]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - security/selinux/ss/services.c
selinux: add SOCK_DIAG_BY_FAMILY to the list of netlink message types
[mirror_ubuntu-bionic-kernel.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5d55a345 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
5d55a345 14 * Added conditional policy language extensions
1da177e4 15 *
82c21bfa 16 * Updated: Hewlett-Packard <paul@paul-moore.com>
7420ed23
VY
17 *
18 * Added support for NetLabel
3bb56b25 19 * Added support for the policy capability bitmap
7420ed23 20 *
b94c7e67
CS
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
44c2d9bd
KK
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
0719aaf5
GT
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
44c2d9bd 33 * Copyright (C) 2008, 2009 NEC Corporation
3bb56b25 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
376bd9cb 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
b94c7e67 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
1da177e4
LT
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
5d55a345 39 * it under the terms of the GNU General Public License as published by
1da177e4
LT
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
9f2ad665 46#include <linux/rcupdate.h>
1da177e4
LT
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
bb003079 51#include <linux/mutex.h>
0e55a004 52#include <linux/selinux.h>
6371dcd3 53#include <linux/flex_array.h>
f0d3d989 54#include <linux/vmalloc.h>
7420ed23 55#include <net/netlabel.h>
bb003079 56
1da177e4
LT
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
7420ed23 67#include "objsec.h"
c60475bf 68#include "netlabel.h"
3de4bab5 69#include "xfrm.h"
02752760 70#include "ebitmap.h"
9d57a7f9 71#include "audit.h"
1da177e4 72
3bb56b25 73int selinux_policycap_netpeer;
b0c636b9 74int selinux_policycap_openperm;
2be4d74f 75int selinux_policycap_alwaysnetwork;
3bb56b25 76
1da177e4 77static DEFINE_RWLOCK(policy_rwlock);
1da177e4
LT
78
79static struct sidtab sidtab;
80struct policydb policydb;
5d55a345 81int ss_initialized;
1da177e4
LT
82
83/*
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
87 * occurs.
88 */
5d55a345 89static u32 latest_granting;
1da177e4
LT
90
91/* Forward declaration. */
92static int context_struct_to_string(struct context *context, char **scontext,
93 u32 *scontext_len);
94
19439d05
SS
95static void context_struct_compute_av(struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd);
c6d3aaa4
SS
99
100struct selinux_mapping {
101 u16 value; /* policy value */
102 unsigned num_perms;
103 u32 perms[sizeof(u32) * 8];
104};
105
106static struct selinux_mapping *current_mapping;
107static u16 current_mapping_size;
108
109static int selinux_set_mapping(struct policydb *pol,
110 struct security_class_mapping *map,
111 struct selinux_mapping **out_map_p,
112 u16 *out_map_size)
113{
114 struct selinux_mapping *out_map = NULL;
115 size_t size = sizeof(struct selinux_mapping);
116 u16 i, j;
117 unsigned k;
118 bool print_unknown_handle = false;
119
120 /* Find number of classes in the input mapping */
121 if (!map)
122 return -EINVAL;
123 i = 0;
124 while (map[i].name)
125 i++;
126
127 /* Allocate space for the class records, plus one for class zero */
128 out_map = kcalloc(++i, size, GFP_ATOMIC);
129 if (!out_map)
130 return -ENOMEM;
131
132 /* Store the raw class and permission values */
133 j = 0;
134 while (map[j].name) {
135 struct security_class_mapping *p_in = map + (j++);
136 struct selinux_mapping *p_out = out_map + j;
137
138 /* An empty class string skips ahead */
139 if (!strcmp(p_in->name, "")) {
140 p_out->num_perms = 0;
141 continue;
142 }
143
144 p_out->value = string_to_security_class(pol, p_in->name);
145 if (!p_out->value) {
146 printk(KERN_INFO
147 "SELinux: Class %s not defined in policy.\n",
148 p_in->name);
149 if (pol->reject_unknown)
150 goto err;
151 p_out->num_perms = 0;
152 print_unknown_handle = true;
153 continue;
154 }
155
156 k = 0;
157 while (p_in->perms && p_in->perms[k]) {
158 /* An empty permission string skips ahead */
159 if (!*p_in->perms[k]) {
160 k++;
161 continue;
162 }
163 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164 p_in->perms[k]);
165 if (!p_out->perms[k]) {
166 printk(KERN_INFO
167 "SELinux: Permission %s in class %s not defined in policy.\n",
168 p_in->perms[k], p_in->name);
169 if (pol->reject_unknown)
170 goto err;
171 print_unknown_handle = true;
172 }
173
174 k++;
175 }
176 p_out->num_perms = k;
177 }
178
179 if (print_unknown_handle)
180 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181 pol->allow_unknown ? "allowed" : "denied");
182
183 *out_map_p = out_map;
184 *out_map_size = i;
185 return 0;
186err:
187 kfree(out_map);
188 return -EINVAL;
189}
190
191/*
192 * Get real, policy values from mapped values
193 */
194
195static u16 unmap_class(u16 tclass)
196{
197 if (tclass < current_mapping_size)
198 return current_mapping[tclass].value;
199
200 return tclass;
201}
202
6f5317e7
HC
203/*
204 * Get kernel value for class from its policy value
205 */
206static u16 map_class(u16 pol_value)
207{
208 u16 i;
209
210 for (i = 1; i < current_mapping_size; i++) {
211 if (current_mapping[i].value == pol_value)
212 return i;
213 }
214
85cd6da5 215 return SECCLASS_NULL;
6f5317e7
HC
216}
217
c6d3aaa4
SS
218static void map_decision(u16 tclass, struct av_decision *avd,
219 int allow_unknown)
220{
221 if (tclass < current_mapping_size) {
222 unsigned i, n = current_mapping[tclass].num_perms;
223 u32 result;
224
225 for (i = 0, result = 0; i < n; i++) {
226 if (avd->allowed & current_mapping[tclass].perms[i])
227 result |= 1<<i;
228 if (allow_unknown && !current_mapping[tclass].perms[i])
229 result |= 1<<i;
230 }
231 avd->allowed = result;
232
233 for (i = 0, result = 0; i < n; i++)
234 if (avd->auditallow & current_mapping[tclass].perms[i])
235 result |= 1<<i;
236 avd->auditallow = result;
237
238 for (i = 0, result = 0; i < n; i++) {
239 if (avd->auditdeny & current_mapping[tclass].perms[i])
240 result |= 1<<i;
241 if (!allow_unknown && !current_mapping[tclass].perms[i])
242 result |= 1<<i;
243 }
0bce9527
EP
244 /*
245 * In case the kernel has a bug and requests a permission
246 * between num_perms and the maximum permission number, we
247 * should audit that denial
248 */
249 for (; i < (sizeof(u32)*8); i++)
250 result |= 1<<i;
c6d3aaa4
SS
251 avd->auditdeny = result;
252 }
253}
254
0719aaf5
GT
255int security_mls_enabled(void)
256{
257 return policydb.mls_enabled;
258}
c6d3aaa4 259
1da177e4
LT
260/*
261 * Return the boolean value of a constraint expression
262 * when it is applied to the specified source and target
263 * security contexts.
264 *
265 * xcontext is a special beast... It is used by the validatetrans rules
266 * only. For these rules, scontext is the context before the transition,
267 * tcontext is the context after the transition, and xcontext is the context
268 * of the process performing the transition. All other callers of
269 * constraint_expr_eval should pass in NULL for xcontext.
270 */
271static int constraint_expr_eval(struct context *scontext,
272 struct context *tcontext,
273 struct context *xcontext,
274 struct constraint_expr *cexpr)
275{
276 u32 val1, val2;
277 struct context *c;
278 struct role_datum *r1, *r2;
279 struct mls_level *l1, *l2;
280 struct constraint_expr *e;
281 int s[CEXPR_MAXDEPTH];
282 int sp = -1;
283
284 for (e = cexpr; e; e = e->next) {
285 switch (e->expr_type) {
286 case CEXPR_NOT:
287 BUG_ON(sp < 0);
288 s[sp] = !s[sp];
289 break;
290 case CEXPR_AND:
291 BUG_ON(sp < 1);
292 sp--;
c1a7368a 293 s[sp] &= s[sp + 1];
1da177e4
LT
294 break;
295 case CEXPR_OR:
296 BUG_ON(sp < 1);
297 sp--;
c1a7368a 298 s[sp] |= s[sp + 1];
1da177e4
LT
299 break;
300 case CEXPR_ATTR:
c1a7368a 301 if (sp == (CEXPR_MAXDEPTH - 1))
1da177e4
LT
302 return 0;
303 switch (e->attr) {
304 case CEXPR_USER:
305 val1 = scontext->user;
306 val2 = tcontext->user;
307 break;
308 case CEXPR_TYPE:
309 val1 = scontext->type;
310 val2 = tcontext->type;
311 break;
312 case CEXPR_ROLE:
313 val1 = scontext->role;
314 val2 = tcontext->role;
315 r1 = policydb.role_val_to_struct[val1 - 1];
316 r2 = policydb.role_val_to_struct[val2 - 1];
317 switch (e->op) {
318 case CEXPR_DOM:
319 s[++sp] = ebitmap_get_bit(&r1->dominates,
320 val2 - 1);
321 continue;
322 case CEXPR_DOMBY:
323 s[++sp] = ebitmap_get_bit(&r2->dominates,
324 val1 - 1);
325 continue;
326 case CEXPR_INCOMP:
5d55a345
EP
327 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 val2 - 1) &&
329 !ebitmap_get_bit(&r2->dominates,
330 val1 - 1));
1da177e4
LT
331 continue;
332 default:
333 break;
334 }
335 break;
336 case CEXPR_L1L2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_L1H2:
341 l1 = &(scontext->range.level[0]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_H1L2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[0]);
347 goto mls_ops;
348 case CEXPR_H1H2:
349 l1 = &(scontext->range.level[1]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L1H1:
353 l1 = &(scontext->range.level[0]);
354 l2 = &(scontext->range.level[1]);
355 goto mls_ops;
356 case CEXPR_L2H2:
357 l1 = &(tcontext->range.level[0]);
358 l2 = &(tcontext->range.level[1]);
359 goto mls_ops;
360mls_ops:
361 switch (e->op) {
362 case CEXPR_EQ:
363 s[++sp] = mls_level_eq(l1, l2);
364 continue;
365 case CEXPR_NEQ:
366 s[++sp] = !mls_level_eq(l1, l2);
367 continue;
368 case CEXPR_DOM:
369 s[++sp] = mls_level_dom(l1, l2);
370 continue;
371 case CEXPR_DOMBY:
372 s[++sp] = mls_level_dom(l2, l1);
373 continue;
374 case CEXPR_INCOMP:
375 s[++sp] = mls_level_incomp(l2, l1);
376 continue;
377 default:
378 BUG();
379 return 0;
380 }
381 break;
382 default:
383 BUG();
384 return 0;
385 }
386
387 switch (e->op) {
388 case CEXPR_EQ:
389 s[++sp] = (val1 == val2);
390 break;
391 case CEXPR_NEQ:
392 s[++sp] = (val1 != val2);
393 break;
394 default:
395 BUG();
396 return 0;
397 }
398 break;
399 case CEXPR_NAMES:
400 if (sp == (CEXPR_MAXDEPTH-1))
401 return 0;
402 c = scontext;
403 if (e->attr & CEXPR_TARGET)
404 c = tcontext;
405 else if (e->attr & CEXPR_XTARGET) {
406 c = xcontext;
407 if (!c) {
408 BUG();
409 return 0;
410 }
411 }
412 if (e->attr & CEXPR_USER)
413 val1 = c->user;
414 else if (e->attr & CEXPR_ROLE)
415 val1 = c->role;
416 else if (e->attr & CEXPR_TYPE)
417 val1 = c->type;
418 else {
419 BUG();
420 return 0;
421 }
422
423 switch (e->op) {
424 case CEXPR_EQ:
425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 break;
427 case CEXPR_NEQ:
428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 break;
435 default:
436 BUG();
437 return 0;
438 }
439 }
440
441 BUG_ON(sp != 0);
442 return s[0];
443}
444
44c2d9bd
KK
445/*
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 */
449static int dump_masked_av_helper(void *k, void *d, void *args)
450{
451 struct perm_datum *pdatum = d;
452 char **permission_names = args;
453
454 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456 permission_names[pdatum->value - 1] = (char *)k;
457
458 return 0;
459}
460
461static void security_dump_masked_av(struct context *scontext,
462 struct context *tcontext,
463 u16 tclass,
464 u32 permissions,
465 const char *reason)
466{
467 struct common_datum *common_dat;
468 struct class_datum *tclass_dat;
469 struct audit_buffer *ab;
470 char *tclass_name;
471 char *scontext_name = NULL;
472 char *tcontext_name = NULL;
473 char *permission_names[32];
2da5d31b
JM
474 int index;
475 u32 length;
44c2d9bd
KK
476 bool need_comma = false;
477
478 if (!permissions)
479 return;
480
ac76c05b 481 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
44c2d9bd
KK
482 tclass_dat = policydb.class_val_to_struct[tclass - 1];
483 common_dat = tclass_dat->comdatum;
484
485 /* init permission_names */
486 if (common_dat &&
487 hashtab_map(common_dat->permissions.table,
488 dump_masked_av_helper, permission_names) < 0)
489 goto out;
490
491 if (hashtab_map(tclass_dat->permissions.table,
492 dump_masked_av_helper, permission_names) < 0)
493 goto out;
494
495 /* get scontext/tcontext in text form */
496 if (context_struct_to_string(scontext,
497 &scontext_name, &length) < 0)
498 goto out;
499
500 if (context_struct_to_string(tcontext,
501 &tcontext_name, &length) < 0)
502 goto out;
503
504 /* audit a message */
505 ab = audit_log_start(current->audit_context,
506 GFP_ATOMIC, AUDIT_SELINUX_ERR);
507 if (!ab)
508 goto out;
509
510 audit_log_format(ab, "op=security_compute_av reason=%s "
511 "scontext=%s tcontext=%s tclass=%s perms=",
512 reason, scontext_name, tcontext_name, tclass_name);
513
514 for (index = 0; index < 32; index++) {
515 u32 mask = (1 << index);
516
517 if ((mask & permissions) == 0)
518 continue;
519
520 audit_log_format(ab, "%s%s",
521 need_comma ? "," : "",
522 permission_names[index]
523 ? permission_names[index] : "????");
524 need_comma = true;
525 }
526 audit_log_end(ab);
527out:
528 /* release scontext/tcontext */
529 kfree(tcontext_name);
530 kfree(scontext_name);
531
532 return;
533}
534
d9250dea
KK
535/*
536 * security_boundary_permission - drops violated permissions
537 * on boundary constraint.
