]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - sound/pci/hda/hda_codec.c
[ALSA] hda-codec - Allow model=generic always for generic parser
[mirror_ubuntu-zesty-kernel.git] / sound / pci / hda / hda_codec.c
CommitLineData
1da177e4
LT
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <sound/driver.h>
23#include <linux/init.h>
24#include <linux/delay.h>
25#include <linux/slab.h>
26#include <linux/pci.h>
27#include <linux/moduleparam.h>
62932df8 28#include <linux/mutex.h>
1da177e4
LT
29#include <sound/core.h>
30#include "hda_codec.h"
31#include <sound/asoundef.h>
302e9c5a 32#include <sound/tlv.h>
1da177e4
LT
33#include <sound/initval.h>
34#include "hda_local.h"
35
36
37MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
38MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
39MODULE_LICENSE("GPL");
40
41
42/*
43 * vendor / preset table
44 */
45
46struct hda_vendor_id {
47 unsigned int id;
48 const char *name;
49};
50
51/* codec vendor labels */
52static struct hda_vendor_id hda_vendor_ids[] = {
53 { 0x10ec, "Realtek" },
a9226251 54 { 0x1057, "Motorola" },
c577b8a1 55 { 0x1106, "VIA" },
54b903ec 56 { 0x11d4, "Analog Devices" },
1da177e4 57 { 0x13f6, "C-Media" },
a9226251 58 { 0x14f1, "Conexant" },
1da177e4 59 { 0x434d, "C-Media" },
2f2f4251 60 { 0x8384, "SigmaTel" },
1da177e4
LT
61 {} /* terminator */
62};
63
64/* codec presets */
65#include "hda_patch.h"
66
67
68/**
69 * snd_hda_codec_read - send a command and get the response
70 * @codec: the HDA codec
71 * @nid: NID to send the command
72 * @direct: direct flag
73 * @verb: the verb to send
74 * @parm: the parameter for the verb
75 *
76 * Send a single command and read the corresponding response.
77 *
78 * Returns the obtained response value, or -1 for an error.
79 */
80unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
81 unsigned int verb, unsigned int parm)
82{
83 unsigned int res;
62932df8 84 mutex_lock(&codec->bus->cmd_mutex);
1da177e4
LT
85 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
86 res = codec->bus->ops.get_response(codec);
87 else
88 res = (unsigned int)-1;
62932df8 89 mutex_unlock(&codec->bus->cmd_mutex);
1da177e4
LT
90 return res;
91}
92
e5e8a1d4
TI
93EXPORT_SYMBOL(snd_hda_codec_read);
94
1da177e4
LT
95/**
96 * snd_hda_codec_write - send a single command without waiting for response
97 * @codec: the HDA codec
98 * @nid: NID to send the command
99 * @direct: direct flag
100 * @verb: the verb to send
101 * @parm: the parameter for the verb
102 *
103 * Send a single command without waiting for response.
104 *
105 * Returns 0 if successful, or a negative error code.
106 */
107int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
108 unsigned int verb, unsigned int parm)
109{
110 int err;
62932df8 111 mutex_lock(&codec->bus->cmd_mutex);
1da177e4 112 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
62932df8 113 mutex_unlock(&codec->bus->cmd_mutex);
1da177e4
LT
114 return err;
115}
116
e5e8a1d4
TI
117EXPORT_SYMBOL(snd_hda_codec_write);
118
1da177e4
LT
119/**
120 * snd_hda_sequence_write - sequence writes
121 * @codec: the HDA codec
122 * @seq: VERB array to send
123 *
124 * Send the commands sequentially from the given array.
125 * The array must be terminated with NID=0.
126 */
127void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
128{
129 for (; seq->nid; seq++)
130 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
131}
132
e5e8a1d4
TI
133EXPORT_SYMBOL(snd_hda_sequence_write);
134
1da177e4
LT
135/**
136 * snd_hda_get_sub_nodes - get the range of sub nodes
137 * @codec: the HDA codec
138 * @nid: NID to parse
139 * @start_id: the pointer to store the start NID
140 *
141 * Parse the NID and store the start NID of its sub-nodes.
142 * Returns the number of sub-nodes.
143 */
144int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
145{
146 unsigned int parm;
147
148 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
149 *start_id = (parm >> 16) & 0x7fff;
150 return (int)(parm & 0x7fff);
151}
152
e5e8a1d4
TI
153EXPORT_SYMBOL(snd_hda_get_sub_nodes);
154
1da177e4
LT
155/**
156 * snd_hda_get_connections - get connection list
157 * @codec: the HDA codec
158 * @nid: NID to parse
159 * @conn_list: connection list array
160 * @max_conns: max. number of connections to store
161 *
162 * Parses the connection list of the given widget and stores the list
163 * of NIDs.
164 *
165 * Returns the number of connections, or a negative error code.
166 */
167int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
168 hda_nid_t *conn_list, int max_conns)
169{
170 unsigned int parm;
54d17403 171 int i, conn_len, conns;
1da177e4 172 unsigned int shift, num_elems, mask;
54d17403 173 hda_nid_t prev_nid;
1da177e4
LT
174
175 snd_assert(conn_list && max_conns > 0, return -EINVAL);
176
177 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
178 if (parm & AC_CLIST_LONG) {
179 /* long form */
180 shift = 16;
181 num_elems = 2;
182 } else {
183 /* short form */
184 shift = 8;
185 num_elems = 4;
186 }
187 conn_len = parm & AC_CLIST_LENGTH;
1da177e4
LT
188 mask = (1 << (shift-1)) - 1;
189
190 if (! conn_len)
191 return 0; /* no connection */
192
193 if (conn_len == 1) {
194 /* single connection */
195 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
196 conn_list[0] = parm & mask;
197 return 1;
198 }
199
200 /* multi connection */
201 conns = 0;
54d17403
TI
202 prev_nid = 0;
203 for (i = 0; i < conn_len; i++) {
204 int range_val;
205 hda_nid_t val, n;
206
207 if (i % num_elems == 0)
208 parm = snd_hda_codec_read(codec, nid, 0,
209 AC_VERB_GET_CONNECT_LIST, i);
210 range_val = !! (parm & (1 << (shift-1))); /* ranges */
211 val = parm & mask;
212 parm >>= shift;
213 if (range_val) {
214 /* ranges between the previous and this one */
215 if (! prev_nid || prev_nid >= val) {
216 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
217 continue;
218 }
219 for (n = prev_nid + 1; n <= val; n++) {
220 if (conns >= max_conns) {
221 snd_printk(KERN_ERR "Too many connections\n");
1da177e4 222 return -EINVAL;
54d17403
TI
223 }
224 conn_list[conns++] = n;
1da177e4 225 }
54d17403
TI
226 } else {
227 if (conns >= max_conns) {
228 snd_printk(KERN_ERR "Too many connections\n");
229 return -EINVAL;
230 }
231 conn_list[conns++] = val;
1da177e4 232 }
54d17403 233 prev_nid = val;
1da177e4
LT
234 }
235 return conns;
236}
237
238
239/**
240 * snd_hda_queue_unsol_event - add an unsolicited event to queue
241 * @bus: the BUS
242 * @res: unsolicited event (lower 32bit of RIRB entry)
243 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
244 *
245 * Adds the given event to the queue. The events are processed in
246 * the workqueue asynchronously. Call this function in the interrupt
247 * hanlder when RIRB receives an unsolicited event.
248 *
249 * Returns 0 if successful, or a negative error code.
