]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - security/selinux/ss/services.c
selinux: Implement Infiniband PKey "Access" access vector
[mirror_ubuntu-bionic-kernel.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5d55a345 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
5d55a345 14 * Added conditional policy language extensions
1da177e4 15 *
82c21bfa 16 * Updated: Hewlett-Packard <paul@paul-moore.com>
7420ed23
VY
17 *
18 * Added support for NetLabel
3bb56b25 19 * Added support for the policy capability bitmap
7420ed23 20 *
b94c7e67
CS
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
44c2d9bd
KK
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
0719aaf5
GT
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
44c2d9bd 33 * Copyright (C) 2008, 2009 NEC Corporation
3bb56b25 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
376bd9cb 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
b94c7e67 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
1da177e4
LT
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
5d55a345 39 * it under the terms of the GNU General Public License as published by
1da177e4
LT
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
9f2ad665 46#include <linux/rcupdate.h>
1da177e4
LT
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
bb003079 51#include <linux/mutex.h>
0e55a004 52#include <linux/selinux.h>
6371dcd3 53#include <linux/flex_array.h>
f0d3d989 54#include <linux/vmalloc.h>
7420ed23 55#include <net/netlabel.h>
bb003079 56
1da177e4
LT
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
7420ed23 67#include "objsec.h"
c60475bf 68#include "netlabel.h"
3de4bab5 69#include "xfrm.h"
02752760 70#include "ebitmap.h"
9d57a7f9 71#include "audit.h"
1da177e4 72
4dc2fce3
SS
73/* Policy capability names */
74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75 "network_peer_controls",
76 "open_perms",
77 "extended_socket_class",
78 "always_check_network",
79 "cgroup_seclabel"
80};
81
3bb56b25 82int selinux_policycap_netpeer;
b0c636b9 83int selinux_policycap_openperm;
da69a530 84int selinux_policycap_extsockclass;
2be4d74f 85int selinux_policycap_alwaysnetwork;
2651225b 86int selinux_policycap_cgroupseclabel;
3bb56b25 87
1da177e4 88static DEFINE_RWLOCK(policy_rwlock);
1da177e4
LT
89
90static struct sidtab sidtab;
91struct policydb policydb;
5d55a345 92int ss_initialized;
1da177e4
LT
93
94/*
95 * The largest sequence number that has been used when
96 * providing an access decision to the access vector cache.
97 * The sequence number only changes when a policy change
98 * occurs.
99 */
5d55a345 100static u32 latest_granting;
1da177e4
LT
101
102/* Forward declaration. */
103static int context_struct_to_string(struct context *context, char **scontext,
104 u32 *scontext_len);
105
19439d05 106static void context_struct_compute_av(struct context *scontext,
fa1aa143
JVS
107 struct context *tcontext,
108 u16 tclass,
109 struct av_decision *avd,
110 struct extended_perms *xperms);
c6d3aaa4
SS
111
112struct selinux_mapping {
113 u16 value; /* policy value */
114 unsigned num_perms;
115 u32 perms[sizeof(u32) * 8];
116};
117
118static struct selinux_mapping *current_mapping;
119static u16 current_mapping_size;
120
121static int selinux_set_mapping(struct policydb *pol,
122 struct security_class_mapping *map,
123 struct selinux_mapping **out_map_p,
124 u16 *out_map_size)
125{
126 struct selinux_mapping *out_map = NULL;
127 size_t size = sizeof(struct selinux_mapping);
128 u16 i, j;
129 unsigned k;
130 bool print_unknown_handle = false;
131
132 /* Find number of classes in the input mapping */
133 if (!map)
134 return -EINVAL;
135 i = 0;
136 while (map[i].name)
137 i++;
138
139 /* Allocate space for the class records, plus one for class zero */
140 out_map = kcalloc(++i, size, GFP_ATOMIC);
141 if (!out_map)
142 return -ENOMEM;
143
144 /* Store the raw class and permission values */
145 j = 0;
146 while (map[j].name) {
147 struct security_class_mapping *p_in = map + (j++);
148 struct selinux_mapping *p_out = out_map + j;
149
150 /* An empty class string skips ahead */
151 if (!strcmp(p_in->name, "")) {
152 p_out->num_perms = 0;
153 continue;
154 }
155
156 p_out->value = string_to_security_class(pol, p_in->name);
157 if (!p_out->value) {
158 printk(KERN_INFO
159 "SELinux: Class %s not defined in policy.\n",
160 p_in->name);
161 if (pol->reject_unknown)
162 goto err;
163 p_out->num_perms = 0;
164 print_unknown_handle = true;
165 continue;
166 }
167
168 k = 0;
342e9157 169 while (p_in->perms[k]) {
c6d3aaa4
SS
170 /* An empty permission string skips ahead */
171 if (!*p_in->perms[k]) {
172 k++;
173 continue;
174 }
175 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
176 p_in->perms[k]);
177 if (!p_out->perms[k]) {
178 printk(KERN_INFO
179 "SELinux: Permission %s in class %s not defined in policy.\n",
180 p_in->perms[k], p_in->name);
181 if (pol->reject_unknown)
182 goto err;
183 print_unknown_handle = true;
184 }
185
186 k++;
187 }
188 p_out->num_perms = k;
189 }
190
191 if (print_unknown_handle)
192 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
193 pol->allow_unknown ? "allowed" : "denied");
194
195 *out_map_p = out_map;
196 *out_map_size = i;
197 return 0;
198err:
199 kfree(out_map);
200 return -EINVAL;
201}
202
203/*
204 * Get real, policy values from mapped values
205 */
206
207static u16 unmap_class(u16 tclass)
208{
209 if (tclass < current_mapping_size)
210 return current_mapping[tclass].value;
211
212 return tclass;
213}
214
6f5317e7
HC
215/*
216 * Get kernel value for class from its policy value
217 */
218static u16 map_class(u16 pol_value)
219{
220 u16 i;
221
222 for (i = 1; i < current_mapping_size; i++) {
223 if (current_mapping[i].value == pol_value)
224 return i;
225 }
226
85cd6da5 227 return SECCLASS_NULL;
6f5317e7
HC
228}
229
c6d3aaa4
SS
230static void map_decision(u16 tclass, struct av_decision *avd,
231 int allow_unknown)
232{
233 if (tclass < current_mapping_size) {
234 unsigned i, n = current_mapping[tclass].num_perms;
235 u32 result;
236
237 for (i = 0, result = 0; i < n; i++) {
238 if (avd->allowed & current_mapping[tclass].perms[i])
239 result |= 1<<i;
240 if (allow_unknown && !current_mapping[tclass].perms[i])
241 result |= 1<<i;
242 }
243 avd->allowed = result;
244
245 for (i = 0, result = 0; i < n; i++)
246 if (avd->auditallow & current_mapping[tclass].perms[i])
247 result |= 1<<i;
248 avd->auditallow = result;
249
250 for (i = 0, result = 0; i < n; i++) {
251 if (avd->auditdeny & current_mapping[tclass].perms[i])
252 result |= 1<<i;
253 if (!allow_unknown && !current_mapping[tclass].perms[i])
254 result |= 1<<i;
255 }
0bce9527
EP
256 /*
257 * In case the kernel has a bug and requests a permission
258 * between num_perms and the maximum permission number, we
259 * should audit that denial
260 */
261 for (; i < (sizeof(u32)*8); i++)
262 result |= 1<<i;
c6d3aaa4
SS
263 avd->auditdeny = result;
264 }
265}
266
0719aaf5
GT
267int security_mls_enabled(void)
268{
269 return policydb.mls_enabled;
270}
c6d3aaa4 271
1da177e4
LT
272/*
273 * Return the boolean value of a constraint expression
274 * when it is applied to the specified source and target
275 * security contexts.
276 *
277 * xcontext is a special beast... It is used by the validatetrans rules
278 * only. For these rules, scontext is the context before the transition,
279 * tcontext is the context after the transition, and xcontext is the context
280 * of the process performing the transition. All other callers of
281 * constraint_expr_eval should pass in NULL for xcontext.
282 */
283static int constraint_expr_eval(struct context *scontext,
284 struct context *tcontext,
285 struct context *xcontext,
286 struct constraint_expr *cexpr)
287{
288 u32 val1, val2;
289 struct context *c;
290 struct role_datum *r1, *r2;
291 struct mls_level *l1, *l2;
292 struct constraint_expr *e;
293 int s[CEXPR_MAXDEPTH];
294 int sp = -1;
295
296 for (e = cexpr; e; e = e->next) {
297 switch (e->expr_type) {
298 case CEXPR_NOT:
299 BUG_ON(sp < 0);
300 s[sp] = !s[sp];
301 break;
302 case CEXPR_AND:
303 BUG_ON(sp < 1);
304 sp--;
c1a7368a 305 s[sp] &= s[sp + 1];
1da177e4
LT
306 break;
307 case CEXPR_OR:
308 BUG_ON(sp < 1);
309 sp--;
c1a7368a 310 s[sp] |= s[sp + 1];
1da177e4
LT
311 break;
312 case CEXPR_ATTR:
c1a7368a 313 if (sp == (CEXPR_MAXDEPTH - 1))
1da177e4
LT
314 return 0;
315 switch (e->attr) {
316 case CEXPR_USER:
317 val1 = scontext->user;
318 val2 = tcontext->user;
319 break;
320 case CEXPR_TYPE:
321 val1 = scontext->type;
322 val2 = tcontext->type;
323 break;
324 case CEXPR_ROLE:
325 val1 = scontext->role;
326 val2 = tcontext->role;
327 r1 = policydb.role_val_to_struct[val1 - 1];
328 r2 = policydb.role_val_to_struct[val2 - 1];
329 switch (e->op) {
330 case CEXPR_DOM:
331 s[++sp] = ebitmap_get_bit(&r1->dominates,
332 val2 - 1);
333 continue;
334 case CEXPR_DOMBY:
335 s[++sp] = ebitmap_get_bit(&r2->dominates,
336 val1 - 1);
337 continue;
338 case CEXPR_INCOMP:
5d55a345
EP
339 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
340 val2 - 1) &&
341 !ebitmap_get_bit(&r2->dominates,
342 val1 - 1));
1da177e4
LT
343 continue;
344 default:
345 break;
346 }
347 break;
348 case CEXPR_L1L2:
349 l1 = &(scontext->range.level[0]);
350 l2 = &(tcontext->range.level[0]);
351 goto mls_ops;
352 case CEXPR_L1H2:
353 l1 = &(scontext->range.level[0]);
354 l2 = &(tcontext->range.level[1]);
355 goto mls_ops;
356 case CEXPR_H1L2:
357 l1 = &(scontext->range.level[1]);
358 l2 = &(tcontext->range.level[0]);
359 goto mls_ops;
360 case CEXPR_H1H2:
361 l1 = &(scontext->range.level[1]);
362 l2 = &(tcontext->range.level[1]);
363 goto mls_ops;
364 case CEXPR_L1H1:
365 l1 = &(scontext->range.level[0]);
366 l2 = &(scontext->range.level[1]);
367 goto mls_ops;
368 case CEXPR_L2H2:
369 l1 = &(tcontext->range.level[0]);
370 l2 = &(tcontext->range.level[1]);
371 goto mls_ops;
372mls_ops:
373 switch (e->op) {
374 case CEXPR_EQ:
375 s[++sp] = mls_level_eq(l1, l2);
376 continue;
377 case CEXPR_NEQ:
378 s[++sp] = !mls_level_eq(l1, l2);
379 continue;
380 case CEXPR_DOM:
381 s[++sp] = mls_level_dom(l1, l2);
382 continue;
383 case CEXPR_DOMBY:
384 s[++sp] = mls_level_dom(l2, l1);
385 continue;
386 case CEXPR_INCOMP:
387 s[++sp] = mls_level_incomp(l2, l1);
388 continue;
389 default:
390 BUG();
391 return 0;
392 }
393 break;
394 default:
395 BUG();
396 return 0;
397 }
398
399 switch (e->op) {
400 case CEXPR_EQ:
401 s[++sp] = (val1 == val2);
402 break;
403 case CEXPR_NEQ:
404 s[++sp] = (val1 != val2);
405 break;
406 default:
407 BUG();
408 return 0;
409 }
410 break;
411 case CEXPR_NAMES:
412 if (sp == (CEXPR_MAXDEPTH-1))
413 return 0;
414 c = scontext;
415 if (e->attr & CEXPR_TARGET)
416 c = tcontext;
417 else if (e->attr & CEXPR_XTARGET) {
418 c = xcontext;
419 if (!c) {
420 BUG();
421 return 0;
422 }
423 }
424 if (e->attr & CEXPR_USER)
425 val1 = c->user;
426 else if (e->attr & CEXPR_ROLE)
427 val1 = c->role;
428 else if (e->attr & CEXPR_TYPE)
429 val1 = c->type;
430 else {
431 BUG();
432 return 0;
433 }
434
435 switch (e->op) {
436 case CEXPR_EQ:
437 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
438 break;
439 case CEXPR_NEQ:
440 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
441 break;
442 default:
443 BUG();
444 return 0;
445 }
446 break;
447 default:
448 BUG();
449 return 0;
450 }
451 }
452
453 BUG_ON(sp != 0);
454 return s[0];
455}
456
44c2d9bd
KK
457/*
458 * security_dump_masked_av - dumps masked permissions during
459 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
460 */
461static int dump_masked_av_helper(void *k, void *d, void *args)
462{
463 struct perm_datum *pdatum = d;
464 char **permission_names = args;
465
466 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
467
468 permission_names[pdatum->value - 1] = (char *)k;
469
470 return 0;
471}
472
473static void security_dump_masked_av(struct context *scontext,
474 struct context *tcontext,
475 u16 tclass,
476 u32 permissions,
477 const char *reason)
478{
479 struct common_datum *common_dat;
480 struct class_datum *tclass_dat;
481 struct audit_buffer *ab;
482 char *tclass_name;
483 char *scontext_name = NULL;
484 char *tcontext_name = NULL;
485 char *permission_names[32];
2da5d31b
JM
486 int index;
487 u32 length;
44c2d9bd
KK
488 bool need_comma = false;
489
490 if (!permissions)
491 return;
492
ac76c05b 493 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
44c2d9bd
KK
494 tclass_dat = policydb.class_val_to_struct[tclass - 1];
495 common_dat = tclass_dat->comdatum;
496
497 /* init permission_names */
498 if (common_dat &&
499 hashtab_map(common_dat->permissions.table,
500 dump_masked_av_helper, permission_names) < 0)
501 goto out;
502
503 if (hashtab_map(tclass_dat->permissions.table,
504 dump_masked_av_helper, permission_names) < 0)
505 goto out;
506
507 /* get scontext/tcontext in text form */
508 if (context_struct_to_string(scontext,
509 &scontext_name, &length) < 0)
510 goto out;
511
512 if (context_struct_to_string(tcontext,
513 &tcontext_name, &length) < 0)
514 goto out;
515
516 /* audit a message */
517 ab = audit_log_start(current->audit_context,
518 GFP_ATOMIC, AUDIT_SELINUX_ERR);
519 if (!ab)
520 goto out;
521
522 audit_log_format(ab, "op=security_compute_av reason=%s "
523 "scontext=%s tcontext=%s tclass=%s perms=",
524 reason, scontext_name, tcontext_name, tclass_name);
525
526 for (index = 0; index < 32; index++) {
527 u32 mask = (1 << index);
528
529 if ((mask & permissions) == 0)
530 continue;
531
532 audit_log_format(ab, "%s%s",
533 need_comma ? "," : "",
534 permission_names[index]
535 ? permission_names[index] : "????");
536 need_comma = true;
537 }
538 audit_log_end(ab);
539out:
540 /* release scontext/tcontext */
541 kfree(tcontext_name);
542 kfree(scontext_name);
543
544 return;
545}
546
d9250dea
KK
547/*
548 * security_boundary_permission - drops violated permissions
549 * on boundary constraint.