538 */
539static void type_attribute_bounds_av(struct context *scontext,
540 struct context *tcontext,
541 u16 tclass,
d9250dea
KK
542 struct av_decision *avd)
543{
2ae3ba39
KK
544 struct context lo_scontext;
545 struct context lo_tcontext;
546 struct av_decision lo_avd;
23bdecb0
EP
547 struct type_datum *source;
548 struct type_datum *target;
2ae3ba39 549 u32 masked = 0;
d9250dea 550
23bdecb0
EP
551 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
552 scontext->type - 1);
553 BUG_ON(!source);
554
555 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
556 tcontext->type - 1);
557 BUG_ON(!target);
558
d9250dea
KK
559 if (source->bounds) {
560 memset(&lo_avd, 0, sizeof(lo_avd));
561
562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 lo_scontext.type = source->bounds;
564
565 context_struct_compute_av(&lo_scontext,
566 tcontext,
567 tclass,
d9250dea
KK
568 &lo_avd);
569 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
570 return; /* no masked permission */
571 masked = ~lo_avd.allowed & avd->allowed;
2ae3ba39
KK
572 }
573
574 if (target->bounds) {
575 memset(&lo_avd, 0, sizeof(lo_avd));
576
577 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
578 lo_tcontext.type = target->bounds;
579
580 context_struct_compute_av(scontext,
581 &lo_tcontext,
582 tclass,
583 &lo_avd);
584 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
585 return; /* no masked permission */
586 masked = ~lo_avd.allowed & avd->allowed;
587 }
588
589 if (source->bounds && target->bounds) {
590 memset(&lo_avd, 0, sizeof(lo_avd));
591 /*
592 * lo_scontext and lo_tcontext are already
593 * set up.
594 */
595
596 context_struct_compute_av(&lo_scontext,
597 &lo_tcontext,
598 tclass,
599 &lo_avd);
600 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
601 return; /* no masked permission */
602 masked = ~lo_avd.allowed & avd->allowed;
603 }
d9250dea 604
2ae3ba39 605 if (masked) {
d9250dea
KK
606 /* mask violated permissions */
607 avd->allowed &= ~masked;
608
44c2d9bd
KK
609 /* audit masked permissions */
610 security_dump_masked_av(scontext, tcontext,
611 tclass, masked, "bounds");
d9250dea
KK
612 }
613}
614
1da177e4
LT
615/*
616 * Compute access vectors based on a context structure pair for
617 * the permissions in a particular class.
618 */
19439d05
SS
619static void context_struct_compute_av(struct context *scontext,
620 struct context *tcontext,
621 u16 tclass,
622 struct av_decision *avd)
1da177e4
LT
623{
624 struct constraint_node *constraint;
625 struct role_allow *ra;
626 struct avtab_key avkey;
782ebb99 627 struct avtab_node *node;
1da177e4 628 struct class_datum *tclass_datum;
782ebb99
SS
629 struct ebitmap *sattr, *tattr;
630 struct ebitmap_node *snode, *tnode;
631 unsigned int i, j;
1da177e4 632
1da177e4 633 avd->allowed = 0;
1da177e4
LT
634 avd->auditallow = 0;
635 avd->auditdeny = 0xffffffff;
1da177e4 636
c6d3aaa4
SS
637 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
638 if (printk_ratelimit())
639 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
19439d05 640 return;
c6d3aaa4 641 }
3f12070e
EP
642
643 tclass_datum = policydb.class_val_to_struct[tclass - 1];
644
1da177e4
LT
645 /*
646 * If a specific type enforcement rule was defined for
647 * this permission check, then use it.
648 */
1da177e4 649 avkey.target_class = tclass;
782ebb99 650 avkey.specified = AVTAB_AV;
6371dcd3
EP
651 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
652 BUG_ON(!sattr);
653 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
654 BUG_ON(!tattr);
9fe79ad1
KK
655 ebitmap_for_each_positive_bit(sattr, snode, i) {
656 ebitmap_for_each_positive_bit(tattr, tnode, j) {
782ebb99
SS
657 avkey.source_type = i + 1;
658 avkey.target_type = j + 1;
659 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
dbc74c65 660 node;
782ebb99
SS
661 node = avtab_search_node_next(node, avkey.specified)) {
662 if (node->key.specified == AVTAB_ALLOWED)
663 avd->allowed |= node->datum.data;
664 else if (node->key.specified == AVTAB_AUDITALLOW)
665 avd->auditallow |= node->datum.data;
666 else if (node->key.specified == AVTAB_AUDITDENY)
667 avd->auditdeny &= node->datum.data;
668 }
1da177e4 669
782ebb99
SS
670 /* Check conditional av table for additional permissions */
671 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
672
673 }
674 }
1da177e4
LT
675
676 /*
677 * Remove any permissions prohibited by a constraint (this includes
678 * the MLS policy).
679 */
680 constraint = tclass_datum->constraints;
681 while (constraint) {
682 if ((constraint->permissions & (avd->allowed)) &&
683 !constraint_expr_eval(scontext, tcontext, NULL,
684 constraint->expr)) {
caabbdc0 685 avd->allowed &= ~(constraint->permissions);
1da177e4
LT
686 }
687 constraint = constraint->next;
688 }
689
690 /*
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
693 * pair.
694 */
c6d3aaa4
SS
695 if (tclass == policydb.process_class &&
696 (avd->allowed & policydb.process_trans_perms) &&
1da177e4
LT
697 scontext->role != tcontext->role) {
698 for (ra = policydb.role_allow; ra; ra = ra->next) {
699 if (scontext->role == ra->role &&
700 tcontext->role == ra->new_role)
701 break;
702 }
703 if (!ra)
c6d3aaa4 704 avd->allowed &= ~policydb.process_trans_perms;
1da177e4
LT
705 }
706
d9250dea
KK
707 /*
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
711 */
712 type_attribute_bounds_av(scontext, tcontext,
19439d05 713 tclass, avd);
1da177e4
LT
714}
715
716static int security_validtrans_handle_fail(struct context *ocontext,
5d55a345
EP
717 struct context *ncontext,
718 struct context *tcontext,
719 u16 tclass)
1da177e4
LT
720{
721 char *o = NULL, *n = NULL, *t = NULL;
722 u32 olen, nlen, tlen;
723
4b02b524 724 if (context_struct_to_string(ocontext, &o, &olen))
1da177e4 725 goto out;
4b02b524 726 if (context_struct_to_string(ncontext, &n, &nlen))
1da177e4 727 goto out;
4b02b524 728 if (context_struct_to_string(tcontext, &t, &tlen))
1da177e4 729 goto out;
9ad9ad38 730 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
731 "security_validate_transition: denied for"
732 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
ac76c05b 733 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1da177e4
LT
734out:
735 kfree(o);
736 kfree(n);
737 kfree(t);
738
739 if (!selinux_enforcing)
740 return 0;
741 return -EPERM;
742}
743
744int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
c6d3aaa4 745 u16 orig_tclass)
1da177e4
LT
746{
747 struct context *ocontext;
748 struct context *ncontext;
749 struct context *tcontext;
750 struct class_datum *tclass_datum;
751 struct constraint_node *constraint;
c6d3aaa4 752 u16 tclass;
1da177e4
LT
753 int rc = 0;
754
755 if (!ss_initialized)
756 return 0;
757
0804d113 758 read_lock(&policy_rwlock);
1da177e4 759
c6d3aaa4
SS
760 tclass = unmap_class(orig_tclass);
761
1da177e4 762 if (!tclass || tclass > policydb.p_classes.nprim) {
744ba35e
EP
763 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
764 __func__, tclass);
1da177e4
LT
765 rc = -EINVAL;
766 goto out;
767 }
768 tclass_datum = policydb.class_val_to_struct[tclass - 1];
769
770 ocontext = sidtab_search(&sidtab, oldsid);
771 if (!ocontext) {
744ba35e
EP
772 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
773 __func__, oldsid);
1da177e4
LT
774 rc = -EINVAL;
775 goto out;
776 }
777
778 ncontext = sidtab_search(&sidtab, newsid);
779 if (!ncontext) {
744ba35e
EP
780 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
781 __func__, newsid);
1da177e4
LT
782 rc = -EINVAL;
783 goto out;
784 }
785
786 tcontext = sidtab_search(&sidtab, tasksid);
787 if (!tcontext) {
744ba35e
EP
788 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
789 __func__, tasksid);
1da177e4
LT
790 rc = -EINVAL;
791 goto out;
792 }
793
794 constraint = tclass_datum->validatetrans;
795 while (constraint) {
796 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
5d55a345 797 constraint->expr)) {
1da177e4 798 rc = security_validtrans_handle_fail(ocontext, ncontext,
5d55a345 799 tcontext, tclass);
1da177e4
LT
800 goto out;
801 }
802 constraint = constraint->next;
803 }
804
805out:
0804d113 806 read_unlock(&policy_rwlock);
1da177e4
LT
807 return rc;
808}
809
d9250dea
KK
810/*
811 * security_bounded_transition - check whether the given
812 * transition is directed to bounded, or not.
813 * It returns 0, if @newsid is bounded by @oldsid.
814 * Otherwise, it returns error code.
815 *
816 * @oldsid : current security identifier
817 * @newsid : destinated security identifier
818 */
819int security_bounded_transition(u32 old_sid, u32 new_sid)
820{
821 struct context *old_context, *new_context;
822 struct type_datum *type;
823 int index;
4b02b524 824 int rc;
d9250dea
KK
825
826 read_lock(&policy_rwlock);
827
4b02b524 828 rc = -EINVAL;
d9250dea
KK
829 old_context = sidtab_search(&sidtab, old_sid);
830 if (!old_context) {
831 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
832 __func__, old_sid);
833 goto out;
834 }
835
4b02b524 836 rc = -EINVAL;
d9250dea
KK
837 new_context = sidtab_search(&sidtab, new_sid);
838 if (!new_context) {
839 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
840 __func__, new_sid);
841 goto out;
842 }
843
4b02b524 844 rc = 0;
af901ca1 845 /* type/domain unchanged */
4b02b524 846 if (old_context->type == new_context->type)
d9250dea 847 goto out;
d9250dea
KK
848
849 index = new_context->type;
850 while (true) {
23bdecb0
EP
851 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
852 index - 1);
d9250dea
KK
853 BUG_ON(!type);
854
855 /* not bounded anymore */
4b02b524
EP
856 rc = -EPERM;
857 if (!type->bounds)
d9250dea 858 break;
d9250dea
KK
859
860 /* @newsid is bounded by @oldsid */
4b02b524
EP
861 rc = 0;
862 if (type->bounds == old_context->type)
d9250dea 863 break;
4b02b524 864
d9250dea
KK
865 index = type->bounds;
866 }
44c2d9bd
KK
867
868 if (rc) {
869 char *old_name = NULL;
870 char *new_name = NULL;
2da5d31b 871 u32 length;
44c2d9bd
KK
872
873 if (!context_struct_to_string(old_context,
874 &old_name, &length) &&
875 !context_struct_to_string(new_context,
876 &new_name, &length)) {
877 audit_log(current->audit_context,
878 GFP_ATOMIC, AUDIT_SELINUX_ERR,
879 "op=security_bounded_transition "
880 "result=denied "
881 "oldcontext=%s newcontext=%s",
882 old_name, new_name);
883 }
884 kfree(new_name);
885 kfree(old_name);
886 }
d9250dea
KK
887out:
888 read_unlock(&policy_rwlock);
889
890 return rc;
891}
892
19439d05 893static void avd_init(struct av_decision *avd)
c6d3aaa4 894{
19439d05
SS
895 avd->allowed = 0;
896 avd->auditallow = 0;
897 avd->auditdeny = 0xffffffff;
898 avd->seqno = latest_granting;
899 avd->flags = 0;
c6d3aaa4
SS
900}
901
19439d05 902
1da177e4
LT
903/**
904 * security_compute_av - Compute access vector decisions.