250 */
251int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
252{
253 struct hda_bus_unsolicited *unsol;
254 unsigned int wp;
255
256 if ((unsol = bus->unsol) == NULL)
257 return 0;
258
259 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
260 unsol->wp = wp;
261
262 wp <<= 1;
263 unsol->queue[wp] = res;
264 unsol->queue[wp + 1] = res_ex;
265
e250af29 266 schedule_work(&unsol->work);
1da177e4
LT
267
268 return 0;
269}
270
e5e8a1d4
TI
271EXPORT_SYMBOL(snd_hda_queue_unsol_event);
272
1da177e4
LT
273/*
274 * process queueud unsolicited events
275 */
c4028958 276static void process_unsol_events(struct work_struct *work)
1da177e4 277{
c4028958
DH
278 struct hda_bus_unsolicited *unsol =
279 container_of(work, struct hda_bus_unsolicited, work);
280 struct hda_bus *bus = unsol->bus;
1da177e4
LT
281 struct hda_codec *codec;
282 unsigned int rp, caddr, res;
283
284 while (unsol->rp != unsol->wp) {
285 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
286 unsol->rp = rp;
287 rp <<= 1;
288 res = unsol->queue[rp];
289 caddr = unsol->queue[rp + 1];
290 if (! (caddr & (1 << 4))) /* no unsolicited event? */
291 continue;
292 codec = bus->caddr_tbl[caddr & 0x0f];
293 if (codec && codec->patch_ops.unsol_event)
294 codec->patch_ops.unsol_event(codec, res);
295 }
296}
297
298/*
299 * initialize unsolicited queue
300 */
301static int init_unsol_queue(struct hda_bus *bus)
302{
303 struct hda_bus_unsolicited *unsol;
304
9f146bb6
TI
305 if (bus->unsol) /* already initialized */
306 return 0;
307
e560d8d8 308 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
1da177e4
LT
309 if (! unsol) {
310 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
311 return -ENOMEM;
312 }
c4028958
DH
313 INIT_WORK(&unsol->work, process_unsol_events);
314 unsol->bus = bus;
1da177e4
LT
315 bus->unsol = unsol;
316 return 0;
317}
318
319/*
320 * destructor
321 */
322static void snd_hda_codec_free(struct hda_codec *codec);
323
324static int snd_hda_bus_free(struct hda_bus *bus)
325{
326 struct list_head *p, *n;
327
328 if (! bus)
329 return 0;
330 if (bus->unsol) {
e250af29 331 flush_scheduled_work();
1da177e4
LT
332 kfree(bus->unsol);
333 }
334 list_for_each_safe(p, n, &bus->codec_list) {
335 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
336 snd_hda_codec_free(codec);
337 }
338 if (bus->ops.private_free)
339 bus->ops.private_free(bus);
340 kfree(bus);
341 return 0;
342}
343
c8b6bf9b 344static int snd_hda_bus_dev_free(struct snd_device *device)
1da177e4
LT
345{
346 struct hda_bus *bus = device->device_data;
347 return snd_hda_bus_free(bus);
348}
349
350/**
351 * snd_hda_bus_new - create a HDA bus
352 * @card: the card entry
353 * @temp: the template for hda_bus information
354 * @busp: the pointer to store the created bus instance
355 *
356 * Returns 0 if successful, or a negative error code.
357 */
c8b6bf9b 358int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
1da177e4
LT
359 struct hda_bus **busp)
360{
361 struct hda_bus *bus;
362 int err;
c8b6bf9b 363 static struct snd_device_ops dev_ops = {
1da177e4
LT
364 .dev_free = snd_hda_bus_dev_free,
365 };
366
367 snd_assert(temp, return -EINVAL);
368 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
369
370 if (busp)
371 *busp = NULL;
372
e560d8d8 373 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
1da177e4
LT
374 if (bus == NULL) {
375 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
376 return -ENOMEM;
377 }
378
379 bus->card = card;
380 bus->private_data = temp->private_data;
381 bus->pci = temp->pci;
382 bus->modelname = temp->modelname;
383 bus->ops = temp->ops;
384
62932df8 385 mutex_init(&bus->cmd_mutex);
1da177e4
LT
386 INIT_LIST_HEAD(&bus->codec_list);
387
1da177e4
LT
388 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
389 snd_hda_bus_free(bus);
390 return err;
391 }
392 if (busp)
393 *busp = bus;
394 return 0;
395}
396
e5e8a1d4 397EXPORT_SYMBOL(snd_hda_bus_new);
1da177e4
LT
398
399/*
400 * find a matching codec preset
401 */
402static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
403{
404 const struct hda_codec_preset **tbl, *preset;
405
406 for (tbl = hda_preset_tables; *tbl; tbl++) {
407 for (preset = *tbl; preset->id; preset++) {
408 u32 mask = preset->mask;
409 if (! mask)
410 mask = ~0;
9c7f852e
TI
411 if (preset->id == (codec->vendor_id & mask) &&
412 (! preset->rev ||
413 preset->rev == codec->revision_id))
1da177e4
LT
414 return preset;
415 }
416 }
417 return NULL;
418}
419
420/*
421 * snd_hda_get_codec_name - store the codec name
422 */
423void snd_hda_get_codec_name(struct hda_codec *codec,
424 char *name, int namelen)
425{
426 const struct hda_vendor_id *c;
427 const char *vendor = NULL;
428 u16 vendor_id = codec->vendor_id >> 16;
429 char tmp[16];
430
431 for (c = hda_vendor_ids; c->id; c++) {
432 if (c->id == vendor_id) {
433 vendor = c->name;
434 break;
435 }
436 }
437 if (! vendor) {
438 sprintf(tmp, "Generic %04x", vendor_id);
439 vendor = tmp;
440 }
441 if (codec->preset && codec->preset->name)
442 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
443 else
444 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
445}
446
447/*
673b683a 448 * look for an AFG and MFG nodes
1da177e4 449 */
673b683a 450static void setup_fg_nodes(struct hda_codec *codec)
1da177e4
LT
451{
452 int i, total_nodes;
453 hda_nid_t nid;
454
455 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
456 for (i = 0; i < total_nodes; i++, nid++) {
673b683a
SK
457 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
458 case AC_GRP_AUDIO_FUNCTION:
459 codec->afg = nid;
460 break;
461 case AC_GRP_MODEM_FUNCTION:
462 codec->mfg = nid;
463 break;
464 default:
465 break;
466 }
1da177e4 467 }
1da177e4
LT
468}
469
54d17403
TI
470/*
471 * read widget caps for each widget and store in cache
472 */
473static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
474{
475 int i;
476 hda_nid_t nid;
477
478 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
479 &codec->start_nid);
480 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
481 if (! codec->wcaps)
482 return -ENOMEM;
483 nid = codec->start_nid;
484 for (i = 0; i < codec->num_nodes; i++, nid++)
485 codec->wcaps[i] = snd_hda_param_read(codec, nid,
486 AC_PAR_AUDIO_WIDGET_CAP);
487 return 0;
488}
489
490
1da177e4
LT
491/*
492 * codec destructor
493 */
494static void snd_hda_codec_free(struct hda_codec *codec)
495{
496 if (! codec)
497 return;
498 list_del(&codec->list);
499 codec->bus->caddr_tbl[codec->addr] = NULL;
500 if (codec->patch_ops.free)
501 codec->patch_ops.free(codec);
d031166f 502 kfree(codec->amp_info);
54d17403 503 kfree(codec->wcaps);
1da177e4
LT
504 kfree(codec);
505}
506
507static void init_amp_hash(struct hda_codec *codec);
508
509/**
510 * snd_hda_codec_new - create a HDA codec
511 * @bus: the bus to assign
512 * @codec_addr: the codec address
513 * @codecp: the pointer to store the generated codec
514 *
515 * Returns 0 if successful, or a negative error code.
516 */
517int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
518 struct hda_codec **codecp)
519{
520 struct hda_codec *codec;
521 char component[13];
522 int err;
523
524 snd_assert(bus, return -EINVAL);
525 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
526
527 if (bus->caddr_tbl[codec_addr]) {
528 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
529 return -EBUSY;
530 }
531
e560d8d8 532 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
1da177e4
LT
533 if (codec == NULL) {
534 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
535 return -ENOMEM;
536 }
537
538 codec->bus = bus;
539 codec->addr = codec_addr;
62932df8 540 mutex_init(&codec->spdif_mutex);
1da177e4
LT
541 init_amp_hash(codec);
542
543 list_add_tail(&codec->list, &bus->codec_list);
544 bus->caddr_tbl[codec_addr] = codec;
545
546 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
111d3af5
TI
547 if (codec->vendor_id == -1)
548 /* read again, hopefully the access method was corrected
549 * in the last read...
550 */
551 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
552 AC_PAR_VENDOR_ID);
1da177e4
LT
553 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
554 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
555
673b683a
SK
556 setup_fg_nodes(codec);
557 if (! codec->afg && ! codec->mfg) {
558 snd_printdd("hda_codec: no AFG or MFG node found\n");
1da177e4
LT
559 snd_hda_codec_free(codec);
560 return -ENODEV;
561 }
562
54d17403
TI
563 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
564 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
565 snd_hda_codec_free(codec);
566 return -ENOMEM;
567 }
568
86284e45
TI
569 if (! codec->subsystem_id) {
570 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
571 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
572 AC_VERB_GET_SUBSYSTEM_ID,
573 0);
574 }
575
6d7b1d7d
TI
576 if (strcmp(codec->bus->modelname, "generic"))
577 codec->preset = find_codec_preset(codec);
1da177e4
LT
578 if (! *bus->card->mixername)
579 snd_hda_get_codec_name(codec, bus->card->mixername,
580 sizeof(bus->card->mixername));
581
582 if (codec->preset && codec->preset->patch)
583 err = codec->preset->patch(codec);
584 else
585 err = snd_hda_parse_generic_codec(codec);
586 if (err < 0) {
587 snd_hda_codec_free(codec);
588 return err;
589 }
590
9f146bb6
TI
591 if (codec->patch_ops.unsol_event)
592 init_unsol_queue(bus);
593
1da177e4
LT
594 snd_hda_codec_proc_new(codec);
595
596 sprintf(component, "HDA:%08x", codec->vendor_id);
597 snd_component_add(codec->bus->card, component);
598
599 if (codecp)
600 *codecp = codec;
601 return 0;
602}
603
e5e8a1d4
TI
604EXPORT_SYMBOL(snd_hda_codec_new);
605
1da177e4
LT
606/**
607 * snd_hda_codec_setup_stream - set up the codec for streaming
608 * @codec: the CODEC to set up
609 * @nid: the NID to set up
610 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
611 * @channel_id: channel id to pass, zero based.
