]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - sound/pci/hda/hda_codec.c
[ALSA] Show PIN jack type
[mirror_ubuntu-bionic-kernel.git] / sound / pci / hda / hda_codec.c
CommitLineData
1da177e4
LT
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <sound/driver.h>
23#include <linux/init.h>
24#include <linux/delay.h>
25#include <linux/slab.h>
26#include <linux/pci.h>
27#include <linux/moduleparam.h>
28#include <sound/core.h>
29#include "hda_codec.h"
30#include <sound/asoundef.h>
31#include <sound/initval.h>
32#include "hda_local.h"
33
34
35MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37MODULE_LICENSE("GPL");
38
39
40/*
41 * vendor / preset table
42 */
43
44struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47};
48
49/* codec vendor labels */
50static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x13f6, "C-Media" },
53 { 0x434d, "C-Media" },
2f2f4251 54 { 0x8384, "SigmaTel" },
1da177e4
LT
55 {} /* terminator */
56};
57
58/* codec presets */
59#include "hda_patch.h"
60
61
62/**
63 * snd_hda_codec_read - send a command and get the response
64 * @codec: the HDA codec
65 * @nid: NID to send the command
66 * @direct: direct flag
67 * @verb: the verb to send
68 * @parm: the parameter for the verb
69 *
70 * Send a single command and read the corresponding response.
71 *
72 * Returns the obtained response value, or -1 for an error.
73 */
74unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
75 unsigned int verb, unsigned int parm)
76{
77 unsigned int res;
78 down(&codec->bus->cmd_mutex);
79 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
80 res = codec->bus->ops.get_response(codec);
81 else
82 res = (unsigned int)-1;
83 up(&codec->bus->cmd_mutex);
84 return res;
85}
86
87/**
88 * snd_hda_codec_write - send a single command without waiting for response
89 * @codec: the HDA codec
90 * @nid: NID to send the command
91 * @direct: direct flag
92 * @verb: the verb to send
93 * @parm: the parameter for the verb
94 *
95 * Send a single command without waiting for response.
96 *
97 * Returns 0 if successful, or a negative error code.
98 */
99int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
100 unsigned int verb, unsigned int parm)
101{
102 int err;
103 down(&codec->bus->cmd_mutex);
104 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
105 up(&codec->bus->cmd_mutex);
106 return err;
107}
108
109/**
110 * snd_hda_sequence_write - sequence writes
111 * @codec: the HDA codec
112 * @seq: VERB array to send
113 *
114 * Send the commands sequentially from the given array.
115 * The array must be terminated with NID=0.
116 */
117void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
118{
119 for (; seq->nid; seq++)
120 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
121}
122
123/**
124 * snd_hda_get_sub_nodes - get the range of sub nodes
125 * @codec: the HDA codec
126 * @nid: NID to parse
127 * @start_id: the pointer to store the start NID
128 *
129 * Parse the NID and store the start NID of its sub-nodes.
130 * Returns the number of sub-nodes.
131 */
132int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
133{
134 unsigned int parm;
135
136 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
137 *start_id = (parm >> 16) & 0x7fff;
138 return (int)(parm & 0x7fff);
139}
140
141/**
142 * snd_hda_get_connections - get connection list
143 * @codec: the HDA codec
144 * @nid: NID to parse
145 * @conn_list: connection list array
146 * @max_conns: max. number of connections to store
147 *
148 * Parses the connection list of the given widget and stores the list
149 * of NIDs.
150 *
151 * Returns the number of connections, or a negative error code.