905 * @ssid: source security identifier
906 * @tsid: target security identifier
907 * @tclass: target security class
1da177e4
LT
908 * @avd: access vector decisions
909 *
910 * Compute a set of access vector decisions based on the
911 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1da177e4 912 */
19439d05
SS
913void security_compute_av(u32 ssid,
914 u32 tsid,
915 u16 orig_tclass,
916 struct av_decision *avd)
1da177e4 917{
c6d3aaa4 918 u16 tclass;
19439d05 919 struct context *scontext = NULL, *tcontext = NULL;
c6d3aaa4 920
b7f3008a 921 read_lock(&policy_rwlock);
19439d05 922 avd_init(avd);
c6d3aaa4
SS
923 if (!ss_initialized)
924 goto allow;
925
19439d05
SS
926 scontext = sidtab_search(&sidtab, ssid);
927 if (!scontext) {
928 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
929 __func__, ssid);
930 goto out;
931 }
932
933 /* permissive domain? */
934 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
935 avd->flags |= AVD_FLAGS_PERMISSIVE;
936
937 tcontext = sidtab_search(&sidtab, tsid);
938 if (!tcontext) {
939 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
940 __func__, tsid);
941 goto out;
942 }
943
c6d3aaa4
SS
944 tclass = unmap_class(orig_tclass);
945 if (unlikely(orig_tclass && !tclass)) {
946 if (policydb.allow_unknown)
947 goto allow;
b7f3008a 948 goto out;
c6d3aaa4 949 }
19439d05 950 context_struct_compute_av(scontext, tcontext, tclass, avd);
c6d3aaa4 951 map_decision(orig_tclass, avd, policydb.allow_unknown);
b7f3008a 952out:
c6d3aaa4 953 read_unlock(&policy_rwlock);
19439d05 954 return;
c6d3aaa4
SS
955allow:
956 avd->allowed = 0xffffffff;
b7f3008a 957 goto out;
c6d3aaa4
SS
958}
959
19439d05
SS
960void security_compute_av_user(u32 ssid,
961 u32 tsid,
962 u16 tclass,
963 struct av_decision *avd)
c6d3aaa4 964{
19439d05 965 struct context *scontext = NULL, *tcontext = NULL;
1da177e4 966
19439d05
SS
967 read_lock(&policy_rwlock);
968 avd_init(avd);
969 if (!ss_initialized)
970 goto allow;
971
972 scontext = sidtab_search(&sidtab, ssid);
973 if (!scontext) {
974 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
975 __func__, ssid);
976 goto out;
1da177e4
LT
977 }
978
19439d05
SS
979 /* permissive domain? */
980 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
981 avd->flags |= AVD_FLAGS_PERMISSIVE;
982
983 tcontext = sidtab_search(&sidtab, tsid);
984 if (!tcontext) {
985 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
986 __func__, tsid);
987 goto out;
988 }
989
990 if (unlikely(!tclass)) {
991 if (policydb.allow_unknown)
992 goto allow;
993 goto out;
994 }
995
996 context_struct_compute_av(scontext, tcontext, tclass, avd);
997 out:
0804d113 998 read_unlock(&policy_rwlock);
19439d05
SS
999 return;
1000allow:
1001 avd->allowed = 0xffffffff;
1002 goto out;
1da177e4
LT
1003}
1004
1005/*
1006 * Write the security context string representation of
1007 * the context structure `context' into a dynamically
1008 * allocated string of the correct size. Set `*scontext'
1009 * to point to this string and set `*scontext_len' to
1010 * the length of the string.
1011 */
1012static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1013{
1014 char *scontextp;
1015
d5630b9d
EP
1016 if (scontext)
1017 *scontext = NULL;
1da177e4
LT
1018 *scontext_len = 0;
1019
12b29f34
SS
1020 if (context->len) {
1021 *scontext_len = context->len;
bb7081ab
EP
1022 if (scontext) {
1023 *scontext = kstrdup(context->str, GFP_ATOMIC);
1024 if (!(*scontext))
1025 return -ENOMEM;
1026 }
12b29f34
SS
1027 return 0;
1028 }
1029
1da177e4 1030 /* Compute the size of the context. */
ac76c05b
EP
1031 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1032 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1033 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1da177e4
LT
1034 *scontext_len += mls_compute_context_len(context);
1035
d5630b9d
EP
1036 if (!scontext)
1037 return 0;
1038
1da177e4
LT
1039 /* Allocate space for the context; caller must free this space. */
1040 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
5d55a345 1041 if (!scontextp)
1da177e4 1042 return -ENOMEM;
1da177e4
LT
1043 *scontext = scontextp;
1044
1045 /*
1046 * Copy the user name, role name and type name into the context.
1047 */
1048 sprintf(scontextp, "%s:%s:%s",
ac76c05b
EP
1049 sym_name(&policydb, SYM_USERS, context->user - 1),
1050 sym_name(&policydb, SYM_ROLES, context->role - 1),
1051 sym_name(&policydb, SYM_TYPES, context->type - 1));
1052 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1053 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1054 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1da177e4
LT
1055
1056 mls_sid_to_context(context, &scontextp);
1057
1058 *scontextp = 0;
1059
1060 return 0;
1061}
1062
1063#include "initial_sid_to_string.h"
1064
f0ee2e46
JC
1065const char *security_get_initial_sid_context(u32 sid)
1066{
1067 if (unlikely(sid > SECINITSID_NUM))
1068 return NULL;
1069 return initial_sid_to_string[sid];
1070}
1071
12b29f34
SS
1072static int security_sid_to_context_core(u32 sid, char **scontext,
1073 u32 *scontext_len, int force)
1da177e4
LT
1074{
1075 struct context *context;
1076 int rc = 0;
1077
d5630b9d
EP
1078 if (scontext)
1079 *scontext = NULL;
4f4acf3a
SS
1080 *scontext_len = 0;
1081
1da177e4
LT
1082 if (!ss_initialized) {
1083 if (sid <= SECINITSID_NUM) {
1084 char *scontextp;
1085
1086 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
d5630b9d
EP
1087 if (!scontext)
1088 goto out;
5d55a345 1089 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
0cccca06
SH
1090 if (!scontextp) {
1091 rc = -ENOMEM;
1092 goto out;
1093 }
1da177e4
LT
1094 strcpy(scontextp, initial_sid_to_string[sid]);
1095 *scontext = scontextp;
1096 goto out;
1097 }
744ba35e
EP
1098 printk(KERN_ERR "SELinux: %s: called before initial "
1099 "load_policy on unknown SID %d\n", __func__, sid);
1da177e4
LT
1100 rc = -EINVAL;
1101 goto out;
1102 }
0804d113 1103 read_lock(&policy_rwlock);
12b29f34
SS
1104 if (force)
1105 context = sidtab_search_force(&sidtab, sid);
1106 else
1107 context = sidtab_search(&sidtab, sid);
1da177e4 1108 if (!context) {
744ba35e
EP
1109 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1110 __func__, sid);
1da177e4
LT
1111 rc = -EINVAL;
1112 goto out_unlock;
1113 }
1114 rc = context_struct_to_string(context, scontext, scontext_len);
1115out_unlock:
0804d113 1116 read_unlock(&policy_rwlock);
1da177e4
LT
1117out:
1118 return rc;
1119
1120}
1121
12b29f34
SS
1122/**
1123 * security_sid_to_context - Obtain a context for a given SID.
1124 * @sid: security identifier, SID
1125 * @scontext: security context
1126 * @scontext_len: length in bytes
1127 *
1128 * Write the string representation of the context associated with @sid
1129 * into a dynamically allocated string of the correct size. Set @scontext
1130 * to point to this string and set @scontext_len to the length of the string.
1131 */
1132int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1da177e4 1133{
12b29f34
SS
1134 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1135}
1136
1137int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1138{
1139 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1140}
1141
9a59daa0
SS
1142/*
1143 * Caveat: Mutates scontext.
1144 */
12b29f34
SS
1145static int string_to_context_struct(struct policydb *pol,
1146 struct sidtab *sidtabp,
9a59daa0 1147 char *scontext,
12b29f34
SS
1148 u32 scontext_len,
1149 struct context *ctx,
9a59daa0 1150 u32 def_sid)
12b29f34 1151{
1da177e4
LT
1152 struct role_datum *role;
1153 struct type_datum *typdatum;
1154 struct user_datum *usrdatum;
1155 char *scontextp, *p, oldc;
1156 int rc = 0;
1157
12b29f34 1158 context_init(ctx);
1da177e4 1159
1da177e4
LT
1160 /* Parse the security context. */
1161
1162 rc = -EINVAL;
9a59daa0 1163 scontextp = (char *) scontext;
1da177e4
LT
1164
1165 /* Extract the user. */
1166 p = scontextp;
1167 while (*p && *p != ':')
1168 p++;
1169
1170 if (*p == 0)
12b29f34 1171 goto out;
1da177e4
LT
1172
1173 *p++ = 0;
1174
12b29f34 1175 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1da177e4 1176 if (!usrdatum)
12b29f34 1177 goto out;
1da177e4 1178
12b29f34 1179 ctx->user = usrdatum->value;
1da177e4
LT
1180
1181 /* Extract role. */
1182 scontextp = p;
1183 while (*p && *p != ':')
1184 p++;
1185
1186 if (*p == 0)
12b29f34 1187 goto out;
1da177e4
LT
1188
1189 *p++ = 0;
1190
12b29f34 1191 role = hashtab_search(pol->p_roles.table, scontextp);
1da177e4 1192 if (!role)
12b29f34
SS
1193 goto out;
1194 ctx->role = role->value;
1da177e4
LT
1195
1196 /* Extract type. */
1197 scontextp = p;
1198 while (*p && *p != ':')
1199 p++;
1200 oldc = *p;
1201 *p++ = 0;
1202
12b29f34 1203 typdatum = hashtab_search(pol->p_types.table, scontextp);
d9250dea 1204 if (!typdatum || typdatum->attribute)
12b29f34 1205 goto out;
1da177e4 1206
12b29f34 1207 ctx->type = typdatum->value;
1da177e4 1208
12b29f34 1209 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1da177e4 1210 if (rc)
12b29f34 1211 goto out;
1da177e4 1212
4b02b524
EP
1213 rc = -EINVAL;
1214 if ((p - scontext) < scontext_len)
12b29f34 1215 goto out;
1da177e4
LT
1216
1217 /* Check the validity of the new context. */
4b02b524 1218 if (!policydb_context_isvalid(pol, ctx))
12b29f34 1219 goto out;
12b29f34
SS
1220 rc = 0;
1221out:
8e531af9
EP
1222 if (rc)
1223 context_destroy(ctx);
12b29f34
SS
1224 return rc;
1225}
1226
1227static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1228 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1229 int force)
1230{
9a59daa0 1231 char *scontext2, *str = NULL;
12b29f34
SS
1232 struct context context;
1233 int rc = 0;
1234
1235 if (!ss_initialized) {
1236 int i;
1237
1238 for (i = 1; i < SECINITSID_NUM; i++) {
1239 if (!strcmp(initial_sid_to_string[i], scontext)) {
1240 *sid = i;
9a59daa0 1241 return 0;
12b29f34
SS
1242 }
1243 }
1244 *sid = SECINITSID_KERNEL;
9a59daa0 1245 return 0;
12b29f34
SS
1246 }
1247 *sid = SECSID_NULL;
1248
9a59daa0 1249 /* Copy the string so that we can modify the copy as we parse it. */
c1a7368a 1250 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
9a59daa0
SS
1251 if (!scontext2)
1252 return -ENOMEM;
1253 memcpy(scontext2, scontext, scontext_len);
1254 scontext2[scontext_len] = 0;
1255
1256 if (force) {
1257 /* Save another copy for storing in uninterpreted form */
4b02b524 1258 rc = -ENOMEM;
9a59daa0 1259 str = kstrdup(scontext2, gfp_flags);
4b02b524
EP
1260 if (!str)
1261 goto out;
9a59daa0
SS
1262 }
1263
0804d113 1264 read_lock(&policy_rwlock);
4b02b524
EP
1265 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1266 scontext_len, &context, def_sid);
12b29f34 1267 if (rc == -EINVAL && force) {
9a59daa0 1268 context.str = str;
12b29f34 1269 context.len = scontext_len;
9a59daa0 1270 str = NULL;
12b29f34 1271 } else if (rc)
4b02b524 1272 goto out_unlock;
12b29f34 1273 rc = sidtab_context_to_sid(&sidtab, &context, sid);
8e531af9 1274 context_destroy(&context);
4b02b524 1275out_unlock:
0804d113 1276 read_unlock(&policy_rwlock);
4b02b524 1277out:
9a59daa0
SS
1278 kfree(scontext2);
1279 kfree(str);
1da177e4
LT
1280 return rc;
1281}
1282
f5c1d5b2
JM
1283/**
1284 * security_context_to_sid - Obtain a SID for a given security context.
1285 * @scontext: security context
1286 * @scontext_len: length in bytes
1287 * @sid: security identifier, SID
1288 *
1289 * Obtains a SID associated with the security context that
1290 * has the string representation specified by @scontext.
1291 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1292 * memory is available, or 0 on success.
1293 */
8f0cfa52 1294int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
f5c1d5b2
JM
1295{
1296 return security_context_to_sid_core(scontext, scontext_len,
12b29f34 1297 sid, SECSID_NULL, GFP_KERNEL, 0);
f5c1d5b2
JM
1298}
1299
1300/**
1301 * security_context_to_sid_default - Obtain a SID for a given security context,
1302 * falling back to specified default if needed.
1303 *
1304 * @scontext: security context
1305 * @scontext_len: length in bytes
1306 * @sid: security identifier, SID
d133a960 1307 * @def_sid: default SID to assign on error
f5c1d5b2
JM
1308 *
1309 * Obtains a SID associated with the security context that
1310 * has the string representation specified by @scontext.
1311 * The default SID is passed to the MLS layer to be used to allow
1312 * kernel labeling of the MLS field if the MLS field is not present
1313 * (for upgrading to MLS without full relabel).
12b29f34 1314 * Implicitly forces adding of the context even if it cannot be mapped yet.
f5c1d5b2
JM
1315 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1316 * memory is available, or 0 on success.