612 * @format: stream format.
613 */
614void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
615 int channel_id, int format)
616{
d21b37ea
TI
617 if (! nid)
618 return;
619
1da177e4
LT
620 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
621 nid, stream_tag, channel_id, format);
622 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
623 (stream_tag << 4) | channel_id);
624 msleep(1);
625 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
626}
627
e5e8a1d4 628EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1da177e4
LT
629
630/*
631 * amp access functions
632 */
633
4a19faee
TI
634/* FIXME: more better hash key? */
635#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
1da177e4 636#define INFO_AMP_CAPS (1<<0)
4a19faee 637#define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
1da177e4
LT
638
639/* initialize the hash table */
640static void init_amp_hash(struct hda_codec *codec)
641{
642 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
643 codec->num_amp_entries = 0;
d031166f
TI
644 codec->amp_info_size = 0;
645 codec->amp_info = NULL;
1da177e4
LT
646}
647
648/* query the hash. allocate an entry if not found. */
649static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
650{
651 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
652 u16 cur = codec->amp_hash[idx];
653 struct hda_amp_info *info;
654
655 while (cur != 0xffff) {
656 info = &codec->amp_info[cur];
657 if (info->key == key)
658 return info;
659 cur = info->next;
660 }
661
662 /* add a new hash entry */
d031166f
TI
663 if (codec->num_amp_entries >= codec->amp_info_size) {
664 /* reallocate the array */
665 int new_size = codec->amp_info_size + 64;
666 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
667 GFP_KERNEL);
668 if (! new_info) {
669 snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
670 return NULL;
671 }
672 if (codec->amp_info) {
673 memcpy(new_info, codec->amp_info,
674 codec->amp_info_size * sizeof(struct hda_amp_info));
675 kfree(codec->amp_info);
676 }
677 codec->amp_info_size = new_size;
678 codec->amp_info = new_info;
1da177e4
LT
679 }
680 cur = codec->num_amp_entries++;
681 info = &codec->amp_info[cur];
682 info->key = key;
683 info->status = 0; /* not initialized yet */
684 info->next = codec->amp_hash[idx];
685 codec->amp_hash[idx] = cur;
686
687 return info;
688}
689
690/*
691 * query AMP capabilities for the given widget and direction
692 */
693static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
694{
695 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
696
697 if (! info)
698 return 0;
699 if (! (info->status & INFO_AMP_CAPS)) {
54d17403 700 if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
1da177e4
LT
701 nid = codec->afg;
702 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
703 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
704 info->status |= INFO_AMP_CAPS;
705 }
706 return info->amp_caps;
707}
708
709/*
710 * read the current volume to info
4a19faee 711 * if the cache exists, read the cache value.
1da177e4 712 */
4a19faee 713static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
1da177e4
LT
714 hda_nid_t nid, int ch, int direction, int index)
715{
716 u32 val, parm;
717
4a19faee
TI
718 if (info->status & INFO_AMP_VOL(ch))
719 return info->vol[ch];
1da177e4
LT
720
721 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
722 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
723 parm |= index;
724 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
725 info->vol[ch] = val & 0xff;
4a19faee
TI
726 info->status |= INFO_AMP_VOL(ch);
727 return info->vol[ch];
1da177e4
LT
728}
729
730/*
4a19faee 731 * write the current volume in info to the h/w and update the cache
1da177e4 732 */
4a19faee 733static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
1da177e4
LT
734 hda_nid_t nid, int ch, int direction, int index, int val)
735{
736 u32 parm;
737
738 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
739 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
740 parm |= index << AC_AMP_SET_INDEX_SHIFT;
741 parm |= val;
742 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
4a19faee 743 info->vol[ch] = val;
1da177e4
LT
744}
745
746/*
4a19faee 747 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
1da177e4 748 */
834be88d
TI
749int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
750 int direction, int index)
1da177e4
LT
751{
752 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
753 if (! info)
754 return 0;
4a19faee 755 return get_vol_mute(codec, info, nid, ch, direction, index);
1da177e4
LT
756}
757
4a19faee
TI
758/*
759 * update the AMP value, mask = bit mask to set, val = the value
760 */
834be88d
TI
761int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
762 int direction, int idx, int mask, int val)
1da177e4
LT
763{
764 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
4a19faee 765
1da177e4
LT
766 if (! info)
767 return 0;
4a19faee
TI
768 val &= mask;
769 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
1da177e4
LT
770 if (info->vol[ch] == val && ! codec->in_resume)
771 return 0;
4a19faee 772 put_vol_mute(codec, info, nid, ch, direction, idx, val);
1da177e4
LT
773 return 1;
774}
775
776
777/*
778 * AMP control callbacks
779 */
780/* retrieve parameters from private_value */
781#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
782#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
783#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
784#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
785
786/* volume */
c8b6bf9b 787int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
788{
789 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
790 u16 nid = get_amp_nid(kcontrol);
791 u8 chs = get_amp_channels(kcontrol);
792 int dir = get_amp_direction(kcontrol);
793 u32 caps;
794
795 caps = query_amp_caps(codec, nid, dir);
796 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
797 if (! caps) {
798 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
799 return -EINVAL;
800 }
801 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
802 uinfo->count = chs == 3 ? 2 : 1;
803 uinfo->value.integer.min = 0;
804 uinfo->value.integer.max = caps;
805 return 0;
806}
807
c8b6bf9b 808int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
809{
810 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
811 hda_nid_t nid = get_amp_nid(kcontrol);
812 int chs = get_amp_channels(kcontrol);
813 int dir = get_amp_direction(kcontrol);
814 int idx = get_amp_index(kcontrol);
815 long *valp = ucontrol->value.integer.value;
816
817 if (chs & 1)
818 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
819 if (chs & 2)
820 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
821 return 0;
822}
823
c8b6bf9b 824int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
825{
826 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
827 hda_nid_t nid = get_amp_nid(kcontrol);
828 int chs = get_amp_channels(kcontrol);
829 int dir = get_amp_direction(kcontrol);
830 int idx = get_amp_index(kcontrol);
1da177e4
LT
831 long *valp = ucontrol->value.integer.value;
832 int change = 0;
833
b9f5a89c 834 if (chs & 1) {
4a19faee
TI
835 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
836 0x7f, *valp);
b9f5a89c
NG
837 valp++;
838 }
4a19faee
TI
839 if (chs & 2)
840 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
b9f5a89c 841 0x7f, *valp);
1da177e4
LT
842 return change;
843}
844
302e9c5a
JK
845int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
846 unsigned int size, unsigned int __user *_tlv)
847{
848 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
849 hda_nid_t nid = get_amp_nid(kcontrol);
850 int dir = get_amp_direction(kcontrol);
851 u32 caps, val1, val2;
852
853 if (size < 4 * sizeof(unsigned int))
854 return -ENOMEM;
855 caps = query_amp_caps(codec, nid, dir);
856 val2 = (((caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT) + 1) * 25;
857 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
858 val1 = ((int)val1) * ((int)val2);
302e9c5a
JK
859 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
860 return -EFAULT;
861 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
862 return -EFAULT;
863 if (put_user(val1, _tlv + 2))
864 return -EFAULT;
865 if (put_user(val2, _tlv + 3))
866 return -EFAULT;
867 return 0;
868}
869
1da177e4 870/* switch */
c8b6bf9b 871int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
872{
873 int chs = get_amp_channels(kcontrol);
874
875 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
876 uinfo->count = chs == 3 ? 2 : 1;
877 uinfo->value.integer.min = 0;
878 uinfo->value.integer.max = 1;
879 return 0;
880}
881
c8b6bf9b 882int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
883{
884 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
885 hda_nid_t nid = get_amp_nid(kcontrol);
886 int chs = get_amp_channels(kcontrol);
887 int dir = get_amp_direction(kcontrol);
888 int idx = get_amp_index(kcontrol);
889 long *valp = ucontrol->value.integer.value;
890
891 if (chs & 1)
892 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
893 if (chs & 2)
894 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
895 return 0;
896}
897
c8b6bf9b 898int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
899{
900 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
901 hda_nid_t nid = get_amp_nid(kcontrol);
902 int chs = get_amp_channels(kcontrol);
903 int dir = get_amp_direction(kcontrol);
904 int idx = get_amp_index(kcontrol);
1da177e4
LT
905 long *valp = ucontrol->value.integer.value;
906 int change = 0;
907
b9f5a89c 908 if (chs & 1) {
4a19faee
TI
909 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
910 0x80, *valp ? 0 : 0x80);
b9f5a89c
NG
911 valp++;
912 }
4a19faee
TI
913 if (chs & 2)
914 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
b9f5a89c
NG
915 0x80, *valp ? 0 : 0x80);
916
1da177e4
LT
917 return change;
918}
919
985be54b
TI
920/*
921 * bound volume controls
922 *
923 * bind multiple volumes (# indices, from 0)
924 */
925
926#define AMP_VAL_IDX_SHIFT 19
927#define AMP_VAL_IDX_MASK (0x0f<<19)
928
c8b6bf9b 929int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
985be54b
TI
930{
931 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
932 unsigned long pval;
933 int err;
934
62932df8 935 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
985be54b
TI
936 pval = kcontrol->private_value;
