]> git.proxmox.com Git - mirror_qemu.git/blame - softmmu_template.h
hostmem: add properties for NUMA memory policy
[mirror_qemu.git] / softmmu_template.h
CommitLineData
b92e5a22
FB
1/*
2 * Software MMU support
5fafdf24 3 *
efbf29b6
BS
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
6 *
7 * Included from target op helpers and exec.c.
8 *
b92e5a22
FB
9 * Copyright (c) 2003 Fabrice Bellard
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
8167ee88 22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
b92e5a22 23 */
1de7afc9 24#include "qemu/timer.h"
77717094 25#include "exec/address-spaces.h"
022c62cb 26#include "exec/memory.h"
29e922b6 27
b92e5a22
FB
28#define DATA_SIZE (1 << SHIFT)
29
30#if DATA_SIZE == 8
31#define SUFFIX q
701e3a5c 32#define LSUFFIX q
c8f94df5 33#define SDATA_TYPE int64_t
dc9a353c 34#define DATA_TYPE uint64_t
b92e5a22
FB
35#elif DATA_SIZE == 4
36#define SUFFIX l
701e3a5c 37#define LSUFFIX l
c8f94df5 38#define SDATA_TYPE int32_t
dc9a353c 39#define DATA_TYPE uint32_t
b92e5a22
FB
40#elif DATA_SIZE == 2
41#define SUFFIX w
701e3a5c 42#define LSUFFIX uw
c8f94df5 43#define SDATA_TYPE int16_t
dc9a353c 44#define DATA_TYPE uint16_t
b92e5a22
FB
45#elif DATA_SIZE == 1
46#define SUFFIX b
701e3a5c 47#define LSUFFIX ub
c8f94df5 48#define SDATA_TYPE int8_t
dc9a353c 49#define DATA_TYPE uint8_t
b92e5a22
FB
50#else
51#error unsupported data size
52#endif
53
c8f94df5
RH
54
55/* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61# define WORD_TYPE DATA_TYPE
62# define USUFFIX SUFFIX
63#else
64# define WORD_TYPE tcg_target_ulong
65# define USUFFIX glue(u, SUFFIX)
66# define SSUFFIX glue(s, SUFFIX)
67#endif
68
b769d8fe
FB
69#ifdef SOFTMMU_CODE_ACCESS
70#define READ_ACCESS_TYPE 2
84b7b8e7 71#define ADDR_READ addr_code
b769d8fe
FB
72#else
73#define READ_ACCESS_TYPE 0
84b7b8e7 74#define ADDR_READ addr_read
b769d8fe
FB
75#endif
76
867b3201
RH
77#if DATA_SIZE == 8
78# define BSWAP(X) bswap64(X)
79#elif DATA_SIZE == 4
80# define BSWAP(X) bswap32(X)
81#elif DATA_SIZE == 2
82# define BSWAP(X) bswap16(X)
83#else
84# define BSWAP(X) (X)
85#endif
86
87#ifdef TARGET_WORDS_BIGENDIAN
88# define TGT_BE(X) (X)
89# define TGT_LE(X) BSWAP(X)
90#else
91# define TGT_BE(X) BSWAP(X)
92# define TGT_LE(X) (X)
93#endif
94
95#if DATA_SIZE == 1
96# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97# define helper_be_ld_name helper_le_ld_name
98# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99# define helper_be_lds_name helper_le_lds_name
100# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101# define helper_be_st_name helper_le_st_name
102#else
103# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109#endif
110
111#ifdef TARGET_WORDS_BIGENDIAN
112# define helper_te_ld_name helper_be_ld_name
113# define helper_te_st_name helper_be_st_name
114#else
115# define helper_te_ld_name helper_le_ld_name
116# define helper_te_st_name helper_le_st_name
117#endif
118
0f590e74 119#ifndef SOFTMMU_CODE_ACCESS
89c33337 120static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
a8170e5e 121 hwaddr physaddr,
2e70f6ef 122 target_ulong addr,
20503968 123 uintptr_t retaddr)
b92e5a22 124{
791af8c8 125 uint64_t val;
09daed84
EI
126 CPUState *cpu = ENV_GET_CPU(env);
127 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
37ec01d4 128
0f459d16 129 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
93afeade 130 cpu->mem_io_pc = retaddr;
99df7dce 131 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
90b40a69 132 cpu_io_recompile(cpu, retaddr);
2e70f6ef 133 }
b92e5a22 134
93afeade 135 cpu->mem_io_vaddr = addr;
791af8c8
PB
136 io_mem_read(mr, physaddr, &val, 1 << SHIFT);
137 return val;
b92e5a22 138}
0f590e74 139#endif
b92e5a22 140
e25c3887 141#ifdef SOFTMMU_CODE_ACCESS
867b3201 142static __attribute__((unused))
e25c3887 143#endif
867b3201
RH
144WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
145 uintptr_t retaddr)
b92e5a22 146{
aac1fb05
RH
147 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
148 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
149 uintptr_t haddr;
867b3201 150 DATA_TYPE res;
3b46e624 151
0f842f8a
RH
152 /* Adjust the given return address. */
153 retaddr -= GETPC_ADJ;
154
aac1fb05
RH
155 /* If the TLB entry is for a different page, reload and try again. */
156 if ((addr & TARGET_PAGE_MASK)
157 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
