]> git.proxmox.com Git - mirror_qemu.git/blame - slirp/slirp.c
win32 compile
[mirror_qemu.git] / slirp / slirp.c
CommitLineData
f0cbd3ec
FB
1#include "slirp.h"
2
3/* host address */
4struct in_addr our_addr;
5/* host dns address */
6struct in_addr dns_addr;
7/* host loopback address */
8struct in_addr loopback_addr;
9
10/* address for slirp virtual addresses */
11struct in_addr special_addr;
12
13const uint8_t special_ethaddr[6] = {
14 0x52, 0x54, 0x00, 0x12, 0x35, 0x00
15};
16
17uint8_t client_ethaddr[6];
18
19int do_slowtimo;
20int link_up;
21struct timeval tt;
22FILE *lfd;
23
24/* XXX: suppress those select globals */
25fd_set *global_readfds, *global_writefds, *global_xfds;
26
27#ifdef _WIN32
28
29static int get_dns_addr(struct in_addr *pdns_addr)
30{
31 /* XXX: add it */
32 return -1;
33}
34
35#else
36
37static int get_dns_addr(struct in_addr *pdns_addr)
38{
39 char buff[512];
40 char buff2[256];
41 FILE *f;
42 int found = 0;
43 struct in_addr tmp_addr;
44
45 f = fopen("/etc/resolv.conf", "r");
46 if (!f)
47 return -1;
48
49 lprint("IP address of your DNS(s): ");
50 while (fgets(buff, 512, f) != NULL) {
51 if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
52 if (!inet_aton(buff2, &tmp_addr))
53 continue;
54 if (tmp_addr.s_addr == loopback_addr.s_addr)
55 tmp_addr = our_addr;
56 /* If it's the first one, set it to dns_addr */
57 if (!found)
58 *pdns_addr = tmp_addr;
59 else
60 lprint(", ");
61 if (++found > 3) {
62 lprint("(more)");
63 break;
64 } else
65 lprint("%s", inet_ntoa(tmp_addr));
66 }
67 }
1d43a717 68 fclose(f);
f0cbd3ec
FB
69 if (!found)
70 return -1;
71 return 0;
72}
73
74#endif
75
76void slirp_init(void)
77{
512176db 78 // debug_init("/tmp/slirp.log", DEBUG_DEFAULT);
1d43a717 79
f0cbd3ec
FB
80 link_up = 1;
81
82 if_init();
83 ip_init();
84
85 /* Initialise mbufs *after* setting the MTU */
86 m_init();
87
88 /* set default addresses */
89 getouraddr();
90 inet_aton("127.0.0.1", &loopback_addr);
91
92 if (get_dns_addr(&dns_addr) < 0) {
93 fprintf(stderr, "Could not get DNS address\n");
94 exit(1);
95 }
96
97 inet_aton(CTL_SPECIAL, &special_addr);
98}
99
100#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
101#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
102#define UPD_NFDS(x) if (nfds < (x)) nfds = (x)
103
104/*
105 * curtime kept to an accuracy of 1ms
106 */
107static void updtime(void)
108{
109 gettimeofday(&tt, 0);
110
111 curtime = (u_int)tt.tv_sec * (u_int)1000;
112 curtime += (u_int)tt.tv_usec / (u_int)1000;
113
114 if ((tt.tv_usec % 1000) >= 500)
115 curtime++;
116}
117
118void slirp_select_fill(int *pnfds,
119 fd_set *readfds, fd_set *writefds, fd_set *xfds)
120{
121 struct socket *so, *so_next;
122 struct timeval timeout;
123 int nfds;
124 int tmp_time;
125
126 /* fail safe */
127 global_readfds = NULL;
128 global_writefds = NULL;
129 global_xfds = NULL;
130
131 nfds = *pnfds;
132 /*
133 * First, TCP sockets
134 */
135 do_slowtimo = 0;
136 if (link_up) {
137 /*
138 * *_slowtimo needs calling if there are IP fragments
139 * in the fragment queue, or there are TCP connections active
140 */
141 do_slowtimo = ((tcb.so_next != &tcb) ||
142 ((struct ipasfrag *)&ipq != (struct ipasfrag *)ipq.next));
143
144 for (so = tcb.so_next; so != &tcb; so = so_next) {
145 so_next = so->so_next;
146
147 /*
148 * See if we need a tcp_fasttimo
149 */
150 if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK)
151 time_fasttimo = curtime; /* Flag when we want a fasttimo */
152
153 /*
154 * NOFDREF can include still connecting to local-host,
155 * newly socreated() sockets etc. Don't want to select these.