152 */
153int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
154 hda_nid_t *conn_list, int max_conns)
155{
156 unsigned int parm;
157 int i, j, conn_len, num_tupples, conns;
158 unsigned int shift, num_elems, mask;
159
160 snd_assert(conn_list && max_conns > 0, return -EINVAL);
161
162 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
163 if (parm & AC_CLIST_LONG) {
164 /* long form */
165 shift = 16;
166 num_elems = 2;
167 } else {
168 /* short form */
169 shift = 8;
170 num_elems = 4;
171 }
172 conn_len = parm & AC_CLIST_LENGTH;
173 num_tupples = num_elems / 2;
174 mask = (1 << (shift-1)) - 1;
175
176 if (! conn_len)
177 return 0; /* no connection */
178
179 if (conn_len == 1) {
180 /* single connection */
181 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
182 conn_list[0] = parm & mask;
183 return 1;
184 }
185
186 /* multi connection */
187 conns = 0;
188 for (i = 0; i < conn_len; i += num_elems) {
189 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
190 for (j = 0; j < num_tupples; j++) {
191 int range_val;
192 hda_nid_t val1, val2, n;
193 range_val = parm & (1 << (shift-1)); /* ranges */
194 val1 = parm & mask;
195 parm >>= shift;
196 val2 = parm & mask;
197 parm >>= shift;
198 if (range_val) {
199 /* ranges between val1 and val2 */
200 if (val1 > val2) {
201 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
202 continue;
203 }
204 for (n = val1; n <= val2; n++) {
205 if (conns >= max_conns)
206 return -EINVAL;
207 conn_list[conns++] = n;
208 }
209 } else {
210 if (! val1)
211 break;
212 if (conns >= max_conns)
213 return -EINVAL;
214 conn_list[conns++] = val1;
215 if (! val2)
216 break;
217 if (conns >= max_conns)
218 return -EINVAL;
219 conn_list[conns++] = val2;
220 }
221 }
222 }
223 return conns;
224}
225
226
227/**
228 * snd_hda_queue_unsol_event - add an unsolicited event to queue
229 * @bus: the BUS
230 * @res: unsolicited event (lower 32bit of RIRB entry)
231 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
232 *
233 * Adds the given event to the queue. The events are processed in
234 * the workqueue asynchronously. Call this function in the interrupt
235 * hanlder when RIRB receives an unsolicited event.
236 *
237 * Returns 0 if successful, or a negative error code.
238 */
239int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
240{
241 struct hda_bus_unsolicited *unsol;
242 unsigned int wp;
243
244 if ((unsol = bus->unsol) == NULL)
245 return 0;
246
247 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
248 unsol->wp = wp;
249
250 wp <<= 1;
251 unsol->queue[wp] = res;
252 unsol->queue[wp + 1] = res_ex;
253
254 queue_work(unsol->workq, &unsol->work);
255
256 return 0;
257}
258
259/*
260 * process queueud unsolicited events
261 */
262static void process_unsol_events(void *data)
263{
264 struct hda_bus *bus = data;
265 struct hda_bus_unsolicited *unsol = bus->unsol;
266 struct hda_codec *codec;
267 unsigned int rp, caddr, res;
268
269 while (unsol->rp != unsol->wp) {
270 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
271 unsol->rp = rp;
272 rp <<= 1;
273 res = unsol->queue[rp];
274 caddr = unsol->queue[rp + 1];
275 if (! (caddr & (1 << 4))) /* no unsolicited event? */
276 continue;
277 codec = bus->caddr_tbl[caddr & 0x0f];
278 if (codec && codec->patch_ops.unsol_event)
279 codec->patch_ops.unsol_event(codec, res);
280 }
281}
282
283/*
284 * initialize unsolicited queue
285 */
286static int init_unsol_queue(struct hda_bus *bus)
287{
288 struct hda_bus_unsolicited *unsol;
289
290 unsol = kcalloc(1, sizeof(*unsol), GFP_KERNEL);
291 if (! unsol) {
292 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
293 return -ENOMEM;
294 }
295 unsol->workq = create_workqueue("hda_codec");
296 if (! unsol->workq) {
297 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
298 kfree(unsol);
299 return -ENOMEM;
300 }
301 INIT_WORK(&unsol->work, process_unsol_events, bus);
302 bus->unsol = unsol;
303 return 0;
304}
305
306/*
307 * destructor
308 */
309static void snd_hda_codec_free(struct hda_codec *codec);
310
311static int snd_hda_bus_free(struct hda_bus *bus)
312{
313 struct list_head *p, *n;
314
315 if (! bus)
316 return 0;
317 if (bus->unsol) {
318 destroy_workqueue(bus->unsol->workq);
319 kfree(bus->unsol);
320 }
321 list_for_each_safe(p, n, &bus->codec_list) {
322 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
323 snd_hda_codec_free(codec);
324 }
325 if (bus->ops.private_free)
326 bus->ops.private_free(bus);
327 kfree(bus);
328 return 0;
329}
330
331static int snd_hda_bus_dev_free(snd_device_t *device)
332{
333 struct hda_bus *bus = device->device_data;
334 return snd_hda_bus_free(bus);
335}
336
337/**
338 * snd_hda_bus_new - create a HDA bus
339 * @card: the card entry
340 * @temp: the template for hda_bus information
341 * @busp: the pointer to store the created bus instance
342 *
343 * Returns 0 if successful, or a negative error code.
