY_FS_USE_GENFS;
1710 }
1711 }
1712
1713out:
1714 POLICY_RDUNLOCK;
1715 return rc;
1716}
1717
1718int security_get_bools(int *len, char ***names, int **values)
1719{
1720 int i, rc = -ENOMEM;
1721
1722 POLICY_RDLOCK;
1723 *names = NULL;
1724 *values = NULL;
1725
1726 *len = policydb.p_bools.nprim;
1727 if (!*len) {
1728 rc = 0;
1729 goto out;
1730 }
1731
e0795cf4 1732 *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1da177e4
LT
1733 if (!*names)
1734 goto err;
1da177e4 1735
e0795cf4 1736 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
1737 if (!*values)
1738 goto err;
1739
1740 for (i = 0; i < *len; i++) {
1741 size_t name_len;
1742 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1743 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
e0795cf4 1744 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1da177e4
LT
1745 if (!(*names)[i])
1746 goto err;
1747 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1748 (*names)[i][name_len - 1] = 0;
1749 }
1750 rc = 0;
1751out:
1752 POLICY_RDUNLOCK;
1753 return rc;
1754err:
1755 if (*names) {
1756 for (i = 0; i < *len; i++)
9a5f04bf 1757 kfree((*names)[i]);
1da177e4 1758 }
9a5f04bf 1759 kfree(*values);
1da177e4
LT
1760 goto out;
1761}
1762
1763
1764int security_set_bools(int len, int *values)
1765{
1766 int i, rc = 0;
1767 int lenp, seqno = 0;
1768 struct cond_node *cur;
1769
1770 POLICY_WRLOCK;
1771
1772 lenp = policydb.p_bools.nprim;
1773 if (len != lenp) {
1774 rc = -EFAULT;
1775 goto out;
1776 }
1777
1da177e4 1778 for (i = 0; i < len; i++) {
af601e46
SG
1779 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1780 audit_log(current->audit_context, GFP_ATOMIC,
1781 AUDIT_MAC_CONFIG_CHANGE,
1782 "bool=%s val=%d old_val=%d auid=%u",
1783 policydb.p_bool_val_to_name[i],
1784 !!values[i],
1785 policydb.bool_val_to_struct[i]->state,
1786 audit_get_loginuid(current->audit_context));
1787 }
1da177e4
LT
1788 if (values[i]) {
1789 policydb.bool_val_to_struct[i]->state = 1;
1790 } else {
1791 policydb.bool_val_to_struct[i]->state = 0;
1792 }
1da177e4 1793 }
1da177e4
LT
1794
1795 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1796 rc = evaluate_cond_node(&policydb, cur);
1797 if (rc)
1798 goto out;
1799 }
1800
1801 seqno = ++latest_granting;
1802
1803out:
1804 POLICY_WRUNLOCK;
1805 if (!rc) {
1806 avc_ss_reset(seqno);
1807 selnl_notify_policyload(seqno);
1808 }
1809 return rc;
1810}
1811
1812int security_get_bool_value(int bool)
1813{
1814 int rc = 0;
1815 int len;
1816
1817 POLICY_RDLOCK;
1818
1819 len = policydb.p_bools.nprim;
1820 if (bool >= len) {
1821 rc = -EFAULT;
1822 goto out;
1823 }
1824
1825 rc = policydb.bool_val_to_struct[bool]->state;
1826out:
1827 POLICY_RDUNLOCK;
1828 return rc;
1829}
376bd9cb 1830
08554d6b
VY
1831/*
1832 * security_sid_mls_copy() - computes a new sid based on the given
1833 * sid and the mls portion of mls_sid.