1317 */
7bf570dc
DH
1318int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1319 u32 *sid, u32 def_sid, gfp_t gfp_flags)
f5c1d5b2
JM
1320{
1321 return security_context_to_sid_core(scontext, scontext_len,
12b29f34
SS
1322 sid, def_sid, gfp_flags, 1);
1323}
1324
1325int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1326 u32 *sid)
1327{
1328 return security_context_to_sid_core(scontext, scontext_len,
1329 sid, SECSID_NULL, GFP_KERNEL, 1);
f5c1d5b2
JM
1330}
1331
1da177e4
LT
1332static int compute_sid_handle_invalid_context(
1333 struct context *scontext,
1334 struct context *tcontext,
1335 u16 tclass,
1336 struct context *newcontext)
1337{
1338 char *s = NULL, *t = NULL, *n = NULL;
1339 u32 slen, tlen, nlen;
1340
4b02b524 1341 if (context_struct_to_string(scontext, &s, &slen))
1da177e4 1342 goto out;
4b02b524 1343 if (context_struct_to_string(tcontext, &t, &tlen))
1da177e4 1344 goto out;
4b02b524 1345 if (context_struct_to_string(newcontext, &n, &nlen))
1da177e4 1346 goto out;
9ad9ad38 1347 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
1348 "security_compute_sid: invalid context %s"
1349 " for scontext=%s"
1350 " tcontext=%s"
1351 " tclass=%s",
ac76c05b 1352 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1da177e4
LT
1353out:
1354 kfree(s);
1355 kfree(t);
1356 kfree(n);
1357 if (!selinux_enforcing)
1358 return 0;
1359 return -EACCES;
1360}
1361
652bb9b0 1362static void filename_compute_type(struct policydb *p, struct context *newcontext,
2667991f 1363 u32 stype, u32 ttype, u16 tclass,
f50a3ec9 1364 const char *objname)
652bb9b0 1365{
2463c26d
EP
1366 struct filename_trans ft;
1367 struct filename_trans_datum *otype;
03a4c018
EP
1368
1369 /*
1370 * Most filename trans rules are going to live in specific directories
1371 * like /dev or /var/run. This bitmap will quickly skip rule searches
1372 * if the ttype does not contain any rules.
1373 */
1374 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1375 return;
1376
2463c26d
EP
1377 ft.stype = stype;
1378 ft.ttype = ttype;
1379 ft.tclass = tclass;
1380 ft.name = objname;
1381
1382 otype = hashtab_search(p->filename_trans, &ft);
1383 if (otype)
1384 newcontext->type = otype->otype;
652bb9b0
EP
1385}
1386
1da177e4
LT
1387static int security_compute_sid(u32 ssid,
1388 u32 tsid,
c6d3aaa4 1389 u16 orig_tclass,
1da177e4 1390 u32 specified,
f50a3ec9 1391 const char *objname,
c6d3aaa4
SS
1392 u32 *out_sid,
1393 bool kern)
1da177e4 1394{
aa893269 1395 struct class_datum *cladatum = NULL;
1da177e4
LT
1396 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1397 struct role_trans *roletr = NULL;
1398 struct avtab_key avkey;
1399 struct avtab_datum *avdatum;
1400 struct avtab_node *node;
c6d3aaa4 1401 u16 tclass;
1da177e4 1402 int rc = 0;
6f5317e7 1403 bool sock;
1da177e4
LT
1404
1405 if (!ss_initialized) {
c6d3aaa4
SS
1406 switch (orig_tclass) {
1407 case SECCLASS_PROCESS: /* kernel value */
1da177e4
LT
1408 *out_sid = ssid;
1409 break;
1410 default:
1411 *out_sid = tsid;
1412 break;
1413 }
1414 goto out;
1415 }
1416
851f8a69
VY
1417 context_init(&newcontext);
1418
0804d113 1419 read_lock(&policy_rwlock);
1da177e4 1420
6f5317e7 1421 if (kern) {
c6d3aaa4 1422 tclass = unmap_class(orig_tclass);
6f5317e7
HC
1423 sock = security_is_socket_class(orig_tclass);
1424 } else {
c6d3aaa4 1425 tclass = orig_tclass;
6f5317e7
HC
1426 sock = security_is_socket_class(map_class(tclass));
1427 }
c6d3aaa4 1428
1da177e4
LT
1429 scontext = sidtab_search(&sidtab, ssid);
1430 if (!scontext) {
744ba35e
EP
1431 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1432 __func__, ssid);
1da177e4
LT
1433 rc = -EINVAL;
1434 goto out_unlock;
1435 }
1436 tcontext = sidtab_search(&sidtab, tsid);
1437 if (!tcontext) {
744ba35e
EP
1438 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1439 __func__, tsid);
1da177e4
LT
1440 rc = -EINVAL;
1441 goto out_unlock;
1442 }
1443
aa893269
EP
1444 if (tclass && tclass <= policydb.p_classes.nprim)
1445 cladatum = policydb.class_val_to_struct[tclass - 1];
1446
1da177e4
LT
1447 /* Set the user identity. */
1448 switch (specified) {
1449 case AVTAB_TRANSITION:
1450 case AVTAB_CHANGE:
aa893269
EP
1451 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1452 newcontext.user = tcontext->user;
1453 } else {
1454 /* notice this gets both DEFAULT_SOURCE and unset */
1455 /* Use the process user identity. */
1456 newcontext.user = scontext->user;
1457 }
1da177e4
LT
1458 break;
1459 case AVTAB_MEMBER:
1460 /* Use the related object owner. */
1461 newcontext.user = tcontext->user;
1462 break;
1463 }
1464
aa893269
EP
1465 /* Set the role to default values. */
1466 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1da177e4 1467 newcontext.role = scontext->role;
aa893269
EP
1468 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1469 newcontext.role = tcontext->role;
1470 } else {
1471 if ((tclass == policydb.process_class) || (sock == true))
1472 newcontext.role = scontext->role;
1473 else
1474 newcontext.role = OBJECT_R_VAL;
1475 }
1476
1477 /* Set the type to default values. */
eed7795d 1478 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1da177e4 1479 newcontext.type = scontext->type;
eed7795d 1480 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1da177e4 1481 newcontext.type = tcontext->type;
eed7795d
EP
1482 } else {
1483 if ((tclass == policydb.process_class) || (sock == true)) {
1484 /* Use the type of process. */
1485 newcontext.type = scontext->type;
1486 } else {
1487 /* Use the type of the related object. */
1488 newcontext.type = tcontext->type;
1489 }
1da177e4
LT
1490 }
1491
1492 /* Look for a type transition/member/change rule. */
1493 avkey.source_type = scontext->type;
1494 avkey.target_type = tcontext->type;
1495 avkey.target_class = tclass;
782ebb99
SS
1496 avkey.specified = specified;
1497 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
1498
1499 /* If no permanent rule, also check for enabled conditional rules */
5d55a345 1500 if (!avdatum) {
782ebb99 1501 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
dbc74c65 1502 for (; node; node = avtab_search_node_next(node, specified)) {
782ebb99 1503 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
1504 avdatum = &node->datum;
1505 break;
1506 }
1507 }
1508 }
1509
782ebb99 1510 if (avdatum) {
1da177e4 1511 /* Use the type from the type transition/member/change rule. */
782ebb99 1512 newcontext.type = avdatum->data;
1da177e4
LT
1513 }
1514
4742600c 1515 /* if we have a objname this is a file trans check so check those rules */
f50a3ec9 1516 if (objname)
652bb9b0 1517 filename_compute_type(&policydb, &newcontext, scontext->type,
f50a3ec9 1518 tcontext->type, tclass, objname);
652bb9b0 1519
1da177e4 1520 /* Check for class-specific changes. */
63a312ca
HC
1521 if (specified & AVTAB_TRANSITION) {
1522 /* Look for a role transition rule. */
1523 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1524 if ((roletr->role == scontext->role) &&
1525 (roletr->type == tcontext->type) &&
1526 (roletr->tclass == tclass)) {
1527 /* Use the role transition rule. */
1528 newcontext.role = roletr->new_role;
1529 break;
1da177e4
LT
1530 }
1531 }
1da177e4
LT
1532 }
1533
1534 /* Set the MLS attributes.
1535 This is done last because it may allocate memory. */
6f5317e7
HC
1536 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1537 &newcontext, sock);
1da177e4
LT
1538 if (rc)
1539 goto out_unlock;
1540
1541 /* Check the validity of the context. */
1542 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1543 rc = compute_sid_handle_invalid_context(scontext,
1544 tcontext,
1545 tclass,
1546 &newcontext);
1547 if (rc)
1548 goto out_unlock;
1549 }
1550 /* Obtain the sid for the context. */
1551 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1552out_unlock:
0804d113 1553 read_unlock(&policy_rwlock);
1da177e4
LT
1554 context_destroy(&newcontext);
1555out:
1556 return rc;
1557}
1558
1559/**
1560 * security_transition_sid - Compute the SID for a new subject/object.
1561 * @ssid: source security identifier
1562 * @tsid: target security identifier
1563 * @tclass: target security class
1564 * @out_sid: security identifier for new subject/object
1565 *
1566 * Compute a SID to use for labeling a new subject or object in the
1567 * class @tclass based on a SID pair (@ssid, @tsid).
1568 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1569 * if insufficient memory is available, or %0 if the new SID was
1570 * computed successfully.
1571 */
652bb9b0
EP
1572int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1573 const struct qstr *qstr, u32 *out_sid)
1da177e4 1574{
c6d3aaa4 1575 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
f50a3ec9 1576 qstr ? qstr->name : NULL, out_sid, true);
c6d3aaa4
SS
1577}
1578
f50a3ec9
KK
1579int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1580 const char *objname, u32 *out_sid)
c6d3aaa4
SS
1581{
1582 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
f50a3ec9 1583 objname, out_sid, false);
1da177e4
LT
1584}
1585
1586/**
1587 * security_member_sid - Compute the SID for member selection.
1588 * @ssid: source security identifier
1589 * @tsid: target security identifier
1590 * @tclass: target security class
1591 * @out_sid: security identifier for selected member
1592 *
1593 * Compute a SID to use when selecting a member of a polyinstantiated
1594 * object of class @tclass based on a SID pair (@ssid, @tsid).
1595 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1596 * if insufficient memory is available, or %0 if the SID was
1597 * computed successfully.
1598 */
1599int security_member_sid(u32 ssid,
1600 u32 tsid,
1601 u16 tclass,
1602 u32 *out_sid)
1603{
652bb9b0
EP
1604 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1605 out_sid, false);
1da177e4
LT
1606}
1607
1608/**
1609 * security_change_sid - Compute the SID for object relabeling.
1610 * @ssid: source security identifier
1611 * @tsid: target security identifier
1612 * @tclass: target security class
1613 * @out_sid: security identifier for selected member
1614 *
1615 * Compute a SID to use for relabeling an object of class @tclass
1616 * based on a SID pair (@ssid, @tsid).
1617 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1618 * if insufficient memory is available, or %0 if the SID was
1619 * computed successfully.
1620 */
1621int security_change_sid(u32 ssid,
1622 u32 tsid,
1623 u16 tclass,
1624 u32 *out_sid)
1625{
652bb9b0
EP
1626 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1627 out_sid, false);
b94c7e67
CS
1628}
1629
1da177e4
LT
1630/* Clone the SID into the new SID table. */
1631static int clone_sid(u32 sid,
1632 struct context *context,
1633 void *arg)
1634{
1635 struct sidtab *s = arg;
1636
42596eaf
GT
1637 if (sid > SECINITSID_NUM)
1638 return sidtab_insert(s, sid, context);
1639 else
1640 return 0;
1da177e4
LT
1641}
1642
1643static inline int convert_context_handle_invalid_context(struct context *context)
1644{
4b02b524
EP
1645 char *s;
1646 u32 len;
1da177e4 1647
4b02b524
EP
1648 if (selinux_enforcing)
1649 return -EINVAL;
1650
1651 if (!context_struct_to_string(context, &s, &len)) {
1652 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1653 kfree(s);
1da177e4 1654 }
4b02b524 1655 return 0;
1da177e4
LT
1656}
1657
1658struct convert_context_args {
1659 struct policydb *oldp;
1660 struct policydb *newp;
1661};
1662
1663/*
1664 * Convert the values in the security context
1665 * structure `c' from the values specified
1666 * in the policy `p->oldp' to the values specified
1667 * in the policy `p->newp'. Verify that the
1668 * context is valid under the new policy.
1669 */
1670static int convert_context(u32 key,
1671 struct context *c,
1672 void *p)
1673{
1674 struct convert_context_args *args;
1675 struct context oldc;
0719aaf5
GT
1676 struct ocontext *oc;
1677 struct mls_range *range;
1da177e4
LT
1678 struct role_datum *role;
1679 struct type_datum *typdatum;
1680 struct user_datum *usrdatum;
1681 char *s;
1682 u32 len;
42596eaf
GT
1683 int rc = 0;
1684
1685 if (key <= SECINITSID_NUM)
1686 goto out;
1da177e4
LT
1687
1688 args = p;
1689
12b29f34
SS
1690 if (c->str) {
1691 struct context ctx;
4b02b524
EP
1692
1693 rc = -ENOMEM;
9a59daa0 1694 s = kstrdup(c->str, GFP_KERNEL);
4b02b524 1695 if (!s)
9a59daa0 1696 goto out;
4b02b524 1697
9a59daa0
SS
1698 rc = string_to_context_struct(args->newp, NULL, s,
1699 c->len, &ctx, SECSID_NULL);
1700 kfree(s);
12b29f34 1701 if (!rc) {
4b02b524 1702 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
12b29f34
SS
1703 c->str);
1704 /* Replace string with mapped representation. */
1705 kfree(c->str);
1706 memcpy(c, &ctx, sizeof(*c));
1707 goto out;
1708 } else if (rc == -EINVAL) {
1709 /* Retain string representation for later mapping. */
1710 rc = 0;
1711 goto out;
1712 } else {
1713 /* Other error condition, e.g. ENOMEM. */
4b02b524 1714 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
12b29f34
SS
1715 c->str, -rc);
1716 goto out;
1717 }
1718 }
1719
1da177e4
LT
1720 rc = context_cpy(&oldc, c);
1721 if (rc)
1722 goto out;
1723
1da177e4 1724 /* Convert the user. */
4b02b524 1725 rc = -EINVAL;
1da177e4 1726 usrdatum = hashtab_search(args->newp->p_users.table,
ac76c05b 1727 sym_name(args->oldp, SYM_USERS, c->user - 1));
5d55a345 1728 if (!usrdatum)
1da177e4 1729 goto bad;
1da177e4
LT
1730 c->user = usrdatum->value;
1731
1732 /* Convert the role. */
4b02b524 1733 rc = -EINVAL;
1da177e4 1734 role = hashtab_search(args->newp->p_roles.table,
ac76c05b 1735 sym_name(args->oldp, SYM_ROLES, c->role - 1));
5d55a345 1736 if (!role)
1da177e4 1737 goto bad;
1da177e4
LT
1738 c->role = role->value;
1739
1740 /* Convert the type. */
4b02b524 1741 rc = -EINVAL;
1da177e4 1742 typdatum = hashtab_search(args->newp->p_types.table,
ac76c05b 1743 sym_name(args->oldp, SYM_TYPES, c->type - 1));
5d55a345 1744 if (!typdatum)
1da177e4 1745 goto bad;
1da177e4
LT
1746 c->type = typdatum->value;
1747
0719aaf5
GT
1748 /* Convert the MLS fields if dealing with MLS policies */
1749 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1750 rc = mls_convert_context(args->oldp, args->newp, c);
1751 if (rc)
1752 goto bad;
1753 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1754 /*
1755 * Switching between MLS and non-MLS policy:
1756 * free any storage used by the MLS fields in the
1757 * context for all existing entries in the sidtab.