344 */
345int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
346 struct hda_bus **busp)
347{
348 struct hda_bus *bus;
349 int err;
350 static snd_device_ops_t dev_ops = {
351 .dev_free = snd_hda_bus_dev_free,
352 };
353
354 snd_assert(temp, return -EINVAL);
355 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
356
357 if (busp)
358 *busp = NULL;
359
360 bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
361 if (bus == NULL) {
362 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
363 return -ENOMEM;
364 }
365
366 bus->card = card;
367 bus->private_data = temp->private_data;
368 bus->pci = temp->pci;
369 bus->modelname = temp->modelname;
370 bus->ops = temp->ops;
371
372 init_MUTEX(&bus->cmd_mutex);
373 INIT_LIST_HEAD(&bus->codec_list);
374
375 init_unsol_queue(bus);
376
377 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
378 snd_hda_bus_free(bus);
379 return err;
380 }
381 if (busp)
382 *busp = bus;
383 return 0;
384}
385
386
387/*
388 * find a matching codec preset
389 */
390static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
391{
392 const struct hda_codec_preset **tbl, *preset;
393
394 for (tbl = hda_preset_tables; *tbl; tbl++) {
395 for (preset = *tbl; preset->id; preset++) {
396 u32 mask = preset->mask;
397 if (! mask)
398 mask = ~0;
399 if (preset->id == (codec->vendor_id & mask))
400 return preset;
401 }
402 }
403 return NULL;
404}
405
406/*
407 * snd_hda_get_codec_name - store the codec name
408 */
409void snd_hda_get_codec_name(struct hda_codec *codec,
410 char *name, int namelen)
411{
412 const struct hda_vendor_id *c;
413 const char *vendor = NULL;
414 u16 vendor_id = codec->vendor_id >> 16;
415 char tmp[16];
416
417 for (c = hda_vendor_ids; c->id; c++) {
418 if (c->id == vendor_id) {
419 vendor = c->name;
420 break;
421 }
422 }
423 if (! vendor) {
424 sprintf(tmp, "Generic %04x", vendor_id);
425 vendor = tmp;
426 }
427 if (codec->preset && codec->preset->name)
428 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
429 else
430 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
431}
432
433/*
434 * look for an AFG node
435 *
436 * return 0 if not found
437 */
438static int look_for_afg_node(struct hda_codec *codec)
439{
440 int i, total_nodes;
441 hda_nid_t nid;
442
443 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
444 for (i = 0; i < total_nodes; i++, nid++) {
445 if ((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff) ==
446 AC_GRP_AUDIO_FUNCTION)
447 return nid;
448 }
449 return 0;
450}
451
452/*
453 * codec destructor
454 */
455static void snd_hda_codec_free(struct hda_codec *codec)
456{
457 if (! codec)
458 return;
459 list_del(&codec->list);
460 codec->bus->caddr_tbl[codec->addr] = NULL;
461 if (codec->patch_ops.free)
462 codec->patch_ops.free(codec);
463 kfree(codec);
464}
465
466static void init_amp_hash(struct hda_codec *codec);
467
468/**
469 * snd_hda_codec_new - create a HDA codec
470 * @bus: the bus to assign
471 * @codec_addr: the codec address
472 * @codecp: the pointer to store the generated codec
473 *
474 * Returns 0 if successful, or a negative error code.