156 */
157 if (so->so_state & SS_NOFDREF || so->s == -1)
158 continue;
159
160 /*
161 * Set for reading sockets which are accepting
162 */
163 if (so->so_state & SS_FACCEPTCONN) {
164 FD_SET(so->s, readfds);
165 UPD_NFDS(so->s);
166 continue;
167 }
168
169 /*
170 * Set for writing sockets which are connecting
171 */
172 if (so->so_state & SS_ISFCONNECTING) {
173 FD_SET(so->s, writefds);
174 UPD_NFDS(so->s);
175 continue;
176 }
177
178 /*
179 * Set for writing if we are connected, can send more, and
180 * we have something to send
181 */
182 if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
183 FD_SET(so->s, writefds);
184 UPD_NFDS(so->s);
185 }
186
187 /*
188 * Set for reading (and urgent data) if we are connected, can
189 * receive more, and we have room for it XXX /2 ?
190 */
191 if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
192 FD_SET(so->s, readfds);
193 FD_SET(so->s, xfds);
194 UPD_NFDS(so->s);
195 }
196 }
197
198 /*
199 * UDP sockets
200 */
201 for (so = udb.so_next; so != &udb; so = so_next) {
202 so_next = so->so_next;
203
204 /*
205 * See if it's timed out
206 */
207 if (so->so_expire) {
208 if (so->so_expire <= curtime) {
209 udp_detach(so);
210 continue;
211 } else
212 do_slowtimo = 1; /* Let socket expire */
213 }
214
215 /*
216 * When UDP packets are received from over the
217 * link, they're sendto()'d straight away, so
218 * no need for setting for writing
219 * Limit the number of packets queued by this session
220 * to 4. Note that even though we try and limit this
221 * to 4 packets, the session could have more queued
222 * if the packets needed to be fragmented
223 * (XXX <= 4 ?)
224 */
225 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
226 FD_SET(so->s, readfds);
227 UPD_NFDS(so->s);
228 }
229 }
230 }
231
232 /*
233 * Setup timeout to use minimum CPU usage, especially when idle
234 */
235
236 /*
237 * First, see the timeout needed by *timo
238 */
239 timeout.tv_sec = 0;
240 timeout.tv_usec = -1;
241 /*
242 * If a slowtimo is needed, set timeout to 500ms from the last
243 * slow timeout. If a fast timeout is needed, set timeout within
244 * 200ms of when it was requested.