1758 */
1759 mls_context_destroy(c);
1760 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1761 /*
1762 * Switching between non-MLS and MLS policy:
1763 * ensure that the MLS fields of the context for all
1764 * existing entries in the sidtab are filled in with a
1765 * suitable default value, likely taken from one of the
1766 * initial SIDs.
1767 */
1768 oc = args->newp->ocontexts[OCON_ISID];
1769 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1770 oc = oc->next;
4b02b524 1771 rc = -EINVAL;
0719aaf5
GT
1772 if (!oc) {
1773 printk(KERN_ERR "SELinux: unable to look up"
1774 " the initial SIDs list\n");
1775 goto bad;
1776 }
1777 range = &oc->context[0].range;
1778 rc = mls_range_set(c, range);
1779 if (rc)
1780 goto bad;
1781 }
1da177e4
LT
1782
1783 /* Check the validity of the new context. */
1784 if (!policydb_context_isvalid(args->newp, c)) {
1785 rc = convert_context_handle_invalid_context(&oldc);
1786 if (rc)
1787 goto bad;
1788 }
1789
1790 context_destroy(&oldc);
4b02b524 1791
12b29f34 1792 rc = 0;
1da177e4
LT
1793out:
1794 return rc;
1795bad:
12b29f34 1796 /* Map old representation to string and save it. */
4b02b524
EP
1797 rc = context_struct_to_string(&oldc, &s, &len);
1798 if (rc)
1799 return rc;
1da177e4 1800 context_destroy(&oldc);
12b29f34
SS
1801 context_destroy(c);
1802 c->str = s;
1803 c->len = len;
4b02b524 1804 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
12b29f34
SS
1805 c->str);
1806 rc = 0;
1da177e4
LT
1807 goto out;
1808}
1809
3bb56b25
PM
1810static void security_load_policycaps(void)
1811{
1812 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1813 POLICYDB_CAPABILITY_NETPEER);
b0c636b9
EP
1814 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1815 POLICYDB_CAPABILITY_OPENPERM);
2be4d74f
CP
1816 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1817 POLICYDB_CAPABILITY_ALWAYSNETWORK);
3bb56b25
PM
1818}
1819
e900a7d9 1820static int security_preserve_bools(struct policydb *p);
1da177e4
LT
1821
1822/**
1823 * security_load_policy - Load a security policy configuration.
1824 * @data: binary policy data
1825 * @len: length of data in bytes
1826 *
1827 * Load a new set of security policy configuration data,
1828 * validate it and convert the SID table as necessary.
1829 * This function will flush the access vector cache after
1830 * loading the new policy.
1831 */
1832int security_load_policy(void *data, size_t len)
1833{
b5495b42 1834 struct policydb *oldpolicydb, *newpolicydb;
1da177e4 1835 struct sidtab oldsidtab, newsidtab;
c6d3aaa4 1836 struct selinux_mapping *oldmap, *map = NULL;
1da177e4
LT
1837 struct convert_context_args args;
1838 u32 seqno;
c6d3aaa4 1839 u16 map_size;
1da177e4
LT
1840 int rc = 0;
1841 struct policy_file file = { data, len }, *fp = &file;
1842
b5495b42
TG
1843 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
1844 if (!oldpolicydb) {
1845 rc = -ENOMEM;
1846 goto out;
1847 }
1848 newpolicydb = oldpolicydb + 1;
1849
1da177e4
LT
1850 if (!ss_initialized) {
1851 avtab_cache_init();
a2000050
EP
1852 rc = policydb_read(&policydb, fp);
1853 if (rc) {
1da177e4 1854 avtab_cache_destroy();
b5495b42 1855 goto out;
1da177e4 1856 }
a2000050 1857
cee74f47 1858 policydb.len = len;
a2000050
EP
1859 rc = selinux_set_mapping(&policydb, secclass_map,
1860 &current_mapping,
1861 &current_mapping_size);
1862 if (rc) {
1da177e4
LT
1863 policydb_destroy(&policydb);
1864 avtab_cache_destroy();
b5495b42 1865 goto out;
1da177e4 1866 }
a2000050
EP
1867
1868 rc = policydb_load_isids(&policydb, &sidtab);
1869 if (rc) {
b94c7e67
CS
1870 policydb_destroy(&policydb);
1871 avtab_cache_destroy();
b5495b42 1872 goto out;
b94c7e67 1873 }
a2000050 1874
3bb56b25 1875 security_load_policycaps();
1da177e4 1876 ss_initialized = 1;
4c443d1b 1877 seqno = ++latest_granting;
1da177e4 1878 selinux_complete_init();
4c443d1b
SS
1879 avc_ss_reset(seqno);
1880 selnl_notify_policyload(seqno);
11904167 1881 selinux_status_update_policyload(seqno);
7420ed23 1882 selinux_netlbl_cache_invalidate();
342a0cff 1883 selinux_xfrm_notify_policyload();
b5495b42 1884 goto out;
1da177e4
LT
1885 }
1886
1887#if 0
1888 sidtab_hash_eval(&sidtab, "sids");
1889#endif
1890
b5495b42 1891 rc = policydb_read(newpolicydb, fp);
a2000050 1892 if (rc)
b5495b42 1893 goto out;
1da177e4 1894
b5495b42 1895 newpolicydb->len = len;
0719aaf5 1896 /* If switching between different policy types, log MLS status */
b5495b42 1897 if (policydb.mls_enabled && !newpolicydb->mls_enabled)
0719aaf5 1898 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
b5495b42 1899 else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
0719aaf5
GT
1900 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1901
b5495b42 1902 rc = policydb_load_isids(newpolicydb, &newsidtab);
42596eaf
GT
1903 if (rc) {
1904 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
b5495b42
TG
1905 policydb_destroy(newpolicydb);
1906 goto out;
12b29f34 1907 }
1da177e4 1908
b5495b42 1909 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
a2000050 1910 if (rc)
b94c7e67 1911 goto err;
b94c7e67 1912
b5495b42 1913 rc = security_preserve_bools(newpolicydb);
e900a7d9 1914 if (rc) {
454d972c 1915 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
e900a7d9
SS
1916 goto err;
1917 }
1918
1da177e4
LT
1919 /* Clone the SID table. */
1920 sidtab_shutdown(&sidtab);
a2000050
EP
1921
1922 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1923 if (rc)
1da177e4 1924 goto err;
1da177e4 1925
12b29f34
SS
1926 /*
1927 * Convert the internal representations of contexts
1928 * in the new SID table.
1929 */
1da177e4 1930 args.oldp = &policydb;
b5495b42 1931 args.newp = newpolicydb;
12b29f34 1932 rc = sidtab_map(&newsidtab, convert_context, &args);
0719aaf5
GT
1933 if (rc) {
1934 printk(KERN_ERR "SELinux: unable to convert the internal"
1935 " representation of contexts in the new SID"
1936 " table\n");
12b29f34 1937 goto err;
0719aaf5 1938 }
1da177e4
LT
1939
1940 /* Save the old policydb and SID table to free later. */
b5495b42 1941 memcpy(oldpolicydb, &policydb, sizeof(policydb));
1da177e4
LT
1942 sidtab_set(&oldsidtab, &sidtab);
1943
1944 /* Install the new policydb and SID table. */
0804d113 1945 write_lock_irq(&policy_rwlock);
b5495b42 1946 memcpy(&policydb, newpolicydb, sizeof(policydb));
1da177e4 1947 sidtab_set(&sidtab, &newsidtab);
3bb56b25 1948 security_load_policycaps();
c6d3aaa4
SS
1949 oldmap = current_mapping;
1950 current_mapping = map;
1951 current_mapping_size = map_size;
1da177e4 1952 seqno = ++latest_granting;
0804d113 1953 write_unlock_irq(&policy_rwlock);
1da177e4
LT
1954
1955 /* Free the old policydb and SID table. */
b5495b42 1956 policydb_destroy(oldpolicydb);
1da177e4 1957 sidtab_destroy(&oldsidtab);
c6d3aaa4 1958 kfree(oldmap);
1da177e4
LT
1959
1960 avc_ss_reset(seqno);
1961 selnl_notify_policyload(seqno);
11904167 1962 selinux_status_update_policyload(seqno);
7420ed23 1963 selinux_netlbl_cache_invalidate();
342a0cff 1964 selinux_xfrm_notify_policyload();
1da177e4 1965
b5495b42
TG
1966 rc = 0;
1967 goto out;
1da177e4
LT
1968
1969err:
c6d3aaa4 1970 kfree(map);
1da177e4 1971 sidtab_destroy(&newsidtab);
b5495b42 1972 policydb_destroy(newpolicydb);
1da177e4 1973
b5495b42
TG
1974out:
1975 kfree(oldpolicydb);
1976 return rc;
1da177e4
LT
1977}
1978
cee74f47
EP
1979size_t security_policydb_len(void)
1980{
1981 size_t len;
1982
1983 read_lock(&policy_rwlock);
1984 len = policydb.len;
1985 read_unlock(&policy_rwlock);
1986
1987 return len;
1988}
1989
1da177e4
LT
1990/**
1991 * security_port_sid - Obtain the SID for a port.
1da177e4
LT
1992 * @protocol: protocol number
1993 * @port: port number
1994 * @out_sid: security identifier
1995 */
3e112172 1996int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1da177e4
LT
1997{
1998 struct ocontext *c;
1999 int rc = 0;
2000
0804d113 2001 read_lock(&policy_rwlock);
1da177e4
LT
2002
2003 c = policydb.ocontexts[OCON_PORT];
2004 while (c) {
2005 if (c->u.port.protocol == protocol &&
2006 c->u.port.low_port <= port &&
2007 c->u.port.high_port >= port)
2008 break;
2009 c = c->next;
2010 }
2011
2012 if (c) {
2013 if (!c->sid[0]) {
2014 rc = sidtab_context_to_sid(&sidtab,
2015 &c->context[0],
2016 &c->sid[0]);
2017 if (rc)
2018 goto out;
2019 }
2020 *out_sid = c->sid[0];
2021 } else {
2022 *out_sid = SECINITSID_PORT;
2023 }
2024
2025out:
0804d113 2026 read_unlock(&policy_rwlock);
1da177e4
LT
2027 return rc;
2028}
2029
2030/**
2031 * security_netif_sid - Obtain the SID for a network interface.
2032 * @name: interface name
2033 * @if_sid: interface SID
1da177e4 2034 */
e8bfdb9d 2035int security_netif_sid(char *name, u32 *if_sid)
1da177e4
LT
2036{
2037 int rc = 0;
2038 struct ocontext *c;
2039
0804d113 2040 read_lock(&policy_rwlock);
1da177e4
LT
2041
2042 c = policydb.ocontexts[OCON_NETIF];
2043 while (c) {
2044 if (strcmp(name, c->u.name) == 0)
2045 break;
2046 c = c->next;
2047 }
2048
2049 if (c) {
2050 if (!c->sid[0] || !c->sid[1]) {
2051 rc = sidtab_context_to_sid(&sidtab,
2052 &c->context[0],
2053 &c->sid[0]);
2054 if (rc)
2055 goto out;
2056 rc = sidtab_context_to_sid(&sidtab,
2057 &c->context[1],
2058 &c->sid[1]);
2059 if (rc)
2060 goto out;
2061 }
2062 *if_sid = c->sid[0];
e8bfdb9d 2063 } else
1da177e4 2064 *if_sid = SECINITSID_NETIF;
1da177e4
LT
2065
2066out:
0804d113 2067 read_unlock(&policy_rwlock);
1da177e4
LT
2068 return rc;
2069}
2070
2071static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2072{
2073 int i, fail = 0;
2074
5d55a345
EP
2075 for (i = 0; i < 4; i++)
2076 if (addr[i] != (input[i] & mask[i])) {
1da177e4
LT
2077 fail = 1;
2078 break;
2079 }
2080
2081 return !fail;
2082}
2083
2084/**
2085 * security_node_sid - Obtain the SID for a node (host).