550 */
551static void type_attribute_bounds_av(struct context *scontext,
552 struct context *tcontext,
553 u16 tclass,
d9250dea
KK
554 struct av_decision *avd)
555{
2ae3ba39 556 struct context lo_scontext;
7ea59202 557 struct context lo_tcontext, *tcontextp = tcontext;
2ae3ba39 558 struct av_decision lo_avd;
23bdecb0
EP
559 struct type_datum *source;
560 struct type_datum *target;
2ae3ba39 561 u32 masked = 0;
d9250dea 562
23bdecb0
EP
563 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
564 scontext->type - 1);
565 BUG_ON(!source);
566
7ea59202
SS
567 if (!source->bounds)
568 return;
569
23bdecb0
EP
570 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
571 tcontext->type - 1);
572 BUG_ON(!target);
573
7ea59202 574 memset(&lo_avd, 0, sizeof(lo_avd));
d9250dea 575
7ea59202
SS
576 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
577 lo_scontext.type = source->bounds;
2ae3ba39
KK
578
579 if (target->bounds) {
2ae3ba39
KK
580 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
581 lo_tcontext.type = target->bounds;
7ea59202 582 tcontextp = &lo_tcontext;
2ae3ba39
KK
583 }
584
7ea59202
SS
585 context_struct_compute_av(&lo_scontext,
586 tcontextp,
587 tclass,
588 &lo_avd,
589 NULL);
2ae3ba39 590
7ea59202 591 masked = ~lo_avd.allowed & avd->allowed;
d9250dea 592
7ea59202
SS
593 if (likely(!masked))
594 return; /* no masked permission */
d9250dea 595
7ea59202
SS
596 /* mask violated permissions */
597 avd->allowed &= ~masked;
598
599 /* audit masked permissions */
600 security_dump_masked_av(scontext, tcontext,
601 tclass, masked, "bounds");
d9250dea
KK
602}
603
1da177e4 604/*
fa1aa143
JVS
605 * flag which drivers have permissions
606 * only looking for ioctl based extended permssions
607 */
608void services_compute_xperms_drivers(
609 struct extended_perms *xperms,
610 struct avtab_node *node)
611{
612 unsigned int i;
613
614 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
615 /* if one or more driver has all permissions allowed */
616 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
617 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
618 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
619 /* if allowing permissions within a driver */
620 security_xperm_set(xperms->drivers.p,
621 node->datum.u.xperms->driver);
622 }
623
624 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
625 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
626 xperms->len = 1;
627}
628
629/*
630 * Compute access vectors and extended permissions based on a context
631 * structure pair for the permissions in a particular class.
1da177e4 632 */
19439d05 633static void context_struct_compute_av(struct context *scontext,
fa1aa143
JVS
634 struct context *tcontext,
635 u16 tclass,
636 struct av_decision *avd,
637 struct extended_perms *xperms)
1da177e4
LT
638{
639 struct constraint_node *constraint;
640 struct role_allow *ra;
641 struct avtab_key avkey;
782ebb99 642 struct avtab_node *node;
1da177e4 643 struct class_datum *tclass_datum;
782ebb99
SS
644 struct ebitmap *sattr, *tattr;
645 struct ebitmap_node *snode, *tnode;
646 unsigned int i, j;
1da177e4 647
1da177e4 648 avd->allowed = 0;
1da177e4
LT
649 avd->auditallow = 0;
650 avd->auditdeny = 0xffffffff;
fa1aa143
JVS
651 if (xperms) {
652 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
653 xperms->len = 0;
654 }
1da177e4 655
c6d3aaa4
SS
656 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
657 if (printk_ratelimit())
658 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
19439d05 659 return;
c6d3aaa4 660 }
3f12070e
EP
661
662 tclass_datum = policydb.class_val_to_struct[tclass - 1];
663
1da177e4
LT
664 /*
665 * If a specific type enforcement rule was defined for
666 * this permission check, then use it.
667 */
1da177e4 668 avkey.target_class = tclass;
fa1aa143 669 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
6371dcd3
EP
670 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
671 BUG_ON(!sattr);
672 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
673 BUG_ON(!tattr);
9fe79ad1
KK
674 ebitmap_for_each_positive_bit(sattr, snode, i) {
675 ebitmap_for_each_positive_bit(tattr, tnode, j) {
782ebb99
SS
676 avkey.source_type = i + 1;
677 avkey.target_type = j + 1;
678 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
dbc74c65 679 node;
782ebb99
SS
680 node = avtab_search_node_next(node, avkey.specified)) {
681 if (node->key.specified == AVTAB_ALLOWED)
fa1aa143 682 avd->allowed |= node->datum.u.data;
782ebb99 683 else if (node->key.specified == AVTAB_AUDITALLOW)
fa1aa143 684 avd->auditallow |= node->datum.u.data;
782ebb99 685 else if (node->key.specified == AVTAB_AUDITDENY)
fa1aa143
JVS
686 avd->auditdeny &= node->datum.u.data;
687 else if (xperms && (node->key.specified & AVTAB_XPERMS))
688 services_compute_xperms_drivers(xperms, node);
782ebb99 689 }
1da177e4 690
782ebb99 691 /* Check conditional av table for additional permissions */
fa1aa143
JVS
692 cond_compute_av(&policydb.te_cond_avtab, &avkey,
693 avd, xperms);
782ebb99
SS
694
695 }
696 }
1da177e4
LT
697
698 /*
699 * Remove any permissions prohibited by a constraint (this includes
700 * the MLS policy).
701 */
702 constraint = tclass_datum->constraints;
703 while (constraint) {
704 if ((constraint->permissions & (avd->allowed)) &&
705 !constraint_expr_eval(scontext, tcontext, NULL,
706 constraint->expr)) {
caabbdc0 707 avd->allowed &= ~(constraint->permissions);
1da177e4
LT
708 }
709 constraint = constraint->next;
710 }
711
712 /*
713 * If checking process transition permission and the
714 * role is changing, then check the (current_role, new_role)
715 * pair.
716 */
c6d3aaa4
SS
717 if (tclass == policydb.process_class &&
718 (avd->allowed & policydb.process_trans_perms) &&
1da177e4
LT
719 scontext->role != tcontext->role) {
720 for (ra = policydb.role_allow; ra; ra = ra->next) {
721 if (scontext->role == ra->role &&
722 tcontext->role == ra->new_role)
723 break;
724 }
725 if (!ra)
c6d3aaa4 726 avd->allowed &= ~policydb.process_trans_perms;
1da177e4
LT
727 }
728
d9250dea
KK
729 /*
730 * If the given source and target types have boundary
731 * constraint, lazy checks have to mask any violated
732 * permission and notice it to userspace via audit.
733 */
734 type_attribute_bounds_av(scontext, tcontext,
19439d05 735 tclass, avd);
1da177e4
LT
736}
737
738static int security_validtrans_handle_fail(struct context *ocontext,
5d55a345
EP
739 struct context *ncontext,
740 struct context *tcontext,
741 u16 tclass)
1da177e4
LT
742{
743 char *o = NULL, *n = NULL, *t = NULL;
744 u32 olen, nlen, tlen;
745
4b02b524 746 if (context_struct_to_string(ocontext, &o, &olen))
1da177e4 747 goto out;
4b02b524 748 if (context_struct_to_string(ncontext, &n, &nlen))
1da177e4 749 goto out;
4b02b524 750 if (context_struct_to_string(tcontext, &t, &tlen))
1da177e4 751 goto out;
9ad9ad38 752 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
4093a844 753 "op=security_validate_transition seresult=denied"
5d55a345 754 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
ac76c05b 755 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1da177e4
LT
756out:
757 kfree(o);
758 kfree(n);
759 kfree(t);
760
761 if (!selinux_enforcing)
762 return 0;
763 return -EPERM;
764}
765
f9df6458
AP
766static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
767 u16 orig_tclass, bool user)
1da177e4
LT
768{
769 struct context *ocontext;
770 struct context *ncontext;
771 struct context *tcontext;
772 struct class_datum *tclass_datum;
773 struct constraint_node *constraint;
c6d3aaa4 774 u16 tclass;
1da177e4
LT
775 int rc = 0;
776
777 if (!ss_initialized)
778 return 0;
779
0804d113 780 read_lock(&policy_rwlock);
1da177e4 781
f9df6458
AP
782 if (!user)
783 tclass = unmap_class(orig_tclass);
784 else
785 tclass = orig_tclass;
c6d3aaa4 786
1da177e4 787 if (!tclass || tclass > policydb.p_classes.nprim) {
1da177e4
LT
788 rc = -EINVAL;
789 goto out;
790 }
791 tclass_datum = policydb.class_val_to_struct[tclass - 1];
792
793 ocontext = sidtab_search(&sidtab, oldsid);
794 if (!ocontext) {
744ba35e
EP
795 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
796 __func__, oldsid);
1da177e4
LT
797 rc = -EINVAL;
798 goto out;
799 }
800
801 ncontext = sidtab_search(&sidtab, newsid);
802 if (!ncontext) {
744ba35e
EP
803 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
804 __func__, newsid);
1da177e4
LT
805 rc = -EINVAL;
806 goto out;
807 }
808
809 tcontext = sidtab_search(&sidtab, tasksid);
810 if (!tcontext) {
744ba35e
EP
811 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
812 __func__, tasksid);
1da177e4
LT
813 rc = -EINVAL;
814 goto out;
815 }
816
817 constraint = tclass_datum->validatetrans;
818 while (constraint) {
819 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
5d55a345 820 constraint->expr)) {
f9df6458
AP
821 if (user)
822 rc = -EPERM;
823 else
824 rc = security_validtrans_handle_fail(ocontext,
825 ncontext,
826 tcontext,
827 tclass);
1da177e4
LT
828 goto out;
829 }
830 constraint = constraint->next;
831 }
832
833out:
0804d113 834 read_unlock(&policy_rwlock);
1da177e4
LT
835 return rc;
836}
837
f9df6458
AP
838int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
839 u16 tclass)
840{
841 return security_compute_validatetrans(oldsid, newsid, tasksid,
842 tclass, true);
843}
844
845int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
846 u16 orig_tclass)
847{
848 return security_compute_validatetrans(oldsid, newsid, tasksid,
849 orig_tclass, false);
850}
851
d9250dea
KK
852/*
853 * security_bounded_transition - check whether the given
854 * transition is directed to bounded, or not.
855 * It returns 0, if @newsid is bounded by @oldsid.
856 * Otherwise, it returns error code.
857 *
858 * @oldsid : current security identifier
859 * @newsid : destinated security identifier
860 */
861int security_bounded_transition(u32 old_sid, u32 new_sid)
862{
863 struct context *old_context, *new_context;
864 struct type_datum *type;
865 int index;
4b02b524 866 int rc;
d9250dea
KK
867
868 read_lock(&policy_rwlock);
869
4b02b524 870 rc = -EINVAL;
d9250dea
KK
871 old_context = sidtab_search(&sidtab, old_sid);
872 if (!old_context) {
873 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
874 __func__, old_sid);
875 goto out;
876 }
877
4b02b524 878 rc = -EINVAL;
d9250dea
KK
879 new_context = sidtab_search(&sidtab, new_sid);
880 if (!new_context) {
881 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
882 __func__, new_sid);
883 goto out;
884 }
885
4b02b524 886 rc = 0;
af901ca1 887 /* type/domain unchanged */
4b02b524 888 if (old_context->type == new_context->type)
d9250dea 889 goto out;
d9250dea
KK
890
891 index = new_context->type;
892 while (true) {
23bdecb0
EP
893 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
894 index - 1);
d9250dea
KK
895 BUG_ON(!type);
896
897 /* not bounded anymore */
4b02b524
EP
898 rc = -EPERM;
899 if (!type->bounds)
d9250dea 900 break;
d9250dea
KK
901
902 /* @newsid is bounded by @oldsid */
4b02b524
EP
903 rc = 0;
904 if (type->bounds == old_context->type)
d9250dea 905 break;
4b02b524 906
d9250dea
KK
907 index = type->bounds;
908 }
44c2d9bd
KK
909
910 if (rc) {
911 char *old_name = NULL;
912 char *new_name = NULL;
2da5d31b 913 u32 length;
44c2d9bd
KK
914
915 if (!context_struct_to_string(old_context,
916 &old_name, &length) &&
917 !context_struct_to_string(new_context,
918 &new_name, &length)) {
919 audit_log(current->audit_context,
920 GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 "op=security_bounded_transition "
4093a844 922 "seresult=denied "
44c2d9bd
KK
923 "oldcontext=%s newcontext=%s",
924 old_name, new_name);
925 }
926 kfree(new_name);
927 kfree(old_name);
928 }
d9250dea
KK
929out:
930 read_unlock(&policy_rwlock);
931
932 return rc;
933}
934
19439d05 935static void avd_init(struct av_decision *avd)
c6d3aaa4 936{
19439d05
SS
937 avd->allowed = 0;
938 avd->auditallow = 0;
939 avd->auditdeny = 0xffffffff;
940 avd->seqno = latest_granting;
941 avd->flags = 0;
c6d3aaa4
SS
942}
943
fa1aa143
JVS
944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945 struct avtab_node *node)
946{
947 unsigned int i;
948
949 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950 if (xpermd->driver != node->datum.u.xperms->driver)
951 return;
952 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953 if (!security_xperm_test(node->datum.u.xperms->perms.p,
954 xpermd->driver))
955 return;
956 } else {
957 BUG();
958 }
959
960 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961 xpermd->used |= XPERMS_ALLOWED;
962 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 memset(xpermd->allowed->p, 0xff,
964 sizeof(xpermd->allowed->p));
965 }
966 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968 xpermd->allowed->p[i] |=
969 node->datum.u.xperms->perms.p[i];
970 }
971 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972 xpermd->used |= XPERMS_AUDITALLOW;
973 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 memset(xpermd->auditallow->p, 0xff,
975 sizeof(xpermd->auditallow->p));
976 }
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979 xpermd->auditallow->p[i] |=
980 node->datum.u.xperms->perms.p[i];
981 }
982 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983 xpermd->used |= XPERMS_DONTAUDIT;
984 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 memset(xpermd->dontaudit->p, 0xff,
986 sizeof(xpermd->dontaudit->p));
987 }
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990 xpermd->dontaudit->p[i] |=
991 node->datum.u.xperms->perms.p[i];
992 }
993 } else {
994 BUG();
995 }
996}
997
998void security_compute_xperms_decision(u32 ssid,
999 u32 tsid,
1000 u16 orig_tclass,
1001 u8 driver,
1002 struct extended_perms_decision *xpermd)
1003{
1004 u16 tclass;
1005 struct context *scontext, *tcontext;
1006 struct avtab_key avkey;
1007 struct avtab_node *node;
1008 struct ebitmap *sattr, *tattr;
1009 struct ebitmap_node *snode, *tnode;
1010 unsigned int i, j;
1011
1012 xpermd->driver = driver;
1013 xpermd->used = 0;
1014 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1015 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1016 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1017
1018 read_lock(&policy_rwlock);
1019 if (!ss_initialized)
1020 goto allow;
1021
1022 scontext = sidtab_search(&sidtab, ssid);
1023 if (!scontext) {
1024 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1025 __func__, ssid);
1026 goto out;
1027 }
1028
1029 tcontext = sidtab_search(&sidtab, tsid);
1030 if (!tcontext) {
1031 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1032 __func__, tsid);
1033 goto out;
1034 }
1035
1036 tclass = unmap_class(orig_tclass);
1037 if (unlikely(orig_tclass && !tclass)) {
1038 if (policydb.allow_unknown)
1039 goto allow;
1040 goto out;
1041 }
1042
1043
1044 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1045 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1046 goto out;
1047 }
1048
1049 avkey.target_class = tclass;
1050 avkey.specified = AVTAB_XPERMS;
1051 sattr = flex_array_get(policydb.type_attr_map_array,
1052 scontext->type - 1);
1053 BUG_ON(!sattr);
1054 tattr = flex_array_get(policydb.type_attr_map_array,
1055 tcontext->type - 1);
1056 BUG_ON(!tattr);
1057 ebitmap_for_each_positive_bit(sattr, snode, i) {
1058 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1059 avkey.source_type = i + 1;
1060 avkey.target_type = j + 1;
1061 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1062 node;
1063 node = avtab_search_node_next(node, avkey.specified))
1064 services_compute_xperms_decision(xpermd, node);
1065
1066 cond_compute_xperms(&policydb.te_cond_avtab,
1067 &avkey, xpermd);
1068 }
1069 }
1070out:
1071 read_unlock(&policy_rwlock);
1072 return;
1073allow:
1074 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1075 goto out;
1076}
19439d05 1077
1da177e4
LT
1078/**
1079 * security_compute_av - Compute access vector decisions.