245 */
246 if (do_slowtimo) {
247 /* XXX + 10000 because some select()'s aren't that accurate */
248 timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000;
249 if (timeout.tv_usec < 0)
250 timeout.tv_usec = 0;
251 else if (timeout.tv_usec > 510000)
252 timeout.tv_usec = 510000;
253
254 /* Can only fasttimo if we also slowtimo */
255 if (time_fasttimo) {
256 tmp_time = (200 - (curtime - time_fasttimo)) * 1000;
257 if (tmp_time < 0)
258 tmp_time = 0;
259
260 /* Choose the smallest of the 2 */
261 if (tmp_time < timeout.tv_usec)
262 timeout.tv_usec = (u_int)tmp_time;
263 }
264 }
265 *pnfds = nfds;
266}
267
268void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds)
269{
270 struct socket *so, *so_next;
271 int ret;
272
273 global_readfds = readfds;
274 global_writefds = writefds;
275 global_xfds = xfds;
276
277 /* Update time */
278 updtime();
279
280 /*
281 * See if anything has timed out
282 */
283 if (link_up) {
284 if (time_fasttimo && ((curtime - time_fasttimo) >= 199)) {
285 tcp_fasttimo();
286 time_fasttimo = 0;
287 }
288 if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) {
289 ip_slowtimo();
290 tcp_slowtimo();
291 last_slowtimo = curtime;
292 }
293 }
294
295 /*
296 * Check sockets
297 */
298 if (link_up) {
299 /*
300 * Check TCP sockets
301 */
302 for (so = tcb.so_next; so != &tcb; so = so_next) {
303 so_next = so->so_next;
304
305 /*
306 * FD_ISSET is meaningless on these sockets
307 * (and they can crash the program)
308 */
309 if (so->so_state & SS_NOFDREF || so->s == -1)
310 continue;
311
312 /*
313 * Check for URG data
314 * This will soread as well, so no need to
315 * test for readfds below if this succeeds
316 */
317 if (FD_ISSET(so->s, xfds))
318 sorecvoob(so);
319 /*
320 * Check sockets for reading
321 */
322 else if (FD_ISSET(so->s, readfds)) {
323 /*
324 * Check for incoming connections
325 */
326 if (so->so_state & SS_FACCEPTCONN) {
327 tcp_connect(so);
328 continue;
329 } /* else */
330 ret = soread(so);
331
332 /* Output it if we read something */
333 if (ret > 0)
334 tcp_output(sototcpcb(so));
335 }
336
337 /*
338 * Check sockets for writing
339 */
340 if (FD_ISSET(so->s, writefds)) {
341 /*
342 * Check for non-blocking, still-connecting sockets
343 */
344 if (so->so_state & SS_ISFCONNECTING) {
345 /* Connected */
346 so->so_state &= ~SS_ISFCONNECTING;
347
348 ret = write(so->s, &ret, 0);
349 if (ret < 0) {
350 /* XXXXX Must fix, zero bytes is a NOP */
351 if (errno == EAGAIN || errno == EWOULDBLOCK ||
352 errno == EINPROGRESS || errno == ENOTCONN)
353 continue;
354
355 /* else failed */
356 so->so_state = SS_NOFDREF;
357 }
358 /* else so->so_state &= ~SS_ISFCONNECTING; */
359
360 /*
361 * Continue tcp_input
362 */
363 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so);
364 /* continue; */
365 } else
366 ret = sowrite(so);
367 /*
368 * XXXXX If we wrote something (a lot), there
369 * could be a need for a window update.
370 * In the worst case, the remote will send
371 * a window probe to get things going again
372 */
373 }
374
375 /*
376 * Probe a still-connecting, non-blocking socket
377 * to check if it's still alive
378 */
379#ifdef PROBE_CONN
380 if (so->so_state & SS_ISFCONNECTING) {
381 ret = read(so->s, (char *)&ret, 0);
382
383 if (ret < 0) {
384 /* XXX */
385 if (errno == EAGAIN || errno == EWOULDBLOCK ||
386 errno == EINPROGRESS || errno == ENOTCONN)
387 continue; /* Still connecting, continue */
388
389 /* else failed */
390 so->so_state = SS_NOFDREF;
391
392 /* tcp_input will take care of it */
393 } else {
394 ret = write(so->s, &ret, 0);
395 if (ret < 0) {
396 /* XXX */
397 if (errno == EAGAIN || errno == EWOULDBLOCK ||
398 errno == EINPROGRESS || errno == ENOTCONN)
399 continue;
400 /* else failed */
401 so->so_state = SS_NOFDREF;
402 } else
403 so->so_state &= ~SS_ISFCONNECTING;
404
405 }
406 tcp_input((struct mbuf *)NULL, sizeof(struct ip),so);
407 } /* SS_ISFCONNECTING */
408#endif
409 }
410
411 /*
412 * Now UDP sockets.
413 * Incoming packets are sent straight away, they're not buffered.
414 * Incoming UDP data isn't buffered either.