2086 * @domain: communication domain aka address family
2087 * @addrp: address
2088 * @addrlen: address length in bytes
2089 * @out_sid: security identifier
2090 */
2091int security_node_sid(u16 domain,
2092 void *addrp,
2093 u32 addrlen,
2094 u32 *out_sid)
2095{
4b02b524 2096 int rc;
1da177e4
LT
2097 struct ocontext *c;
2098
0804d113 2099 read_lock(&policy_rwlock);
1da177e4
LT
2100
2101 switch (domain) {
2102 case AF_INET: {
2103 u32 addr;
2104
4b02b524
EP
2105 rc = -EINVAL;
2106 if (addrlen != sizeof(u32))
1da177e4 2107 goto out;
1da177e4
LT
2108
2109 addr = *((u32 *)addrp);
2110
2111 c = policydb.ocontexts[OCON_NODE];
2112 while (c) {
2113 if (c->u.node.addr == (addr & c->u.node.mask))
2114 break;
2115 c = c->next;
2116 }
2117 break;
2118 }
2119
2120 case AF_INET6:
4b02b524
EP
2121 rc = -EINVAL;
2122 if (addrlen != sizeof(u64) * 2)
1da177e4 2123 goto out;
1da177e4
LT
2124 c = policydb.ocontexts[OCON_NODE6];
2125 while (c) {
2126 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2127 c->u.node6.mask))
2128 break;
2129 c = c->next;
2130 }
2131 break;
2132
2133 default:
4b02b524 2134 rc = 0;
1da177e4
LT
2135 *out_sid = SECINITSID_NODE;
2136 goto out;
2137 }
2138
2139 if (c) {
2140 if (!c->sid[0]) {
2141 rc = sidtab_context_to_sid(&sidtab,
2142 &c->context[0],
2143 &c->sid[0]);
2144 if (rc)
2145 goto out;
2146 }
2147 *out_sid = c->sid[0];
2148 } else {
2149 *out_sid = SECINITSID_NODE;
2150 }
2151
4b02b524 2152 rc = 0;
1da177e4 2153out:
0804d113 2154 read_unlock(&policy_rwlock);
1da177e4
LT
2155 return rc;
2156}
2157
2158#define SIDS_NEL 25
2159
2160/**
2161 * security_get_user_sids - Obtain reachable SIDs for a user.
2162 * @fromsid: starting SID
2163 * @username: username
2164 * @sids: array of reachable SIDs for user
2165 * @nel: number of elements in @sids
2166 *
2167 * Generate the set of SIDs for legal security contexts
2168 * for a given user that can be reached by @fromsid.
2169 * Set *@sids to point to a dynamically allocated
2170 * array containing the set of SIDs. Set *@nel to the
2171 * number of elements in the array.
2172 */
2173
2174int security_get_user_sids(u32 fromsid,
5d55a345 2175 char *username,
1da177e4
LT
2176 u32 **sids,
2177 u32 *nel)
2178{
2179 struct context *fromcon, usercon;
2c3c05db 2180 u32 *mysids = NULL, *mysids2, sid;
1da177e4
LT
2181 u32 mynel = 0, maxnel = SIDS_NEL;
2182 struct user_datum *user;
2183 struct role_datum *role;
782ebb99 2184 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
2185 int rc = 0, i, j;
2186
2c3c05db
SS
2187 *sids = NULL;
2188 *nel = 0;
2189
2190 if (!ss_initialized)
1da177e4 2191 goto out;
1da177e4 2192
0804d113 2193 read_lock(&policy_rwlock);
1da177e4 2194
12b29f34
SS
2195 context_init(&usercon);
2196
4b02b524 2197 rc = -EINVAL;
1da177e4 2198 fromcon = sidtab_search(&sidtab, fromsid);
4b02b524 2199 if (!fromcon)
1da177e4 2200 goto out_unlock;
1da177e4 2201
4b02b524 2202 rc = -EINVAL;
1da177e4 2203 user = hashtab_search(policydb.p_users.table, username);
4b02b524 2204 if (!user)
1da177e4 2205 goto out_unlock;
4b02b524 2206
1da177e4
LT
2207 usercon.user = user->value;
2208
4b02b524 2209 rc = -ENOMEM;
89d155ef 2210 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
4b02b524 2211 if (!mysids)
1da177e4 2212 goto out_unlock;
1da177e4 2213
9fe79ad1 2214 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1da177e4 2215 role = policydb.role_val_to_struct[i];
c1a7368a 2216 usercon.role = i + 1;
9fe79ad1 2217 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
c1a7368a 2218 usercon.type = j + 1;
1da177e4
LT
2219
2220 if (mls_setup_user_range(fromcon, user, &usercon))
2221 continue;
2222
1da177e4 2223 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2c3c05db 2224 if (rc)
1da177e4 2225 goto out_unlock;
1da177e4
LT
2226 if (mynel < maxnel) {
2227 mysids[mynel++] = sid;
2228 } else {
4b02b524 2229 rc = -ENOMEM;
1da177e4 2230 maxnel += SIDS_NEL;
89d155ef 2231 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
4b02b524 2232 if (!mysids2)
1da177e4 2233 goto out_unlock;
1da177e4
LT
2234 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2235 kfree(mysids);
2236 mysids = mysids2;
2237 mysids[mynel++] = sid;
2238 }
2239 }
2240 }
4b02b524 2241 rc = 0;
1da177e4 2242out_unlock:
0804d113 2243 read_unlock(&policy_rwlock);
2c3c05db
SS
2244 if (rc || !mynel) {
2245 kfree(mysids);
2246 goto out;
2247 }
2248
4b02b524 2249 rc = -ENOMEM;
2c3c05db
SS
2250 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2251 if (!mysids2) {
2c3c05db
SS
2252 kfree(mysids);
2253 goto out;
2254 }
2255 for (i = 0, j = 0; i < mynel; i++) {
f01e1af4 2256 struct av_decision dummy_avd;
2c3c05db 2257 rc = avc_has_perm_noaudit(fromsid, mysids[i],
c6d3aaa4 2258 SECCLASS_PROCESS, /* kernel value */
2c3c05db 2259 PROCESS__TRANSITION, AVC_STRICT,
f01e1af4 2260 &dummy_avd);
2c3c05db
SS
2261 if (!rc)
2262 mysids2[j++] = mysids[i];
2263 cond_resched();
2264 }
2265 rc = 0;
2266 kfree(mysids);
2267 *sids = mysids2;
2268 *nel = j;
1da177e4
LT
2269out:
2270 return rc;
2271}
2272
2273/**
2274 * security_genfs_sid - Obtain a SID for a file in a filesystem
2275 * @fstype: filesystem type
2276 * @path: path from root of mount
2277 * @sclass: file security class
2278 * @sid: SID for path
2279 *
2280 * Obtain a SID to use for a file in a filesystem that
2281 * cannot support xattr or use a fixed labeling behavior like
2282 * transition SIDs or task SIDs.
2283 */
2284int security_genfs_sid(const char *fstype,
5d55a345 2285 char *path,
c6d3aaa4 2286 u16 orig_sclass,
1da177e4
LT
2287 u32 *sid)
2288{
2289 int len;
c6d3aaa4 2290 u16 sclass;
1da177e4
LT
2291 struct genfs *genfs;
2292 struct ocontext *c;
4b02b524 2293 int rc, cmp = 0;
1da177e4 2294
b1aa5301
SS
2295 while (path[0] == '/' && path[1] == '/')
2296 path++;
2297
0804d113 2298 read_lock(&policy_rwlock);
1da177e4 2299
c6d3aaa4 2300 sclass = unmap_class(orig_sclass);
4b02b524 2301 *sid = SECINITSID_UNLABELED;
c6d3aaa4 2302
1da177e4
LT
2303 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2304 cmp = strcmp(fstype, genfs->fstype);
2305 if (cmp <= 0)
2306 break;
2307 }
2308
4b02b524
EP
2309 rc = -ENOENT;
2310 if (!genfs || cmp)
1da177e4 2311 goto out;
1da177e4
LT
2312
2313 for (c = genfs->head; c; c = c->next) {
2314 len = strlen(c->u.name);
2315 if ((!c->v.sclass || sclass == c->v.sclass) &&
2316 (strncmp(c->u.name, path, len) == 0))
2317 break;
2318 }
2319
4b02b524
EP
2320 rc = -ENOENT;
2321 if (!c)
1da177e4 2322 goto out;
1da177e4
LT
2323
2324 if (!c->sid[0]) {
4b02b524 2325 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
1da177e4
LT
2326 if (rc)
2327 goto out;
2328 }
2329
2330 *sid = c->sid[0];
4b02b524 2331 rc = 0;
1da177e4 2332out:
0804d113 2333 read_unlock(&policy_rwlock);
1da177e4
LT
2334 return rc;
2335}
2336
2337/**
2338 * security_fs_use - Determine how to handle labeling for a filesystem.
a64c54cf 2339 * @sb: superblock in question
1da177e4 2340 */
a64c54cf 2341int security_fs_use(struct super_block *sb)
1da177e4
LT
2342{
2343 int rc = 0;
2344 struct ocontext *c;
a64c54cf
EP
2345 struct superblock_security_struct *sbsec = sb->s_security;
2346 const char *fstype = sb->s_type->name;
1da177e4 2347
0804d113 2348 read_lock(&policy_rwlock);
1da177e4 2349
4d546f81
PM
2350 c = policydb.ocontexts[OCON_FSUSE];
2351 while (c) {
2352 if (strcmp(fstype, c->u.name) == 0)
1da177e4 2353 break;
4d546f81 2354 c = c->next;
1da177e4
LT
2355 }
2356
2357 if (c) {
a64c54cf 2358 sbsec->behavior = c->v.behavior;
1da177e4 2359 if (!c->sid[0]) {
4b02b524 2360 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
1da177e4
LT
2361 &c->sid[0]);
2362 if (rc)
2363 goto out;
2364 }
a64c54cf 2365 sbsec->sid = c->sid[0];
1da177e4 2366 } else {
a64c54cf 2367 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid);
089be43e 2368 if (rc) {
a64c54cf 2369 sbsec->behavior = SECURITY_FS_USE_NONE;
089be43e
JM
2370 rc = 0;
2371 } else {
a64c54cf 2372 sbsec->behavior = SECURITY_FS_USE_GENFS;
089be43e 2373 }
1da177e4
LT
2374 }
2375
2376out:
0804d113 2377 read_unlock(&policy_rwlock);
1da177e4
LT
2378 return rc;
2379}
2380
2381int security_get_bools(int *len, char ***names, int **values)
2382{
4b02b524 2383 int i, rc;
1da177e4 2384
0804d113 2385 read_lock(&policy_rwlock);
1da177e4
LT
2386 *names = NULL;
2387 *values = NULL;
2388
4b02b524 2389 rc = 0;
1da177e4 2390 *len = policydb.p_bools.nprim;
4b02b524 2391 if (!*len)
1da177e4 2392 goto out;
1da177e4 2393
4b02b524
EP
2394 rc = -ENOMEM;
2395 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
1da177e4
LT
2396 if (!*names)
2397 goto err;
1da177e4 2398
4b02b524
EP
2399 rc = -ENOMEM;
2400 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
2401 if (!*values)
2402 goto err;
2403
2404 for (i = 0; i < *len; i++) {
2405 size_t name_len;
4b02b524 2406
1da177e4 2407 (*values)[i] = policydb.bool_val_to_struct[i]->state;
ac76c05b 2408 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
4b02b524
EP
2409
2410 rc = -ENOMEM;
2411 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1da177e4
LT
2412 if (!(*names)[i])
2413 goto err;
4b02b524 2414
ac76c05b 2415 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
1da177e4
LT
2416 (*names)[i][name_len - 1] = 0;
2417 }
2418 rc = 0;
2419out:
0804d113 2420 read_unlock(&policy_rwlock);
1da177e4
LT
2421 return rc;
2422err:
2423 if (*names) {
2424 for (i = 0; i < *len; i++)
9a5f04bf 2425 kfree((*names)[i]);
1da177e4 2426 }
9a5f04bf 2427 kfree(*values);
1da177e4
LT
2428 goto out;
2429}
2430
2431
2432int security_set_bools(int len, int *values)
2433{
4b02b524 2434 int i, rc;
1da177e4
LT
2435 int lenp, seqno = 0;
2436 struct cond_node *cur;
2437
0804d113 2438 write_lock_irq(&policy_rwlock);
1da177e4 2439
4b02b524 2440 rc = -EFAULT;
1da177e4 2441 lenp = policydb.p_bools.nprim;
4b02b524 2442 if (len != lenp)
1da177e4 2443 goto out;
1da177e4 2444
1da177e4 2445 for (i = 0; i < len; i++) {
af601e46
SG
2446 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2447 audit_log(current->audit_context, GFP_ATOMIC,
2448 AUDIT_MAC_CONFIG_CHANGE,
4746ec5b 2449 "bool=%s val=%d old_val=%d auid=%u ses=%u",
ac76c05b 2450 sym_name(&policydb, SYM_BOOLS, i),
af601e46
SG
2451 !!values[i],
2452 policydb.bool_val_to_struct[i]->state,
581abc09 2453 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4746ec5b 2454 audit_get_sessionid(current));
af601e46 2455 }
5d55a345 2456 if (values[i])
1da177e4 2457 policydb.bool_val_to_struct[i]->state = 1;
5d55a345 2458 else
1da177e4 2459 policydb.bool_val_to_struct[i]->state = 0;
1da177e4 2460 }
1da177e4 2461
dbc74c65 2462 for (cur = policydb.cond_list; cur; cur = cur->next) {
1da177e4
LT
2463 rc = evaluate_cond_node(&policydb, cur);
2464 if (rc)
2465 goto out;
2466 }
2467
2468 seqno = ++latest_granting;
4b02b524 2469 rc = 0;
1da177e4 2470out:
0804d113 2471 write_unlock_irq(&policy_rwlock);
1da177e4
LT
2472 if (!rc) {
2473 avc_ss_reset(seqno);
2474 selnl_notify_policyload(seqno);
11904167 2475 selinux_status_update_policyload(seqno);
342a0cff 2476 selinux_xfrm_notify_policyload();
1da177e4
LT
2477 }
2478 return rc;
2479}
2480
2481int security_get_bool_value(int bool)
2482{
4b02b524 2483 int rc;
1da177e4
LT
2484 int len;
2485
0804d113 2486 read_lock(&policy_rwlock);
1da177e4 2487
4b02b524 2488 rc = -EFAULT;
1da177e4 2489 len = policydb.p_bools.nprim;
4b02b524 2490 if (bool >= len)
1da177e4 2491 goto out;
1da177e4
LT
2492
2493 rc = policydb.bool_val_to_struct[bool]->state;
2494out:
0804d113 2495 read_unlock(&policy_rwlock);
1da177e4
LT
2496 return rc;
2497}
376bd9cb 2498
e900a7d9
SS
2499static int security_preserve_bools(struct policydb *p)
2500{
2501 int rc, nbools = 0, *bvalues = NULL, i;
2502 char **bnames = NULL;
2503 struct cond_bool_datum *booldatum;
2504 struct cond_node *cur;
2505
2506 rc = security_get_bools(&nbools, &bnames, &bvalues);
2507 if (rc)
2508 goto out;
2509 for (i = 0; i < nbools; i++) {
2510 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2511 if (booldatum)
2512 booldatum->state = bvalues[i];
2513 }
dbc74c65 2514 for (cur = p->cond_list; cur; cur = cur->next) {
e900a7d9
SS
2515 rc = evaluate_cond_node(p, cur);
2516 if (rc)
2517 goto out;
2518 }
2519
2520out:
2521 if (bnames) {
2522 for (i = 0; i < nbools; i++)
2523 kfree(bnames[i]);
2524 }
2525 kfree(bnames);
2526 kfree(bvalues);
2527 return rc;
2528}
2529
08554d6b
VY
2530/*
2531 * security_sid_mls_copy() - computes a new sid based on the given
2532 * sid and the mls portion of mls_sid.