937 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
938 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
939 kcontrol->private_value = pval;
62932df8 940 mutex_unlock(&codec->spdif_mutex);
985be54b
TI
941 return err;
942}
943
c8b6bf9b 944int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
985be54b
TI
945{
946 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
947 unsigned long pval;
948 int i, indices, err = 0, change = 0;
949
62932df8 950 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
985be54b
TI
951 pval = kcontrol->private_value;
952 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
953 for (i = 0; i < indices; i++) {
954 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
955 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
956 if (err < 0)
957 break;
958 change |= err;
959 }
960 kcontrol->private_value = pval;
62932df8 961 mutex_unlock(&codec->spdif_mutex);
985be54b
TI
962 return err < 0 ? err : change;
963}
964
1da177e4
LT
965/*
966 * SPDIF out controls
967 */
968
c8b6bf9b 969static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
970{
971 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
972 uinfo->count = 1;
973 return 0;
974}
975
c8b6bf9b 976static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
977{
978 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
979 IEC958_AES0_NONAUDIO |
980 IEC958_AES0_CON_EMPHASIS_5015 |
981 IEC958_AES0_CON_NOT_COPYRIGHT;
982 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
983 IEC958_AES1_CON_ORIGINAL;
984 return 0;
985}
986
c8b6bf9b 987static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
988{
989 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
990 IEC958_AES0_NONAUDIO |
991 IEC958_AES0_PRO_EMPHASIS_5015;
992 return 0;
993}
994
c8b6bf9b 995static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
996{
997 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
998
999 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1000 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1001 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1002 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1003
1004 return 0;
1005}
1006
1007/* convert from SPDIF status bits to HDA SPDIF bits
1008 * bit 0 (DigEn) is always set zero (to be filled later)
1009 */
1010static unsigned short convert_from_spdif_status(unsigned int sbits)
1011{
1012 unsigned short val = 0;
1013
1014 if (sbits & IEC958_AES0_PROFESSIONAL)
1015 val |= 1 << 6;
1016 if (sbits & IEC958_AES0_NONAUDIO)
1017 val |= 1 << 5;
1018 if (sbits & IEC958_AES0_PROFESSIONAL) {
1019 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
1020 val |= 1 << 3;
1021 } else {
1022 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
1023 val |= 1 << 3;
1024 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1025 val |= 1 << 4;
1026 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1027 val |= 1 << 7;
1028 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1029 }
1030 return val;
1031}
1032
1033/* convert to SPDIF status bits from HDA SPDIF bits
1034 */
1035static unsigned int convert_to_spdif_status(unsigned short val)
1036{
1037 unsigned int sbits = 0;
1038
1039 if (val & (1 << 5))
1040 sbits |= IEC958_AES0_NONAUDIO;
1041 if (val & (1 << 6))
1042 sbits |= IEC958_AES0_PROFESSIONAL;
1043 if (sbits & IEC958_AES0_PROFESSIONAL) {
1044 if (sbits & (1 << 3))
1045 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1046 } else {
1047 if (val & (1 << 3))
1048 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1049 if (! (val & (1 << 4)))
1050 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1051 if (val & (1 << 7))
1052 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1053 sbits |= val & (0x7f << 8);
1054 }
1055 return sbits;
1056}
1057
c8b6bf9b 1058static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1059{
1060 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1061 hda_nid_t nid = kcontrol->private_value;
1062 unsigned short val;
1063 int change;
1064
62932df8 1065 mutex_lock(&codec->spdif_mutex);
1da177e4
LT
1066 codec->spdif_status = ucontrol->value.iec958.status[0] |
1067 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1068 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1069 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1070 val = convert_from_spdif_status(codec->spdif_status);
1071 val |= codec->spdif_ctls & 1;
1072 change = codec->spdif_ctls != val;
1073 codec->spdif_ctls = val;
1074
1075 if (change || codec->in_resume) {
1076 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1077 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1078 }
1079
62932df8 1080 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
1081 return change;
1082}
1083
c8b6bf9b 1084static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
1085{
1086 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1087 uinfo->count = 1;
1088 uinfo->value.integer.min = 0;
1089 uinfo->value.integer.max = 1;
1090 return 0;
1091}
1092
c8b6bf9b 1093static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1094{
1095 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1096
1097 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1098 return 0;
1099}
1100
c8b6bf9b 1101static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1102{
1103 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1104 hda_nid_t nid = kcontrol->private_value;
1105 unsigned short val;
1106 int change;
1107
62932df8 1108 mutex_lock(&codec->spdif_mutex);
1da177e4
LT
1109 val = codec->spdif_ctls & ~1;
1110 if (ucontrol->value.integer.value[0])
1111 val |= 1;
1112 change = codec->spdif_ctls != val;
1113 if (change || codec->in_resume) {
1114 codec->spdif_ctls = val;
1115 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1116 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1117 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1118 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1119 }
62932df8 1120 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
1121 return change;
1122}
1123
c8b6bf9b 1124static struct snd_kcontrol_new dig_mixes[] = {
1da177e4
LT
1125 {
1126 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1127 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1128 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1129 .info = snd_hda_spdif_mask_info,
1130 .get = snd_hda_spdif_cmask_get,
1131 },
1132 {
1133 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1134 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1135 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1136 .info = snd_hda_spdif_mask_info,
1137 .get = snd_hda_spdif_pmask_get,
1138 },
1139 {
1140 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1141 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1142 .info = snd_hda_spdif_mask_info,
1143 .get = snd_hda_spdif_default_get,
1144 .put = snd_hda_spdif_default_put,
1145 },
1146 {
1147 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1148 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1149 .info = snd_hda_spdif_out_switch_info,
1150 .get = snd_hda_spdif_out_switch_get,
1151 .put = snd_hda_spdif_out_switch_put,
1152 },
1153 { } /* end */
1154};
1155
1156/**
1157 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1158 * @codec: the HDA codec
1159 * @nid: audio out widget NID
1160 *
1161 * Creates controls related with the SPDIF output.
1162 * Called from each patch supporting the SPDIF out.
1163 *
1164 * Returns 0 if successful, or a negative error code.
1165 */
1166int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1167{
1168 int err;
c8b6bf9b
TI
1169 struct snd_kcontrol *kctl;
1170 struct snd_kcontrol_new *dig_mix;
1da177e4
LT
1171
1172 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1173 kctl = snd_ctl_new1(dig_mix, codec);
1174 kctl->private_value = nid;
1175 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1176 return err;
1177 }
1178 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1179 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1180 return 0;
1181}
1182
1183/*
1184 * SPDIF input
1185 */
1186
1187#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1188
c8b6bf9b 1189static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1190{
1191 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1192
1193 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1194 return 0;
1195}
1196
c8b6bf9b 1197static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1198{
1199 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1200 hda_nid_t nid = kcontrol->private_value;
1201 unsigned int val = !!ucontrol->value.integer.value[0];
1202 int change;
1203
62932df8 1204 mutex_lock(&codec->spdif_mutex);
1da177e4
LT
1205 change = codec->spdif_in_enable != val;
1206 if (change || codec->in_resume) {
1207 codec->spdif_in_enable = val;
1208 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1209 }
62932df8 1210 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
1211 return change;
1212}
1213
c8b6bf9b 1214static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
1215{
1216 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1217 hda_nid_t nid = kcontrol->private_value;
1218 unsigned short val;
1219 unsigned int sbits;
1220
1221 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1222 sbits = convert_to_spdif_status(val);
1223 ucontrol->value.iec958.status[0] = sbits;
1224 ucontrol->value.iec958.status[1] = sbits >> 8;
1225 ucontrol->value.iec958.status[2] = sbits >> 16;
1226 ucontrol->value.iec958.status[3] = sbits >> 24;
1227 return 0;
1228}
1229
c8b6bf9b 1230static struct snd_kcontrol_new dig_in_ctls[] = {
1da177e4
LT
1231 {
1232 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1233 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1234 .info = snd_hda_spdif_in_switch_info,
1235 .get = snd_hda_spdif_in_switch_get,
1236 .put = snd_hda_spdif_in_switch_put,
1237 },
1238 {
1239 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1240 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1241 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1242 .info = snd_hda_spdif_mask_info,
1243 .get = snd_hda_spdif_in_status_get,
1244 },
1245 { } /* end */
1246};
1247
1248/**
1249 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1250 * @codec: the HDA codec
1251 * @nid: audio in widget NID
1252 *
1253 * Creates controls related with the SPDIF input.