475 */
476int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
477 struct hda_codec **codecp)
478{
479 struct hda_codec *codec;
480 char component[13];
481 int err;
482
483 snd_assert(bus, return -EINVAL);
484 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
485
486 if (bus->caddr_tbl[codec_addr]) {
487 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
488 return -EBUSY;
489 }
490
491 codec = kcalloc(1, sizeof(*codec), GFP_KERNEL);
492 if (codec == NULL) {
493 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
494 return -ENOMEM;
495 }
496
497 codec->bus = bus;
498 codec->addr = codec_addr;
499 init_MUTEX(&codec->spdif_mutex);
500 init_amp_hash(codec);
501
502 list_add_tail(&codec->list, &bus->codec_list);
503 bus->caddr_tbl[codec_addr] = codec;
504
505 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
506 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
507 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
508
509 /* FIXME: support for multiple AFGs? */
510 codec->afg = look_for_afg_node(codec);
511 if (! codec->afg) {
512 snd_printk(KERN_ERR "hda_codec: no AFG node found\n");
513 snd_hda_codec_free(codec);
514 return -ENODEV;
515 }
516
517 codec->preset = find_codec_preset(codec);
518 if (! *bus->card->mixername)
519 snd_hda_get_codec_name(codec, bus->card->mixername,
520 sizeof(bus->card->mixername));
521
522 if (codec->preset && codec->preset->patch)
523 err = codec->preset->patch(codec);
524 else
525 err = snd_hda_parse_generic_codec(codec);
526 if (err < 0) {
527 snd_hda_codec_free(codec);
528 return err;
529 }
530
531 snd_hda_codec_proc_new(codec);
532
533 sprintf(component, "HDA:%08x", codec->vendor_id);
534 snd_component_add(codec->bus->card, component);
535
536 if (codecp)
537 *codecp = codec;
538 return 0;
539}
540
541/**
542 * snd_hda_codec_setup_stream - set up the codec for streaming
543 * @codec: the CODEC to set up
544 * @nid: the NID to set up
545 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
546 * @channel_id: channel id to pass, zero based.
547 * @format: stream format.
548 */
549void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
550 int channel_id, int format)
551{
552 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
553 nid, stream_tag, channel_id, format);
554 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
555 (stream_tag << 4) | channel_id);
556 msleep(1);
557 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
558}
559
560
561/*
562 * amp access functions
563 */
564
565#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + (idx) * 32 + (dir) * 64)
566#define INFO_AMP_CAPS (1<<0)
567#define INFO_AMP_VOL (1<<1)
568
569/* initialize the hash table */
570static void init_amp_hash(struct hda_codec *codec)
571{
572 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
573 codec->num_amp_entries = 0;
574}
575
576/* query the hash. allocate an entry if not found. */
577static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
578{
579 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
580 u16 cur = codec->amp_hash[idx];
581 struct hda_amp_info *info;
582
583 while (cur != 0xffff) {
584 info = &codec->amp_info[cur];
585 if (info->key == key)
586 return info;
587 cur = info->next;
588 }
589
590 /* add a new hash entry */
591 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
592 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
593 return NULL;
594 }
595 cur = codec->num_amp_entries++;
596 info = &codec->amp_info[cur];
597 info->key = key;
598 info->status = 0; /* not initialized yet */
599 info->next = codec->amp_hash[idx];
600 codec->amp_hash[idx] = cur;
601
602 return info;
603}
604
605/*
606 * query AMP capabilities for the given widget and direction
607 */
608static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
609{
610 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
611
612 if (! info)
613 return 0;
614 if (! (info->status & INFO_AMP_CAPS)) {
615 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
616 nid = codec->afg;
617 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
618 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
619 info->status |= INFO_AMP_CAPS;
620 }
621 return info->amp_caps;
622}
623
624/*
625 * read the current volume to info
626 * if the cache exists, read from the cache.