2533 */
2534int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2535{
2536 struct context *context1;
2537 struct context *context2;
2538 struct context newcon;
2539 char *s;
2540 u32 len;
4b02b524 2541 int rc;
08554d6b 2542
4b02b524 2543 rc = 0;
0719aaf5 2544 if (!ss_initialized || !policydb.mls_enabled) {
08554d6b
VY
2545 *new_sid = sid;
2546 goto out;
2547 }
2548
2549 context_init(&newcon);
2550
0804d113 2551 read_lock(&policy_rwlock);
4b02b524
EP
2552
2553 rc = -EINVAL;
08554d6b
VY
2554 context1 = sidtab_search(&sidtab, sid);
2555 if (!context1) {
744ba35e
EP
2556 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2557 __func__, sid);
08554d6b
VY
2558 goto out_unlock;
2559 }
2560
4b02b524 2561 rc = -EINVAL;
08554d6b
VY
2562 context2 = sidtab_search(&sidtab, mls_sid);
2563 if (!context2) {
744ba35e
EP
2564 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2565 __func__, mls_sid);
08554d6b
VY
2566 goto out_unlock;
2567 }
2568
2569 newcon.user = context1->user;
2570 newcon.role = context1->role;
2571 newcon.type = context1->type;
0efc61ea 2572 rc = mls_context_cpy(&newcon, context2);
08554d6b
VY
2573 if (rc)
2574 goto out_unlock;
2575
08554d6b
VY
2576 /* Check the validity of the new context. */
2577 if (!policydb_context_isvalid(&policydb, &newcon)) {
2578 rc = convert_context_handle_invalid_context(&newcon);
4b02b524
EP
2579 if (rc) {
2580 if (!context_struct_to_string(&newcon, &s, &len)) {
2581 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2582 "security_sid_mls_copy: invalid context %s", s);
2583 kfree(s);
2584 }
2585 goto out_unlock;
2586 }
08554d6b
VY
2587 }
2588
2589 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
08554d6b 2590out_unlock:
0804d113 2591 read_unlock(&policy_rwlock);
08554d6b
VY
2592 context_destroy(&newcon);
2593out:
2594 return rc;
2595}
2596
220deb96
PM
2597/**
2598 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2599 * @nlbl_sid: NetLabel SID
2600 * @nlbl_type: NetLabel labeling protocol type
2601 * @xfrm_sid: XFRM SID
2602 *
2603 * Description:
2604 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2605 * resolved into a single SID it is returned via @peer_sid and the function
2606 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2607 * returns a negative value. A table summarizing the behavior is below:
2608 *
2609 * | function return | @sid
2610 * ------------------------------+-----------------+-----------------
2611 * no peer labels | 0 | SECSID_NULL
2612 * single peer label | 0 | <peer_label>
2613 * multiple, consistent labels | 0 | <peer_label>
2614 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2615 *
2616 */
2617int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2618 u32 xfrm_sid,
2619 u32 *peer_sid)
2620{
2621 int rc;
2622 struct context *nlbl_ctx;
2623 struct context *xfrm_ctx;
2624
4b02b524
EP
2625 *peer_sid = SECSID_NULL;
2626
220deb96
PM
2627 /* handle the common (which also happens to be the set of easy) cases
2628 * right away, these two if statements catch everything involving a
2629 * single or absent peer SID/label */
2630 if (xfrm_sid == SECSID_NULL) {
2631 *peer_sid = nlbl_sid;
2632 return 0;
2633 }
2634 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2635 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2636 * is present */
2637 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2638 *peer_sid = xfrm_sid;
2639 return 0;
2640 }
2641
2642 /* we don't need to check ss_initialized here since the only way both
2643 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2644 * security server was initialized and ss_initialized was true */
4b02b524 2645 if (!policydb.mls_enabled)
220deb96 2646 return 0;
220deb96 2647
0804d113 2648 read_lock(&policy_rwlock);
220deb96 2649
4b02b524 2650 rc = -EINVAL;
220deb96
PM
2651 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2652 if (!nlbl_ctx) {
744ba35e
EP
2653 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2654 __func__, nlbl_sid);
4b02b524 2655 goto out;
220deb96 2656 }
4b02b524 2657 rc = -EINVAL;
220deb96
PM
2658 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2659 if (!xfrm_ctx) {
744ba35e
EP
2660 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2661 __func__, xfrm_sid);
4b02b524 2662 goto out;
220deb96
PM
2663 }
2664 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
4b02b524
EP
2665 if (rc)
2666 goto out;
220deb96 2667
4b02b524
EP
2668 /* at present NetLabel SIDs/labels really only carry MLS
2669 * information so if the MLS portion of the NetLabel SID
2670 * matches the MLS portion of the labeled XFRM SID/label
2671 * then pass along the XFRM SID as it is the most
2672 * expressive */
2673 *peer_sid = xfrm_sid;
2674out:
0804d113 2675 read_unlock(&policy_rwlock);
220deb96
PM
2676 return rc;
2677}
2678
55fcf09b
CP
2679static int get_classes_callback(void *k, void *d, void *args)
2680{
2681 struct class_datum *datum = d;
2682 char *name = k, **classes = args;
2683 int value = datum->value - 1;
2684
2685 classes[value] = kstrdup(name, GFP_ATOMIC);
2686 if (!classes[value])
2687 return -ENOMEM;
2688
2689 return 0;
2690}
2691
2692int security_get_classes(char ***classes, int *nclasses)
2693{
4b02b524 2694 int rc;
55fcf09b 2695
0804d113 2696 read_lock(&policy_rwlock);
55fcf09b 2697
4b02b524 2698 rc = -ENOMEM;
55fcf09b 2699 *nclasses = policydb.p_classes.nprim;
9f59f90b 2700 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
55fcf09b
CP
2701 if (!*classes)
2702 goto out;
2703
2704 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2705 *classes);
4b02b524 2706 if (rc) {
55fcf09b
CP
2707 int i;
2708 for (i = 0; i < *nclasses; i++)
2709 kfree((*classes)[i]);
2710 kfree(*classes);
2711 }
2712
2713out:
0804d113 2714 read_unlock(&policy_rwlock);
55fcf09b
CP
2715 return rc;
2716}
2717
2718static int get_permissions_callback(void *k, void *d, void *args)
2719{
2720 struct perm_datum *datum = d;
2721 char *name = k, **perms = args;
2722 int value = datum->value - 1;
2723
2724 perms[value] = kstrdup(name, GFP_ATOMIC);
2725 if (!perms[value])
2726 return -ENOMEM;
2727
2728 return 0;
2729}
2730
2731int security_get_permissions(char *class, char ***perms, int *nperms)
2732{
4b02b524 2733 int rc, i;
55fcf09b
CP
2734 struct class_datum *match;
2735
0804d113 2736 read_lock(&policy_rwlock);
55fcf09b 2737
4b02b524 2738 rc = -EINVAL;
55fcf09b
CP
2739 match = hashtab_search(policydb.p_classes.table, class);
2740 if (!match) {
744ba35e 2741 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
dd6f953a 2742 __func__, class);
55fcf09b
CP
2743 goto out;
2744 }
2745
4b02b524 2746 rc = -ENOMEM;
55fcf09b 2747 *nperms = match->permissions.nprim;
9f59f90b 2748 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
55fcf09b
CP
2749 if (!*perms)
2750 goto out;
2751
2752 if (match->comdatum) {
2753 rc = hashtab_map(match->comdatum->permissions.table,
2754 get_permissions_callback, *perms);
4b02b524 2755 if (rc)
55fcf09b
CP
2756 goto err;
2757 }
2758
2759 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2760 *perms);
4b02b524 2761 if (rc)
55fcf09b
CP
2762 goto err;
2763
2764out:
0804d113 2765 read_unlock(&policy_rwlock);
55fcf09b
CP
2766 return rc;
2767
2768err:
0804d113 2769 read_unlock(&policy_rwlock);
55fcf09b
CP
2770 for (i = 0; i < *nperms; i++)
2771 kfree((*perms)[i]);
2772 kfree(*perms);
2773 return rc;
2774}
2775
3f12070e
EP
2776int security_get_reject_unknown(void)
2777{
2778 return policydb.reject_unknown;
2779}
2780
2781int security_get_allow_unknown(void)
2782{
2783 return policydb.allow_unknown;
2784}
2785
3bb56b25
PM
2786/**
2787 * security_policycap_supported - Check for a specific policy capability
2788 * @req_cap: capability
2789 *
2790 * Description:
2791 * This function queries the currently loaded policy to see if it supports the
2792 * capability specified by @req_cap. Returns true (1) if the capability is
2793 * supported, false (0) if it isn't supported.