1080 * @ssid: source security identifier
1081 * @tsid: target security identifier
1082 * @tclass: target security class
1da177e4 1083 * @avd: access vector decisions
fa1aa143 1084 * @xperms: extended permissions
1da177e4
LT
1085 *
1086 * Compute a set of access vector decisions based on the
1087 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1da177e4 1088 */
19439d05
SS
1089void security_compute_av(u32 ssid,
1090 u32 tsid,
1091 u16 orig_tclass,
fa1aa143
JVS
1092 struct av_decision *avd,
1093 struct extended_perms *xperms)
1da177e4 1094{
c6d3aaa4 1095 u16 tclass;
19439d05 1096 struct context *scontext = NULL, *tcontext = NULL;
c6d3aaa4 1097
b7f3008a 1098 read_lock(&policy_rwlock);
19439d05 1099 avd_init(avd);
fa1aa143 1100 xperms->len = 0;
c6d3aaa4
SS
1101 if (!ss_initialized)
1102 goto allow;
1103
19439d05
SS
1104 scontext = sidtab_search(&sidtab, ssid);
1105 if (!scontext) {
1106 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1107 __func__, ssid);
1108 goto out;
1109 }
1110
1111 /* permissive domain? */
1112 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1113 avd->flags |= AVD_FLAGS_PERMISSIVE;
1114
1115 tcontext = sidtab_search(&sidtab, tsid);
1116 if (!tcontext) {
1117 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1118 __func__, tsid);
1119 goto out;
1120 }
1121
c6d3aaa4
SS
1122 tclass = unmap_class(orig_tclass);
1123 if (unlikely(orig_tclass && !tclass)) {
1124 if (policydb.allow_unknown)
1125 goto allow;
b7f3008a 1126 goto out;
c6d3aaa4 1127 }
fa1aa143 1128 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
c6d3aaa4 1129 map_decision(orig_tclass, avd, policydb.allow_unknown);
b7f3008a 1130out:
c6d3aaa4 1131 read_unlock(&policy_rwlock);
19439d05 1132 return;
c6d3aaa4
SS
1133allow:
1134 avd->allowed = 0xffffffff;
b7f3008a 1135 goto out;
c6d3aaa4
SS
1136}
1137
19439d05
SS
1138void security_compute_av_user(u32 ssid,
1139 u32 tsid,
1140 u16 tclass,
1141 struct av_decision *avd)
c6d3aaa4 1142{
19439d05 1143 struct context *scontext = NULL, *tcontext = NULL;
1da177e4 1144
19439d05
SS
1145 read_lock(&policy_rwlock);
1146 avd_init(avd);
1147 if (!ss_initialized)
1148 goto allow;
1149
1150 scontext = sidtab_search(&sidtab, ssid);
1151 if (!scontext) {
1152 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1153 __func__, ssid);
1154 goto out;
1da177e4
LT
1155 }
1156
19439d05
SS
1157 /* permissive domain? */
1158 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1159 avd->flags |= AVD_FLAGS_PERMISSIVE;
1160
1161 tcontext = sidtab_search(&sidtab, tsid);
1162 if (!tcontext) {
1163 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1164 __func__, tsid);
1165 goto out;
1166 }
1167
1168 if (unlikely(!tclass)) {
1169 if (policydb.allow_unknown)
1170 goto allow;
1171 goto out;
1172 }
1173
fa1aa143 1174 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
19439d05 1175 out:
0804d113 1176 read_unlock(&policy_rwlock);
19439d05
SS
1177 return;
1178allow:
1179 avd->allowed = 0xffffffff;
1180 goto out;
1da177e4
LT
1181}
1182
1183/*
1184 * Write the security context string representation of
1185 * the context structure `context' into a dynamically
1186 * allocated string of the correct size. Set `*scontext'
1187 * to point to this string and set `*scontext_len' to
1188 * the length of the string.
1189 */
1190static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1191{
1192 char *scontextp;
1193
d5630b9d
EP
1194 if (scontext)
1195 *scontext = NULL;
1da177e4
LT
1196 *scontext_len = 0;
1197
12b29f34
SS
1198 if (context->len) {
1199 *scontext_len = context->len;
bb7081ab
EP
1200 if (scontext) {
1201 *scontext = kstrdup(context->str, GFP_ATOMIC);
1202 if (!(*scontext))
1203 return -ENOMEM;
1204 }
12b29f34
SS
1205 return 0;
1206 }
1207
1da177e4 1208 /* Compute the size of the context. */
ac76c05b
EP
1209 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1210 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1211 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1da177e4
LT
1212 *scontext_len += mls_compute_context_len(context);
1213
d5630b9d
EP
1214 if (!scontext)
1215 return 0;
1216
1da177e4
LT
1217 /* Allocate space for the context; caller must free this space. */
1218 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
5d55a345 1219 if (!scontextp)
1da177e4 1220 return -ENOMEM;
1da177e4
LT
1221 *scontext = scontextp;
1222
1223 /*
1224 * Copy the user name, role name and type name into the context.
1225 */
9529c788 1226 scontextp += sprintf(scontextp, "%s:%s:%s",
ac76c05b
EP
1227 sym_name(&policydb, SYM_USERS, context->user - 1),
1228 sym_name(&policydb, SYM_ROLES, context->role - 1),
1229 sym_name(&policydb, SYM_TYPES, context->type - 1));
1da177e4
LT
1230
1231 mls_sid_to_context(context, &scontextp);
1232
1233 *scontextp = 0;
1234
1235 return 0;
1236}
1237
1238#include "initial_sid_to_string.h"
1239
f0ee2e46
JC
1240const char *security_get_initial_sid_context(u32 sid)
1241{
1242 if (unlikely(sid > SECINITSID_NUM))
1243 return NULL;
1244 return initial_sid_to_string[sid];
1245}
1246
12b29f34
SS
1247static int security_sid_to_context_core(u32 sid, char **scontext,
1248 u32 *scontext_len, int force)
1da177e4
LT
1249{
1250 struct context *context;
1251 int rc = 0;
1252
d5630b9d
EP
1253 if (scontext)
1254 *scontext = NULL;
4f4acf3a
SS
1255 *scontext_len = 0;
1256
1da177e4
LT
1257 if (!ss_initialized) {
1258 if (sid <= SECINITSID_NUM) {
1259 char *scontextp;
1260
1261 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
d5630b9d
EP
1262 if (!scontext)
1263 goto out;
aa736c36
RV
1264 scontextp = kmemdup(initial_sid_to_string[sid],
1265 *scontext_len, GFP_ATOMIC);
0cccca06
SH
1266 if (!scontextp) {
1267 rc = -ENOMEM;
1268 goto out;
1269 }
1da177e4
LT
1270 *scontext = scontextp;
1271 goto out;
1272 }
744ba35e
EP
1273 printk(KERN_ERR "SELinux: %s: called before initial "
1274 "load_policy on unknown SID %d\n", __func__, sid);
1da177e4
LT
1275 rc = -EINVAL;
1276 goto out;
1277 }
0804d113 1278 read_lock(&policy_rwlock);
12b29f34
SS
1279 if (force)
1280 context = sidtab_search_force(&sidtab, sid);
1281 else
1282 context = sidtab_search(&sidtab, sid);
1da177e4 1283 if (!context) {
744ba35e
EP
1284 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1285 __func__, sid);
1da177e4
LT
1286 rc = -EINVAL;
1287 goto out_unlock;
1288 }
1289 rc = context_struct_to_string(context, scontext, scontext_len);
1290out_unlock:
0804d113 1291 read_unlock(&policy_rwlock);
1da177e4
LT
1292out:
1293 return rc;
1294
1295}
1296
12b29f34
SS
1297/**
1298 * security_sid_to_context - Obtain a context for a given SID.
1299 * @sid: security identifier, SID
1300 * @scontext: security context
1301 * @scontext_len: length in bytes
1302 *
1303 * Write the string representation of the context associated with @sid
1304 * into a dynamically allocated string of the correct size. Set @scontext
1305 * to point to this string and set @scontext_len to the length of the string.
1306 */
1307int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1da177e4 1308{
12b29f34
SS
1309 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1310}
1311
1312int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1313{
1314 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1315}
1316
9a59daa0
SS
1317/*
1318 * Caveat: Mutates scontext.
1319 */
12b29f34
SS
1320static int string_to_context_struct(struct policydb *pol,
1321 struct sidtab *sidtabp,
9a59daa0 1322 char *scontext,
12b29f34
SS
1323 u32 scontext_len,
1324 struct context *ctx,
9a59daa0 1325 u32 def_sid)
12b29f34 1326{
1da177e4
LT
1327 struct role_datum *role;
1328 struct type_datum *typdatum;
1329 struct user_datum *usrdatum;
1330 char *scontextp, *p, oldc;
1331 int rc = 0;
1332
12b29f34 1333 context_init(ctx);
1da177e4 1334
1da177e4
LT
1335 /* Parse the security context. */
1336
1337 rc = -EINVAL;
9a59daa0 1338 scontextp = (char *) scontext;
1da177e4
LT
1339
1340 /* Extract the user. */
1341 p = scontextp;
1342 while (*p && *p != ':')
1343 p++;
1344
1345 if (*p == 0)
12b29f34 1346 goto out;
1da177e4
LT
1347
1348 *p++ = 0;
1349
12b29f34 1350 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1da177e4 1351 if (!usrdatum)
12b29f34 1352 goto out;
1da177e4 1353
12b29f34 1354 ctx->user = usrdatum->value;
1da177e4
LT
1355
1356 /* Extract role. */
1357 scontextp = p;
1358 while (*p && *p != ':')
1359 p++;
1360
1361 if (*p == 0)
12b29f34 1362 goto out;
1da177e4
LT
1363
1364 *p++ = 0;
1365
12b29f34 1366 role = hashtab_search(pol->p_roles.table, scontextp);
1da177e4 1367 if (!role)
12b29f34
SS
1368 goto out;
1369 ctx->role = role->value;
1da177e4
LT
1370
1371 /* Extract type. */
1372 scontextp = p;
1373 while (*p && *p != ':')
1374 p++;
1375 oldc = *p;
1376 *p++ = 0;
1377
12b29f34 1378 typdatum = hashtab_search(pol->p_types.table, scontextp);
d9250dea 1379 if (!typdatum || typdatum->attribute)
12b29f34 1380 goto out;
1da177e4 1381
12b29f34 1382 ctx->type = typdatum->value;
1da177e4 1383
12b29f34 1384 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1da177e4 1385 if (rc)
12b29f34 1386 goto out;
1da177e4 1387
4b02b524
EP
1388 rc = -EINVAL;
1389 if ((p - scontext) < scontext_len)
12b29f34 1390 goto out;
1da177e4
LT
1391
1392 /* Check the validity of the new context. */
4b02b524 1393 if (!policydb_context_isvalid(pol, ctx))
12b29f34 1394 goto out;
12b29f34
SS
1395 rc = 0;
1396out:
8e531af9
EP
1397 if (rc)
1398 context_destroy(ctx);
12b29f34
SS
1399 return rc;
1400}
1401
1402static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1403 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1404 int force)
1405{
9a59daa0 1406 char *scontext2, *str = NULL;
12b29f34
SS
1407 struct context context;
1408 int rc = 0;
1409
2172fa70
SS
1410 /* An empty security context is never valid. */
1411 if (!scontext_len)
1412 return -EINVAL;
1413
12b29f34
SS
1414 if (!ss_initialized) {
1415 int i;
1416
1417 for (i = 1; i < SECINITSID_NUM; i++) {
1418 if (!strcmp(initial_sid_to_string[i], scontext)) {
1419 *sid = i;
9a59daa0 1420 return 0;
12b29f34
SS
1421 }
1422 }
1423 *sid = SECINITSID_KERNEL;
9a59daa0 1424 return 0;
12b29f34
SS
1425 }
1426 *sid = SECSID_NULL;
1427
9a59daa0 1428 /* Copy the string so that we can modify the copy as we parse it. */
c1a7368a 1429 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
9a59daa0
SS
1430 if (!scontext2)
1431 return -ENOMEM;
1432 memcpy(scontext2, scontext, scontext_len);
1433 scontext2[scontext_len] = 0;
1434
1435 if (force) {
1436 /* Save another copy for storing in uninterpreted form */
4b02b524 1437 rc = -ENOMEM;
9a59daa0 1438 str = kstrdup(scontext2, gfp_flags);
4b02b524
EP
1439 if (!str)
1440 goto out;
9a59daa0
SS
1441 }
1442
0804d113 1443 read_lock(&policy_rwlock);
4b02b524
EP
1444 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1445 scontext_len, &context, def_sid);
12b29f34 1446 if (rc == -EINVAL && force) {
9a59daa0 1447 context.str = str;
12b29f34 1448 context.len = scontext_len;
9a59daa0 1449 str = NULL;
12b29f34 1450 } else if (rc)
4b02b524 1451 goto out_unlock;
12b29f34 1452 rc = sidtab_context_to_sid(&sidtab, &context, sid);
8e531af9 1453 context_destroy(&context);
4b02b524 1454out_unlock:
0804d113 1455 read_unlock(&policy_rwlock);
4b02b524 1456out:
9a59daa0
SS
1457 kfree(scontext2);
1458 kfree(str);
1da177e4
LT
1459 return rc;
1460}
1461
f5c1d5b2
JM
1462/**
1463 * security_context_to_sid - Obtain a SID for a given security context.