1834 */
1835int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1836{
1837 struct context *context1;
1838 struct context *context2;
1839 struct context newcon;
1840 char *s;
1841 u32 len;
1842 int rc = 0;
1843
1844 if (!ss_initialized) {
1845 *new_sid = sid;
1846 goto out;
1847 }
1848
1849 context_init(&newcon);
1850
1851 POLICY_RDLOCK;
1852 context1 = sidtab_search(&sidtab, sid);
1853 if (!context1) {
1854 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1855 "%d\n", sid);
1856 rc = -EINVAL;
1857 goto out_unlock;
1858 }
1859
1860 context2 = sidtab_search(&sidtab, mls_sid);
1861 if (!context2) {
1862 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1863 "%d\n", mls_sid);
1864 rc = -EINVAL;
1865 goto out_unlock;
1866 }
1867
1868 newcon.user = context1->user;
1869 newcon.role = context1->role;
1870 newcon.type = context1->type;
1871 rc = mls_copy_context(&newcon, context2);
1872 if (rc)
1873 goto out_unlock;
1874
1875
1876 /* Check the validity of the new context. */
1877 if (!policydb_context_isvalid(&policydb, &newcon)) {
1878 rc = convert_context_handle_invalid_context(&newcon);
1879 if (rc)
1880 goto bad;
1881 }
1882
1883 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
1884 goto out_unlock;
1885
1886bad:
1887 if (!context_struct_to_string(&newcon, &s, &len)) {
1888 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1889 "security_sid_mls_copy: invalid context %s", s);
1890 kfree(s);
1891 }
1892
1893out_unlock:
1894 POLICY_RDUNLOCK;
1895 context_destroy(&newcon);
1896out:
1897 return rc;
1898}
1899
376bd9cb
DG
1900struct selinux_audit_rule {
1901 u32 au_seqno;
1902 struct context au_ctxt;
1903};
1904
1905void selinux_audit_rule_free(struct selinux_audit_rule *rule)
1906{
1907 if (rule) {
1908 context_destroy(&rule->au_ctxt);
1909 kfree(rule);
1910 }
1911}
1912
1913int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
1914 struct selinux_audit_rule **rule)
1915{
1916 struct selinux_audit_rule *tmprule;
1917 struct role_datum *roledatum;
1918 struct type_datum *typedatum;
1919 struct user_datum *userdatum;
1920 int rc = 0;
1921
1922 *rule = NULL;
1923
1924 if (!ss_initialized)
1925 return -ENOTSUPP;
1926
1927 switch (field) {
3a6b9f85
DG
1928 case AUDIT_SUBJ_USER:
1929 case AUDIT_SUBJ_ROLE:
1930 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
1931 case AUDIT_OBJ_USER:
1932 case AUDIT_OBJ_ROLE:
1933 case AUDIT_OBJ_TYPE:
376bd9cb
DG
1934 /* only 'equals' and 'not equals' fit user, role, and type */
1935 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
1936 return -EINVAL;
1937 break;
3a6b9f85
DG
1938 case AUDIT_SUBJ_SEN:
1939 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
1940 case AUDIT_OBJ_LEV_LOW:
1941 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
1942 /* we do not allow a range, indicated by the presense of '-' */
1943 if (strchr(rulestr, '-'))
1944 return -EINVAL;
1945 break;
1946 default:
1947 /* only the above fields are valid */
1948 return -EINVAL;
1949 }
1950
1951 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
1952 if (!tmprule)
1953 return -ENOMEM;
1954
1955 context_init(&tmprule->au_ctxt);
1956
1957 POLICY_RDLOCK;
1958
1959 tmprule->au_seqno = latest_granting;
1960
1961 switch (field) {
3a6b9f85 1962 case AUDIT_SUBJ_USER:
6e5a2d1d 1963 case AUDIT_OBJ_USER:
