]> git.proxmox.com Git - mirror_qemu.git/blame - slirp/slirp.c
initial user mode network support
[mirror_qemu.git] / slirp / slirp.c
CommitLineData
f0cbd3ec
FB
1#include "slirp.h"
2
3/* host address */
4struct in_addr our_addr;
5/* host dns address */
6struct in_addr dns_addr;
7/* host loopback address */
8struct in_addr loopback_addr;
9
10/* address for slirp virtual addresses */
11struct in_addr special_addr;
12
13const uint8_t special_ethaddr[6] = {
14 0x52, 0x54, 0x00, 0x12, 0x35, 0x00
15};
16
17uint8_t client_ethaddr[6];
18
19int do_slowtimo;
20int link_up;
21struct timeval tt;
22FILE *lfd;
23
24/* XXX: suppress those select globals */
25fd_set *global_readfds, *global_writefds, *global_xfds;
26
27#ifdef _WIN32
28
29static int get_dns_addr(struct in_addr *pdns_addr)
30{
31 /* XXX: add it */
32 return -1;
33}
34
35#else
36
37static int get_dns_addr(struct in_addr *pdns_addr)
38{
39 char buff[512];
40 char buff2[256];
41 FILE *f;
42 int found = 0;
43 struct in_addr tmp_addr;
44
45 f = fopen("/etc/resolv.conf", "r");
46 if (!f)
47 return -1;
48
49 lprint("IP address of your DNS(s): ");
50 while (fgets(buff, 512, f) != NULL) {
51 if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
52 if (!inet_aton(buff2, &tmp_addr))
53 continue;
54 if (tmp_addr.s_addr == loopback_addr.s_addr)
55 tmp_addr = our_addr;
56 /* If it's the first one, set it to dns_addr */
57 if (!found)
58 *pdns_addr = tmp_addr;
59 else
60 lprint(", ");
61 if (++found > 3) {
62 lprint("(more)");
63 break;
64 } else
65 lprint("%s", inet_ntoa(tmp_addr));
66 }
67 }
68 if (!found)
69 return -1;
70 return 0;
71}
72
73#endif
74
75void slirp_init(void)
76{
77 debug_init("/tmp/slirp.log", DEBUG_DEFAULT);
78
79 link_up = 1;
80
81 if_init();
82 ip_init();
83
84 /* Initialise mbufs *after* setting the MTU */
85 m_init();
86
87 /* set default addresses */
88 getouraddr();
89 inet_aton("127.0.0.1", &loopback_addr);
90
91 if (get_dns_addr(&dns_addr) < 0) {
92 fprintf(stderr, "Could not get DNS address\n");
93 exit(1);
94 }
95
96 inet_aton(CTL_SPECIAL, &special_addr);
97}
98
99#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
100#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
101#define UPD_NFDS(x) if (nfds < (x)) nfds = (x)
102
103/*
104 * curtime kept to an accuracy of 1ms
105 */
106static void updtime(void)
107{
108 gettimeofday(&tt, 0);
109
110 curtime = (u_int)tt.tv_sec * (u_int)1000;
111 curtime += (u_int)tt.tv_usec / (u_int)1000;
112
113 if ((tt.tv_usec % 1000) >= 500)
114 curtime++;
115}
116
117void slirp_select_fill(int *pnfds,
118 fd_set *readfds, fd_set *writefds, fd_set *xfds)
119{
120 struct socket *so, *so_next;
121 struct timeval timeout;
122 int nfds;
123 int tmp_time;
124
125 /* fail safe */
126 global_readfds = NULL;
127 global_writefds = NULL;
128 global_xfds = NULL;
129
130 nfds = *pnfds;
131 /*
132 * First, TCP sockets
133 */
134 do_slowtimo = 0;
135 if (link_up) {
136 /*
137 * *_slowtimo needs calling if there are IP fragments
138 * in the fragment queue, or there are TCP connections active
139 */
140 do_slowtimo = ((tcb.so_next != &tcb) ||
141 ((struct ipasfrag *)&ipq != (struct ipasfrag *)ipq.next));
142
143 for (so = tcb.so_next; so != &tcb; so = so_next) {
144 so_next = so->so_next;
145
146 /*
147 * See if we need a tcp_fasttimo
148 */
149 if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK)
150 time_fasttimo = curtime; /* Flag when we want a fasttimo */
151
152 /*
153 * NOFDREF can include still connecting to local-host,
154 * newly socreated() sockets etc. Don't want to select these.