1464 * @scontext: security context
1465 * @scontext_len: length in bytes
1466 * @sid: security identifier, SID
52a4c640 1467 * @gfp: context for the allocation
f5c1d5b2
JM
1468 *
1469 * Obtains a SID associated with the security context that
1470 * has the string representation specified by @scontext.
1471 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1472 * memory is available, or 0 on success.
1473 */
52a4c640
NA
1474int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1475 gfp_t gfp)
f5c1d5b2
JM
1476{
1477 return security_context_to_sid_core(scontext, scontext_len,
52a4c640 1478 sid, SECSID_NULL, gfp, 0);
44be2f65
RV
1479}
1480
1481int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1482{
1483 return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
f5c1d5b2
JM
1484}
1485
1486/**
1487 * security_context_to_sid_default - Obtain a SID for a given security context,
1488 * falling back to specified default if needed.
1489 *
1490 * @scontext: security context
1491 * @scontext_len: length in bytes
1492 * @sid: security identifier, SID
d133a960 1493 * @def_sid: default SID to assign on error
f5c1d5b2
JM
1494 *
1495 * Obtains a SID associated with the security context that
1496 * has the string representation specified by @scontext.
1497 * The default SID is passed to the MLS layer to be used to allow
1498 * kernel labeling of the MLS field if the MLS field is not present
1499 * (for upgrading to MLS without full relabel).
12b29f34 1500 * Implicitly forces adding of the context even if it cannot be mapped yet.
f5c1d5b2
JM
1501 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1502 * memory is available, or 0 on success.
1503 */
7bf570dc
DH
1504int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1505 u32 *sid, u32 def_sid, gfp_t gfp_flags)
f5c1d5b2
JM
1506{
1507 return security_context_to_sid_core(scontext, scontext_len,
12b29f34
SS
1508 sid, def_sid, gfp_flags, 1);
1509}
1510
1511int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1512 u32 *sid)
1513{
1514 return security_context_to_sid_core(scontext, scontext_len,
1515 sid, SECSID_NULL, GFP_KERNEL, 1);
f5c1d5b2
JM
1516}
1517
1da177e4
LT
1518static int compute_sid_handle_invalid_context(
1519 struct context *scontext,
1520 struct context *tcontext,
1521 u16 tclass,
1522 struct context *newcontext)
1523{
1524 char *s = NULL, *t = NULL, *n = NULL;
1525 u32 slen, tlen, nlen;
1526
4b02b524 1527 if (context_struct_to_string(scontext, &s, &slen))
1da177e4 1528 goto out;
4b02b524 1529 if (context_struct_to_string(tcontext, &t, &tlen))
1da177e4 1530 goto out;
4b02b524 1531 if (context_struct_to_string(newcontext, &n, &nlen))
1da177e4 1532 goto out;
9ad9ad38 1533 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
4093a844
RGB
1534 "op=security_compute_sid invalid_context=%s"
1535 " scontext=%s"
1da177e4
LT
1536 " tcontext=%s"
1537 " tclass=%s",
ac76c05b 1538 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1da177e4
LT
1539out:
1540 kfree(s);
1541 kfree(t);
1542 kfree(n);
1543 if (!selinux_enforcing)
1544 return 0;
1545 return -EACCES;
1546}
1547
652bb9b0 1548static void filename_compute_type(struct policydb *p, struct context *newcontext,
2667991f 1549 u32 stype, u32 ttype, u16 tclass,
f50a3ec9 1550 const char *objname)
652bb9b0 1551{
2463c26d
EP
1552 struct filename_trans ft;
1553 struct filename_trans_datum *otype;
03a4c018
EP
1554
1555 /*
1556 * Most filename trans rules are going to live in specific directories
1557 * like /dev or /var/run. This bitmap will quickly skip rule searches
1558 * if the ttype does not contain any rules.
1559 */
1560 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1561 return;
1562
2463c26d
EP
1563 ft.stype = stype;
1564 ft.ttype = ttype;
1565 ft.tclass = tclass;
1566 ft.name = objname;
1567
1568 otype = hashtab_search(p->filename_trans, &ft);
1569 if (otype)
1570 newcontext->type = otype->otype;
652bb9b0
EP
1571}
1572
1da177e4
LT
1573static int security_compute_sid(u32 ssid,
1574 u32 tsid,
c6d3aaa4 1575 u16 orig_tclass,
1da177e4 1576 u32 specified,
f50a3ec9 1577 const char *objname,
c6d3aaa4
SS
1578 u32 *out_sid,
1579 bool kern)
1da177e4 1580{
aa893269 1581 struct class_datum *cladatum = NULL;
1da177e4
LT
1582 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1583 struct role_trans *roletr = NULL;
1584 struct avtab_key avkey;
1585 struct avtab_datum *avdatum;
1586 struct avtab_node *node;
c6d3aaa4 1587 u16 tclass;
1da177e4 1588 int rc = 0;
6f5317e7 1589 bool sock;
1da177e4
LT
1590
1591 if (!ss_initialized) {
c6d3aaa4
SS
1592 switch (orig_tclass) {
1593 case SECCLASS_PROCESS: /* kernel value */
1da177e4
LT
1594 *out_sid = ssid;
1595 break;
1596 default:
1597 *out_sid = tsid;
1598 break;
1599 }
1600 goto out;
1601 }
1602
851f8a69
VY
1603 context_init(&newcontext);
1604
0804d113 1605 read_lock(&policy_rwlock);
1da177e4 1606
6f5317e7 1607 if (kern) {
c6d3aaa4 1608 tclass = unmap_class(orig_tclass);
6f5317e7
HC
1609 sock = security_is_socket_class(orig_tclass);
1610 } else {
c6d3aaa4 1611 tclass = orig_tclass;
6f5317e7
HC
1612 sock = security_is_socket_class(map_class(tclass));
1613 }
c6d3aaa4 1614
1da177e4
LT
1615 scontext = sidtab_search(&sidtab, ssid);
1616 if (!scontext) {
744ba35e
EP
1617 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1618 __func__, ssid);
1da177e4
LT
1619 rc = -EINVAL;
1620 goto out_unlock;
1621 }
1622 tcontext = sidtab_search(&sidtab, tsid);
1623 if (!tcontext) {
744ba35e
EP
1624 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1625 __func__, tsid);
1da177e4
LT
1626 rc = -EINVAL;
1627 goto out_unlock;
1628 }
1629
aa893269
EP
1630 if (tclass && tclass <= policydb.p_classes.nprim)
1631 cladatum = policydb.class_val_to_struct[tclass - 1];
1632
1da177e4
LT
1633 /* Set the user identity. */
1634 switch (specified) {
1635 case AVTAB_TRANSITION:
1636 case AVTAB_CHANGE:
aa893269
EP
1637 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1638 newcontext.user = tcontext->user;
1639 } else {
1640 /* notice this gets both DEFAULT_SOURCE and unset */
1641 /* Use the process user identity. */
1642 newcontext.user = scontext->user;
1643 }
1da177e4
LT
1644 break;
1645 case AVTAB_MEMBER:
1646 /* Use the related object owner. */
1647 newcontext.user = tcontext->user;
1648 break;
1649 }
1650
aa893269
EP
1651 /* Set the role to default values. */
1652 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1da177e4 1653 newcontext.role = scontext->role;
aa893269
EP
1654 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1655 newcontext.role = tcontext->role;
1656 } else {
1657 if ((tclass == policydb.process_class) || (sock == true))
1658 newcontext.role = scontext->role;
1659 else
1660 newcontext.role = OBJECT_R_VAL;
1661 }
1662
1663 /* Set the type to default values. */
eed7795d 1664 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1da177e4 1665 newcontext.type = scontext->type;
eed7795d 1666 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1da177e4 1667 newcontext.type = tcontext->type;
eed7795d
EP
1668 } else {
1669 if ((tclass == policydb.process_class) || (sock == true)) {
1670 /* Use the type of process. */
1671 newcontext.type = scontext->type;
1672 } else {
1673 /* Use the type of the related object. */
1674 newcontext.type = tcontext->type;
1675 }
1da177e4
LT
1676 }
1677
1678 /* Look for a type transition/member/change rule. */
1679 avkey.source_type = scontext->type;
1680 avkey.target_type = tcontext->type;
1681 avkey.target_class = tclass;
782ebb99
SS
1682 avkey.specified = specified;
1683 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
1684
1685 /* If no permanent rule, also check for enabled conditional rules */
5d55a345 1686 if (!avdatum) {
782ebb99 1687 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
dbc74c65 1688 for (; node; node = avtab_search_node_next(node, specified)) {
782ebb99 1689 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
1690 avdatum = &node->datum;
1691 break;
1692 }
1693 }
1694 }
1695
782ebb99 1696 if (avdatum) {
1da177e4 1697 /* Use the type from the type transition/member/change rule. */
fa1aa143 1698 newcontext.type = avdatum->u.data;
1da177e4
LT
1699 }
1700
4742600c 1701 /* if we have a objname this is a file trans check so check those rules */
f50a3ec9 1702 if (objname)
652bb9b0 1703 filename_compute_type(&policydb, &newcontext, scontext->type,
f50a3ec9 1704 tcontext->type, tclass, objname);
652bb9b0 1705
1da177e4 1706 /* Check for class-specific changes. */
63a312ca
HC
1707 if (specified & AVTAB_TRANSITION) {
1708 /* Look for a role transition rule. */
1709 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1710 if ((roletr->role == scontext->role) &&
1711 (roletr->type == tcontext->type) &&
1712 (roletr->tclass == tclass)) {
1713 /* Use the role transition rule. */
1714 newcontext.role = roletr->new_role;
1715 break;
1da177e4
LT
1716 }
1717 }
1da177e4
LT
1718 }
1719
1720 /* Set the MLS attributes.
1721 This is done last because it may allocate memory. */
6f5317e7
HC
1722 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1723 &newcontext, sock);
1da177e4
LT
1724 if (rc)
1725 goto out_unlock;
1726
1727 /* Check the validity of the context. */
1728 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1729 rc = compute_sid_handle_invalid_context(scontext,
1730 tcontext,
1731 tclass,
1732 &newcontext);
1733 if (rc)
1734 goto out_unlock;
1735 }
1736 /* Obtain the sid for the context. */
1737 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1738out_unlock:
0804d113 1739 read_unlock(&policy_rwlock);
1da177e4
LT
1740 context_destroy(&newcontext);
1741out:
1742 return rc;
1743}
1744
1745/**
1746 * security_transition_sid - Compute the SID for a new subject/object.
1747 * @ssid: source security identifier
1748 * @tsid: target security identifier
1749 * @tclass: target security class
1750 * @out_sid: security identifier for new subject/object
1751 *
1752 * Compute a SID to use for labeling a new subject or object in the
1753 * class @tclass based on a SID pair (@ssid, @tsid).
1754 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1755 * if insufficient memory is available, or %0 if the new SID was
1756 * computed successfully.
1757 */
652bb9b0
EP
1758int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1759 const struct qstr *qstr, u32 *out_sid)
1da177e4 1760{
c6d3aaa4 1761 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
f50a3ec9 1762 qstr ? qstr->name : NULL, out_sid, true);
c6d3aaa4
SS
1763}
1764
f50a3ec9
KK
1765int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1766 const char *objname, u32 *out_sid)
c6d3aaa4
SS
1767{
1768 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
f50a3ec9 1769 objname, out_sid, false);
1da177e4
LT
1770}
1771
1772/**
1773 * security_member_sid - Compute the SID for member selection.
1774 * @ssid: source security identifier
1775 * @tsid: target security identifier
1776 * @tclass: target security class
1777 * @out_sid: security identifier for selected member
1778 *
1779 * Compute a SID to use when selecting a member of a polyinstantiated
1780 * object of class @tclass based on a SID pair (@ssid, @tsid).
1781 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1782 * if insufficient memory is available, or %0 if the SID was
1783 * computed successfully.
1784 */
1785int security_member_sid(u32 ssid,
1786 u32 tsid,
1787 u16 tclass,
1788 u32 *out_sid)
1789{
652bb9b0
EP
1790 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1791 out_sid, false);
1da177e4
LT
1792}
1793
1794/**
1795 * security_change_sid - Compute the SID for object relabeling.
1796 * @ssid: source security identifier
1797 * @tsid: target security identifier
1798 * @tclass: target security class
1799 * @out_sid: security identifier for selected member
1800 *
1801 * Compute a SID to use for relabeling an object of class @tclass
1802 * based on a SID pair (@ssid, @tsid).
1803 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1804 * if insufficient memory is available, or %0 if the SID was
1805 * computed successfully.
1806 */
1807int security_change_sid(u32 ssid,
1808 u32 tsid,
1809 u16 tclass,
1810 u32 *out_sid)
1811{
652bb9b0
EP
1812 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1813 out_sid, false);
b94c7e67
CS
1814}
1815
1da177e4
LT
1816/* Clone the SID into the new SID table. */
1817static int clone_sid(u32 sid,
1818 struct context *context,
1819 void *arg)
1820{
1821 struct sidtab *s = arg;
1822
42596eaf
GT
1823 if (sid > SECINITSID_NUM)
1824 return sidtab_insert(s, sid, context);
1825 else
1826 return 0;
1da177e4
LT
1827}
1828
1829static inline int convert_context_handle_invalid_context(struct context *context)
1830{
4b02b524
EP
1831 char *s;
1832 u32 len;
1da177e4 1833
4b02b524
EP
1834 if (selinux_enforcing)
1835 return -EINVAL;
1836
1837 if (!context_struct_to_string(context, &s, &len)) {
1838 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1839 kfree(s);
1da177e4 1840 }
4b02b524 1841 return 0;
1da177e4
LT
1842}
1843
1844struct convert_context_args {
1845 struct policydb *oldp;
1846 struct policydb *newp;
1847};
1848
1849/*
1850 * Convert the values in the security context
1851 * structure `c' from the values specified
1852 * in the policy `p->oldp' to the values specified
1853 * in the policy `p->newp'. Verify that the
1854 * context is valid under the new policy.