1254 * Called from each patch supporting the SPDIF in.
1255 *
1256 * Returns 0 if successful, or a negative error code.
1257 */
1258int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1259{
1260 int err;
c8b6bf9b
TI
1261 struct snd_kcontrol *kctl;
1262 struct snd_kcontrol_new *dig_mix;
1da177e4
LT
1263
1264 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1265 kctl = snd_ctl_new1(dig_mix, codec);
1266 kctl->private_value = nid;
1267 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1268 return err;
1269 }
1270 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1271 return 0;
1272}
1273
1274
54d17403
TI
1275/*
1276 * set power state of the codec
1277 */
1278static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1279 unsigned int power_state)
1280{
1281 hda_nid_t nid, nid_start;
1282 int nodes;
1283
1284 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1285 power_state);
1286
1287 nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1288 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1289 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1290 snd_hda_codec_write(codec, nid, 0,
1291 AC_VERB_SET_POWER_STATE,
1292 power_state);
1293 }
1294
1295 if (power_state == AC_PWRST_D0)
1296 msleep(10);
1297}
1298
1299
1da177e4
LT
1300/**
1301 * snd_hda_build_controls - build mixer controls
1302 * @bus: the BUS
1303 *
1304 * Creates mixer controls for each codec included in the bus.
1305 *
1306 * Returns 0 if successful, otherwise a negative error code.
1307 */
1308int snd_hda_build_controls(struct hda_bus *bus)
1309{
1310 struct list_head *p;
1311
1312 /* build controls */
1313 list_for_each(p, &bus->codec_list) {
1314 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1315 int err;
1316 if (! codec->patch_ops.build_controls)
1317 continue;
1318 err = codec->patch_ops.build_controls(codec);
1319 if (err < 0)
1320 return err;
1321 }
1322
1323 /* initialize */
1324 list_for_each(p, &bus->codec_list) {
1325 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1326 int err;
54d17403
TI
1327 hda_set_power_state(codec,
1328 codec->afg ? codec->afg : codec->mfg,
1329 AC_PWRST_D0);
1da177e4
LT
1330 if (! codec->patch_ops.init)
1331 continue;
1332 err = codec->patch_ops.init(codec);
1333 if (err < 0)
1334 return err;
1335 }
1336 return 0;
1337}
1338
e5e8a1d4 1339EXPORT_SYMBOL(snd_hda_build_controls);
1da177e4
LT
1340
1341/*
1342 * stream formats
1343 */
befdf316
TI
1344struct hda_rate_tbl {
1345 unsigned int hz;
1346 unsigned int alsa_bits;
1347 unsigned int hda_fmt;
1348};
1349
1350static struct hda_rate_tbl rate_bits[] = {
1da177e4 1351 /* rate in Hz, ALSA rate bitmask, HDA format value */
9d8f53f2
NG
1352
1353 /* autodetected value used in snd_hda_query_supported_pcm */
1da177e4
LT
1354 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1355 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1356 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1357 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1358 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1359 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1360 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1361 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1362 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1363 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1364 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
9d8f53f2 1365
befdf316 1366 { 0 } /* terminator */
1da177e4
LT
1367};
1368
1369/**
1370 * snd_hda_calc_stream_format - calculate format bitset
1371 * @rate: the sample rate
1372 * @channels: the number of channels
1373 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1374 * @maxbps: the max. bps
1375 *
1376 * Calculate the format bitset from the given rate, channels and th PCM format.
1377 *
1378 * Return zero if invalid.
1379 */
1380unsigned int snd_hda_calc_stream_format(unsigned int rate,
1381 unsigned int channels,
1382 unsigned int format,
1383 unsigned int maxbps)
1384{
1385 int i;
1386 unsigned int val = 0;
1387
befdf316
TI
1388 for (i = 0; rate_bits[i].hz; i++)
1389 if (rate_bits[i].hz == rate) {
1390 val = rate_bits[i].hda_fmt;
1da177e4
LT
1391 break;
1392 }
befdf316 1393 if (! rate_bits[i].hz) {
1da177e4
LT
1394 snd_printdd("invalid rate %d\n", rate);
1395 return 0;
1396 }
1397
1398 if (channels == 0 || channels > 8) {
1399 snd_printdd("invalid channels %d\n", channels);
1400 return 0;
1401 }
1402 val |= channels - 1;
1403
1404 switch (snd_pcm_format_width(format)) {
1405 case 8: val |= 0x00; break;
1406 case 16: val |= 0x10; break;
1407 case 20:
1408 case 24:
1409 case 32:
1410 if (maxbps >= 32)
1411 val |= 0x40;
1412 else if (maxbps >= 24)
1413 val |= 0x30;
1414 else
1415 val |= 0x20;
1416 break;
1417 default:
1418 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1419 return 0;
1420 }
1421
1422 return val;
1423}
1424
e5e8a1d4
TI
1425EXPORT_SYMBOL(snd_hda_calc_stream_format);
1426
1da177e4
LT
1427/**
1428 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1429 * @codec: the HDA codec
1430 * @nid: NID to query
1431 * @ratesp: the pointer to store the detected rate bitflags
1432 * @formatsp: the pointer to store the detected formats
1433 * @bpsp: the pointer to store the detected format widths
1434 *
1435 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1436 * or @bsps argument is ignored.
1437 *
1438 * Returns 0 if successful, otherwise a negative error code.
1439 */
1440int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1441 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1442{
1443 int i;
1444 unsigned int val, streams;
1445
1446 val = 0;
1447 if (nid != codec->afg &&
54d17403 1448 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1da177e4
LT
1449 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1450 if (val == -1)
1451 return -EIO;
1452 }
1453 if (! val)
1454 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1455
1456 if (ratesp) {
1457 u32 rates = 0;
befdf316 1458 for (i = 0; rate_bits[i].hz; i++) {
1da177e4 1459 if (val & (1 << i))
befdf316 1460 rates |= rate_bits[i].alsa_bits;
1da177e4
LT
1461 }
1462 *ratesp = rates;
1463 }
1464
1465 if (formatsp || bpsp) {
1466 u64 formats = 0;
1467 unsigned int bps;
1468 unsigned int wcaps;
1469
54d17403 1470 wcaps = get_wcaps(codec, nid);
1da177e4
LT
1471 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1472 if (streams == -1)
1473 return -EIO;
1474 if (! streams) {
1475 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1476 if (streams == -1)
1477 return -EIO;
1478 }
1479
1480 bps = 0;
1481 if (streams & AC_SUPFMT_PCM) {
1482 if (val & AC_SUPPCM_BITS_8) {
1483 formats |= SNDRV_PCM_FMTBIT_U8;
1484 bps = 8;
1485 }
1486 if (val & AC_SUPPCM_BITS_16) {
1487 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1488 bps = 16;
1489 }
1490 if (wcaps & AC_WCAP_DIGITAL) {
1491 if (val & AC_SUPPCM_BITS_32)
1492 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1493 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1494 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1495 if (val & AC_SUPPCM_BITS_24)
1496 bps = 24;
1497 else if (val & AC_SUPPCM_BITS_20)
1498 bps = 20;
1499 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1500 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1501 if (val & AC_SUPPCM_BITS_32)
1502 bps = 32;
1da177e4
LT
1503 else if (val & AC_SUPPCM_BITS_24)
1504 bps = 24;
33ef7651
NG
1505 else if (val & AC_SUPPCM_BITS_20)
1506 bps = 20;
1da177e4
LT
1507 }
1508 }
1509 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1510 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1511 bps = 32;
1512 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1513 /* temporary hack: we have still no proper support
1514 * for the direct AC3 stream...
1515 */
1516 formats |= SNDRV_PCM_FMTBIT_U8;
1517 bps = 8;
1518 }
1519 if (formatsp)
1520 *formatsp = formats;
1521 if (bpsp)
1522 *bpsp = bps;
1523 }
1524
1525 return 0;
1526}
1527
1528/**
1529 * snd_hda_is_supported_format - check whether the given node supports the format val
1530 *
1531 * Returns 1 if supported, 0 if not.
