]>
Commit | Line | Data |
---|---|---|
b92e5a22 FB |
1 | /* |
2 | * Software MMU support | |
5fafdf24 | 3 | * |
efbf29b6 BS |
4 | * Generate helpers used by TCG for qemu_ld/st ops and code load |
5 | * functions. | |
6 | * | |
7 | * Included from target op helpers and exec.c. | |
8 | * | |
b92e5a22 FB |
9 | * Copyright (c) 2003 Fabrice Bellard |
10 | * | |
11 | * This library is free software; you can redistribute it and/or | |
12 | * modify it under the terms of the GNU Lesser General Public | |
13 | * License as published by the Free Software Foundation; either | |
14 | * version 2 of the License, or (at your option) any later version. | |
15 | * | |
16 | * This library is distributed in the hope that it will be useful, | |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
19 | * Lesser General Public License for more details. | |
20 | * | |
21 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 22 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
b92e5a22 | 23 | */ |
b92e5a22 FB |
24 | #if DATA_SIZE == 8 |
25 | #define SUFFIX q | |
701e3a5c | 26 | #define LSUFFIX q |
c8f94df5 | 27 | #define SDATA_TYPE int64_t |
dc9a353c | 28 | #define DATA_TYPE uint64_t |
b92e5a22 FB |
29 | #elif DATA_SIZE == 4 |
30 | #define SUFFIX l | |
701e3a5c | 31 | #define LSUFFIX l |
c8f94df5 | 32 | #define SDATA_TYPE int32_t |
dc9a353c | 33 | #define DATA_TYPE uint32_t |
b92e5a22 FB |
34 | #elif DATA_SIZE == 2 |
35 | #define SUFFIX w | |
701e3a5c | 36 | #define LSUFFIX uw |
c8f94df5 | 37 | #define SDATA_TYPE int16_t |
dc9a353c | 38 | #define DATA_TYPE uint16_t |
b92e5a22 FB |
39 | #elif DATA_SIZE == 1 |
40 | #define SUFFIX b | |
701e3a5c | 41 | #define LSUFFIX ub |
c8f94df5 | 42 | #define SDATA_TYPE int8_t |
dc9a353c | 43 | #define DATA_TYPE uint8_t |
b92e5a22 FB |
44 | #else |
45 | #error unsupported data size | |
46 | #endif | |
47 | ||
c8f94df5 RH |
48 | |
49 | /* For the benefit of TCG generated code, we want to avoid the complication | |
50 | of ABI-specific return type promotion and always return a value extended | |
51 | to the register size of the host. This is tcg_target_long, except in the | |
52 | case of a 32-bit host and 64-bit data, and for that we always have | |
53 | uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ | |
54 | #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 | |
55 | # define WORD_TYPE DATA_TYPE | |
56 | # define USUFFIX SUFFIX | |
57 | #else | |
58 | # define WORD_TYPE tcg_target_ulong | |
59 | # define USUFFIX glue(u, SUFFIX) | |
60 | # define SSUFFIX glue(s, SUFFIX) | |
61 | #endif | |
62 | ||
b769d8fe | 63 | #ifdef SOFTMMU_CODE_ACCESS |
55e94093 | 64 | #define READ_ACCESS_TYPE MMU_INST_FETCH |
84b7b8e7 | 65 | #define ADDR_READ addr_code |
b769d8fe | 66 | #else |
55e94093 | 67 | #define READ_ACCESS_TYPE MMU_DATA_LOAD |
84b7b8e7 | 68 | #define ADDR_READ addr_read |
b769d8fe FB |
69 | #endif |
70 | ||
867b3201 RH |
71 | #if DATA_SIZE == 8 |
72 | # define BSWAP(X) bswap64(X) | |
73 | #elif DATA_SIZE == 4 | |
74 | # define BSWAP(X) bswap32(X) | |
75 | #elif DATA_SIZE == 2 | |
76 | # define BSWAP(X) bswap16(X) | |
77 | #else | |
78 | # define BSWAP(X) (X) | |
79 | #endif | |
80 | ||
867b3201 RH |
81 | #if DATA_SIZE == 1 |
82 | # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) | |
83 | # define helper_be_ld_name helper_le_ld_name | |
84 | # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) | |
85 | # define helper_be_lds_name helper_le_lds_name | |
86 | # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) | |
87 | # define helper_be_st_name helper_le_st_name | |
88 | #else | |
89 | # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) | |
90 | # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) | |
91 | # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) | |
92 | # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) | |
93 | # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) | |
94 | # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) | |
95 | #endif | |
96 | ||
0f590e74 | 97 | #ifndef SOFTMMU_CODE_ACCESS |
89c33337 | 98 | static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, |
82a45b96 | 99 | size_t mmu_idx, size_t index, |
2e70f6ef | 100 | target_ulong addr, |
20503968 | 101 | uintptr_t retaddr) |
b92e5a22 | 102 | { |
82a45b96 RH |
103 | CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; |
104 | return io_readx(env, iotlbentry, addr, retaddr, DATA_SIZE); | |
b92e5a22 | 105 | } |
0f590e74 | 106 | #endif |
b92e5a22 | 107 | |
3972ef6f RH |
108 | WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, |
109 | TCGMemOpIdx oi, uintptr_t retaddr) | |
b92e5a22 | 110 | { |