1855 */
1856static int convert_context(u32 key,
1857 struct context *c,
1858 void *p)
1859{
1860 struct convert_context_args *args;
1861 struct context oldc;
0719aaf5
GT
1862 struct ocontext *oc;
1863 struct mls_range *range;
1da177e4
LT
1864 struct role_datum *role;
1865 struct type_datum *typdatum;
1866 struct user_datum *usrdatum;
1867 char *s;
1868 u32 len;
42596eaf
GT
1869 int rc = 0;
1870
1871 if (key <= SECINITSID_NUM)
1872 goto out;
1da177e4
LT
1873
1874 args = p;
1875
12b29f34
SS
1876 if (c->str) {
1877 struct context ctx;
4b02b524
EP
1878
1879 rc = -ENOMEM;
9a59daa0 1880 s = kstrdup(c->str, GFP_KERNEL);
4b02b524 1881 if (!s)
9a59daa0 1882 goto out;
4b02b524 1883
9a59daa0
SS
1884 rc = string_to_context_struct(args->newp, NULL, s,
1885 c->len, &ctx, SECSID_NULL);
1886 kfree(s);
12b29f34 1887 if (!rc) {
4b02b524 1888 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
12b29f34
SS
1889 c->str);
1890 /* Replace string with mapped representation. */
1891 kfree(c->str);
1892 memcpy(c, &ctx, sizeof(*c));
1893 goto out;
1894 } else if (rc == -EINVAL) {
1895 /* Retain string representation for later mapping. */
1896 rc = 0;
1897 goto out;
1898 } else {
1899 /* Other error condition, e.g. ENOMEM. */
4b02b524 1900 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
12b29f34
SS
1901 c->str, -rc);
1902 goto out;
1903 }
1904 }
1905
1da177e4
LT
1906 rc = context_cpy(&oldc, c);
1907 if (rc)
1908 goto out;
1909
1da177e4 1910 /* Convert the user. */
4b02b524 1911 rc = -EINVAL;
1da177e4 1912 usrdatum = hashtab_search(args->newp->p_users.table,
ac76c05b 1913 sym_name(args->oldp, SYM_USERS, c->user - 1));
5d55a345 1914 if (!usrdatum)
1da177e4 1915 goto bad;
1da177e4
LT
1916 c->user = usrdatum->value;
1917
1918 /* Convert the role. */
4b02b524 1919 rc = -EINVAL;
1da177e4 1920 role = hashtab_search(args->newp->p_roles.table,
ac76c05b 1921 sym_name(args->oldp, SYM_ROLES, c->role - 1));
5d55a345 1922 if (!role)
1da177e4 1923 goto bad;
1da177e4
LT
1924 c->role = role->value;
1925
1926 /* Convert the type. */
4b02b524 1927 rc = -EINVAL;
1da177e4 1928 typdatum = hashtab_search(args->newp->p_types.table,
ac76c05b 1929 sym_name(args->oldp, SYM_TYPES, c->type - 1));
5d55a345 1930 if (!typdatum)
1da177e4 1931 goto bad;
1da177e4
LT
1932 c->type = typdatum->value;
1933
0719aaf5
GT
1934 /* Convert the MLS fields if dealing with MLS policies */
1935 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1936 rc = mls_convert_context(args->oldp, args->newp, c);
1937 if (rc)
1938 goto bad;
1939 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1940 /*
1941 * Switching between MLS and non-MLS policy:
1942 * free any storage used by the MLS fields in the
1943 * context for all existing entries in the sidtab.
1944 */
1945 mls_context_destroy(c);
1946 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1947 /*
1948 * Switching between non-MLS and MLS policy:
1949 * ensure that the MLS fields of the context for all
1950 * existing entries in the sidtab are filled in with a
1951 * suitable default value, likely taken from one of the
1952 * initial SIDs.
1953 */
1954 oc = args->newp->ocontexts[OCON_ISID];
1955 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1956 oc = oc->next;
4b02b524 1957 rc = -EINVAL;
0719aaf5
GT
1958 if (!oc) {
1959 printk(KERN_ERR "SELinux: unable to look up"
1960 " the initial SIDs list\n");
1961 goto bad;
1962 }
1963 range = &oc->context[0].range;
1964 rc = mls_range_set(c, range);
1965 if (rc)
1966 goto bad;
1967 }
1da177e4
LT
1968
1969 /* Check the validity of the new context. */
1970 if (!policydb_context_isvalid(args->newp, c)) {
1971 rc = convert_context_handle_invalid_context(&oldc);
1972 if (rc)
1973 goto bad;
1974 }
1975
1976 context_destroy(&oldc);
4b02b524 1977
12b29f34 1978 rc = 0;
1da177e4
LT
1979out:
1980 return rc;
1981bad:
12b29f34 1982 /* Map old representation to string and save it. */
4b02b524
EP
1983 rc = context_struct_to_string(&oldc, &s, &len);
1984 if (rc)
1985 return rc;
1da177e4 1986 context_destroy(&oldc);
12b29f34
SS
1987 context_destroy(c);
1988 c->str = s;
1989 c->len = len;
4b02b524 1990 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
12b29f34
SS
1991 c->str);
1992 rc = 0;
1da177e4
LT
1993 goto out;
1994}
1995
3bb56b25
PM
1996static void security_load_policycaps(void)
1997{
4dc2fce3
SS
1998 unsigned int i;
1999 struct ebitmap_node *node;
2000
3bb56b25
PM
2001 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2002 POLICYDB_CAPABILITY_NETPEER);
b0c636b9
EP
2003 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2004 POLICYDB_CAPABILITY_OPENPERM);
da69a530
SS
2005 selinux_policycap_extsockclass = ebitmap_get_bit(&policydb.policycaps,
2006 POLICYDB_CAPABILITY_EXTSOCKCLASS);
2be4d74f
CP
2007 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2008 POLICYDB_CAPABILITY_ALWAYSNETWORK);
2651225b
SS
2009 selinux_policycap_cgroupseclabel =
2010 ebitmap_get_bit(&policydb.policycaps,
2011 POLICYDB_CAPABILITY_CGROUPSECLABEL);
4dc2fce3
SS
2012
2013 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2014 pr_info("SELinux: policy capability %s=%d\n",
2015 selinux_policycap_names[i],
2016 ebitmap_get_bit(&policydb.policycaps, i));
2017
2018 ebitmap_for_each_positive_bit(&policydb.policycaps, node, i) {
2019 if (i >= ARRAY_SIZE(selinux_policycap_names))
2020 pr_info("SELinux: unknown policy capability %u\n",
2021 i);
2022 }
3bb56b25
PM
2023}
2024
e900a7d9 2025static int security_preserve_bools(struct policydb *p);
1da177e4
LT
2026
2027/**
2028 * security_load_policy - Load a security policy configuration.
2029 * @data: binary policy data
2030 * @len: length of data in bytes
2031 *
2032 * Load a new set of security policy configuration data,
2033 * validate it and convert the SID table as necessary.
2034 * This function will flush the access vector cache after
2035 * loading the new policy.
2036 */
2037int security_load_policy(void *data, size_t len)
2038{
b5495b42 2039 struct policydb *oldpolicydb, *newpolicydb;
1da177e4 2040 struct sidtab oldsidtab, newsidtab;
c6d3aaa4 2041 struct selinux_mapping *oldmap, *map = NULL;
1da177e4
LT
2042 struct convert_context_args args;
2043 u32 seqno;
c6d3aaa4 2044 u16 map_size;
1da177e4
LT
2045 int rc = 0;
2046 struct policy_file file = { data, len }, *fp = &file;
2047
b5495b42
TG
2048 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2049 if (!oldpolicydb) {
2050 rc = -ENOMEM;
2051 goto out;
2052 }
2053 newpolicydb = oldpolicydb + 1;
2054
1da177e4
LT
2055 if (!ss_initialized) {
2056 avtab_cache_init();
a2000050
EP
2057 rc = policydb_read(&policydb, fp);
2058 if (rc) {
1da177e4 2059 avtab_cache_destroy();
b5495b42 2060 goto out;
1da177e4 2061 }
a2000050 2062
cee74f47 2063 policydb.len = len;
a2000050
EP
2064 rc = selinux_set_mapping(&policydb, secclass_map,
2065 &current_mapping,
2066 &current_mapping_size);
2067 if (rc) {
1da177e4
LT
2068 policydb_destroy(&policydb);
2069 avtab_cache_destroy();
b5495b42 2070 goto out;
1da177e4 2071 }
a2000050
EP
2072
2073 rc = policydb_load_isids(&policydb, &sidtab);
2074 if (rc) {
b94c7e67
CS
2075 policydb_destroy(&policydb);
2076 avtab_cache_destroy();
b5495b42 2077 goto out;
b94c7e67 2078 }
a2000050 2079
3bb56b25 2080 security_load_policycaps();
1da177e4 2081 ss_initialized = 1;
4c443d1b 2082 seqno = ++latest_granting;
1da177e4 2083 selinux_complete_init();
4c443d1b
SS
2084 avc_ss_reset(seqno);
2085 selnl_notify_policyload(seqno);
11904167 2086 selinux_status_update_policyload(seqno);
7420ed23 2087 selinux_netlbl_cache_invalidate();
342a0cff 2088 selinux_xfrm_notify_policyload();
b5495b42 2089 goto out;
1da177e4
LT
2090 }
2091
2092#if 0
2093 sidtab_hash_eval(&sidtab, "sids");
2094#endif
2095
b5495b42 2096 rc = policydb_read(newpolicydb, fp);
a2000050 2097 if (rc)
b5495b42 2098 goto out;
1da177e4 2099
b5495b42 2100 newpolicydb->len = len;
0719aaf5 2101 /* If switching between different policy types, log MLS status */
b5495b42 2102 if (policydb.mls_enabled && !newpolicydb->mls_enabled)
0719aaf5 2103 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
b5495b42 2104 else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
0719aaf5
GT
2105 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2106
b5495b42 2107 rc = policydb_load_isids(newpolicydb, &newsidtab);
42596eaf
GT
2108 if (rc) {
2109 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
b5495b42
TG
2110 policydb_destroy(newpolicydb);
2111 goto out;
12b29f34 2112 }
1da177e4 2113
b5495b42 2114 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
a2000050 2115 if (rc)
b94c7e67 2116 goto err;
b94c7e67 2117
b5495b42 2118 rc = security_preserve_bools(newpolicydb);
e900a7d9 2119 if (rc) {
454d972c 2120 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
e900a7d9
SS
2121 goto err;
2122 }
2123
1da177e4
LT
2124 /* Clone the SID table. */
2125 sidtab_shutdown(&sidtab);
a2000050
EP
2126
2127 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2128 if (rc)
1da177e4 2129 goto err;
1da177e4 2130
12b29f34
SS
2131 /*
2132 * Convert the internal representations of contexts
2133 * in the new SID table.
2134 */
1da177e4 2135 args.oldp = &policydb;
b5495b42 2136 args.newp = newpolicydb;
12b29f34 2137 rc = sidtab_map(&newsidtab, convert_context, &args);
0719aaf5
GT
2138 if (rc) {
2139 printk(KERN_ERR "SELinux: unable to convert the internal"
2140 " representation of contexts in the new SID"
2141 " table\n");
12b29f34 2142 goto err;
0719aaf5 2143 }
1da177e4
LT
2144
2145 /* Save the old policydb and SID table to free later. */
b5495b42 2146 memcpy(oldpolicydb, &policydb, sizeof(policydb));
1da177e4
LT
2147 sidtab_set(&oldsidtab, &sidtab);
2148
2149 /* Install the new policydb and SID table. */
0804d113 2150 write_lock_irq(&policy_rwlock);
b5495b42 2151 memcpy(&policydb, newpolicydb, sizeof(policydb));
1da177e4 2152 sidtab_set(&sidtab, &newsidtab);
3bb56b25 2153 security_load_policycaps();
c6d3aaa4
SS
2154 oldmap = current_mapping;
2155 current_mapping = map;
2156 current_mapping_size = map_size;
1da177e4 2157 seqno = ++latest_granting;
0804d113 2158 write_unlock_irq(&policy_rwlock);
1da177e4
LT
2159
2160 /* Free the old policydb and SID table. */
b5495b42 2161 policydb_destroy(oldpolicydb);
1da177e4 2162 sidtab_destroy(&oldsidtab);
c6d3aaa4 2163 kfree(oldmap);
1da177e4
LT
2164
2165 avc_ss_reset(seqno);
2166 selnl_notify_policyload(seqno);
11904167 2167 selinux_status_update_policyload(seqno);
7420ed23 2168 selinux_netlbl_cache_invalidate();
342a0cff 2169 selinux_xfrm_notify_policyload();
1da177e4 2170
b5495b42
TG
2171 rc = 0;
2172 goto out;
1da177e4
LT
2173
2174err:
c6d3aaa4 2175 kfree(map);
1da177e4 2176 sidtab_destroy(&newsidtab);
b5495b42 2177 policydb_destroy(newpolicydb);
1da177e4 2178
b5495b42
TG
2179out:
2180 kfree(oldpolicydb);
2181 return rc;
1da177e4
LT
2182}
2183
cee74f47
EP
2184size_t security_policydb_len(void)
2185{
2186 size_t len;
2187
2188 read_lock(&policy_rwlock);
2189 len = policydb.len;
2190 read_unlock(&policy_rwlock);
2191
2192 return len;
2193}
2194
1da177e4
LT
2195/**
2196 * security_port_sid - Obtain the SID for a port.
1da177e4
LT
2197 * @protocol: protocol number
2198 * @port: port number
2199 * @out_sid: security identifier
2200 */
3e112172 2201int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1da177e4
LT
2202{
2203 struct ocontext *c;
2204 int rc = 0;
2205
0804d113 2206 read_lock(&policy_rwlock);
1da177e4
LT
2207
2208 c = policydb.ocontexts[OCON_PORT];
2209 while (c) {
2210 if (c->u.port.protocol == protocol &&
2211 c->u.port.low_port <= port &&
2212 c->u.port.high_port >= port)
2213 break;
2214 c = c->next;
2215 }
2216
2217 if (c) {
2218 if (!c->sid[0]) {
2219 rc = sidtab_context_to_sid(&sidtab,
2220 &c->context[0],
2221 &c->sid[0]);
2222 if (rc)
2223 goto out;
2224 }
2225 *out_sid = c->sid[0];
2226 } else {
2227 *out_sid = SECINITSID_PORT;
2228 }
2229
2230out:
0804d113 2231 read_unlock(&policy_rwlock);
1da177e4
LT
2232 return rc;
2233}
2234
cfc4d882
DJ
2235/**
2236 * security_pkey_sid - Obtain the SID for a pkey.