1532 */
1533int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1534 unsigned int format)
1535{
1536 int i;
1537 unsigned int val = 0, rate, stream;
1538
1539 if (nid != codec->afg &&
54d17403 1540 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1da177e4
LT
1541 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1542 if (val == -1)
1543 return 0;
1544 }
1545 if (! val) {
1546 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1547 if (val == -1)
1548 return 0;
1549 }
1550
1551 rate = format & 0xff00;
befdf316
TI
1552 for (i = 0; rate_bits[i].hz; i++)
1553 if (rate_bits[i].hda_fmt == rate) {
1da177e4
LT
1554 if (val & (1 << i))
1555 break;
1556 return 0;
1557 }
befdf316 1558 if (! rate_bits[i].hz)
1da177e4
LT
1559 return 0;
1560
1561 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1562 if (stream == -1)
1563 return 0;
1564 if (! stream && nid != codec->afg)
1565 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1566 if (! stream || stream == -1)
1567 return 0;
1568
1569 if (stream & AC_SUPFMT_PCM) {
1570 switch (format & 0xf0) {
1571 case 0x00:
1572 if (! (val & AC_SUPPCM_BITS_8))
1573 return 0;
1574 break;
1575 case 0x10:
1576 if (! (val & AC_SUPPCM_BITS_16))
1577 return 0;
1578 break;
1579 case 0x20:
1580 if (! (val & AC_SUPPCM_BITS_20))
1581 return 0;
1582 break;
1583 case 0x30:
1584 if (! (val & AC_SUPPCM_BITS_24))
1585 return 0;
1586 break;
1587 case 0x40:
1588 if (! (val & AC_SUPPCM_BITS_32))
1589 return 0;
1590 break;
1591 default:
1592 return 0;
1593 }
1594 } else {
1595 /* FIXME: check for float32 and AC3? */
1596 }
1597
1598 return 1;
1599}
1600
1601/*
1602 * PCM stuff
1603 */
1604static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1605 struct hda_codec *codec,
c8b6bf9b 1606 struct snd_pcm_substream *substream)
1da177e4
LT
1607{
1608 return 0;
1609}
1610
1611static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1612 struct hda_codec *codec,
1613 unsigned int stream_tag,
1614 unsigned int format,
c8b6bf9b 1615 struct snd_pcm_substream *substream)
1da177e4
LT
1616{
1617 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1618 return 0;
1619}
1620
1621static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1622 struct hda_codec *codec,
c8b6bf9b 1623 struct snd_pcm_substream *substream)
1da177e4
LT
1624{
1625 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1626 return 0;
1627}
1628
1629static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1630{
1631 if (info->nid) {
1632 /* query support PCM information from the given NID */
1633 if (! info->rates || ! info->formats)
1634 snd_hda_query_supported_pcm(codec, info->nid,
1635 info->rates ? NULL : &info->rates,
1636 info->formats ? NULL : &info->formats,
1637 info->maxbps ? NULL : &info->maxbps);
1638 }
1639 if (info->ops.open == NULL)
1640 info->ops.open = hda_pcm_default_open_close;
1641 if (info->ops.close == NULL)
1642 info->ops.close = hda_pcm_default_open_close;
1643 if (info->ops.prepare == NULL) {
1644 snd_assert(info->nid, return -EINVAL);
1645 info->ops.prepare = hda_pcm_default_prepare;
1646 }
1da177e4
LT
1647 if (info->ops.cleanup == NULL) {
1648 snd_assert(info->nid, return -EINVAL);
1649 info->ops.cleanup = hda_pcm_default_cleanup;
1650 }
1651 return 0;
1652}
1653
1654/**
1655 * snd_hda_build_pcms - build PCM information
1656 * @bus: the BUS
1657 *
1658 * Create PCM information for each codec included in the bus.
1659 *
1660 * The build_pcms codec patch is requested to set up codec->num_pcms and
1661 * codec->pcm_info properly. The array is referred by the top-level driver
1662 * to create its PCM instances.
1663 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1664 * callback.
1665 *
1666 * At least, substreams, channels_min and channels_max must be filled for
1667 * each stream. substreams = 0 indicates that the stream doesn't exist.
1668 * When rates and/or formats are zero, the supported values are queried
1669 * from the given nid. The nid is used also by the default ops.prepare
1670 * and ops.cleanup callbacks.
1671 *
1672 * The driver needs to call ops.open in its open callback. Similarly,
1673 * ops.close is supposed to be called in the close callback.
1674 * ops.prepare should be called in the prepare or hw_params callback
1675 * with the proper parameters for set up.
1676 * ops.cleanup should be called in hw_free for clean up of streams.
1677 *
1678 * This function returns 0 if successfull, or a negative error code.
1679 */
1680int snd_hda_build_pcms(struct hda_bus *bus)
1681{
1682 struct list_head *p;
1683
1684 list_for_each(p, &bus->codec_list) {
1685 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1686 unsigned int pcm, s;
1687 int err;
1688 if (! codec->patch_ops.build_pcms)
1689 continue;
1690 err = codec->patch_ops.build_pcms(codec);
1691 if (err < 0)
1692 return err;
1693 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1694 for (s = 0; s < 2; s++) {
1695 struct hda_pcm_stream *info;
1696 info = &codec->pcm_info[pcm].stream[s];
1697 if (! info->substreams)
1698 continue;
1699 err = set_pcm_default_values(codec, info);
1700 if (err < 0)
1701 return err;
1702 }
1703 }
1704 }
1705 return 0;
1706}
1707
e5e8a1d4 1708EXPORT_SYMBOL(snd_hda_build_pcms);
1da177e4
LT
1709
1710/**
1711 * snd_hda_check_board_config - compare the current codec with the config table
1712 * @codec: the HDA codec
f5fcc13c
TI
1713 * @num_configs: number of config enums
1714 * @models: array of model name strings
1da177e4
LT
1715 * @tbl: configuration table, terminated by null entries
1716 *
1717 * Compares the modelname or PCI subsystem id of the current codec with the
1718 * given configuration table. If a matching entry is found, returns its
1719 * config value (supposed to be 0 or positive).
1720 *
1721 * If no entries are matching, the function returns a negative value.
1722 */
f5fcc13c
TI
1723int snd_hda_check_board_config(struct hda_codec *codec,
1724 int num_configs, const char **models,
1725 const struct snd_pci_quirk *tbl)
1da177e4 1726{
f5fcc13c
TI
1727 if (codec->bus->modelname && models) {
1728 int i;
1729 for (i = 0; i < num_configs; i++) {
1730 if (models[i] &&
1731 !strcmp(codec->bus->modelname, models[i])) {
1732 snd_printd(KERN_INFO "hda_codec: model '%s' is "
1733 "selected\n", models[i]);
1734 return i;
1da177e4
LT
1735 }
1736 }
1737 }
1738
f5fcc13c
TI
1739 if (!codec->bus->pci || !tbl)
1740 return -1;
1741
1742 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
1743 if (!tbl)
1744 return -1;
1745 if (tbl->value >= 0 && tbl->value < num_configs) {
1746#ifdef CONFIG_SND_DEBUG_DETECT
1747 char tmp[10];
1748 const char *model = NULL;
1749 if (models)
1750 model = models[tbl->value];
1751 if (!model) {
1752 sprintf(tmp, "#%d", tbl->value);
1753 model = tmp;
1da177e4 1754 }
f5fcc13c
TI
1755 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
1756 "for config %x:%x (%s)\n",
1757 model, tbl->subvendor, tbl->subdevice,
1758 (tbl->name ? tbl->name : "Unknown device"));
1759#endif
1760 return tbl->value;
1da177e4
LT
1761 }
1762 return -1;
1763}
1764
1765/**
1766 * snd_hda_add_new_ctls - create controls from the array
1767 * @codec: the HDA codec
c8b6bf9b 1768 * @knew: the array of struct snd_kcontrol_new
1da177e4
LT
1769 *
1770 * This helper function creates and add new controls in the given array.
1771 * The array must be terminated with an empty entry as terminator.
1772 *
1773 * Returns 0 if successful, or a negative error code.