2794 *
2795 */
2796int security_policycap_supported(unsigned int req_cap)
2797{
2798 int rc;
2799
0804d113 2800 read_lock(&policy_rwlock);
3bb56b25 2801 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
0804d113 2802 read_unlock(&policy_rwlock);
3bb56b25
PM
2803
2804 return rc;
2805}
2806
376bd9cb
DG
2807struct selinux_audit_rule {
2808 u32 au_seqno;
2809 struct context au_ctxt;
2810};
2811
9d57a7f9 2812void selinux_audit_rule_free(void *vrule)
376bd9cb 2813{
9d57a7f9
AD
2814 struct selinux_audit_rule *rule = vrule;
2815
376bd9cb
DG
2816 if (rule) {
2817 context_destroy(&rule->au_ctxt);
2818 kfree(rule);
2819 }
2820}
2821
9d57a7f9 2822int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
376bd9cb
DG
2823{
2824 struct selinux_audit_rule *tmprule;
2825 struct role_datum *roledatum;
2826 struct type_datum *typedatum;
2827 struct user_datum *userdatum;
9d57a7f9 2828 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
376bd9cb
DG
2829 int rc = 0;
2830
2831 *rule = NULL;
2832
2833 if (!ss_initialized)
3ad40d64 2834 return -EOPNOTSUPP;
376bd9cb
DG
2835
2836 switch (field) {
3a6b9f85
DG
2837 case AUDIT_SUBJ_USER:
2838 case AUDIT_SUBJ_ROLE:
2839 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
2840 case AUDIT_OBJ_USER:
2841 case AUDIT_OBJ_ROLE:
2842 case AUDIT_OBJ_TYPE:
376bd9cb 2843 /* only 'equals' and 'not equals' fit user, role, and type */
5af75d8d 2844 if (op != Audit_equal && op != Audit_not_equal)
376bd9cb
DG
2845 return -EINVAL;
2846 break;
3a6b9f85
DG
2847 case AUDIT_SUBJ_SEN:
2848 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2849 case AUDIT_OBJ_LEV_LOW:
2850 case AUDIT_OBJ_LEV_HIGH:
25985edc 2851 /* we do not allow a range, indicated by the presence of '-' */
376bd9cb
DG
2852 if (strchr(rulestr, '-'))
2853 return -EINVAL;
2854 break;
2855 default:
2856 /* only the above fields are valid */
2857 return -EINVAL;
2858 }
2859
2860 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2861 if (!tmprule)
2862 return -ENOMEM;
2863
2864 context_init(&tmprule->au_ctxt);
2865
0804d113 2866 read_lock(&policy_rwlock);
376bd9cb
DG
2867
2868 tmprule->au_seqno = latest_granting;
2869
2870 switch (field) {
3a6b9f85 2871 case AUDIT_SUBJ_USER:
6e5a2d1d 2872 case AUDIT_OBJ_USER:
4b02b524 2873 rc = -EINVAL;
376bd9cb
DG
2874 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2875 if (!userdatum)
4b02b524
EP
2876 goto out;
2877 tmprule->au_ctxt.user = userdatum->value;
376bd9cb 2878 break;
3a6b9f85 2879 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2880 case AUDIT_OBJ_ROLE:
4b02b524 2881 rc = -EINVAL;
376bd9cb
DG
2882 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2883 if (!roledatum)
4b02b524
EP
2884 goto out;
2885 tmprule->au_ctxt.role = roledatum->value;
376bd9cb 2886 break;
3a6b9f85 2887 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2888 case AUDIT_OBJ_TYPE:
4b02b524 2889 rc = -EINVAL;
376bd9cb
DG
2890 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2891 if (!typedatum)
4b02b524
EP
2892 goto out;
2893 tmprule->au_ctxt.type = typedatum->value;
376bd9cb 2894 break;
3a6b9f85
DG
2895 case AUDIT_SUBJ_SEN:
2896 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2897 case AUDIT_OBJ_LEV_LOW:
2898 case AUDIT_OBJ_LEV_HIGH:
376bd9cb 2899 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
4b02b524
EP
2900 if (rc)
2901 goto out;
376bd9cb
DG
2902 break;
2903 }
4b02b524
EP
2904 rc = 0;
2905out:
0804d113 2906 read_unlock(&policy_rwlock);
376bd9cb
DG
2907
2908 if (rc) {
2909 selinux_audit_rule_free(tmprule);
2910 tmprule = NULL;
2911 }
2912
2913 *rule = tmprule;
2914
2915 return rc;
2916}
2917
9d57a7f9
AD
2918/* Check to see if the rule contains any selinux fields */
2919int selinux_audit_rule_known(struct audit_krule *rule)
2920{
2921 int i;
2922
2923 for (i = 0; i < rule->field_count; i++) {
2924 struct audit_field *f = &rule->fields[i];
2925 switch (f->type) {
2926 case AUDIT_SUBJ_USER:
2927 case AUDIT_SUBJ_ROLE:
2928 case AUDIT_SUBJ_TYPE:
2929 case AUDIT_SUBJ_SEN:
2930 case AUDIT_SUBJ_CLR:
2931 case AUDIT_OBJ_USER:
2932 case AUDIT_OBJ_ROLE:
2933 case AUDIT_OBJ_TYPE:
2934 case AUDIT_OBJ_LEV_LOW:
2935 case AUDIT_OBJ_LEV_HIGH:
2936 return 1;
2937 }
2938 }
2939
2940 return 0;
2941}
2942
2943int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
f5269710 2944 struct audit_context *actx)
376bd9cb
DG
2945{
2946 struct context *ctxt;
2947 struct mls_level *level;
9d57a7f9 2948 struct selinux_audit_rule *rule = vrule;
376bd9cb
DG
2949 int match = 0;
2950
2951 if (!rule) {
2952 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2953 "selinux_audit_rule_match: missing rule\n");
376bd9cb
DG
2954 return -ENOENT;
2955 }
2956
0804d113 2957 read_lock(&policy_rwlock);
376bd9cb
DG
2958
2959 if (rule->au_seqno < latest_granting) {
2960 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2961 "selinux_audit_rule_match: stale rule\n");
376bd9cb
DG
2962 match = -ESTALE;
2963 goto out;
2964 }
2965
9a2f44f0 2966 ctxt = sidtab_search(&sidtab, sid);
376bd9cb
DG
2967 if (!ctxt) {
2968 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
2969 "selinux_audit_rule_match: unrecognized SID %d\n",
2970 sid);
376bd9cb
DG
2971 match = -ENOENT;
2972 goto out;
2973 }
2974
2975 /* a field/op pair that is not caught here will simply fall through
2976 without a match */
2977 switch (field) {
3a6b9f85 2978 case AUDIT_SUBJ_USER:
6e5a2d1d 2979 case AUDIT_OBJ_USER:
376bd9cb 2980 switch (op) {
5af75d8d 2981 case Audit_equal:
376bd9cb
DG
2982 match = (ctxt->user == rule->au_ctxt.user);
2983 break;
5af75d8d 2984 case Audit_not_equal:
376bd9cb
DG
2985 match = (ctxt->user != rule->au_ctxt.user);
2986 break;
2987 }
2988 break;
3a6b9f85 2989 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2990 case AUDIT_OBJ_ROLE:
376bd9cb 2991 switch (op) {
5af75d8d 2992 case Audit_equal:
376bd9cb
DG
2993 match = (ctxt->role == rule->au_ctxt.role);
2994 break;
5af75d8d 2995 case Audit_not_equal:
376bd9cb
DG
2996 match = (ctxt->role != rule->au_ctxt.role);
2997 break;
2998 }
2999 break;
3a6b9f85 3000 case AUDIT_SUBJ_TYPE:
6e5a2d1d 3001 case AUDIT_OBJ_TYPE:
376bd9cb 3002 switch (op) {
5af75d8d 3003 case Audit_equal:
376bd9cb
DG
3004 match = (ctxt->type == rule->au_ctxt.type);
3005 break;
5af75d8d 3006 case Audit_not_equal:
376bd9cb
DG
3007 match = (ctxt->type != rule->au_ctxt.type);
3008 break;
3009 }
3010 break;
3a6b9f85
DG
3011 case AUDIT_SUBJ_SEN:
3012 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
3013 case AUDIT_OBJ_LEV_LOW:
3014 case AUDIT_OBJ_LEV_HIGH:
3015 level = ((field == AUDIT_SUBJ_SEN ||
5d55a345
EP
3016 field == AUDIT_OBJ_LEV_LOW) ?
3017 &ctxt->range.level[0] : &ctxt->range.level[1]);
376bd9cb 3018 switch (op) {
5af75d8d 3019 case Audit_equal:
376bd9cb 3020 match = mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 3021 level);
376bd9cb 3022 break;
5af75d8d 3023 case Audit_not_equal:
376bd9cb 3024 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 3025 level);
376bd9cb 3026 break;
5af75d8d 3027 case Audit_lt:
376bd9cb 3028 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345
EP
3029 level) &&
3030 !mls_level_eq(&rule->au_ctxt.range.level[0],
3031 level));
376bd9cb 3032 break;
5af75d8d 3033 case Audit_le:
376bd9cb 3034 match = mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345 3035 level);
376bd9cb 3036 break;
5af75d8d 3037 case Audit_gt:
376bd9cb 3038 match = (mls_level_dom(level,
5d55a345
EP
3039 &rule->au_ctxt.range.level[0]) &&
3040 !mls_level_eq(level,
3041 &rule->au_ctxt.range.level[0]));
376bd9cb 3042 break;
5af75d8d 3043 case Audit_ge:
376bd9cb 3044 match = mls_level_dom(level,
5d55a345 3045 &rule->au_ctxt.range.level[0]);
376bd9cb
DG
3046 break;
3047 }
3048 }
3049
3050out:
0804d113 3051 read_unlock(&policy_rwlock);
376bd9cb
DG
3052 return match;
3053}
3054
9d57a7f9 3055static int (*aurule_callback)(void) = audit_update_lsm_rules;
376bd9cb 3056
562c99f2 3057static int aurule_avc_callback(u32 event)
376bd9cb
DG
3058{
3059 int err = 0;
3060
3061 if (event == AVC_CALLBACK_RESET && aurule_callback)
3062 err = aurule_callback();
3063 return err;
3064}
3065
3066static int __init aurule_init(void)
3067{
3068 int err;
3069
562c99f2 3070 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
376bd9cb
DG
3071 if (err)
3072 panic("avc_add_callback() failed, error %d\n", err);
3073
3074 return err;
3075}
3076__initcall(aurule_init);
3077
7420ed23 3078#ifdef CONFIG_NETLABEL
7420ed23 3079/**
5778eabd
PM
3080 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3081 * @secattr: the NetLabel packet security attributes
5dbe1eb0 3082 * @sid: the SELinux SID
7420ed23
VY
3083 *
3084 * Description:
3085 * Attempt to cache the context in @ctx, which was derived from the packet in
5778eabd
PM
3086 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3087 * already been initialized.
7420ed23
VY
3088 *
3089 */
5778eabd 3090static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
5dbe1eb0 3091 u32 sid)
7420ed23 3092{
5dbe1eb0 3093 u32 *sid_cache;
7420ed23 3094
5dbe1eb0
PM
3095 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3096 if (sid_cache == NULL)
5778eabd 3097 return;
5dbe1eb0
PM
3098 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3099 if (secattr->cache == NULL) {
3100 kfree(sid_cache);
5778eabd 3101 return;
0ec8abd7 3102 }
7420ed23 3103
5dbe1eb0
PM
3104 *sid_cache = sid;
3105 secattr->cache->free = kfree;
3106 secattr->cache->data = sid_cache;
5778eabd 3107 secattr->flags |= NETLBL_SECATTR_CACHE;
7420ed23
VY
3108}
3109
3110/**
5778eabd 3111 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
7420ed23 3112 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3113 * @sid: the SELinux SID
3114 *
3115 * Description:
5778eabd 3116 * Convert the given NetLabel security attributes in @secattr into a
7420ed23 3117 * SELinux SID. If the @secattr field does not contain a full SELinux
25985edc 3118 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
5dbe1eb0
PM
3119 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3120 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3121 * conversion for future lookups. Returns zero on success, negative values on
3122 * failure.
7420ed23
VY
3123 *
3124 */
5778eabd 3125int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
5778eabd 3126 u32 *sid)
7420ed23 3127{
7ae9f23c 3128 int rc;
7420ed23
VY
3129 struct context *ctx;
3130 struct context ctx_new;
5778eabd
PM
3131
3132 if (!ss_initialized) {
3133 *sid = SECSID_NULL;
3134 return 0;
3135 }
7420ed23 3136
0804d113 3137 read_lock(&policy_rwlock);
7420ed23 3138
7ae9f23c 3139 if (secattr->flags & NETLBL_SECATTR_CACHE)
5dbe1eb0 3140 *sid = *(u32 *)secattr->cache->data;
7ae9f23c 3141 else if (secattr->flags & NETLBL_SECATTR_SECID)
16efd454 3142 *sid = secattr->attr.secid;
7ae9f23c
EP
3143 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3144 rc = -EIDRM;
5dbe1eb0 3145 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
7420ed23 3146 if (ctx == NULL)
7ae9f23c 3147 goto out;
7420ed23 3148
81990fbd 3149 context_init(&ctx_new);
7420ed23
VY
3150 ctx_new.user = ctx->user;
3151 ctx_new.role = ctx->role;
3152 ctx_new.type = ctx->type;
02752760 3153 mls_import_netlbl_lvl(&ctx_new, secattr);
701a90ba 3154 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
7ae9f23c
EP
3155 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3156 secattr->attr.mls.cat);
3157 if (rc)
3158 goto out;
81990fbd
PM
3159 memcpy(&ctx_new.range.level[1].cat,
3160 &ctx_new.range.level[0].cat,
3161 sizeof(ctx_new.range.level[0].cat));
7420ed23 3162 }
7ae9f23c
EP
3163 rc = -EIDRM;
3164 if (!mls_context_isvalid(&policydb, &ctx_new))
3165 goto out_free;
7420ed23
VY
3166
3167 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
7ae9f23c
EP
3168 if (rc)
3169 goto out_free;
7420ed23 3170
5dbe1eb0 3171 security_netlbl_cache_add(secattr, *sid);
5778eabd 3172
7420ed23 3173 ebitmap_destroy(&ctx_new.range.level[0].cat);
7ae9f23c 3174 } else
388b2405 3175 *sid = SECSID_NULL;
7420ed23 3176
0804d113 3177 read_unlock(&policy_rwlock);
7ae9f23c
EP
3178 return 0;
3179out_free:
7420ed23 3180 ebitmap_destroy(&ctx_new.range.level[0].cat);
7ae9f23c
EP
3181out:
3182 read_unlock(&policy_rwlock);
3183 return rc;
7420ed23
VY
3184}
3185
3186/**
5778eabd
PM
3187 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3188 * @sid: the SELinux SID
3189 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3190 *
3191 * Description:
5778eabd
PM
3192 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3193 * Returns zero on success, negative values on failure.
7420ed23
VY
3194 *
3195 */
5778eabd 3196int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
7420ed23 3197{
99d854d2 3198 int rc;
7420ed23
VY
3199 struct context *ctx;
3200
3201 if (!ss_initialized)
3202 return 0;
3203
0804d113 3204 read_lock(&policy_rwlock);
4b02b524
EP
3205
3206 rc = -ENOENT;
7420ed23 3207 ctx = sidtab_search(&sidtab, sid);
4b02b524
EP
3208 if (ctx == NULL)
3209 goto out;
3210
3211 rc = -ENOMEM;
ac76c05b 3212 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
5778eabd 3213 GFP_ATOMIC);
4b02b524
EP
3214 if (secattr->domain == NULL)
3215 goto out;
3216
8d75899d
PM
3217 secattr->attr.secid = sid;
3218 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
5778eabd
PM
3219 mls_export_netlbl_lvl(ctx, secattr);
3220 rc = mls_export_netlbl_cat(ctx, secattr);
4b02b524 3221out:
0804d113 3222 read_unlock(&policy_rwlock);
f8687afe
PM
3223 return rc;
3224}
7420ed23 3225#endif /* CONFIG_NETLABEL */
cee74f47
EP
3226
3227/**
3228 * security_read_policy - read the policy.
3229 * @data: binary policy data
3230 * @len: length of data in bytes
3231 *
3232 */
6b697323 3233int security_read_policy(void **data, size_t *len)
cee74f47
EP
3234{
3235 int rc;
3236 struct policy_file fp;
3237
3238 if (!ss_initialized)
3239 return -EINVAL;
3240
3241 *len = security_policydb_len();
3242
845ca30f 3243 *data = vmalloc_user(*len);
cee74f47
EP
3244 if (!*data)
3245 return -ENOMEM;
3246
3247 fp.data = *data;
3248 fp.len = *len;
3249
3250 read_lock(&policy_rwlock);
3251 rc = policydb_write(&policydb, &fp);
3252 read_unlock(&policy_rwlock);
3253
3254 if (rc)
3255 return rc;
3256
3257 *len = (unsigned long)fp.data - (unsigned long)*data;
3258 return 0;
3259
3260}