2237 * @subnet_prefix: Subnet Prefix
2238 * @pkey_num: pkey number
2239 * @out_sid: security identifier
2240 */
2241int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2242{
2243 struct ocontext *c;
2244 int rc = 0;
2245
2246 read_lock(&policy_rwlock);
2247
2248 c = policydb.ocontexts[OCON_IBPKEY];
2249 while (c) {
2250 if (c->u.ibpkey.low_pkey <= pkey_num &&
2251 c->u.ibpkey.high_pkey >= pkey_num &&
2252 c->u.ibpkey.subnet_prefix == subnet_prefix)
2253 break;
2254
2255 c = c->next;
2256 }
2257
2258 if (c) {
2259 if (!c->sid[0]) {
2260 rc = sidtab_context_to_sid(&sidtab,
2261 &c->context[0],
2262 &c->sid[0]);
2263 if (rc)
2264 goto out;
2265 }
2266 *out_sid = c->sid[0];
2267 } else
2268 *out_sid = SECINITSID_UNLABELED;
2269
2270out:
2271 read_unlock(&policy_rwlock);
2272 return rc;
2273}
2274
1da177e4
LT
2275/**
2276 * security_netif_sid - Obtain the SID for a network interface.
2277 * @name: interface name
2278 * @if_sid: interface SID
1da177e4 2279 */
e8bfdb9d 2280int security_netif_sid(char *name, u32 *if_sid)
1da177e4
LT
2281{
2282 int rc = 0;
2283 struct ocontext *c;
2284
0804d113 2285 read_lock(&policy_rwlock);
1da177e4
LT
2286
2287 c = policydb.ocontexts[OCON_NETIF];
2288 while (c) {
2289 if (strcmp(name, c->u.name) == 0)
2290 break;
2291 c = c->next;
2292 }
2293
2294 if (c) {
2295 if (!c->sid[0] || !c->sid[1]) {
2296 rc = sidtab_context_to_sid(&sidtab,
2297 &c->context[0],
2298 &c->sid[0]);
2299 if (rc)
2300 goto out;
2301 rc = sidtab_context_to_sid(&sidtab,
2302 &c->context[1],
2303 &c->sid[1]);
2304 if (rc)
2305 goto out;
2306 }
2307 *if_sid = c->sid[0];
e8bfdb9d 2308 } else
1da177e4 2309 *if_sid = SECINITSID_NETIF;
1da177e4
LT
2310
2311out:
0804d113 2312 read_unlock(&policy_rwlock);
1da177e4
LT
2313 return rc;
2314}
2315
2316static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2317{
2318 int i, fail = 0;
2319
5d55a345
EP
2320 for (i = 0; i < 4; i++)
2321 if (addr[i] != (input[i] & mask[i])) {
1da177e4
LT
2322 fail = 1;
2323 break;
2324 }
2325
2326 return !fail;
2327}
2328
2329/**
2330 * security_node_sid - Obtain the SID for a node (host).
2331 * @domain: communication domain aka address family
2332 * @addrp: address
2333 * @addrlen: address length in bytes
2334 * @out_sid: security identifier
2335 */
2336int security_node_sid(u16 domain,
2337 void *addrp,
2338 u32 addrlen,
2339 u32 *out_sid)
2340{
4b02b524 2341 int rc;
1da177e4
LT
2342 struct ocontext *c;
2343
0804d113 2344 read_lock(&policy_rwlock);
1da177e4
LT
2345
2346 switch (domain) {
2347 case AF_INET: {
2348 u32 addr;
2349
4b02b524
EP
2350 rc = -EINVAL;
2351 if (addrlen != sizeof(u32))
1da177e4 2352 goto out;
1da177e4
LT
2353
2354 addr = *((u32 *)addrp);
2355
2356 c = policydb.ocontexts[OCON_NODE];
2357 while (c) {
2358 if (c->u.node.addr == (addr & c->u.node.mask))
2359 break;
2360 c = c->next;
2361 }
2362 break;
2363 }
2364
2365 case AF_INET6:
4b02b524
EP
2366 rc = -EINVAL;
2367 if (addrlen != sizeof(u64) * 2)
1da177e4 2368 goto out;
1da177e4
LT
2369 c = policydb.ocontexts[OCON_NODE6];
2370 while (c) {
2371 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2372 c->u.node6.mask))
2373 break;
2374 c = c->next;
2375 }
2376 break;
2377
2378 default:
4b02b524 2379 rc = 0;
1da177e4
LT
2380 *out_sid = SECINITSID_NODE;
2381 goto out;
2382 }
2383
2384 if (c) {
2385 if (!c->sid[0]) {
2386 rc = sidtab_context_to_sid(&sidtab,
2387 &c->context[0],
2388 &c->sid[0]);
2389 if (rc)
2390 goto out;
2391 }
2392 *out_sid = c->sid[0];
2393 } else {
2394 *out_sid = SECINITSID_NODE;
2395 }
2396
4b02b524 2397 rc = 0;
1da177e4 2398out:
0804d113 2399 read_unlock(&policy_rwlock);
1da177e4
LT
2400 return rc;
2401}
2402
2403#define SIDS_NEL 25
2404
2405/**
2406 * security_get_user_sids - Obtain reachable SIDs for a user.
2407 * @fromsid: starting SID
2408 * @username: username
2409 * @sids: array of reachable SIDs for user
2410 * @nel: number of elements in @sids
2411 *
2412 * Generate the set of SIDs for legal security contexts
2413 * for a given user that can be reached by @fromsid.
2414 * Set *@sids to point to a dynamically allocated
2415 * array containing the set of SIDs. Set *@nel to the
2416 * number of elements in the array.
2417 */
2418
2419int security_get_user_sids(u32 fromsid,
5d55a345 2420 char *username,
1da177e4
LT
2421 u32 **sids,
2422 u32 *nel)
2423{
2424 struct context *fromcon, usercon;
2c3c05db 2425 u32 *mysids = NULL, *mysids2, sid;
1da177e4
LT
2426 u32 mynel = 0, maxnel = SIDS_NEL;
2427 struct user_datum *user;
2428 struct role_datum *role;
782ebb99 2429 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
2430 int rc = 0, i, j;
2431
2c3c05db
SS
2432 *sids = NULL;
2433 *nel = 0;
2434
2435 if (!ss_initialized)
1da177e4 2436 goto out;
1da177e4 2437
0804d113 2438 read_lock(&policy_rwlock);
1da177e4 2439
12b29f34
SS
2440 context_init(&usercon);
2441
4b02b524 2442 rc = -EINVAL;
1da177e4 2443 fromcon = sidtab_search(&sidtab, fromsid);
4b02b524 2444 if (!fromcon)
1da177e4 2445 goto out_unlock;
1da177e4 2446
4b02b524 2447 rc = -EINVAL;
1da177e4 2448 user = hashtab_search(policydb.p_users.table, username);
4b02b524 2449 if (!user)
1da177e4 2450 goto out_unlock;
4b02b524 2451
1da177e4
LT
2452 usercon.user = user->value;
2453
4b02b524 2454 rc = -ENOMEM;
89d155ef 2455 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
4b02b524 2456 if (!mysids)
1da177e4 2457 goto out_unlock;
1da177e4 2458
9fe79ad1 2459 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1da177e4 2460 role = policydb.role_val_to_struct[i];
c1a7368a 2461 usercon.role = i + 1;
9fe79ad1 2462 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
c1a7368a 2463 usercon.type = j + 1;
1da177e4
LT
2464
2465 if (mls_setup_user_range(fromcon, user, &usercon))
2466 continue;
2467
1da177e4 2468 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2c3c05db 2469 if (rc)
1da177e4 2470 goto out_unlock;
1da177e4
LT
2471 if (mynel < maxnel) {
2472 mysids[mynel++] = sid;
2473 } else {
4b02b524 2474 rc = -ENOMEM;
1da177e4 2475 maxnel += SIDS_NEL;
89d155ef 2476 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
4b02b524 2477 if (!mysids2)
1da177e4 2478 goto out_unlock;
1da177e4
LT
2479 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2480 kfree(mysids);
2481 mysids = mysids2;
2482 mysids[mynel++] = sid;
2483 }
2484 }
2485 }
4b02b524 2486 rc = 0;
1da177e4 2487out_unlock:
0804d113 2488 read_unlock(&policy_rwlock);
2c3c05db
SS
2489 if (rc || !mynel) {
2490 kfree(mysids);
2491 goto out;
2492 }
2493
4b02b524 2494 rc = -ENOMEM;
2c3c05db
SS
2495 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2496 if (!mysids2) {
2c3c05db
SS
2497 kfree(mysids);
2498 goto out;
2499 }
2500 for (i = 0, j = 0; i < mynel; i++) {
f01e1af4 2501 struct av_decision dummy_avd;
2c3c05db 2502 rc = avc_has_perm_noaudit(fromsid, mysids[i],
c6d3aaa4 2503 SECCLASS_PROCESS, /* kernel value */
2c3c05db 2504 PROCESS__TRANSITION, AVC_STRICT,
f01e1af4 2505 &dummy_avd);
2c3c05db
SS
2506 if (!rc)
2507 mysids2[j++] = mysids[i];
2508 cond_resched();
2509 }
2510 rc = 0;
2511 kfree(mysids);
2512 *sids = mysids2;
2513 *nel = j;
1da177e4
LT
2514out:
2515 return rc;
2516}
2517
2518/**
f31e7994 2519 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
1da177e4
LT
2520 * @fstype: filesystem type
2521 * @path: path from root of mount
2522 * @sclass: file security class
2523 * @sid: SID for path
2524 *
2525 * Obtain a SID to use for a file in a filesystem that
2526 * cannot support xattr or use a fixed labeling behavior like
2527 * transition SIDs or task SIDs.
f31e7994
WL
2528 *
2529 * The caller must acquire the policy_rwlock before calling this function.
1da177e4 2530 */
f31e7994
WL
2531static inline int __security_genfs_sid(const char *fstype,
2532 char *path,
2533 u16 orig_sclass,
2534 u32 *sid)
1da177e4
LT
2535{
2536 int len;
c6d3aaa4 2537 u16 sclass;
1da177e4
LT
2538 struct genfs *genfs;
2539 struct ocontext *c;
4b02b524 2540 int rc, cmp = 0;
1da177e4 2541
b1aa5301
SS
2542 while (path[0] == '/' && path[1] == '/')
2543 path++;
2544
c6d3aaa4 2545 sclass = unmap_class(orig_sclass);
4b02b524 2546 *sid = SECINITSID_UNLABELED;
c6d3aaa4 2547
1da177e4
LT
2548 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2549 cmp = strcmp(fstype, genfs->fstype);
2550 if (cmp <= 0)
2551 break;
2552 }
2553
4b02b524
EP
2554 rc = -ENOENT;
2555 if (!genfs || cmp)
1da177e4 2556 goto out;
1da177e4
LT
2557
2558 for (c = genfs->head; c; c = c->next) {
2559 len = strlen(c->u.name);
2560 if ((!c->v.sclass || sclass == c->v.sclass) &&
2561 (strncmp(c->u.name, path, len) == 0))
2562 break;
2563 }
2564
4b02b524
EP
2565 rc = -ENOENT;
2566 if (!c)
1da177e4 2567 goto out;
1da177e4
LT
2568
2569 if (!c->sid[0]) {
4b02b524 2570 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
1da177e4
LT
2571 if (rc)
2572 goto out;
2573 }
2574
2575 *sid = c->sid[0];
4b02b524 2576 rc = 0;
1da177e4 2577out:
1da177e4
LT
2578 return rc;
2579}
2580
f31e7994
WL
2581/**
2582 * security_genfs_sid - Obtain a SID for a file in a filesystem
2583 * @fstype: filesystem type
2584 * @path: path from root of mount
2585 * @sclass: file security class
2586 * @sid: SID for path
2587 *
2588 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2589 * it afterward.
2590 */
2591int security_genfs_sid(const char *fstype,
2592 char *path,
2593 u16 orig_sclass,
2594 u32 *sid)
2595{
2596 int retval;
2597
2598 read_lock(&policy_rwlock);
2599 retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2600 read_unlock(&policy_rwlock);
2601 return retval;
2602}
2603
1da177e4
LT
2604/**
2605 * security_fs_use - Determine how to handle labeling for a filesystem.