1774 */
c8b6bf9b 1775int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1da177e4
LT
1776{
1777 int err;
1778
1779 for (; knew->name; knew++) {
54d17403
TI
1780 struct snd_kcontrol *kctl;
1781 kctl = snd_ctl_new1(knew, codec);
1782 if (! kctl)
1783 return -ENOMEM;
1784 err = snd_ctl_add(codec->bus->card, kctl);
1785 if (err < 0) {
1786 if (! codec->addr)
1787 return err;
1788 kctl = snd_ctl_new1(knew, codec);
1789 if (! kctl)
1790 return -ENOMEM;
1791 kctl->id.device = codec->addr;
1792 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1793 return err;
1794 }
1da177e4
LT
1795 }
1796 return 0;
1797}
1798
1799
c8b6bf9b 1800/*
d2a6d7dc
TI
1801 * Channel mode helper
1802 */
c8b6bf9b 1803int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
d2a6d7dc
TI
1804 const struct hda_channel_mode *chmode, int num_chmodes)
1805{
1806 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1807 uinfo->count = 1;
1808 uinfo->value.enumerated.items = num_chmodes;
1809 if (uinfo->value.enumerated.item >= num_chmodes)
1810 uinfo->value.enumerated.item = num_chmodes - 1;
1811 sprintf(uinfo->value.enumerated.name, "%dch",
1812 chmode[uinfo->value.enumerated.item].channels);
1813 return 0;
1814}
1815
c8b6bf9b 1816int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
d2a6d7dc
TI
1817 const struct hda_channel_mode *chmode, int num_chmodes,
1818 int max_channels)
1819{
1820 int i;
1821
1822 for (i = 0; i < num_chmodes; i++) {
1823 if (max_channels == chmode[i].channels) {
1824 ucontrol->value.enumerated.item[0] = i;
1825 break;
1826 }
1827 }
1828 return 0;
1829}
1830
c8b6bf9b 1831int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
d2a6d7dc
TI
1832 const struct hda_channel_mode *chmode, int num_chmodes,
1833 int *max_channelsp)
1834{
1835 unsigned int mode;
1836
1837 mode = ucontrol->value.enumerated.item[0];
1838 snd_assert(mode < num_chmodes, return -EINVAL);
b2ec6423 1839 if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
d2a6d7dc
TI
1840 return 0;
1841 /* change the current channel setting */
1842 *max_channelsp = chmode[mode].channels;
1843 if (chmode[mode].sequence)
1844 snd_hda_sequence_write(codec, chmode[mode].sequence);
1845 return 1;
1846}
1847
1da177e4
LT
1848/*
1849 * input MUX helper
1850 */
c8b6bf9b 1851int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1da177e4
LT
1852{
1853 unsigned int index;
1854
1855 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1856 uinfo->count = 1;
1857 uinfo->value.enumerated.items = imux->num_items;
1858 index = uinfo->value.enumerated.item;
1859 if (index >= imux->num_items)
1860 index = imux->num_items - 1;
1861 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1862 return 0;
1863}
1864
1865int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
c8b6bf9b 1866 struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1da177e4
LT
1867 unsigned int *cur_val)
1868{
1869 unsigned int idx;
1870
1871 idx = ucontrol->value.enumerated.item[0];
1872 if (idx >= imux->num_items)
1873 idx = imux->num_items - 1;
1874 if (*cur_val == idx && ! codec->in_resume)
1875 return 0;
1876 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1877 imux->items[idx].index);
1878 *cur_val = idx;
1879 return 1;
1880}
1881
1882
1883/*
1884 * Multi-channel / digital-out PCM helper functions
1885 */
1886
1887/*
1888 * open the digital out in the exclusive mode
1889 */
1890int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1891{
62932df8 1892 mutex_lock(&codec->spdif_mutex);
1da177e4 1893 if (mout->dig_out_used) {
62932df8 1894 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
1895 return -EBUSY; /* already being used */
1896 }
1897 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
62932df8 1898 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
1899 return 0;
1900}
1901
1902/*
1903 * release the digital out
1904 */
1905int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1906{
62932df8 1907 mutex_lock(&codec->spdif_mutex);
1da177e4 1908 mout->dig_out_used = 0;
62932df8 1909 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
1910 return 0;
1911}
1912
1913/*
1914 * set up more restrictions for analog out
1915 */
1916int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
c8b6bf9b 1917 struct snd_pcm_substream *substream)
1da177e4
LT
1918{
1919 substream->runtime->hw.channels_max = mout->max_channels;
1920 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1921 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1922}
1923
1924/*
1925 * set up the i/o for analog out
1926 * when the digital out is available, copy the front out to digital out, too.
1927 */
1928int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1929 unsigned int stream_tag,
1930 unsigned int format,
c8b6bf9b 1931 struct snd_pcm_substream *substream)
1da177e4
LT
1932{
1933 hda_nid_t *nids = mout->dac_nids;
1934 int chs = substream->runtime->channels;
1935 int i;
1936
62932df8 1937 mutex_lock(&codec->spdif_mutex);
1da177e4
LT
1938 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1939 if (chs == 2 &&
1940 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1941 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1942 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1943 /* setup digital receiver */
1944 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1945 stream_tag, 0, format);
1946 } else {
1947 mout->dig_out_used = 0;
1948 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1949 }
1950 }
62932df8 1951 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
1952
1953 /* front */
1954 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
35aec4e2 1955 if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
1da177e4
LT
1956 /* headphone out will just decode front left/right (stereo) */
1957 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
82bc955f
TI
1958 /* extra outputs copied from front */
1959 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1960 if (mout->extra_out_nid[i])
1961 snd_hda_codec_setup_stream(codec,
1962 mout->extra_out_nid[i],
1963 stream_tag, 0, format);
1964
1da177e4
LT
1965 /* surrounds */
1966 for (i = 1; i < mout->num_dacs; i++) {
4b3acaf5 1967 if (chs >= (i + 1) * 2) /* independent out */
1da177e4
LT
1968 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1969 format);
4b3acaf5
TI
1970 else /* copy front */
1971 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1972 format);
1da177e4
LT
1973 }
1974 return 0;
1975}
1976
1977/*
1978 * clean up the setting for analog out
1979 */
1980int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1981{
1982 hda_nid_t *nids = mout->dac_nids;
1983 int i;
1984
1985 for (i = 0; i < mout->num_dacs; i++)
1986 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1987 if (mout->hp_nid)
1988 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
82bc955f
TI
1989 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1990 if (mout->extra_out_nid[i])
1991 snd_hda_codec_setup_stream(codec,
1992 mout->extra_out_nid[i],
1993 0, 0, 0);
62932df8 1994 mutex_lock(&codec->spdif_mutex);
1da177e4
LT
1995 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1996 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1997 mout->dig_out_used = 0;
1998 }
62932df8 1999 mutex_unlock(&codec->spdif_mutex);
1da177e4
LT
2000 return 0;
2001}
2002
e9edcee0
TI
2003/*
2004 * Helper for automatic ping configuration
2005 */
df694daa
KY
2006
2007static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2008{
2009 for (; *list; list++)
2010 if (*list == nid)
2011 return 1;
2012 return 0;
2013}
2014
82bc955f
TI
2015/*
2016 * Parse all pin widgets and store the useful pin nids to cfg
2017 *
2018 * The number of line-outs or any primary output is stored in line_outs,
2019 * and the corresponding output pins are assigned to line_out_pins[],
2020 * in the order of front, rear, CLFE, side, ...
2021 *
2022 * If more extra outputs (speaker and headphone) are found, the pins are
eb06ed8f 2023 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
82bc955f
TI
2024 * is detected, one of speaker of HP pins is assigned as the primary
2025 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2026 * if any analog output exists.
2027 *
2028 * The analog input pins are assigned to input_pins array.
2029 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2030 * respectively.