415 */
416 for (so = udb.so_next; so != &udb; so = so_next) {
417 so_next = so->so_next;
418
419 if (so->s != -1 && FD_ISSET(so->s, readfds)) {
420 sorecvfrom(so);
421 }
422 }
423 }
424
425 /*
426 * See if we can start outputting
427 */
428 if (if_queued && link_up)
429 if_start();
430}
431
432#define ETH_ALEN 6
433#define ETH_HLEN 14
434
435#define ETH_P_IP 0x0800 /* Internet Protocol packet */
436#define ETH_P_ARP 0x0806 /* Address Resolution packet */
437
438#define ARPOP_REQUEST 1 /* ARP request */
439#define ARPOP_REPLY 2 /* ARP reply */
440
441struct ethhdr
442{
443 unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
444 unsigned char h_source[ETH_ALEN]; /* source ether addr */
445 unsigned short h_proto; /* packet type ID field */
446};
447
448struct arphdr
449{
450 unsigned short ar_hrd; /* format of hardware address */
451 unsigned short ar_pro; /* format of protocol address */
452 unsigned char ar_hln; /* length of hardware address */
453 unsigned char ar_pln; /* length of protocol address */
454 unsigned short ar_op; /* ARP opcode (command) */
455
456 /*
457 * Ethernet looks like this : This bit is variable sized however...
458 */
459 unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
460 unsigned char ar_sip[4]; /* sender IP address */
461 unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
462 unsigned char ar_tip[4]; /* target IP address */
463};
464
465void arp_input(const uint8_t *pkt, int pkt_len)
466{
467 struct ethhdr *eh = (struct ethhdr *)pkt;
468 struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN);
469 uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)];
470 struct ethhdr *reh = (struct ethhdr *)arp_reply;
471 struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN);
472 int ar_op;
473
474 ar_op = ntohs(ah->ar_op);
475 switch(ar_op) {
476 case ARPOP_REQUEST:
477 if (!memcmp(ah->ar_tip, &special_addr, 3) &&
478 (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS)) {
479
480 /* XXX: make an ARP request to have the client address */
481 memcpy(client_ethaddr, eh->h_source, ETH_ALEN);
482
483 /* ARP request for alias/dns mac address */
484 memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
485 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1);
486 reh->h_source[5] = ah->ar_tip[3];
487 reh->h_proto = htons(ETH_P_ARP);
488
489 rah->ar_hrd = htons(1);
490 rah->ar_pro = htons(ETH_P_IP);
491 rah->ar_hln = ETH_ALEN;
492 rah->ar_pln = 4;
493 rah->ar_op = htons(ARPOP_REPLY);
494 memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
495 memcpy(rah->ar_sip, ah->ar_tip, 4);
496 memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
497 memcpy(rah->ar_tip, ah->ar_sip, 4);
498 slirp_output(arp_reply, sizeof(arp_reply));
499 }
500 break;
501 default:
502 break;
503 }
504}
505
506void slirp_input(const uint8_t *pkt, int pkt_len)
507{
508 struct mbuf *m;
509 int proto;
510
511 if (pkt_len < ETH_HLEN)
512 return;
513
514 proto = ntohs(*(uint16_t *)(pkt + 12));
515 switch(proto) {
516 case ETH_P_ARP:
517 arp_input(pkt, pkt_len);
518 break;
519 case ETH_P_IP:
520 m = m_get();
521 if (!m)
522 return;
523 m->m_len = pkt_len;
524 memcpy(m->m_data, pkt, pkt_len);
525
526 m->m_data += ETH_HLEN;
527 m->m_len -= ETH_HLEN;
528
529 ip_input(m);
530 break;
531 default:
532 break;
533 }
534}
535
536/* output the IP packet to the ethernet device */
537void if_encap(const uint8_t *ip_data, int ip_data_len)
538{
539 uint8_t buf[1600];
540 struct ethhdr *eh = (struct ethhdr *)buf;
541
542 if (ip_data_len + ETH_HLEN > sizeof(buf))
543 return;
544
545 memcpy(eh->h_dest, client_ethaddr, ETH_ALEN);
546 memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1);
547 eh->h_source[5] = CTL_ALIAS;
548 eh->h_proto = htons(ETH_P_IP);
549 memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len);
550 slirp_output(buf, ip_data_len + ETH_HLEN);
551}