627 */
628static void get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
629 hda_nid_t nid, int ch, int direction, int index)
630{
631 u32 val, parm;
632
633 if (info->status & (INFO_AMP_VOL << ch))
634 return;
635
636 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
637 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
638 parm |= index;
639 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
640 info->vol[ch] = val & 0xff;
641 info->status |= INFO_AMP_VOL << ch;
642}
643
644/*
645 * write the current volume in info to the h/w
646 */
647static void put_vol_mute(struct hda_codec *codec,
648 hda_nid_t nid, int ch, int direction, int index, int val)
649{
650 u32 parm;
651
652 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
653 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
654 parm |= index << AC_AMP_SET_INDEX_SHIFT;
655 parm |= val;
656 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
657}
658
659/*
660 * read/write AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
661 */
662int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
663{
664 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
665 if (! info)
666 return 0;
667 get_vol_mute(codec, info, nid, ch, direction, index);
668 return info->vol[ch];
669}
670
671int snd_hda_codec_amp_write(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int val)
672{
673 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
674 if (! info)
675 return 0;
676 get_vol_mute(codec, info, nid, ch, direction, idx);
677 if (info->vol[ch] == val && ! codec->in_resume)
678 return 0;
679 put_vol_mute(codec, nid, ch, direction, idx, val);
680 info->vol[ch] = val;
681 return 1;
682}
683
684
685/*
686 * AMP control callbacks
687 */
688/* retrieve parameters from private_value */
689#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
690#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
691#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
692#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
693
694/* volume */
695int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
696{
697 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
698 u16 nid = get_amp_nid(kcontrol);
699 u8 chs = get_amp_channels(kcontrol);
700 int dir = get_amp_direction(kcontrol);
701 u32 caps;
702
703 caps = query_amp_caps(codec, nid, dir);
704 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
705 if (! caps) {
706 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
707 return -EINVAL;
708 }
709 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
710 uinfo->count = chs == 3 ? 2 : 1;
711 uinfo->value.integer.min = 0;
712 uinfo->value.integer.max = caps;
713 return 0;
714}
715
716int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
717{
718 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
719 hda_nid_t nid = get_amp_nid(kcontrol);
720 int chs = get_amp_channels(kcontrol);
721 int dir = get_amp_direction(kcontrol);
722 int idx = get_amp_index(kcontrol);
723 long *valp = ucontrol->value.integer.value;
724
725 if (chs & 1)
726 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
727 if (chs & 2)
728 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
729 return 0;
730}
731
732int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
733{
734 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
735 hda_nid_t nid = get_amp_nid(kcontrol);
736 int chs = get_amp_channels(kcontrol);
737 int dir = get_amp_direction(kcontrol);
738 int idx = get_amp_index(kcontrol);
739 int val;
740 long *valp = ucontrol->value.integer.value;
741 int change = 0;
742
743 if (chs & 1) {
744 val = *valp & 0x7f;
745 val |= snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80;
746 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
747 valp++;
748 }
749 if (chs & 2) {
750 val = *valp & 0x7f;
751 val |= snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80;
752 change |= snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
753 }
754 return change;
755}
756
757/* switch */
758int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
759{
760 int chs = get_amp_channels(kcontrol);
761
762 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
763 uinfo->count = chs == 3 ? 2 : 1;
764 uinfo->value.integer.min = 0;
765 uinfo->value.integer.max = 1;
766 return 0;
767}
768
769int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
770{
771 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
772 hda_nid_t nid = get_amp_nid(kcontrol);
773 int chs = get_amp_channels(kcontrol);
774 int dir = get_amp_direction(kcontrol);
775 int idx = get_amp_index(kcontrol);
776 long *valp = ucontrol->value.integer.value;
777
778 if (chs & 1)
779 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
780 if (chs & 2)
781 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
782 return 0;
783}
784
785int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
786{
787 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
788 hda_nid_t nid = get_amp_nid(kcontrol);
789 int chs = get_amp_channels(kcontrol);
790 int dir = get_amp_direction(kcontrol);
791 int idx = get_amp_index(kcontrol);
792 int val;
793 long *valp = ucontrol->value.integer.value;
794 int change = 0;
795
796 if (chs & 1) {
797 val = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
798 val |= *valp ? 0 : 0x80;
799 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
800 valp++;
801 }
802 if (chs & 2) {
803 val = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
804 val |= *valp ? 0 : 0x80;
805 change = snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
806 }
807 return change;
808}
809
810/*
811 * SPDIF out controls
812 */
813
814static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
815{
816 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
817 uinfo->count = 1;
818 return 0;