2031 */
df694daa
KY
2032int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
2033 hda_nid_t *ignore_nids)
e9edcee0
TI
2034{
2035 hda_nid_t nid, nid_start;
2036 int i, j, nodes;
82bc955f 2037 short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)];
e9edcee0
TI
2038
2039 memset(cfg, 0, sizeof(*cfg));
2040
2041 memset(sequences, 0, sizeof(sequences));
2042 assoc_line_out = 0;
2043
2044 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2045 for (nid = nid_start; nid < nodes + nid_start; nid++) {
54d17403 2046 unsigned int wid_caps = get_wcaps(codec, nid);
e9edcee0
TI
2047 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2048 unsigned int def_conf;
2049 short assoc, loc;
2050
2051 /* read all default configuration for pin complex */
2052 if (wid_type != AC_WID_PIN)
2053 continue;
df694daa
KY
2054 /* ignore the given nids (e.g. pc-beep returns error) */
2055 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2056 continue;
2057
e9edcee0
TI
2058 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
2059 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2060 continue;
2061 loc = get_defcfg_location(def_conf);
2062 switch (get_defcfg_device(def_conf)) {
2063 case AC_JACK_LINE_OUT:
e9edcee0
TI
2064 seq = get_defcfg_sequence(def_conf);
2065 assoc = get_defcfg_association(def_conf);
2066 if (! assoc)
2067 continue;
2068 if (! assoc_line_out)
2069 assoc_line_out = assoc;
2070 else if (assoc_line_out != assoc)
2071 continue;
2072 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2073 continue;
2074 cfg->line_out_pins[cfg->line_outs] = nid;
2075 sequences[cfg->line_outs] = seq;
2076 cfg->line_outs++;
2077 break;
8d88bc3d 2078 case AC_JACK_SPEAKER:
82bc955f
TI
2079 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2080 continue;
2081 cfg->speaker_pins[cfg->speaker_outs] = nid;
2082 cfg->speaker_outs++;
8d88bc3d 2083 break;
e9edcee0 2084 case AC_JACK_HP_OUT:
eb06ed8f
TI
2085 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2086 continue;
2087 cfg->hp_pins[cfg->hp_outs] = nid;
2088 cfg->hp_outs++;
e9edcee0 2089 break;
314634bc
TI
2090 case AC_JACK_MIC_IN: {
2091 int preferred, alt;
2092 if (loc == AC_JACK_LOC_FRONT) {
2093 preferred = AUTO_PIN_FRONT_MIC;
2094 alt = AUTO_PIN_MIC;
2095 } else {
2096 preferred = AUTO_PIN_MIC;
2097 alt = AUTO_PIN_FRONT_MIC;
2098 }
2099 if (!cfg->input_pins[preferred])
2100 cfg->input_pins[preferred] = nid;
2101 else if (!cfg->input_pins[alt])
2102 cfg->input_pins[alt] = nid;
e9edcee0 2103 break;
314634bc 2104 }
e9edcee0
TI
2105 case AC_JACK_LINE_IN:
2106 if (loc == AC_JACK_LOC_FRONT)
2107 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2108 else
2109 cfg->input_pins[AUTO_PIN_LINE] = nid;
2110 break;
2111 case AC_JACK_CD:
2112 cfg->input_pins[AUTO_PIN_CD] = nid;
2113 break;
2114 case AC_JACK_AUX:
2115 cfg->input_pins[AUTO_PIN_AUX] = nid;
2116 break;
2117 case AC_JACK_SPDIF_OUT:
2118 cfg->dig_out_pin = nid;
2119 break;
2120 case AC_JACK_SPDIF_IN:
2121 cfg->dig_in_pin = nid;
2122 break;
2123 }
2124 }
2125
2126 /* sort by sequence */
2127 for (i = 0; i < cfg->line_outs; i++)
2128 for (j = i + 1; j < cfg->line_outs; j++)
2129 if (sequences[i] > sequences[j]) {
2130 seq = sequences[i];
2131 sequences[i] = sequences[j];
2132 sequences[j] = seq;
2133 nid = cfg->line_out_pins[i];
2134 cfg->line_out_pins[i] = cfg->line_out_pins[j];
2135 cfg->line_out_pins[j] = nid;
2136 }
2137
cb8e2f83
TI
2138 /* Reorder the surround channels
2139 * ALSA sequence is front/surr/clfe/side
2140 * HDA sequence is:
2141 * 4-ch: front/surr => OK as it is
2142 * 6-ch: front/clfe/surr
2143 * 8-ch: front/clfe/side/surr
2144 */
2145 switch (cfg->line_outs) {
2146 case 3:
e9edcee0
TI
2147 nid = cfg->line_out_pins[1];
2148 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2149 cfg->line_out_pins[2] = nid;
cb8e2f83
TI
2150 break;
2151 case 4:
2152 nid = cfg->line_out_pins[1];
2153 cfg->line_out_pins[1] = cfg->line_out_pins[3];
2154 cfg->line_out_pins[3] = cfg->line_out_pins[2];
2155 cfg->line_out_pins[2] = nid;
2156 break;
e9edcee0
TI
2157 }
2158
82bc955f
TI
2159 /*
2160 * debug prints of the parsed results
2161 */
2162 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2163 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2164 cfg->line_out_pins[2], cfg->line_out_pins[3],
2165 cfg->line_out_pins[4]);
2166 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2167 cfg->speaker_outs, cfg->speaker_pins[0],
2168 cfg->speaker_pins[1], cfg->speaker_pins[2],
2169 cfg->speaker_pins[3], cfg->speaker_pins[4]);
eb06ed8f
TI
2170 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2171 cfg->hp_outs, cfg->hp_pins[0],
2172 cfg->hp_pins[1], cfg->hp_pins[2],
2173 cfg->hp_pins[3], cfg->hp_pins[4]);
82bc955f
TI
2174 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2175 " cd=0x%x, aux=0x%x\n",
2176 cfg->input_pins[AUTO_PIN_MIC],
2177 cfg->input_pins[AUTO_PIN_FRONT_MIC],
2178 cfg->input_pins[AUTO_PIN_LINE],
2179 cfg->input_pins[AUTO_PIN_FRONT_LINE],
2180 cfg->input_pins[AUTO_PIN_CD],
2181 cfg->input_pins[AUTO_PIN_AUX]);
2182
2183 /*
2184 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2185 * as a primary output
2186 */
2187 if (! cfg->line_outs) {
2188 if (cfg->speaker_outs) {
2189 cfg->line_outs = cfg->speaker_outs;
2190 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2191 sizeof(cfg->speaker_pins));
2192 cfg->speaker_outs = 0;
2193 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
eb06ed8f
TI
2194 } else if (cfg->hp_outs) {
2195 cfg->line_outs = cfg->hp_outs;
2196 memcpy(cfg->line_out_pins, cfg->hp_pins,
2197 sizeof(cfg->hp_pins));
2198 cfg->hp_outs = 0;
2199 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
82bc955f
TI
2200 }
2201 }
2202
e9edcee0
TI
2203 return 0;
2204}
2205
4a471b7d
TI
2206/* labels for input pins */
2207const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2208 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2209};
2210
2211
1da177e4
LT
2212#ifdef CONFIG_PM
2213/*
2214 * power management
2215 */
2216
2217/**
2218 * snd_hda_suspend - suspend the codecs
2219 * @bus: the HDA bus
2220 * @state: suspsend state
2221 *
2222 * Returns 0 if successful.
2223 */
2224int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2225{
2226 struct list_head *p;
2227
2228 /* FIXME: should handle power widget capabilities */
2229 list_for_each(p, &bus->codec_list) {
2230 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2231 if (codec->patch_ops.suspend)
2232 codec->patch_ops.suspend(codec, state);
54d17403
TI
2233 hda_set_power_state(codec,
2234 codec->afg ? codec->afg : codec->mfg,
2235 AC_PWRST_D3);
1da177e4
LT
2236 }
2237 return 0;
2238}
2239
e5e8a1d4
TI
2240EXPORT_SYMBOL(snd_hda_suspend);
2241
1da177e4
LT
2242/**
2243 * snd_hda_resume - resume the codecs
2244 * @bus: the HDA bus
2245 * @state: resume state
2246 *
2247 * Returns 0 if successful.
2248 */
2249int snd_hda_resume(struct hda_bus *bus)
2250{
2251 struct list_head *p;
2252
2253 list_for_each(p, &bus->codec_list) {
2254 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
54d17403
TI
2255 hda_set_power_state(codec,
2256 codec->afg ? codec->afg : codec->mfg,
2257 AC_PWRST_D0);
1da177e4
LT
2258 if (codec->patch_ops.resume)
2259 codec->patch_ops.resume(codec);
2260 }
2261 return 0;
2262}
2263
e5e8a1d4
TI
2264EXPORT_SYMBOL(snd_hda_resume);
2265
1da177e4
LT
2266/**
2267 * snd_hda_resume_ctls - resume controls in the new control list
2268 * @codec: the HDA codec
c8b6bf9b 2269 * @knew: the array of struct snd_kcontrol_new
1da177e4 2270 *
c8b6bf9b 2271 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
1da177e4
LT
2272 * originally for snd_hda_add_new_ctls().
2273 * The array must be terminated with an empty entry as terminator.
2274 */
c8b6bf9b 2275int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1da177e4 2276{
c8b6bf9b 2277 struct snd_ctl_elem_value *val;
1da177e4
LT
2278
2279 val = kmalloc(sizeof(*val), GFP_KERNEL);
2280 if (! val)
2281 return -ENOMEM;
2282 codec->in_resume = 1;
2283 for (; knew->name; knew++) {
2284 int i, count;
2285 count = knew->count ? knew->count : 1;
2286 for (i = 0; i < count; i++) {
2287 memset(val, 0, sizeof(*val));
2288 val->id.iface = knew->iface;
2289 val->id.device = knew->device;
2290 val->id.subdevice = knew->subdevice;
2291 strcpy(val->id.name, knew->name);
2292 val->id.index = knew->index ? knew->index : i;
2293 /* Assume that get callback reads only from cache,
2294 * not accessing to the real hardware
2295 */
2296 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2297 continue;
2298 snd_ctl_elem_write(codec->bus->card, NULL, val);
2299 }
2300 }
2301 codec->in_resume = 0;
2302 kfree(val);
2303 return 0;
2304}
2305
2306/**
2307 * snd_hda_resume_spdif_out - resume the digital out
2308 * @codec: the HDA codec
2309 */
2310int snd_hda_resume_spdif_out(struct hda_codec *codec)
2311{
2312 return snd_hda_resume_ctls(codec, dig_mixes);
2313}
2314
2315/**
2316 * snd_hda_resume_spdif_in - resume the digital in
2317 * @codec: the HDA codec
2318 */
2319int snd_hda_resume_spdif_in(struct hda_codec *codec)
2320{
2321 return snd_hda_resume_ctls(codec, dig_in_ctls);
2322}
2323#endif
2324
1da177e4
LT
2325/*
2326 * INIT part
2327 */
2328
2329static int __init alsa_hda_init(void)
2330{
2331 return 0;
2332}
2333
2334static void __exit alsa_hda_exit(void)
2335{
2336}
2337
2338module_init(alsa_hda_init)
2339module_exit(alsa_hda_exit)