3972ef6f | 111 | unsigned mmu_idx = get_mmuidx(oi); |
aac1fb05 RH |
112 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
113 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
85aa8081 | 114 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
aac1fb05 | 115 | uintptr_t haddr; |
867b3201 | 116 | DATA_TYPE res; |
3b46e624 | 117 | |
85aa8081 | 118 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
119 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
120 | mmu_idx, retaddr); | |
121 | } | |
122 | ||
aac1fb05 RH |
123 | /* If the TLB entry is for a different page, reload and try again. */ |
124 | if ((addr & TARGET_PAGE_MASK) | |
125 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 126 | if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { |
88e89a57 XT |
127 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
128 | mmu_idx, retaddr); | |
129 | } | |
aac1fb05 RH |
130 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
131 | } | |
132 | ||
133 | /* Handle an IO access. */ | |
134 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
aac1fb05 RH |
135 | if ((addr & (DATA_SIZE - 1)) != 0) { |
136 | goto do_unaligned_access; | |
b92e5a22 | 137 | } |
867b3201 RH |
138 | |
139 | /* ??? Note that the io helpers always read data in the target | |
140 | byte ordering. We should push the LE/BE request down into io. */ | |
82a45b96 | 141 | res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr); |
867b3201 RH |
142 | res = TGT_LE(res); |
143 | return res; | |
aac1fb05 RH |
144 | } |
145 | ||
146 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
147 | if (DATA_SIZE > 1 | |
148 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
149 | >= TARGET_PAGE_SIZE)) { | |
150 | target_ulong addr1, addr2; | |
867b3201 | 151 | DATA_TYPE res1, res2; |
aac1fb05 RH |
152 | unsigned shift; |
153 | do_unaligned_access: | |
aac1fb05 RH |
154 | addr1 = addr & ~(DATA_SIZE - 1); |
155 | addr2 = addr1 + DATA_SIZE; | |
01ecaf43 RH |
156 | res1 = helper_le_ld_name(env, addr1, oi, retaddr); |
157 | res2 = helper_le_ld_name(env, addr2, oi, retaddr); | |
aac1fb05 | 158 | shift = (addr & (DATA_SIZE - 1)) * 8; |
867b3201 RH |
159 | |
160 | /* Little-endian combine. */ | |
aac1fb05 | 161 | res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); |
867b3201 RH |
162 | return res; |
163 | } | |
164 | ||
867b3201 RH |
165 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
166 | #if DATA_SIZE == 1 | |
167 | res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); | |
168 | #else | |
169 | res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); | |
170 | #endif | |
171 | return res; | |
172 | } | |
173 | ||
174 | #if DATA_SIZE > 1 | |
3972ef6f RH |
175 | WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, |
176 | TCGMemOpIdx oi, uintptr_t retaddr) | |
867b3201 | 177 | { |
3972ef6f | 178 | unsigned mmu_idx = get_mmuidx(oi); |
867b3201 RH |
179 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
180 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
85aa8081 | 181 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
867b3201 RH |
182 | uintptr_t haddr; |
183 | DATA_TYPE res; | |
184 | ||
85aa8081 | 185 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
186 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
187 | mmu_idx, retaddr); | |
188 | } | |
189 | ||
867b3201 RH |
190 | /* If the TLB entry is for a different page, reload and try again. */ |
191 | if ((addr & TARGET_PAGE_MASK) | |
192 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 193 | if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { |
88e89a57 XT |
194 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
195 | mmu_idx, retaddr); | |
196 | } | |
867b3201 RH |
197 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
198 | } | |
199 | ||
200 | /* Handle an IO access. */ | |
201 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
867b3201 RH |
202 | if ((addr & (DATA_SIZE - 1)) != 0) { |
203 | goto do_unaligned_access; | |
204 | } | |
867b3201 RH |
205 | |
206 | /* ??? Note that the io helpers always read data in the target | |
207 | byte ordering. We should push the LE/BE request down into io. */ | |
82a45b96 | 208 | res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr); |
867b3201 RH |
209 | res = TGT_BE(res); |
210 | return res; | |
211 | } | |
212 | ||
213 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
214 | if (DATA_SIZE > 1 | |
215 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
216 | >= TARGET_PAGE_SIZE)) { | |
217 | target_ulong addr1, addr2; | |
218 | DATA_TYPE res1, res2; | |
219 | unsigned shift; | |
220 | do_unaligned_access: | |
867b3201 RH |