a64c54cf 2606 * @sb: superblock in question
1da177e4 2607 */
a64c54cf 2608int security_fs_use(struct super_block *sb)
1da177e4
LT
2609{
2610 int rc = 0;
2611 struct ocontext *c;
a64c54cf
EP
2612 struct superblock_security_struct *sbsec = sb->s_security;
2613 const char *fstype = sb->s_type->name;
1da177e4 2614
0804d113 2615 read_lock(&policy_rwlock);
1da177e4 2616
4d546f81
PM
2617 c = policydb.ocontexts[OCON_FSUSE];
2618 while (c) {
2619 if (strcmp(fstype, c->u.name) == 0)
1da177e4 2620 break;
4d546f81 2621 c = c->next;
1da177e4
LT
2622 }
2623
2624 if (c) {
a64c54cf 2625 sbsec->behavior = c->v.behavior;
1da177e4 2626 if (!c->sid[0]) {
4b02b524 2627 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
1da177e4
LT
2628 &c->sid[0]);
2629 if (rc)
2630 goto out;
2631 }
a64c54cf 2632 sbsec->sid = c->sid[0];
1da177e4 2633 } else {
f31e7994
WL
2634 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2635 &sbsec->sid);
089be43e 2636 if (rc) {
a64c54cf 2637 sbsec->behavior = SECURITY_FS_USE_NONE;
089be43e
JM
2638 rc = 0;
2639 } else {
a64c54cf 2640 sbsec->behavior = SECURITY_FS_USE_GENFS;
089be43e 2641 }
1da177e4
LT
2642 }
2643
2644out:
0804d113 2645 read_unlock(&policy_rwlock);
1da177e4
LT
2646 return rc;
2647}
2648
2649int security_get_bools(int *len, char ***names, int **values)
2650{
4b02b524 2651 int i, rc;
1da177e4 2652
0804d113 2653 read_lock(&policy_rwlock);
1da177e4
LT
2654 *names = NULL;
2655 *values = NULL;
2656
4b02b524 2657 rc = 0;
1da177e4 2658 *len = policydb.p_bools.nprim;
4b02b524 2659 if (!*len)
1da177e4 2660 goto out;
1da177e4 2661
4b02b524
EP
2662 rc = -ENOMEM;
2663 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
1da177e4
LT
2664 if (!*names)
2665 goto err;
1da177e4 2666
4b02b524
EP
2667 rc = -ENOMEM;
2668 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
2669 if (!*values)
2670 goto err;
2671
2672 for (i = 0; i < *len; i++) {
1da177e4 2673 (*values)[i] = policydb.bool_val_to_struct[i]->state;
4b02b524
EP
2674
2675 rc = -ENOMEM;
21b76f19 2676 (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
1da177e4
LT
2677 if (!(*names)[i])
2678 goto err;
1da177e4
LT
2679 }
2680 rc = 0;
2681out:
0804d113 2682 read_unlock(&policy_rwlock);
1da177e4
LT
2683 return rc;
2684err:
2685 if (*names) {
2686 for (i = 0; i < *len; i++)
9a5f04bf 2687 kfree((*names)[i]);
1da177e4 2688 }
9a5f04bf 2689 kfree(*values);
1da177e4
LT
2690 goto out;
2691}
2692
2693
2694int security_set_bools(int len, int *values)
2695{
4b02b524 2696 int i, rc;
1da177e4
LT
2697 int lenp, seqno = 0;
2698 struct cond_node *cur;
2699
0804d113 2700 write_lock_irq(&policy_rwlock);
1da177e4 2701
4b02b524 2702 rc = -EFAULT;
1da177e4 2703 lenp = policydb.p_bools.nprim;
4b02b524 2704 if (len != lenp)
1da177e4 2705 goto out;
1da177e4 2706
1da177e4 2707 for (i = 0; i < len; i++) {
af601e46
SG
2708 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2709 audit_log(current->audit_context, GFP_ATOMIC,
2710 AUDIT_MAC_CONFIG_CHANGE,
4746ec5b 2711 "bool=%s val=%d old_val=%d auid=%u ses=%u",
ac76c05b 2712 sym_name(&policydb, SYM_BOOLS, i),
af601e46
SG
2713 !!values[i],
2714 policydb.bool_val_to_struct[i]->state,
581abc09 2715 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4746ec5b 2716 audit_get_sessionid(current));
af601e46 2717 }
5d55a345 2718 if (values[i])
1da177e4 2719 policydb.bool_val_to_struct[i]->state = 1;
5d55a345 2720 else
1da177e4 2721 policydb.bool_val_to_struct[i]->state = 0;
1da177e4 2722 }
1da177e4 2723
dbc74c65 2724 for (cur = policydb.cond_list; cur; cur = cur->next) {
1da177e4
LT
2725 rc = evaluate_cond_node(&policydb, cur);
2726 if (rc)
2727 goto out;
2728 }
2729
2730 seqno = ++latest_granting;
4b02b524 2731 rc = 0;
1da177e4 2732out:
0804d113 2733 write_unlock_irq(&policy_rwlock);
1da177e4
LT
2734 if (!rc) {
2735 avc_ss_reset(seqno);
2736 selnl_notify_policyload(seqno);
11904167 2737 selinux_status_update_policyload(seqno);
342a0cff 2738 selinux_xfrm_notify_policyload();
1da177e4
LT
2739 }
2740 return rc;
2741}
2742
0fd71a62 2743int security_get_bool_value(int index)
1da177e4 2744{
4b02b524 2745 int rc;
1da177e4
LT
2746 int len;
2747
0804d113 2748 read_lock(&policy_rwlock);
1da177e4 2749
4b02b524 2750 rc = -EFAULT;
1da177e4 2751 len = policydb.p_bools.nprim;
0fd71a62 2752 if (index >= len)
1da177e4 2753 goto out;
1da177e4 2754
0fd71a62 2755 rc = policydb.bool_val_to_struct[index]->state;
1da177e4 2756out:
0804d113 2757 read_unlock(&policy_rwlock);
1da177e4
LT
2758 return rc;
2759}
376bd9cb 2760
e900a7d9
SS
2761static int security_preserve_bools(struct policydb *p)
2762{
2763 int rc, nbools = 0, *bvalues = NULL, i;
2764 char **bnames = NULL;
2765 struct cond_bool_datum *booldatum;
2766 struct cond_node *cur;
2767
2768 rc = security_get_bools(&nbools, &bnames, &bvalues);
2769 if (rc)
2770 goto out;
2771 for (i = 0; i < nbools; i++) {
2772 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2773 if (booldatum)
2774 booldatum->state = bvalues[i];
2775 }
dbc74c65 2776 for (cur = p->cond_list; cur; cur = cur->next) {
e900a7d9
SS
2777 rc = evaluate_cond_node(p, cur);
2778 if (rc)
2779 goto out;
2780 }
2781
2782out:
2783 if (bnames) {
2784 for (i = 0; i < nbools; i++)
2785 kfree(bnames[i]);
2786 }
2787 kfree(bnames);
2788 kfree(bvalues);
2789 return rc;
2790}
2791
08554d6b
VY
2792/*
2793 * security_sid_mls_copy() - computes a new sid based on the given
2794 * sid and the mls portion of mls_sid.
2795 */
2796int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2797{
2798 struct context *context1;
2799 struct context *context2;
2800 struct context newcon;
2801 char *s;
2802 u32 len;
4b02b524 2803 int rc;
08554d6b 2804
4b02b524 2805 rc = 0;
0719aaf5 2806 if (!ss_initialized || !policydb.mls_enabled) {
08554d6b
VY
2807 *new_sid = sid;
2808 goto out;
2809 }
2810
2811 context_init(&newcon);
2812
0804d113 2813 read_lock(&policy_rwlock);
4b02b524
EP
2814
2815 rc = -EINVAL;
08554d6b
VY
2816 context1 = sidtab_search(&sidtab, sid);
2817 if (!context1) {
744ba35e
EP
2818 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2819 __func__, sid);
08554d6b
VY
2820 goto out_unlock;
2821 }
2822
4b02b524 2823 rc = -EINVAL;
08554d6b
VY
2824 context2 = sidtab_search(&sidtab, mls_sid);
2825 if (!context2) {
744ba35e
EP
2826 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2827 __func__, mls_sid);
08554d6b
VY
2828 goto out_unlock;
2829 }
2830
2831 newcon.user = context1->user;
2832 newcon.role = context1->role;
2833 newcon.type = context1->type;
0efc61ea 2834 rc = mls_context_cpy(&newcon, context2);
08554d6b
VY
2835 if (rc)
2836 goto out_unlock;
2837
08554d6b
VY
2838 /* Check the validity of the new context. */
2839 if (!policydb_context_isvalid(&policydb, &newcon)) {
2840 rc = convert_context_handle_invalid_context(&newcon);
4b02b524
EP
2841 if (rc) {
2842 if (!context_struct_to_string(&newcon, &s, &len)) {
4093a844
RGB
2843 audit_log(current->audit_context,
2844 GFP_ATOMIC, AUDIT_SELINUX_ERR,
2845 "op=security_sid_mls_copy "
2846 "invalid_context=%s", s);
4b02b524
EP
2847 kfree(s);
2848 }
2849 goto out_unlock;
2850 }
08554d6b
VY
2851 }
2852
2853 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
08554d6b 2854out_unlock:
0804d113 2855 read_unlock(&policy_rwlock);
08554d6b
VY
2856 context_destroy(&newcon);
2857out:
2858 return rc;
2859}
2860
220deb96
PM
2861/**
2862 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2863 * @nlbl_sid: NetLabel SID
2864 * @nlbl_type: NetLabel labeling protocol type
2865 * @xfrm_sid: XFRM SID
2866 *
2867 * Description:
2868 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2869 * resolved into a single SID it is returned via @peer_sid and the function
2870 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2871 * returns a negative value. A table summarizing the behavior is below:
2872 *
2873 * | function return | @sid
2874 * ------------------------------+-----------------+-----------------
2875 * no peer labels | 0 | SECSID_NULL
2876 * single peer label | 0 | <peer_label>
2877 * multiple, consistent labels | 0 | <peer_label>
2878 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2879 *
2880 */
2881int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2882 u32 xfrm_sid,
2883 u32 *peer_sid)
2884{
2885 int rc;
2886 struct context *nlbl_ctx;
2887 struct context *xfrm_ctx;
2888
4b02b524
EP
2889 *peer_sid = SECSID_NULL;
2890
220deb96
PM
2891 /* handle the common (which also happens to be the set of easy) cases
2892 * right away, these two if statements catch everything involving a
2893 * single or absent peer SID/label */
2894 if (xfrm_sid == SECSID_NULL) {
2895 *peer_sid = nlbl_sid;
2896 return 0;
2897 }
2898 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2899 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2900 * is present */
2901 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2902 *peer_sid = xfrm_sid;
2903 return 0;
2904 }
2905
2906 /* we don't need to check ss_initialized here since the only way both
2907 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2908 * security server was initialized and ss_initialized was true */
4b02b524 2909 if (!policydb.mls_enabled)
220deb96 2910 return 0;
220deb96 2911
0804d113 2912 read_lock(&policy_rwlock);
220deb96 2913
4b02b524 2914 rc = -EINVAL;
220deb96
PM
2915 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2916 if (!nlbl_ctx) {
744ba35e
EP
2917 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2918 __func__, nlbl_sid);
4b02b524 2919 goto out;
220deb96 2920 }
4b02b524 2921 rc = -EINVAL;
220deb96
PM
2922 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2923 if (!xfrm_ctx) {
744ba35e
EP
2924 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2925 __func__, xfrm_sid);
4b02b524 2926 goto out;
220deb96
PM
2927 }
2928 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
4b02b524
EP
2929 if (rc)
2930 goto out;
220deb96 2931
4b02b524
EP
2932 /* at present NetLabel SIDs/labels really only carry MLS
2933 * information so if the MLS portion of the NetLabel SID
2934 * matches the MLS portion of the labeled XFRM SID/label
2935 * then pass along the XFRM SID as it is the most
2936 * expressive */
2937 *peer_sid = xfrm_sid;
2938out:
0804d113 2939 read_unlock(&policy_rwlock);
220deb96
PM
2940 return rc;
2941}
2942
55fcf09b
CP
2943static int get_classes_callback(void *k, void *d, void *args)
2944{
2945 struct class_datum *datum = d;
2946 char *name = k, **classes = args;
2947 int value = datum->value - 1;
2948
2949 classes[value] = kstrdup(name, GFP_ATOMIC);
2950 if (!classes[value])
2951 return -ENOMEM;
2952
2953 return 0;
2954}
2955
2956int security_get_classes(char ***classes, int *nclasses)
2957{
4b02b524 2958 int rc;
55fcf09b 2959
0804d113 2960 read_lock(&policy_rwlock);
55fcf09b 2961
4b02b524 2962 rc = -ENOMEM;
55fcf09b 2963 *nclasses = policydb.p_classes.nprim;
9f59f90b 2964 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
55fcf09b
CP
2965 if (!*classes)
2966 goto out;
2967
2968 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2969 *classes);
4b02b524 2970 if (rc) {
55fcf09b
CP
2971 int i;
2972 for (i = 0; i < *nclasses; i++)
2973 kfree((*classes)[i]);
2974 kfree(*classes);
2975 }
2976
2977out:
0804d113 2978 read_unlock(&policy_rwlock);
55fcf09b
CP
2979 return rc;
2980}
2981
2982static int get_permissions_callback(void *k, void *d, void *args)
2983{
2984 struct perm_datum *datum = d;
2985 char *name = k, **perms = args;
2986 int value = datum->value - 1;
2987
2988 perms[value] = kstrdup(name, GFP_ATOMIC);
2989 if (!perms[value])
2990 return -ENOMEM;
2991
2992 return 0;
2993}
2994
2995int security_get_permissions(char *class, char ***perms, int *nperms)
2996{
4b02b524 2997 int rc, i;
55fcf09b
CP
2998 struct class_datum *match;
2999
0804d113 3000 read_lock(&policy_rwlock);
55fcf09b 3001
4b02b524 3002 rc = -EINVAL;
55fcf09b
CP
3003 match = hashtab_search(policydb.p_classes.table, class);
3004 if (!match) {
744ba35e 3005 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
dd6f953a 3006 __func__, class);
55fcf09b
CP
3007 goto out;
3008 }
3009
4b02b524 3010 rc = -ENOMEM;
55fcf09b 3011 *nperms = match->permissions.nprim;
9f59f90b 3012 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
55fcf09b
CP
3013 if (!*perms)
3014 goto out;
3015
3016 if (match->comdatum) {
3017 rc = hashtab_map(match->comdatum->permissions.table,
3018 get_permissions_callback, *perms);
4b02b524 3019 if (rc)
55fcf09b
CP
3020 goto err;
3021 }
3022
3023 rc = hashtab_map(match->permissions.table, get_permissions_callback,
3024 *perms);
4b02b524 3025 if (rc)
55fcf09b
CP
3026 goto err;
3027
3028out:
0804d113 3029 read_unlock(&policy_rwlock);
55fcf09b
CP
3030 return rc;
3031
3032err:
0804d113 3033 read_unlock(&policy_rwlock);
55fcf09b
CP
3034 for (i = 0; i < *nperms; i++)
3035 kfree((*perms)[i]);
3036 kfree(*perms);
3037 return rc;
3038}
3039
3f12070e
EP
3040int security_get_reject_unknown(void)
3041{
3042 return policydb.reject_unknown;
3043}
3044
3045int security_get_allow_unknown(void)
3046{
3047 return policydb.allow_unknown;
3048}
3049
3bb56b25
PM
3050/**
3051 * security_policycap_supported - Check for a specific policy capability
3052 * @req_cap: capability
3053 *
3054 * Description:
3055 * This function queries the currently loaded policy to see if it supports the
3056 * capability specified by @req_cap. Returns true (1) if the capability is
3057 * supported, false (0) if it isn't supported.