376bd9cb
DG
1964 userdatum = hashtab_search(policydb.p_users.table, rulestr);
1965 if (!userdatum)
1966 rc = -EINVAL;
1967 else
1968 tmprule->au_ctxt.user = userdatum->value;
1969 break;
3a6b9f85 1970 case AUDIT_SUBJ_ROLE:
6e5a2d1d 1971 case AUDIT_OBJ_ROLE:
376bd9cb
DG
1972 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
1973 if (!roledatum)
1974 rc = -EINVAL;
1975 else
1976 tmprule->au_ctxt.role = roledatum->value;
1977 break;
3a6b9f85 1978 case AUDIT_SUBJ_TYPE:
6e5a2d1d 1979 case AUDIT_OBJ_TYPE:
376bd9cb
DG
1980 typedatum = hashtab_search(policydb.p_types.table, rulestr);
1981 if (!typedatum)
1982 rc = -EINVAL;
1983 else
1984 tmprule->au_ctxt.type = typedatum->value;
1985 break;
3a6b9f85
DG
1986 case AUDIT_SUBJ_SEN:
1987 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
1988 case AUDIT_OBJ_LEV_LOW:
1989 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
1990 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
1991 break;
1992 }
1993
1994 POLICY_RDUNLOCK;
1995
1996 if (rc) {
1997 selinux_audit_rule_free(tmprule);
1998 tmprule = NULL;
1999 }
2000
2001 *rule = tmprule;
2002
2003 return rc;
2004}
2005
2006int selinux_audit_rule_match(u32 ctxid, u32 field, u32 op,
2007 struct selinux_audit_rule *rule,
2008 struct audit_context *actx)
2009{
2010 struct context *ctxt;
2011 struct mls_level *level;
2012 int match = 0;
2013
2014 if (!rule) {
2015 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2016 "selinux_audit_rule_match: missing rule\n");
2017 return -ENOENT;
2018 }
2019
2020 POLICY_RDLOCK;
2021
2022 if (rule->au_seqno < latest_granting) {
2023 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2024 "selinux_audit_rule_match: stale rule\n");
2025 match = -ESTALE;
2026 goto out;
2027 }
2028
2029 ctxt = sidtab_search(&sidtab, ctxid);
2030 if (!ctxt) {
2031 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2032 "selinux_audit_rule_match: unrecognized SID %d\n",
2033 ctxid);
2034 match = -ENOENT;
2035 goto out;
2036 }
2037
2038 /* a field/op pair that is not caught here will simply fall through
2039 without a match */
2040 switch (field) {
3a6b9f85 2041 case AUDIT_SUBJ_USER:
6e5a2d1d 2042 case AUDIT_OBJ_USER:
376bd9cb
DG
2043 switch (op) {
2044 case AUDIT_EQUAL:
2045 match = (ctxt->user == rule->au_ctxt.user);
2046 break;
2047 case AUDIT_NOT_EQUAL:
2048 match = (ctxt->user != rule->au_ctxt.user);
2049 break;
2050 }
2051 break;
3a6b9f85 2052 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2053 case AUDIT_OBJ_ROLE:
376bd9cb
DG
2054 switch (op) {
2055 case AUDIT_EQUAL:
2056 match = (ctxt->role == rule->au_ctxt.role);
2057 break;
2058 case AUDIT_NOT_EQUAL:
2059 match = (ctxt->role != rule->au_ctxt.role);
2060 break;
2061 }
2062 break;
3a6b9f85 2063 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2064 case AUDIT_OBJ_TYPE:
376bd9cb
DG
2065 switch (op) {
2066 case AUDIT_EQUAL:
2067 match = (ctxt->type == rule->au_ctxt.type);
2068 break;
2069 case AUDIT_NOT_EQUAL:
2070 match = (ctxt->type != rule->au_ctxt.type);
2071 break;
2072 }
2073 break;
3a6b9f85
DG
2074 case AUDIT_SUBJ_SEN:
2075 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2076 case AUDIT_OBJ_LEV_LOW:
2077 case AUDIT_OBJ_LEV_HIGH:
2078 level = ((field == AUDIT_SUBJ_SEN ||
2079 field == AUDIT_OBJ_LEV_LOW) ?