221 | addr1 = addr & ~(DATA_SIZE - 1); |
222 | addr2 = addr1 + DATA_SIZE; | |
01ecaf43 RH |
223 | res1 = helper_be_ld_name(env, addr1, oi, retaddr); |
224 | res2 = helper_be_ld_name(env, addr2, oi, retaddr); | |
867b3201 RH |
225 | shift = (addr & (DATA_SIZE - 1)) * 8; |
226 | ||
227 | /* Big-endian combine. */ | |
228 | res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); | |
aac1fb05 RH |
229 | return res; |
230 | } | |
231 | ||
aac1fb05 | 232 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
867b3201 RH |
233 | res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); |
234 | return res; | |
b92e5a22 | 235 | } |
867b3201 | 236 | #endif /* DATA_SIZE > 1 */ |
b92e5a22 | 237 | |
b769d8fe FB |
238 | #ifndef SOFTMMU_CODE_ACCESS |
239 | ||
c8f94df5 RH |
240 | /* Provide signed versions of the load routines as well. We can of course |
241 | avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ | |
242 | #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS | |
867b3201 | 243 | WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, |
3972ef6f | 244 | TCGMemOpIdx oi, uintptr_t retaddr) |
867b3201 | 245 | { |
3972ef6f | 246 | return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); |
867b3201 RH |
247 | } |
248 | ||
249 | # if DATA_SIZE > 1 | |
250 | WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, | |
3972ef6f | 251 | TCGMemOpIdx oi, uintptr_t retaddr) |
c8f94df5 | 252 | { |
3972ef6f | 253 | return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); |
c8f94df5 | 254 | } |
867b3201 | 255 | # endif |
c8f94df5 RH |
256 | #endif |
257 | ||
89c33337 | 258 | static inline void glue(io_write, SUFFIX)(CPUArchState *env, |
82a45b96 | 259 | size_t mmu_idx, size_t index, |
b769d8fe | 260 | DATA_TYPE val, |
0f459d16 | 261 | target_ulong addr, |
20503968 | 262 | uintptr_t retaddr) |
b769d8fe | 263 | { |
82a45b96 RH |
264 | CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; |
265 | return io_writex(env, iotlbentry, val, addr, retaddr, DATA_SIZE); | |
b769d8fe | 266 | } |
b92e5a22 | 267 | |
867b3201 | 268 | void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, |
3972ef6f | 269 | TCGMemOpIdx oi, uintptr_t retaddr) |
b92e5a22 | 270 | { |
3972ef6f | 271 | unsigned mmu_idx = get_mmuidx(oi); |
aac1fb05 RH |
272 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
273 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
85aa8081 | 274 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
aac1fb05 | 275 | uintptr_t haddr; |
3b46e624 | 276 | |
85aa8081 | 277 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
278 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
279 | mmu_idx, retaddr); | |
280 | } | |
281 | ||
aac1fb05 RH |
282 | /* If the TLB entry is for a different page, reload and try again. */ |
283 | if ((addr & TARGET_PAGE_MASK) | |
284 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 285 | if (!VICTIM_TLB_HIT(addr_write, addr)) { |
55e94093 | 286 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
88e89a57 | 287 | } |
aac1fb05 RH |
288 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
289 | } | |
290 | ||
291 | /* Handle an IO access. */ | |
292 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
aac1fb05 RH |
293 | if ((addr & (DATA_SIZE - 1)) != 0) { |
294 | goto do_unaligned_access; | |
295 | } | |
867b3201 RH |
296 | |
297 | /* ??? Note that the io helpers always read data in the target | |
298 | byte ordering. We should push the LE/BE request down into io. */ | |
299 | val = TGT_LE(val); | |
82a45b96 | 300 | glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr); |
aac1fb05 RH |
301 | return; |
302 | } | |
303 | ||
304 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
305 | if (DATA_SIZE > 1 | |
306 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
307 | >= TARGET_PAGE_SIZE)) { | |
81daabaf SD |
308 | int i, index2; |
309 | target_ulong page2, tlb_addr2; | |
aac1fb05 | 310 | do_unaligned_access: |
81daabaf SD |
311 | /* Ensure the second page is in the TLB. Note that the first page |
312 | is already guaranteed to be filled, and that the second page | |
313 | cannot evict the first. */ | |
314 | page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; | |
315 | index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
316 | tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; | |
317 | if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) | |
318 | && !VICTIM_TLB_HIT(addr_write, page2)) { | |
319 | tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, | |
320 | mmu_idx, retaddr); | |
321 | } | |
322 | ||
323 | /* XXX: not efficient, but simple. */ | |