155 */
156 if (so->so_state & SS_NOFDREF || so->s == -1)
157 continue;
158
159 /*
160 * Set for reading sockets which are accepting
161 */
162 if (so->so_state & SS_FACCEPTCONN) {
163 FD_SET(so->s, readfds);
164 UPD_NFDS(so->s);
165 continue;
166 }
167
168 /*
169 * Set for writing sockets which are connecting
170 */
171 if (so->so_state & SS_ISFCONNECTING) {
172 FD_SET(so->s, writefds);
173 UPD_NFDS(so->s);
174 continue;
175 }
176
177 /*
178 * Set for writing if we are connected, can send more, and
179 * we have something to send
180 */
181 if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
182 FD_SET(so->s, writefds);
183 UPD_NFDS(so->s);
184 }
185
186 /*
187 * Set for reading (and urgent data) if we are connected, can
188 * receive more, and we have room for it XXX /2 ?
189 */
190 if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
191 FD_SET(so->s, readfds);
192 FD_SET(so->s, xfds);
193 UPD_NFDS(so->s);
194 }
195 }
196
197 /*
198 * UDP sockets
199 */
200 for (so = udb.so_next; so != &udb; so = so_next) {
201 so_next = so->so_next;
202
203 /*
204 * See if it's timed out
205 */
206 if (so->so_expire) {
207 if (so->so_expire <= curtime) {
208 udp_detach(so);
209 continue;
210 } else
211 do_slowtimo = 1; /* Let socket expire */
212 }
213
214 /*
215 * When UDP packets are received from over the
216 * link, they're sendto()'d straight away, so
217 * no need for setting for writing
218 * Limit the number of packets queued by this session
219 * to 4. Note that even though we try and limit this
220 * to 4 packets, the session could have more queued
221 * if the packets needed to be fragmented
222 * (XXX <= 4 ?)
223 */
224 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
225 FD_SET(so->s, readfds);
226 UPD_NFDS(so->s);
227 }
228 }
229 }
230
231 /*
232 * Setup timeout to use minimum CPU usage, especially when idle
233 */
234
235 /*
236 * First, see the timeout needed by *timo
237 */
238 timeout.tv_sec = 0;
239 timeout.tv_usec = -1;
240 /*
241 * If a slowtimo is needed, set timeout to 500ms from the last
242 * slow timeout. If a fast timeout is needed, set timeout within
243 * 200ms of when it was requested.
244 */
245 if (do_slowtimo) {
246 /* XXX + 10000 because some select()'s aren't that accurate */
247 timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000;
248 if (timeout.tv_usec < 0)
249 timeout.tv_usec = 0;
250 else if (timeout.tv_usec > 510000)
251 timeout.tv_usec = 510000;
252
253 /* Can only fasttimo if we also slowtimo */
254 if (time_fasttimo) {
255 tmp_time = (200 - (curtime - time_fasttimo)) * 1000;
256 if (tmp_time < 0)
257 tmp_time = 0;
258
259 /* Choose the smallest of the 2 */
260 if (tmp_time < timeout.tv_usec)
261 timeout.tv_usec = (u_int)tmp_time;
262 }
263 }
264 *pnfds = nfds;
265}
266
267void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds)
268{
269 struct socket *so, *so_next;
270 int ret;
271
272 global_readfds = readfds;
273 global_writefds = writefds;
274 global_xfds = xfds;
275
276 /* Update time */
277 updtime();
278
279 /*
280 * See if anything has timed out
281 */
282 if (link_up) {