a64d4718 158#ifdef ALIGNED_ONLY
aac1fb05 159 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
160 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
161 mmu_idx, retaddr);
aac1fb05 162 }
a64d4718 163#endif
d5a11fef 164 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
aac1fb05
RH
165 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
166 }
167
168 /* Handle an IO access. */
169 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
170 hwaddr ioaddr;
171 if ((addr & (DATA_SIZE - 1)) != 0) {
172 goto do_unaligned_access;
b92e5a22 173 }
aac1fb05 174 ioaddr = env->iotlb[mmu_idx][index];
867b3201
RH
175
176 /* ??? Note that the io helpers always read data in the target
177 byte ordering. We should push the LE/BE request down into io. */
178 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
179 res = TGT_LE(res);
180 return res;
aac1fb05
RH
181 }
182
183 /* Handle slow unaligned access (it spans two pages or IO). */
184 if (DATA_SIZE > 1
185 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
186 >= TARGET_PAGE_SIZE)) {
187 target_ulong addr1, addr2;
867b3201 188 DATA_TYPE res1, res2;
aac1fb05
RH
189 unsigned shift;
190 do_unaligned_access:
a64d4718 191#ifdef ALIGNED_ONLY
93e22326
PB
192 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
193 mmu_idx, retaddr);
a64d4718 194#endif
aac1fb05
RH
195 addr1 = addr & ~(DATA_SIZE - 1);
196 addr2 = addr1 + DATA_SIZE;
0f842f8a
RH
197 /* Note the adjustment at the beginning of the function.
198 Undo that for the recursion. */
867b3201
RH
199 res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
200 res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
aac1fb05 201 shift = (addr & (DATA_SIZE - 1)) * 8;
867b3201
RH
202
203 /* Little-endian combine. */
aac1fb05 204 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
867b3201
RH
205 return res;
206 }
207
208 /* Handle aligned access or unaligned access in the same page. */
209#ifdef ALIGNED_ONLY
210 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
211 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
212 mmu_idx, retaddr);
867b3201
RH
213 }
214#endif
215
216 haddr = addr + env->tlb_table[mmu_idx][index].addend;
217#if DATA_SIZE == 1
218 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
219#else
220 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
221#endif
222 return res;
223}
224
225#if DATA_SIZE > 1
226#ifdef SOFTMMU_CODE_ACCESS
227static __attribute__((unused))
228#endif
229WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
230 uintptr_t retaddr)
231{
232 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
233 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
234 uintptr_t haddr;
235 DATA_TYPE res;
236
237 /* Adjust the given return address. */
238 retaddr -= GETPC_ADJ;
239
240 /* If the TLB entry is for a different page, reload and try again. */
241 if ((addr & TARGET_PAGE_MASK)
242 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
243#ifdef ALIGNED_ONLY
244 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
245 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
246 mmu_idx, retaddr);
867b3201
RH
247 }
248#endif
d5a11fef 249 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
867b3201
RH
250 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
251 }
252
253 /* Handle an IO access. */
254 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
255 hwaddr ioaddr;
256 if ((addr & (DATA_SIZE - 1)) != 0) {
257 goto do_unaligned_access;
258 }
259 ioaddr = env->iotlb[mmu_idx][index];
260
261 /* ??? Note that the io helpers always read data in the target
262 byte ordering. We should push the LE/BE request down into io. */
263 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
264 res = TGT_BE(res);
265 return res;
266 }
267
268 /* Handle slow unaligned access (it spans two pages or IO). */
269 if (DATA_SIZE > 1
270 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
271 >= TARGET_PAGE_SIZE)) {
272 target_ulong addr1, addr2;
273 DATA_TYPE res1, res2;
274 unsigned shift;
275 do_unaligned_access:
276#ifdef ALIGNED_ONLY
93e22326
PB
277 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
278 mmu_idx, retaddr);
aac1fb05 279#endif
867b3201
RH
280 addr1 = addr & ~(DATA_SIZE - 1);
281 addr2 = addr1 + DATA_SIZE;
282 /* Note the adjustment at the beginning of the function.