376bd9cb
DG
2080 &ctxt->range.level[0] : &ctxt->range.level[1]);
2081 switch (op) {
2082 case AUDIT_EQUAL:
2083 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2084 level);
2085 break;
2086 case AUDIT_NOT_EQUAL:
2087 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2088 level);
2089 break;
2090 case AUDIT_LESS_THAN:
2091 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2092 level) &&
2093 !mls_level_eq(&rule->au_ctxt.range.level[0],
2094 level));
2095 break;
2096 case AUDIT_LESS_THAN_OR_EQUAL:
2097 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2098 level);
2099 break;
2100 case AUDIT_GREATER_THAN:
2101 match = (mls_level_dom(level,
2102 &rule->au_ctxt.range.level[0]) &&
2103 !mls_level_eq(level,
2104 &rule->au_ctxt.range.level[0]));
2105 break;
2106 case AUDIT_GREATER_THAN_OR_EQUAL:
2107 match = mls_level_dom(level,
2108 &rule->au_ctxt.range.level[0]);
2109 break;
2110 }
2111 }
2112
2113out:
2114 POLICY_RDUNLOCK;
2115 return match;
2116}
2117
2118static int (*aurule_callback)(void) = NULL;
2119
2120static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2121 u16 class, u32 perms, u32 *retained)
2122{
2123 int err = 0;
2124
2125 if (event == AVC_CALLBACK_RESET && aurule_callback)
2126 err = aurule_callback();
2127 return err;
2128}
2129
2130static int __init aurule_init(void)
2131{
2132 int err;
2133
2134 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2135 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2136 if (err)
2137 panic("avc_add_callback() failed, error %d\n", err);
2138
2139 return err;
2140}
2141__initcall(aurule_init);
2142
2143void selinux_audit_set_callback(int (*callback)(void))
2144{
2145 aurule_callback = callback;
2146}
7420ed23
VY
2147
2148#ifdef CONFIG_NETLABEL
2149/*
2150 * This is the structure we store inside the NetLabel cache block.
2151 */
2152#define NETLBL_CACHE(x) ((struct netlbl_cache *)(x))
2153#define NETLBL_CACHE_T_NONE 0
2154#define NETLBL_CACHE_T_SID 1
2155#define NETLBL_CACHE_T_MLS 2
2156struct netlbl_cache {
2157 u32 type;
2158 union {
2159 u32 sid;
2160 struct mls_range mls_label;
2161 } data;
2162};
2163
2164/**
2165 * selinux_netlbl_cache_free - Free the NetLabel cached data
2166 * @data: the data to free
2167 *
2168 * Description:
2169 * This function is intended to be used as the free() callback inside the
2170 * netlbl_lsm_cache structure.
2171 *
2172 */
2173static void selinux_netlbl_cache_free(const void *data)
2174{
2175 struct netlbl_cache *cache = NETLBL_CACHE(data);
2176 switch (cache->type) {
2177 case NETLBL_CACHE_T_MLS:
2178 ebitmap_destroy(&cache->data.mls_label.level[0].cat);
2179 break;
2180 }
2181 kfree(data);
2182}
2183
2184/**
2185 * selinux_netlbl_cache_add - Add an entry to the NetLabel cache
2186 * @skb: the packet
2187 * @ctx: the SELinux context
2188 *
2189 * Description:
2190 * Attempt to cache the context in @ctx, which was derived from the packet in
2191 * @skb, in the NetLabel subsystem cache.
2192 *
2193 */
2194static void selinux_netlbl_cache_add(struct sk_buff *skb, struct context *ctx)
2195{
2196 struct netlbl_cache *cache = NULL;
2197 struct netlbl_lsm_secattr secattr;
2198
2199 netlbl_secattr_init(&secattr);
2200
2201 cache = kzalloc(sizeof(*cache), GFP_ATOMIC);
2202 if (cache == NULL)
2203 goto netlbl_cache_add_failure;
2204 secattr.cache.free = selinux_netlbl_cache_free;
2205 secattr.cache.data = (void *)cache;
2206
2207 cache->type = NETLBL_CACHE_T_MLS;
2208 if (ebitmap_cpy(&cache->data.mls_label.level[0].cat,
2209 &ctx->range.level[0].cat) != 0)
2210 goto netlbl_cache_add_failure;
2211 cache->data.mls_label.level[1].cat.highbit =
2212 cache->data.mls_label.level[0].cat.highbit;
2213 cache->data.mls_label.level[1].cat.node =
2214 cache->data.mls_label.level[0].cat.node;
2215 cache->data.mls_label.level[0].sens = ctx->range.level[0].sens;
2216 cache->data.mls_label.level[1].sens = ctx->range.level[0].sens;
2217
2218 if (netlbl_cache_add(skb, &secattr) != 0)
2219 goto netlbl_cache_add_failure;
2220
2221 return;
2222
2223netlbl_cache_add_failure:
2224 netlbl_secattr_destroy(&secattr, 1);
2225}
2226
2227/**
2228 * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache
2229 *
2230 * Description:
2231 * Invalidate the NetLabel security attribute mapping cache.