283 if (time_fasttimo && ((curtime - time_fasttimo) >= 199)) {
284 tcp_fasttimo();
285 time_fasttimo = 0;
286 }
287 if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) {
288 ip_slowtimo();
289 tcp_slowtimo();
290 last_slowtimo = curtime;
291 }
292 }
293
294 /*
295 * Check sockets
296 */
297 if (link_up) {
298 /*
299 * Check TCP sockets
300 */
301 for (so = tcb.so_next; so != &tcb; so = so_next) {
302 so_next = so->so_next;
303
304 /*
305 * FD_ISSET is meaningless on these sockets
306 * (and they can crash the program)
307 */
308 if (so->so_state & SS_NOFDREF || so->s == -1)
309 continue;
310
311 /*
312 * Check for URG data
313 * This will soread as well, so no need to
314 * test for readfds below if this succeeds
315 */
316 if (FD_ISSET(so->s, xfds))
317 sorecvoob(so);
318 /*
319 * Check sockets for reading
320 */
321 else if (FD_ISSET(so->s, readfds)) {
322 /*
323 * Check for incoming connections
324 */
325 if (so->so_state & SS_FACCEPTCONN) {
326 tcp_connect(so);
327 continue;
328 } /* else */
329 ret = soread(so);
330
331 /* Output it if we read something */
332 if (ret > 0)
333 tcp_output(sototcpcb(so));
334 }
335
336 /*
337 * Check sockets for writing
338 */
339 if (FD_ISSET(so->s, writefds)) {
340 /*
341 * Check for non-blocking, still-connecting sockets
342 */
343 if (so->so_state & SS_ISFCONNECTING) {
344 /* Connected */
345 so->so_state &= ~SS_ISFCONNECTING;
346
347 ret = write(so->s, &ret, 0);
348 if (ret < 0) {
349 /* XXXXX Must fix, zero bytes is a NOP */
350 if (errno == EAGAIN || errno == EWOULDBLOCK ||
351 errno == EINPROGRESS || errno == ENOTCONN)
352 continue;
353
354 /* else failed */
355 so->so_state = SS_NOFDREF;
356 }
357 /* else so->so_state &= ~SS_ISFCONNECTING; */
358
359 /*
360 * Continue tcp_input
361 */
362 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so);
363 /* continue; */
364 } else
365 ret = sowrite(so);
366 /*
367 * XXXXX If we wrote something (a lot), there
368 * could be a need for a window update.
369 * In the worst case, the remote will send
370 * a window probe to get things going again
371 */
372 }
373
374 /*
375 * Probe a still-connecting, non-blocking socket
376 * to check if it's still alive
377 */
378#ifdef PROBE_CONN
379 if (so->so_state & SS_ISFCONNECTING) {
380 ret = read(so->s, (char *)&ret, 0);
381
382 if (ret < 0) {
383 /* XXX */
384 if (errno == EAGAIN || errno == EWOULDBLOCK ||
385 errno == EINPROGRESS || errno == ENOTCONN)
386 continue; /* Still connecting, continue */
387
388 /* else failed */
389 so->so_state = SS_NOFDREF;
390
391 /* tcp_input will take care of it */
392 } else {
393 ret = write(so->s, &ret, 0);
394 if (ret < 0) {
395 /* XXX */
396 if (errno == EAGAIN || errno == EWOULDBLOCK ||
397 errno == EINPROGRESS || errno == ENOTCONN)
398 continue;
399 /* else failed */
400 so->so_state = SS_NOFDREF;
401 } else
402 so->so_state &= ~SS_ISFCONNECTING;
403
404 }
405 tcp_input((struct mbuf *)NULL, sizeof(struct ip),so);
406 } /* SS_ISFCONNECTING */
407#endif
408 }
409
410 /*
411 * Now UDP sockets.
412 * Incoming packets are sent straight away, they're not buffered.
413 * Incoming UDP data isn't buffered either.