283 Undo that for the recursion. */
284 res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
285 res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
286 shift = (addr & (DATA_SIZE - 1)) * 8;
287
288 /* Big-endian combine. */
289 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
aac1fb05
RH
290 return res;
291 }
292
293 /* Handle aligned access or unaligned access in the same page. */
294#ifdef ALIGNED_ONLY
295 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326
PB
296 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
297 mmu_idx, retaddr);
b92e5a22 298 }
aac1fb05
RH
299#endif
300
301 haddr = addr + env->tlb_table[mmu_idx][index].addend;
867b3201
RH
302 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
303 return res;
b92e5a22 304}
867b3201 305#endif /* DATA_SIZE > 1 */
b92e5a22 306
e25c3887
RH
307DATA_TYPE
308glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
309 int mmu_idx)
310{
867b3201 311 return helper_te_ld_name (env, addr, mmu_idx, GETRA());
e25c3887
RH
312}
313
b769d8fe
FB
314#ifndef SOFTMMU_CODE_ACCESS
315
c8f94df5
RH
316/* Provide signed versions of the load routines as well. We can of course
317 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
318#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
867b3201
RH
319WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
320 int mmu_idx, uintptr_t retaddr)
321{
322 return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
323}
324
325# if DATA_SIZE > 1
326WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
327 int mmu_idx, uintptr_t retaddr)
c8f94df5 328{
867b3201 329 return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
c8f94df5 330}
867b3201 331# endif
c8f94df5
RH
332#endif
333
89c33337 334static inline void glue(io_write, SUFFIX)(CPUArchState *env,
a8170e5e 335 hwaddr physaddr,
b769d8fe 336 DATA_TYPE val,
0f459d16 337 target_ulong addr,
20503968 338 uintptr_t retaddr)
b769d8fe 339{
09daed84
EI
340 CPUState *cpu = ENV_GET_CPU(env);
341 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
37ec01d4 342
0f459d16 343 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
99df7dce 344 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
90b40a69 345 cpu_io_recompile(cpu, retaddr);
2e70f6ef 346 }
b769d8fe 347
93afeade
AF
348 cpu->mem_io_vaddr = addr;
349 cpu->mem_io_pc = retaddr;
37ec01d4 350 io_mem_write(mr, physaddr, val, 1 << SHIFT);
b769d8fe 351}
b92e5a22 352
867b3201
RH
353void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
354 int mmu_idx, uintptr_t retaddr)
b92e5a22 355{
aac1fb05
RH
356 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
357 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
358 uintptr_t haddr;
3b46e624 359
0f842f8a
RH
360 /* Adjust the given return address. */
361 retaddr -= GETPC_ADJ;
362
aac1fb05
RH
363 /* If the TLB entry is for a different page, reload and try again. */
364 if ((addr & TARGET_PAGE_MASK)
365 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
a64d4718 366#ifdef ALIGNED_ONLY
aac1fb05 367 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 368 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
aac1fb05 369 }
a64d4718 370#endif
d5a11fef 371 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
aac1fb05
RH
372 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
373 }
374
375 /* Handle an IO access. */
376 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
377 hwaddr ioaddr;
378 if ((addr & (DATA_SIZE - 1)) != 0) {
379 goto do_unaligned_access;
380 }
381 ioaddr = env->iotlb[mmu_idx][index];
867b3201
RH
382
383 /* ??? Note that the io helpers always read data in the target
384 byte ordering. We should push the LE/BE request down into io. */
385 val = TGT_LE(val);
aac1fb05
RH
386 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
387 return;
388 }
389
390 /* Handle slow unaligned access (it spans two pages or IO). */
391 if (DATA_SIZE > 1
392 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
393 >= TARGET_PAGE_SIZE)) {
394 int i;
395 do_unaligned_access:
a64d4718 396#ifdef ALIGNED_ONLY
93e22326 397 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
aac1fb05
RH
398#endif
399 /* XXX: not efficient, but simple */
400 /* Note: relies on the fact that tlb_fill() does not remove the
401 * previous page from the TLB cache. */
402 for (i = DATA_SIZE - 1; i >= 0; i--) {
867b3201 403 /* Little-endian extract. */
aac1fb05 404 uint8_t val8 = val >> (i * 8);
867b3201
RH
405 /* Note the adjustment at the beginning of the function.