3058 *
3059 */
3060int security_policycap_supported(unsigned int req_cap)
3061{
3062 int rc;
3063
0804d113 3064 read_lock(&policy_rwlock);
3bb56b25 3065 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
0804d113 3066 read_unlock(&policy_rwlock);
3bb56b25
PM
3067
3068 return rc;
3069}
3070
376bd9cb
DG
3071struct selinux_audit_rule {
3072 u32 au_seqno;
3073 struct context au_ctxt;
3074};
3075
9d57a7f9 3076void selinux_audit_rule_free(void *vrule)
376bd9cb 3077{
9d57a7f9
AD
3078 struct selinux_audit_rule *rule = vrule;
3079
376bd9cb
DG
3080 if (rule) {
3081 context_destroy(&rule->au_ctxt);
3082 kfree(rule);
3083 }
3084}
3085
9d57a7f9 3086int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
376bd9cb
DG
3087{
3088 struct selinux_audit_rule *tmprule;
3089 struct role_datum *roledatum;
3090 struct type_datum *typedatum;
3091 struct user_datum *userdatum;
9d57a7f9 3092 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
376bd9cb
DG
3093 int rc = 0;
3094
3095 *rule = NULL;
3096
3097 if (!ss_initialized)
3ad40d64 3098 return -EOPNOTSUPP;
376bd9cb
DG
3099
3100 switch (field) {
3a6b9f85
DG
3101 case AUDIT_SUBJ_USER:
3102 case AUDIT_SUBJ_ROLE:
3103 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
3104 case AUDIT_OBJ_USER:
3105 case AUDIT_OBJ_ROLE:
3106 case AUDIT_OBJ_TYPE:
376bd9cb 3107 /* only 'equals' and 'not equals' fit user, role, and type */
5af75d8d 3108 if (op != Audit_equal && op != Audit_not_equal)
376bd9cb
DG
3109 return -EINVAL;
3110 break;
3a6b9f85
DG
3111 case AUDIT_SUBJ_SEN:
3112 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
3113 case AUDIT_OBJ_LEV_LOW:
3114 case AUDIT_OBJ_LEV_HIGH:
25985edc 3115 /* we do not allow a range, indicated by the presence of '-' */
376bd9cb
DG
3116 if (strchr(rulestr, '-'))
3117 return -EINVAL;
3118 break;
3119 default:
3120 /* only the above fields are valid */
3121 return -EINVAL;
3122 }
3123
3124 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3125 if (!tmprule)
3126 return -ENOMEM;
3127
3128 context_init(&tmprule->au_ctxt);
3129
0804d113 3130 read_lock(&policy_rwlock);
376bd9cb
DG
3131
3132 tmprule->au_seqno = latest_granting;
3133
3134 switch (field) {
3a6b9f85 3135 case AUDIT_SUBJ_USER:
6e5a2d1d 3136 case AUDIT_OBJ_USER:
4b02b524 3137 rc = -EINVAL;
376bd9cb
DG
3138 userdatum = hashtab_search(policydb.p_users.table, rulestr);
3139 if (!userdatum)
4b02b524
EP
3140 goto out;
3141 tmprule->au_ctxt.user = userdatum->value;
376bd9cb 3142 break;
3a6b9f85 3143 case AUDIT_SUBJ_ROLE:
6e5a2d1d 3144 case AUDIT_OBJ_ROLE:
4b02b524 3145 rc = -EINVAL;
376bd9cb
DG
3146 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3147 if (!roledatum)
4b02b524
EP
3148 goto out;
3149 tmprule->au_ctxt.role = roledatum->value;
376bd9cb 3150 break;
3a6b9f85 3151 case AUDIT_SUBJ_TYPE:
6e5a2d1d 3152 case AUDIT_OBJ_TYPE:
4b02b524 3153 rc = -EINVAL;
376bd9cb
DG
3154 typedatum = hashtab_search(policydb.p_types.table, rulestr);
3155 if (!typedatum)
4b02b524
EP
3156 goto out;
3157 tmprule->au_ctxt.type = typedatum->value;
376bd9cb 3158 break;
3a6b9f85
DG
3159 case AUDIT_SUBJ_SEN:
3160 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
3161 case AUDIT_OBJ_LEV_LOW:
3162 case AUDIT_OBJ_LEV_HIGH:
376bd9cb 3163 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
4b02b524
EP
3164 if (rc)
3165 goto out;
376bd9cb
DG
3166 break;
3167 }
4b02b524
EP
3168 rc = 0;
3169out:
0804d113 3170 read_unlock(&policy_rwlock);
376bd9cb
DG
3171
3172 if (rc) {
3173 selinux_audit_rule_free(tmprule);
3174 tmprule = NULL;
3175 }
3176
3177 *rule = tmprule;
3178
3179 return rc;
3180}
3181
9d57a7f9
AD
3182/* Check to see if the rule contains any selinux fields */
3183int selinux_audit_rule_known(struct audit_krule *rule)
3184{
3185 int i;
3186
3187 for (i = 0; i < rule->field_count; i++) {
3188 struct audit_field *f = &rule->fields[i];
3189 switch (f->type) {
3190 case AUDIT_SUBJ_USER:
3191 case AUDIT_SUBJ_ROLE:
3192 case AUDIT_SUBJ_TYPE:
3193 case AUDIT_SUBJ_SEN:
3194 case AUDIT_SUBJ_CLR:
3195 case AUDIT_OBJ_USER:
3196 case AUDIT_OBJ_ROLE:
3197 case AUDIT_OBJ_TYPE:
3198 case AUDIT_OBJ_LEV_LOW:
3199 case AUDIT_OBJ_LEV_HIGH:
3200 return 1;
3201 }
3202 }
3203
3204 return 0;
3205}
3206
3207int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
f5269710 3208 struct audit_context *actx)
376bd9cb
DG
3209{
3210 struct context *ctxt;
3211 struct mls_level *level;
9d57a7f9 3212 struct selinux_audit_rule *rule = vrule;
376bd9cb
DG
3213 int match = 0;
3214
9ad42a79
RGB
3215 if (unlikely(!rule)) {
3216 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
376bd9cb
DG
3217 return -ENOENT;
3218 }
3219
0804d113 3220 read_lock(&policy_rwlock);
376bd9cb
DG
3221
3222 if (rule->au_seqno < latest_granting) {
376bd9cb
DG
3223 match = -ESTALE;
3224 goto out;
3225 }
3226
9a2f44f0 3227 ctxt = sidtab_search(&sidtab, sid);
9ad42a79
RGB
3228 if (unlikely(!ctxt)) {
3229 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
5d55a345 3230 sid);
376bd9cb
DG
3231 match = -ENOENT;
3232 goto out;
3233 }
3234
3235 /* a field/op pair that is not caught here will simply fall through
3236 without a match */
3237 switch (field) {
3a6b9f85 3238 case AUDIT_SUBJ_USER:
6e5a2d1d 3239 case AUDIT_OBJ_USER:
376bd9cb 3240 switch (op) {
5af75d8d 3241 case Audit_equal:
376bd9cb
DG
3242 match = (ctxt->user == rule->au_ctxt.user);
3243 break;
5af75d8d 3244 case Audit_not_equal:
376bd9cb
DG
3245 match = (ctxt->user != rule->au_ctxt.user);
3246 break;
3247 }
3248 break;
3a6b9f85 3249 case AUDIT_SUBJ_ROLE:
6e5a2d1d 3250 case AUDIT_OBJ_ROLE:
376bd9cb 3251 switch (op) {
5af75d8d 3252 case Audit_equal:
376bd9cb
DG
3253 match = (ctxt->role == rule->au_ctxt.role);
3254 break;
5af75d8d 3255 case Audit_not_equal:
376bd9cb
DG
3256 match = (ctxt->role != rule->au_ctxt.role);
3257 break;
3258 }
3259 break;
3a6b9f85 3260 case AUDIT_SUBJ_TYPE:
6e5a2d1d 3261 case AUDIT_OBJ_TYPE:
376bd9cb 3262 switch (op) {
5af75d8d 3263 case Audit_equal:
376bd9cb
DG
3264 match = (ctxt->type == rule->au_ctxt.type);
3265 break;
5af75d8d 3266 case Audit_not_equal:
376bd9cb
DG
3267 match = (ctxt->type != rule->au_ctxt.type);
3268 break;
3269 }
3270 break;
3a6b9f85
DG
3271 case AUDIT_SUBJ_SEN:
3272 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
3273 case AUDIT_OBJ_LEV_LOW:
3274 case AUDIT_OBJ_LEV_HIGH:
3275 level = ((field == AUDIT_SUBJ_SEN ||
5d55a345
EP
3276 field == AUDIT_OBJ_LEV_LOW) ?
3277 &ctxt->range.level[0] : &ctxt->range.level[1]);
376bd9cb 3278 switch (op) {
5af75d8d 3279 case Audit_equal:
376bd9cb 3280 match = mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 3281 level);
376bd9cb 3282 break;
5af75d8d 3283 case Audit_not_equal:
376bd9cb 3284 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 3285 level);
376bd9cb 3286 break;
5af75d8d 3287 case Audit_lt:
376bd9cb 3288 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345
EP
3289 level) &&
3290 !mls_level_eq(&rule->au_ctxt.range.level[0],
3291 level));
376bd9cb 3292 break;
5af75d8d 3293 case Audit_le:
376bd9cb 3294 match = mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345 3295 level);
376bd9cb 3296 break;
5af75d8d 3297 case Audit_gt:
376bd9cb 3298 match = (mls_level_dom(level,
5d55a345
EP
3299 &rule->au_ctxt.range.level[0]) &&
3300 !mls_level_eq(level,
3301 &rule->au_ctxt.range.level[0]));
376bd9cb 3302 break;
5af75d8d 3303 case Audit_ge:
376bd9cb 3304 match = mls_level_dom(level,
5d55a345 3305 &rule->au_ctxt.range.level[0]);
376bd9cb
DG
3306 break;
3307 }
3308 }
3309
3310out:
0804d113 3311 read_unlock(&policy_rwlock);
376bd9cb
DG
3312 return match;
3313}
3314
9d57a7f9 3315static int (*aurule_callback)(void) = audit_update_lsm_rules;
376bd9cb 3316
562c99f2 3317static int aurule_avc_callback(u32 event)
376bd9cb
DG
3318{
3319 int err = 0;
3320
3321 if (event == AVC_CALLBACK_RESET && aurule_callback)
3322 err = aurule_callback();
3323 return err;
3324}
3325
3326static int __init aurule_init(void)
3327{
3328 int err;
3329
562c99f2 3330 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
376bd9cb
DG
3331 if (err)
3332 panic("avc_add_callback() failed, error %d\n", err);
3333
3334 return err;
3335}
3336__initcall(aurule_init);
3337
7420ed23 3338#ifdef CONFIG_NETLABEL
7420ed23 3339/**
5778eabd
PM
3340 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3341 * @secattr: the NetLabel packet security attributes
5dbe1eb0 3342 * @sid: the SELinux SID
7420ed23
VY
3343 *
3344 * Description:
3345 * Attempt to cache the context in @ctx, which was derived from the packet in
5778eabd
PM
3346 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3347 * already been initialized.
7420ed23
VY
3348 *
3349 */
5778eabd 3350static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
5dbe1eb0 3351 u32 sid)
7420ed23 3352{
5dbe1eb0 3353 u32 *sid_cache;
7420ed23 3354
5dbe1eb0
PM
3355 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3356 if (sid_cache == NULL)
5778eabd 3357 return;
5dbe1eb0
PM
3358 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3359 if (secattr->cache == NULL) {
3360 kfree(sid_cache);
5778eabd 3361 return;
0ec8abd7 3362 }
7420ed23 3363
5dbe1eb0
PM
3364 *sid_cache = sid;
3365 secattr->cache->free = kfree;
3366 secattr->cache->data = sid_cache;
5778eabd 3367 secattr->flags |= NETLBL_SECATTR_CACHE;
7420ed23
VY
3368}
3369
3370/**
5778eabd 3371 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
7420ed23 3372 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3373 * @sid: the SELinux SID
3374 *
3375 * Description:
5778eabd 3376 * Convert the given NetLabel security attributes in @secattr into a
7420ed23 3377 * SELinux SID. If the @secattr field does not contain a full SELinux
25985edc 3378 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
5dbe1eb0
PM
3379 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3380 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3381 * conversion for future lookups. Returns zero on success, negative values on
3382 * failure.
7420ed23
VY
3383 *
3384 */
5778eabd 3385int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
5778eabd 3386 u32 *sid)
7420ed23 3387{
7ae9f23c 3388 int rc;
7420ed23
VY
3389 struct context *ctx;
3390 struct context ctx_new;
5778eabd
PM
3391
3392 if (!ss_initialized) {
3393 *sid = SECSID_NULL;
3394 return 0;
3395 }
7420ed23 3396
0804d113 3397 read_lock(&policy_rwlock);
7420ed23 3398
7ae9f23c 3399 if (secattr->flags & NETLBL_SECATTR_CACHE)
5dbe1eb0 3400 *sid = *(u32 *)secattr->cache->data;
7ae9f23c 3401 else if (secattr->flags & NETLBL_SECATTR_SECID)
16efd454 3402 *sid = secattr->attr.secid;
7ae9f23c
EP
3403 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3404 rc = -EIDRM;
5dbe1eb0 3405 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
7420ed23 3406 if (ctx == NULL)
7ae9f23c 3407 goto out;
7420ed23 3408
81990fbd 3409 context_init(&ctx_new);
7420ed23
VY
3410 ctx_new.user = ctx->user;
3411 ctx_new.role = ctx->role;
3412 ctx_new.type = ctx->type;
02752760 3413 mls_import_netlbl_lvl(&ctx_new, secattr);
701a90ba 3414 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
da8026fa 3415 rc = mls_import_netlbl_cat(&ctx_new, secattr);
7ae9f23c
EP
3416 if (rc)
3417 goto out;
7420ed23 3418 }
7ae9f23c
EP
3419 rc = -EIDRM;
3420 if (!mls_context_isvalid(&policydb, &ctx_new))
3421 goto out_free;
7420ed23
VY
3422
3423 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
7ae9f23c
EP
3424 if (rc)
3425 goto out_free;
7420ed23 3426
5dbe1eb0 3427 security_netlbl_cache_add(secattr, *sid);
5778eabd 3428
7420ed23 3429 ebitmap_destroy(&ctx_new.range.level[0].cat);
7ae9f23c 3430 } else
388b2405 3431 *sid = SECSID_NULL;
7420ed23 3432
0804d113 3433 read_unlock(&policy_rwlock);
7ae9f23c
EP
3434 return 0;
3435out_free:
7420ed23 3436 ebitmap_destroy(&ctx_new.range.level[0].cat);
7ae9f23c
EP
3437out:
3438 read_unlock(&policy_rwlock);
3439 return rc;
7420ed23
VY
3440}
3441
3442/**
5778eabd
PM
3443 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3444 * @sid: the SELinux SID
3445 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3446 *
3447 * Description:
5778eabd
PM
3448 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3449 * Returns zero on success, negative values on failure.
7420ed23
VY
3450 *
3451 */
5778eabd 3452int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
7420ed23 3453{
99d854d2 3454 int rc;
7420ed23
VY
3455 struct context *ctx;
3456
3457 if (!ss_initialized)
3458 return 0;
3459
0804d113 3460 read_lock(&policy_rwlock);
4b02b524
EP
3461
3462 rc = -ENOENT;
7420ed23 3463 ctx = sidtab_search(&sidtab, sid);
4b02b524
EP
3464 if (ctx == NULL)
3465 goto out;
3466
3467 rc = -ENOMEM;
ac76c05b 3468 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
5778eabd 3469 GFP_ATOMIC);
4b02b524
EP
3470 if (secattr->domain == NULL)
3471 goto out;
3472
8d75899d
PM
3473 secattr->attr.secid = sid;
3474 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
5778eabd
PM
3475 mls_export_netlbl_lvl(ctx, secattr);
3476 rc = mls_export_netlbl_cat(ctx, secattr);
4b02b524 3477out:
0804d113 3478 read_unlock(&policy_rwlock);
f8687afe
PM
3479 return rc;
3480}
7420ed23 3481#endif /* CONFIG_NETLABEL */
cee74f47
EP
3482
3483/**
3484 * security_read_policy - read the policy.
3485 * @data: binary policy data
3486 * @len: length of data in bytes
3487 *
3488 */
6b697323 3489int security_read_policy(void **data, size_t *len)
cee74f47
EP
3490{
3491 int rc;
3492 struct policy_file fp;
3493
3494 if (!ss_initialized)
3495 return -EINVAL;
3496
3497 *len = security_policydb_len();
3498
845ca30f 3499 *data = vmalloc_user(*len);
cee74f47
EP
3500 if (!*data)
3501 return -ENOMEM;
3502
3503 fp.data = *data;
3504 fp.len = *len;
3505
3506 read_lock(&policy_rwlock);
3507 rc = policydb_write(&policydb, &fp);
3508 read_unlock(&policy_rwlock);
3509
3510 if (rc)
3511 return rc;
3512
3513 *len = (unsigned long)fp.data - (unsigned long)*data;
3514 return 0;
3515
3516}