2232 *
2233 */
2234void selinux_netlbl_cache_invalidate(void)
2235{
2236 netlbl_cache_invalidate();
2237}
2238
2239/**
2240 * selinux_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2241 * @skb: the network packet
2242 * @secattr: the NetLabel packet security attributes
2243 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2244 * @sid: the SELinux SID
2245 *
2246 * Description:
2247 * Convert the given NetLabel packet security attributes in @secattr into a
2248 * SELinux SID. If the @secattr field does not contain a full SELinux
2249 * SID/context then use the context in @base_sid as the foundation. If @skb
2250 * is not NULL attempt to cache as much data as possibile. Returns zero on
2251 * success, negative values on failure.
2252 *
2253 */
2254static int selinux_netlbl_secattr_to_sid(struct sk_buff *skb,
2255 struct netlbl_lsm_secattr *secattr,
2256 u32 base_sid,
2257 u32 *sid)
2258{
2259 int rc = -EIDRM;
2260 struct context *ctx;
2261 struct context ctx_new;
2262 struct netlbl_cache *cache;
2263
2264 POLICY_RDLOCK;
2265
2266 if (secattr->cache.data) {
2267 cache = NETLBL_CACHE(secattr->cache.data);
2268 switch (cache->type) {
2269 case NETLBL_CACHE_T_SID:
2270 *sid = cache->data.sid;
2271 rc = 0;
2272 break;
2273 case NETLBL_CACHE_T_MLS:
2274 ctx = sidtab_search(&sidtab, base_sid);
2275 if (ctx == NULL)
2276 goto netlbl_secattr_to_sid_return;
2277
2278 ctx_new.user = ctx->user;
2279 ctx_new.role = ctx->role;
2280 ctx_new.type = ctx->type;
2281 ctx_new.range.level[0].sens =
2282 cache->data.mls_label.level[0].sens;
2283 ctx_new.range.level[0].cat.highbit =
2284 cache->data.mls_label.level[0].cat.highbit;
2285 ctx_new.range.level[0].cat.node =
2286 cache->data.mls_label.level[0].cat.node;
2287 ctx_new.range.level[1].sens =
2288 cache->data.mls_label.level[1].sens;
2289 ctx_new.range.level[1].cat.highbit =
2290 cache->data.mls_label.level[1].cat.highbit;
2291 ctx_new.range.level[1].cat.node =
2292 cache->data.mls_label.level[1].cat.node;
2293
2294 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2295 break;
2296 default:
2297 goto netlbl_secattr_to_sid_return;
2298 }
2299 } else if (secattr->mls_lvl_vld) {
2300 ctx = sidtab_search(&sidtab, base_sid);
2301 if (ctx == NULL)
2302 goto netlbl_secattr_to_sid_return;
2303
2304 ctx_new.user = ctx->user;
2305 ctx_new.role = ctx->role;
2306 ctx_new.type = ctx->type;
2307 mls_import_lvl(&ctx_new, secattr->mls_lvl, secattr->mls_lvl);
2308 if (secattr->mls_cat) {
2309 if (mls_import_cat(&ctx_new,
2310 secattr->mls_cat,
2311 secattr->mls_cat_len,
2312 NULL,
2313 0) != 0)
2314 goto netlbl_secattr_to_sid_return;
2315 ctx_new.range.level[1].cat.highbit =
2316 ctx_new.range.level[0].cat.highbit;
2317 ctx_new.range.level[1].cat.node =
2318 ctx_new.range.level[0].cat.node;
2319 } else {
2320 ebitmap_init(&ctx_new.range.level[0].cat);
2321 ebitmap_init(&ctx_new.range.level[1].cat);
2322 }
2323 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2324 goto netlbl_secattr_to_sid_return_cleanup;
2325
2326 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2327 if (rc != 0)
2328 goto netlbl_secattr_to_sid_return_cleanup;
2329
2330 if (skb != NULL)
2331 selinux_netlbl_cache_add(skb, &ctx_new);
2332 ebitmap_destroy(&ctx_new.range.level[0].cat);
2333 } else {
2334 *sid = SECINITSID_UNLABELED;
2335 rc = 0;
2336 }
2337
2338netlbl_secattr_to_sid_return:
2339 POLICY_RDUNLOCK;
2340 return rc;
2341netlbl_secattr_to_sid_return_cleanup:
2342 ebitmap_destroy(&ctx_new.range.level[0].cat);
2343 goto netlbl_secattr_to_sid_return;
2344}
2345
2346/**
2347 * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel
2348 * @skb: the packet
2349 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2350 * @sid: the SID
2351 *
2352 * Description:
2353 * Call the NetLabel mechanism to get the security attributes of the given
2354 * packet and use those attributes to determine the correct context/SID to
2355 * assign to the packet. Returns zero on success, negative values on failure.