406 Undo that for the recursion. */
407 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
408 mmu_idx, retaddr + GETPC_ADJ);
409 }
410 return;
411 }
412
413 /* Handle aligned access or unaligned access in the same page. */
414#ifdef ALIGNED_ONLY
415 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 416 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
417 }
418#endif
419
420 haddr = addr + env->tlb_table[mmu_idx][index].addend;
421#if DATA_SIZE == 1
422 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
423#else
424 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
a64d4718 425#endif
867b3201
RH
426}
427
428#if DATA_SIZE > 1
429void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
430 int mmu_idx, uintptr_t retaddr)
431{
432 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
433 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
434 uintptr_t haddr;
435
436 /* Adjust the given return address. */
437 retaddr -= GETPC_ADJ;
438
439 /* If the TLB entry is for a different page, reload and try again. */
440 if ((addr & TARGET_PAGE_MASK)
441 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
442#ifdef ALIGNED_ONLY
443 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 444 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
445 }
446#endif
d5a11fef 447 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
448 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
449 }
450
451 /* Handle an IO access. */
452 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
453 hwaddr ioaddr;
454 if ((addr & (DATA_SIZE - 1)) != 0) {
455 goto do_unaligned_access;
456 }
457 ioaddr = env->iotlb[mmu_idx][index];
458
459 /* ??? Note that the io helpers always read data in the target
460 byte ordering. We should push the LE/BE request down into io. */
461 val = TGT_BE(val);
462 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
463 return;
464 }
465
466 /* Handle slow unaligned access (it spans two pages or IO). */
467 if (DATA_SIZE > 1
468 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
469 >= TARGET_PAGE_SIZE)) {
470 int i;
471 do_unaligned_access:
472#ifdef ALIGNED_ONLY
93e22326 473 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
474#endif
475 /* XXX: not efficient, but simple */
476 /* Note: relies on the fact that tlb_fill() does not remove the
477 * previous page from the TLB cache. */
478 for (i = DATA_SIZE - 1; i >= 0; i--) {
479 /* Big-endian extract. */
480 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
0f842f8a
RH
481 /* Note the adjustment at the beginning of the function.
482 Undo that for the recursion. */
aac1fb05 483 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
0f842f8a 484 mmu_idx, retaddr + GETPC_ADJ);
b92e5a22 485 }
aac1fb05
RH
486 return;
487 }
488
489 /* Handle aligned access or unaligned access in the same page. */
a64d4718 490#ifdef ALIGNED_ONLY
aac1fb05 491 if ((addr & (DATA_SIZE - 1)) != 0) {
93e22326 492 cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
b92e5a22 493 }
aac1fb05
RH
494#endif
495
496 haddr = addr + env->tlb_table[mmu_idx][index].addend;
867b3201 497 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
b92e5a22 498}
867b3201 499#endif /* DATA_SIZE > 1 */
b92e5a22 500
e25c3887
RH
501void
502glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
503 DATA_TYPE val, int mmu_idx)
504{
867b3201 505 helper_te_st_name(env, addr, val, mmu_idx, GETRA());
e25c3887
RH
506}
507
b769d8fe
FB
508#endif /* !defined(SOFTMMU_CODE_ACCESS) */
509
510#undef READ_ACCESS_TYPE
b92e5a22
FB
511#undef SHIFT
512#undef DATA_TYPE
513#undef SUFFIX
701e3a5c 514#undef LSUFFIX
b92e5a22 515#undef DATA_SIZE
84b7b8e7 516#undef ADDR_READ
c8f94df5
RH
517#undef WORD_TYPE
518#undef SDATA_TYPE
519#undef USUFFIX
520#undef SSUFFIX
867b3201
RH
521#undef BSWAP
522#undef TGT_BE
523#undef TGT_LE
524#undef CPU_BE
525#undef CPU_LE
526#undef helper_le_ld_name
527#undef helper_be_ld_name
528#undef helper_le_lds_name
529#undef helper_be_lds_name
530#undef helper_le_st_name
531#undef helper_be_st_name
532#undef helper_te_ld_name
533#undef helper_te_st_name