819}
820
821static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
822{
823 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
824 IEC958_AES0_NONAUDIO |
825 IEC958_AES0_CON_EMPHASIS_5015 |
826 IEC958_AES0_CON_NOT_COPYRIGHT;
827 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
828 IEC958_AES1_CON_ORIGINAL;
829 return 0;
830}
831
832static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
833{
834 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
835 IEC958_AES0_NONAUDIO |
836 IEC958_AES0_PRO_EMPHASIS_5015;
837 return 0;
838}
839
840static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
841{
842 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
843
844 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
845 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
846 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
847 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
848
849 return 0;
850}
851
852/* convert from SPDIF status bits to HDA SPDIF bits
853 * bit 0 (DigEn) is always set zero (to be filled later)
854 */
855static unsigned short convert_from_spdif_status(unsigned int sbits)
856{
857 unsigned short val = 0;
858
859 if (sbits & IEC958_AES0_PROFESSIONAL)
860 val |= 1 << 6;
861 if (sbits & IEC958_AES0_NONAUDIO)
862 val |= 1 << 5;
863 if (sbits & IEC958_AES0_PROFESSIONAL) {
864 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
865 val |= 1 << 3;
866 } else {
867 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
868 val |= 1 << 3;
869 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
870 val |= 1 << 4;
871 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
872 val |= 1 << 7;
873 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
874 }
875 return val;
876}
877
878/* convert to SPDIF status bits from HDA SPDIF bits
879 */
880static unsigned int convert_to_spdif_status(unsigned short val)
881{
882 unsigned int sbits = 0;
883
884 if (val & (1 << 5))
885 sbits |= IEC958_AES0_NONAUDIO;
886 if (val & (1 << 6))
887 sbits |= IEC958_AES0_PROFESSIONAL;
888 if (sbits & IEC958_AES0_PROFESSIONAL) {
889 if (sbits & (1 << 3))
890 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
891 } else {
892 if (val & (1 << 3))
893 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
894 if (! (val & (1 << 4)))
895 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
896 if (val & (1 << 7))
897 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
898 sbits |= val & (0x7f << 8);
899 }
900 return sbits;
901}
902
903static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
904{
905 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
906 hda_nid_t nid = kcontrol->private_value;
907 unsigned short val;
908 int change;
909
910 down(&codec->spdif_mutex);
911 codec->spdif_status = ucontrol->value.iec958.status[0] |
912 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
913 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
914 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
915 val = convert_from_spdif_status(codec->spdif_status);
916 val |= codec->spdif_ctls & 1;
917 change = codec->spdif_ctls != val;
918 codec->spdif_ctls = val;
919
920 if (change || codec->in_resume) {
921 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
922 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
923 }
924
925 up(&codec->spdif_mutex);
926 return change;
927}
928
929static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
930{
931 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
932 uinfo->count = 1;
933 uinfo->value.integer.min = 0;
934 uinfo->value.integer.max = 1;
935 return 0;
936}
937
938static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
939{
940 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
941
942 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
943 return 0;
944}
945
946static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
947{
948 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
949 hda_nid_t nid = kcontrol->private_value;
950 unsigned short val;
951 int change;
952
953 down(&codec->spdif_mutex);
954 val = codec->spdif_ctls & ~1;
955 if (ucontrol->value.integer.value[0])
956 val |= 1;
957 change = codec->spdif_ctls != val;
958 if (change || codec->in_resume) {
959 codec->spdif_ctls = val;
960 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
961 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
962 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
963 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
964 }
965 up(&codec->spdif_mutex);
966 return change;
967}
968
969static snd_kcontrol_new_t dig_mixes[] = {
970 {
971 .access = SNDRV_CTL_ELEM_ACCESS_READ,
972 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
973 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
974 .info = snd_hda_spdif_mask_info,
975 .get = snd_hda_spdif_cmask_get,
976 },
977 {
978 .access = SNDRV_CTL_ELEM_ACCESS_READ,
979 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
980 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
981 .info = snd_hda_spdif_mask_info,
982 .get = snd_hda_spdif_pmask_get,
983 },
984 {
985 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
986 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
987 .info = snd_hda_spdif_mask_info,
988 .get = snd_hda_spdif_default_get,
989 .put = snd_hda_spdif_default_put,
990 },
991 {
992 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
993 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
994 .info = snd_hda_spdif_out_switch_info,
995 .get = snd_hda_spdif_out_switch_get,
996 .put = snd_hda_spdif_out_switch_put,
997 },
998 { } /* end */
999};
1000
1001/**
1002 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1003 * @codec: the HDA codec
1004 * @nid: audio out widget NID
1005 *
1006 * Creates controls related with the SPDIF output.