2356 *
2357 */
2358static int selinux_netlbl_skbuff_getsid(struct sk_buff *skb,
2359 u32 base_sid,
2360 u32 *sid)
2361{
2362 int rc;
2363 struct netlbl_lsm_secattr secattr;
2364
2365 netlbl_secattr_init(&secattr);
2366 rc = netlbl_skbuff_getattr(skb, &secattr);
2367 if (rc == 0)
2368 rc = selinux_netlbl_secattr_to_sid(skb,
2369 &secattr,
2370 base_sid,
2371 sid);
2372 netlbl_secattr_destroy(&secattr, 0);
2373
2374 return rc;
2375}
2376
2377/**
2378 * selinux_netlbl_socket_setsid - Label a socket using the NetLabel mechanism
2379 * @sock: the socket to label
2380 * @sid: the SID to use
2381 *
2382 * Description:
2383 * Attempt to label a socket using the NetLabel mechanism using the given
2384 * SID. Returns zero values on success, negative values on failure.
2385 *
2386 */
2387static int selinux_netlbl_socket_setsid(struct socket *sock, u32 sid)
2388{
2389 int rc = -ENOENT;
2390 struct sk_security_struct *sksec = sock->sk->sk_security;
2391 struct netlbl_lsm_secattr secattr;
2392 struct context *ctx;
2393
2394 if (!ss_initialized)
2395 return 0;
2396
2397 POLICY_RDLOCK;
2398
2399 ctx = sidtab_search(&sidtab, sid);
2400 if (ctx == NULL)
2401 goto netlbl_socket_setsid_return;
2402
2403 netlbl_secattr_init(&secattr);
2404 secattr.domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2405 GFP_ATOMIC);
2406 mls_export_lvl(ctx, &secattr.mls_lvl, NULL);
2407 secattr.mls_lvl_vld = 1;
2408 mls_export_cat(ctx,
2409 &secattr.mls_cat,
2410 &secattr.mls_cat_len,
2411 NULL,
2412 NULL);
2413
2414 rc = netlbl_socket_setattr(sock, &secattr);
2415 if (rc == 0)
2416 sksec->nlbl_state = NLBL_LABELED;
2417
2418 netlbl_secattr_destroy(&secattr, 0);
2419
2420netlbl_socket_setsid_return:
2421 POLICY_RDUNLOCK;
2422 return rc;
2423}
2424
99f59ed0
PM
2425/**
2426 * selinux_netlbl_sk_security_init - Setup the NetLabel fields
2427 * @ssec: the sk_security_struct
2428 * @family: the socket family
2429 *
2430 * Description:
2431 * Called when a new sk_security_struct is allocated to initialize the NetLabel
2432 * fields.
2433 *
2434 */
2435void selinux_netlbl_sk_security_init(struct sk_security_struct *ssec,
2436 int family)
2437{
2438 if (family == PF_INET)
2439 ssec->nlbl_state = NLBL_REQUIRE;
2440 else
2441 ssec->nlbl_state = NLBL_UNSET;
2442}
2443
2444/**
2445 * selinux_netlbl_sk_clone_security - Copy the NetLabel fields
2446 * @ssec: the original sk_security_struct
2447 * @newssec: the cloned sk_security_struct
2448 *
2449 * Description:
2450 * Clone the NetLabel specific sk_security_struct fields from @ssec to
2451 * @newssec.