324 | /* This loop must go in the forward direction to avoid issues | |
325 | with self-modifying code in Windows 64-bit. */ | |
326 | for (i = 0; i < DATA_SIZE; ++i) { | |
867b3201 | 327 | /* Little-endian extract. */ |
aac1fb05 | 328 | uint8_t val8 = val >> (i * 8); |
867b3201 | 329 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
01ecaf43 | 330 | oi, retaddr); |
867b3201 RH |
331 | } |
332 | return; | |
333 | } | |
334 | ||
867b3201 RH |
335 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
336 | #if DATA_SIZE == 1 | |
337 | glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); | |
338 | #else | |
339 | glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); | |
a64d4718 | 340 | #endif |
867b3201 RH |
341 | } |
342 | ||
343 | #if DATA_SIZE > 1 | |
344 | void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, | |
3972ef6f | 345 | TCGMemOpIdx oi, uintptr_t retaddr) |
867b3201 | 346 | { |
3972ef6f | 347 | unsigned mmu_idx = get_mmuidx(oi); |
867b3201 RH |
348 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
349 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
85aa8081 | 350 | unsigned a_bits = get_alignment_bits(get_memop(oi)); |
867b3201 RH |
351 | uintptr_t haddr; |
352 | ||
85aa8081 | 353 | if (addr & ((1 << a_bits) - 1)) { |
1f00b27f SS |
354 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
355 | mmu_idx, retaddr); | |
356 | } | |
357 | ||
867b3201 RH |
358 | /* If the TLB entry is for a different page, reload and try again. */ |
359 | if ((addr & TARGET_PAGE_MASK) | |
360 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a390284b | 361 | if (!VICTIM_TLB_HIT(addr_write, addr)) { |
55e94093 | 362 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
88e89a57 | 363 | } |
867b3201 RH |
364 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
365 | } | |
366 | ||
367 | /* Handle an IO access. */ | |
368 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
867b3201 RH |
369 | if ((addr & (DATA_SIZE - 1)) != 0) { |
370 | goto do_unaligned_access; | |
371 | } | |
867b3201 RH |
372 | |
373 | /* ??? Note that the io helpers always read data in the target | |
374 | byte ordering. We should push the LE/BE request down into io. */ | |
375 | val = TGT_BE(val); | |
82a45b96 | 376 | glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr); |
867b3201 RH |
377 | return; |
378 | } | |
379 | ||
380 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
381 | if (DATA_SIZE > 1 | |
382 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
383 | >= TARGET_PAGE_SIZE)) { | |
81daabaf SD |
384 | int i, index2; |
385 | target_ulong page2, tlb_addr2; | |
867b3201 | 386 | do_unaligned_access: |
81daabaf SD |
387 | /* Ensure the second page is in the TLB. Note that the first page |
388 | is already guaranteed to be filled, and that the second page | |
389 | cannot evict the first. */ | |
390 | page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; | |
391 | index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
392 | tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; | |
393 | if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) | |
394 | && !VICTIM_TLB_HIT(addr_write, page2)) { | |
395 | tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, | |
396 | mmu_idx, retaddr); | |
397 | } | |
398 | ||
867b3201 | 399 | /* XXX: not efficient, but simple */ |
81daabaf SD |
400 | /* This loop must go in the forward direction to avoid issues |
401 | with self-modifying code. */ | |
402 | for (i = 0; i < DATA_SIZE; ++i) { | |
867b3201 RH |
403 | /* Big-endian extract. */ |
404 | uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); | |
aac1fb05 | 405 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
01ecaf43 | 406 | oi, retaddr); |
b92e5a22 | 407 | } |
aac1fb05 RH |
408 | return; |
409 | } | |
410 | ||
aac1fb05 | 411 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
867b3201 | 412 | glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); |
b92e5a22 | 413 | } |
867b3201 | 414 | #endif /* DATA_SIZE > 1 */ |
b769d8fe FB |
415 | #endif /* !defined(SOFTMMU_CODE_ACCESS) */ |
416 | ||
417 | #undef READ_ACCESS_TYPE | |
b92e5a22 FB |
418 | #undef DATA_TYPE |
419 | #undef SUFFIX | |
701e3a5c | 420 | #undef LSUFFIX |
b92e5a22 | 421 | #undef DATA_SIZE |
84b7b8e7 | 422 | #undef ADDR_READ |
c8f94df5 RH |
423 | #undef WORD_TYPE |
424 | #undef SDATA_TYPE | |
425 | #undef USUFFIX | |
426 | #undef SSUFFIX | |
867b3201 | 427 | #undef BSWAP |
867b3201 RH |
428 | #undef helper_le_ld_name |
429 | #undef helper_be_ld_name | |
430 | #undef helper_le_lds_name | |
431 | #undef helper_be_lds_name | |
432 | #undef helper_le_st_name | |
433 | #undef helper_be_st_name |