414 */
415 for (so = udb.so_next; so != &udb; so = so_next) {
416 so_next = so->so_next;
417
418 if (so->s != -1 && FD_ISSET(so->s, readfds)) {
419 sorecvfrom(so);
420 }
421 }
422 }
423
424 /*
425 * See if we can start outputting
426 */
427 if (if_queued && link_up)
428 if_start();
429}
430
431#define ETH_ALEN 6
432#define ETH_HLEN 14
433
434#define ETH_P_IP 0x0800 /* Internet Protocol packet */
435#define ETH_P_ARP 0x0806 /* Address Resolution packet */
436
437#define ARPOP_REQUEST 1 /* ARP request */
438#define ARPOP_REPLY 2 /* ARP reply */
439
440struct ethhdr
441{
442 unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
443 unsigned char h_source[ETH_ALEN]; /* source ether addr */
444 unsigned short h_proto; /* packet type ID field */
445};
446
447struct arphdr
448{
449 unsigned short ar_hrd; /* format of hardware address */
450 unsigned short ar_pro; /* format of protocol address */
451 unsigned char ar_hln; /* length of hardware address */
452 unsigned char ar_pln; /* length of protocol address */
453 unsigned short ar_op; /* ARP opcode (command) */
454
455 /*
456 * Ethernet looks like this : This bit is variable sized however...
457 */
458 unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
459 unsigned char ar_sip[4]; /* sender IP address */
460 unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
461 unsigned char ar_tip[4]; /* target IP address */
462};
463
464void arp_input(const uint8_t *pkt, int pkt_len)
465{
466 struct ethhdr *eh = (struct ethhdr *)pkt;
467 struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN);
468 uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)];
469 struct ethhdr *reh = (struct ethhdr *)arp_reply;
470 struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN);
471 int ar_op;
472
473 ar_op = ntohs(ah->ar_op);
474 switch(ar_op) {
475 case ARPOP_REQUEST:
476 if (!memcmp(ah->ar_tip, &special_addr, 3) &&
477 (ah->ar_tip[3] == CTL_DNS || ah->ar_tip[3] == CTL_ALIAS)) {
478
479 /* XXX: make an ARP request to have the client address */
480 memcpy(client_ethaddr, eh->h_source, ETH_ALEN);
481
482 /* ARP request for alias/dns mac address */
483 memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
484 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1);
485 reh->h_source[5] = ah->ar_tip[3];
486 reh->h_proto = htons(ETH_P_ARP);
487
488 rah->ar_hrd = htons(1);
489 rah->ar_pro = htons(ETH_P_IP);
490 rah->ar_hln = ETH_ALEN;
491 rah->ar_pln = 4;
492 rah->ar_op = htons(ARPOP_REPLY);
493 memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
494 memcpy(rah->ar_sip, ah->ar_tip, 4);
495 memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
496 memcpy(rah->ar_tip, ah->ar_sip, 4);
497 slirp_output(arp_reply, sizeof(arp_reply));
498 }
499 break;
500 default:
501 break;
502 }
503}
504
505void slirp_input(const uint8_t *pkt, int pkt_len)
506{
507 struct mbuf *m;
508 int proto;
509
510 if (pkt_len < ETH_HLEN)
511 return;
512
513 proto = ntohs(*(uint16_t *)(pkt + 12));
514 switch(proto) {
515 case ETH_P_ARP:
516 arp_input(pkt, pkt_len);
517 break;
518 case ETH_P_IP:
519 m = m_get();
520 if (!m)
521 return;
522 m->m_len = pkt_len;
523 memcpy(m->m_data, pkt, pkt_len);
524
525 m->m_data += ETH_HLEN;
526 m->m_len -= ETH_HLEN;
527
528 ip_input(m);
529 break;
530 default:
531 break;
532 }
533}
534
535/* output the IP packet to the ethernet device */
536void if_encap(const uint8_t *ip_data, int ip_data_len)
537{
538 uint8_t buf[1600];
539 struct ethhdr *eh = (struct ethhdr *)buf;
540
541 if (ip_data_len + ETH_HLEN > sizeof(buf))
542 return;
543
544 memcpy(eh->h_dest, client_ethaddr, ETH_ALEN);
545 memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1);
546 eh->h_source[5] = CTL_ALIAS;
547 eh->h_proto = htons(ETH_P_IP);
548 memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len);
549 slirp_output(buf, ip_data_len + ETH_HLEN);
550}