2452 *
2453 */
2454void selinux_netlbl_sk_clone_security(struct sk_security_struct *ssec,
2455 struct sk_security_struct *newssec)
2456{
2457 newssec->sclass = ssec->sclass;
2458 if (ssec->nlbl_state != NLBL_UNSET)
2459 newssec->nlbl_state = NLBL_REQUIRE;
2460 else
2461 newssec->nlbl_state = NLBL_UNSET;
2462}
2463
7420ed23
VY
2464/**
2465 * selinux_netlbl_socket_post_create - Label a socket using NetLabel
2466 * @sock: the socket to label
2467 * @sock_family: the socket family
2468 * @sid: the SID to use
2469 *
2470 * Description:
2471 * Attempt to label a socket using the NetLabel mechanism using the given
2472 * SID. Returns zero values on success, negative values on failure.
2473 *
2474 */
2475int selinux_netlbl_socket_post_create(struct socket *sock,
2476 int sock_family,
2477 u32 sid)
2478{
2479 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
2480 struct sk_security_struct *sksec = sock->sk->sk_security;
2481
99f59ed0
PM
2482 sksec->sclass = isec->sclass;
2483
7420ed23
VY
2484 if (sock_family != PF_INET)
2485 return 0;
2486
7420ed23
VY
2487 sksec->nlbl_state = NLBL_REQUIRE;
2488 return selinux_netlbl_socket_setsid(sock, sid);
2489}
2490
2491/**
2492 * selinux_netlbl_sock_graft - Netlabel the new socket
2493 * @sk: the new connection
2494 * @sock: the new socket
2495 *
2496 * Description:
2497 * The connection represented by @sk is being grafted onto @sock so set the
2498 * socket's NetLabel to match the SID of @sk.
2499 *
2500 */
2501void selinux_netlbl_sock_graft(struct sock *sk, struct socket *sock)
2502{
2503 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
2504 struct sk_security_struct *sksec = sk->sk_security;
2505
99f59ed0
PM
2506 sksec->sclass = isec->sclass;
2507
7420ed23
VY
2508 if (sk->sk_family != PF_INET)
2509 return;
2510
2511 sksec->nlbl_state = NLBL_REQUIRE;
2512 sksec->peer_sid = sksec->sid;
7420ed23
VY
2513
2514 /* Try to set the NetLabel on the socket to save time later, if we fail
2515 * here we will pick up the pieces in later calls to
2516 * selinux_netlbl_inode_permission(). */
2517 selinux_netlbl_socket_setsid(sock, sksec->sid);
2518}
2519
2520/**
2521 * selinux_netlbl_inet_conn_request - Handle a new connection request
2522 * @skb: the packet
2523 * @sock_sid: the SID of the parent socket
2524 *
2525 * Description:
2526 * If present, use the security attributes of the packet in @skb and the
2527 * parent sock's SID to arrive at a SID for the new child sock. Returns the
2528 * SID of the connection or SECSID_NULL on failure.
2529 *
2530 */
2531u32 selinux_netlbl_inet_conn_request(struct sk_buff *skb, u32 sock_sid)
2532{
2533 int rc;
2534 u32 peer_sid;
2535
2536 rc = selinux_netlbl_skbuff_getsid(skb, sock_sid, &peer_sid);
2537 if (rc != 0)
2538 return SECSID_NULL;
2539
2540 if (peer_sid == SECINITSID_UNLABELED)
2541 return SECSID_NULL;
2542
2543 return peer_sid;
2544}
2545
2546/**
e448e931 2547 * selinux_netlbl_inode_permission - Verify the socket is NetLabel labeled
7420ed23
VY
2548 * @inode: the file descriptor's inode
2549 * @mask: the permission mask
2550 *
2551 * Description:
e448e931
PM
2552 * Looks at a file's inode and if it is marked as a socket protected by
2553 * NetLabel then verify that the socket has been labeled, if not try to label
2554 * the socket now with the inode's SID. Returns zero on success, negative
2555 * values on failure.
7420ed23
VY
2556 *
2557 */
e448e931 2558int selinux_netlbl_inode_permission(struct inode *inode, int mask)
7420ed23
VY
2559{
2560 int rc;
e448e931
PM
2561 struct inode_security_struct *isec;
2562 struct sk_security_struct *sksec;
2563 struct socket *sock;
7420ed23 2564
e448e931
PM
2565 if (!S_ISSOCK(inode->i_mode))
2566 return 0;
2567
2568 sock = SOCKET_I(inode);
2569 isec = inode->i_security;
2570 sksec = sock->sk->sk_security;
2571 down(&isec->sem);
2572 if (unlikely(sksec->nlbl_state == NLBL_REQUIRE &&
2573 (mask & (MAY_WRITE | MAY_APPEND)))) {
2574 lock_sock(sock->sk);
2575 rc = selinux_netlbl_socket_setsid(sock, sksec->sid);
2576 release_sock(sock->sk);
2577 } else
2578 rc = 0;
2579 up(&isec->sem);
7420ed23
VY
2580
2581 return rc;
2582}
2583
2584/**
2585 * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel
2586 * @sksec: the sock's sk_security_struct
2587 * @skb: the packet
2588 * @ad: the audit data
2589 *
2590 * Description:
2591 * Fetch the NetLabel security attributes from @skb and perform an access check
2592 * against the receiving socket. Returns zero on success, negative values on
2593 * error.
2594 *
2595 */
2596int selinux_netlbl_sock_rcv_skb(struct sk_security_struct *sksec,
2597 struct sk_buff *skb,
2598 struct avc_audit_data *ad)
2599{
2600 int rc;
2601 u32 netlbl_sid;
2602 u32 recv_perm;
2603
2604 rc = selinux_netlbl_skbuff_getsid(skb, sksec->sid, &netlbl_sid);
2605 if (rc != 0)
2606 return rc;
2607
2608 if (netlbl_sid == SECINITSID_UNLABELED)
2609 return 0;
2610
2611 switch (sksec->sclass) {
2612 case SECCLASS_UDP_SOCKET:
2613 recv_perm = UDP_SOCKET__RECV_MSG;
2614 break;
2615 case SECCLASS_TCP_SOCKET:
2616 recv_perm = TCP_SOCKET__RECV_MSG;
2617 break;
2618 default:
2619 recv_perm = RAWIP_SOCKET__RECV_MSG;
2620 }
2621
2622 rc = avc_has_perm(sksec->sid,
2623 netlbl_sid,
2624 sksec->sclass,
2625 recv_perm,
2626 ad);
2627 if (rc == 0)
2628 return 0;
2629
2630 netlbl_skbuff_err(skb, rc);
2631 return rc;
2632}
2633
2634/**
c1b14c0a 2635 * selinux_netlbl_socket_getpeersec_stream - Return the connected peer's SID
7420ed23
VY
2636 * @sock: the socket
2637 *
2638 * Description:
2639 * Examine @sock to find the connected peer's SID. Returns the SID on success
2640 * or SECSID_NULL on error.
2641 *
2642 */
2643u32 selinux_netlbl_socket_getpeersec_stream(struct socket *sock)
2644{
2645 struct sk_security_struct *sksec = sock->sk->sk_security;
2646
2647 if (sksec->peer_sid == SECINITSID_UNLABELED)
2648 return SECSID_NULL;
2649
2650 return sksec->peer_sid;
2651}
2652
2653/**
2654 * selinux_netlbl_socket_getpeersec_dgram - Return the SID of a NetLabel packet
2655 * @skb: the packet
2656 *
2657 * Description:
2658 * Examine @skb to find the SID assigned to it by NetLabel. Returns the SID on
2659 * success, SECSID_NULL on error.
2660 *
2661 */
2662u32 selinux_netlbl_socket_getpeersec_dgram(struct sk_buff *skb)
2663{
2664 int peer_sid;
2665 struct sock *sk = skb->sk;
2666 struct inode_security_struct *isec;
2667
2668 if (sk == NULL || sk->sk_socket == NULL)
2669 return SECSID_NULL;
2670
2671 isec = SOCK_INODE(sk->sk_socket)->i_security;
2672 if (selinux_netlbl_skbuff_getsid(skb, isec->sid, &peer_sid) != 0)
2673 return SECSID_NULL;
2674 if (peer_sid == SECINITSID_UNLABELED)
2675 return SECSID_NULL;
2676
2677 return peer_sid;
2678}
2679#endif /* CONFIG_NETLABEL */