1007 * Called from each patch supporting the SPDIF out.
1008 *
1009 * Returns 0 if successful, or a negative error code.
1010 */
1011int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1012{
1013 int err;
1014 snd_kcontrol_t *kctl;
1015 snd_kcontrol_new_t *dig_mix;
1016
1017 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1018 kctl = snd_ctl_new1(dig_mix, codec);
1019 kctl->private_value = nid;
1020 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1021 return err;
1022 }
1023 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1024 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1025 return 0;
1026}
1027
1028/*
1029 * SPDIF input
1030 */
1031
1032#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1033
1034static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1035{
1036 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1037
1038 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1039 return 0;
1040}
1041
1042static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1043{
1044 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1045 hda_nid_t nid = kcontrol->private_value;
1046 unsigned int val = !!ucontrol->value.integer.value[0];
1047 int change;
1048
1049 down(&codec->spdif_mutex);
1050 change = codec->spdif_in_enable != val;
1051 if (change || codec->in_resume) {
1052 codec->spdif_in_enable = val;
1053 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1054 }
1055 up(&codec->spdif_mutex);
1056 return change;
1057}
1058
1059static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1060{
1061 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1062 hda_nid_t nid = kcontrol->private_value;
1063 unsigned short val;
1064 unsigned int sbits;
1065
1066 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1067 sbits = convert_to_spdif_status(val);
1068 ucontrol->value.iec958.status[0] = sbits;
1069 ucontrol->value.iec958.status[1] = sbits >> 8;
1070 ucontrol->value.iec958.status[2] = sbits >> 16;
1071 ucontrol->value.iec958.status[3] = sbits >> 24;
1072 return 0;
1073}
1074
1075static snd_kcontrol_new_t dig_in_ctls[] = {
1076 {
1077 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1078 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1079 .info = snd_hda_spdif_in_switch_info,
1080 .get = snd_hda_spdif_in_switch_get,
1081 .put = snd_hda_spdif_in_switch_put,
1082 },
1083 {
1084 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1085 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1086 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1087 .info = snd_hda_spdif_mask_info,
1088 .get = snd_hda_spdif_in_status_get,
1089 },
1090 { } /* end */
1091};
1092
1093/**
1094 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1095 * @codec: the HDA codec
1096 * @nid: audio in widget NID
1097 *
1098 * Creates controls related with the SPDIF input.
1099 * Called from each patch supporting the SPDIF in.
1100 *
1101 * Returns 0 if successful, or a negative error code.
1102 */
1103int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1104{
1105 int err;
1106 snd_kcontrol_t *kctl;
1107 snd_kcontrol_new_t *dig_mix;
1108
1109 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1110 kctl = snd_ctl_new1(dig_mix, codec);
1111 kctl->private_value = nid;
1112 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1113 return err;
1114 }
1115 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1116 return 0;
1117}
1118
1119
1120/**
1121 * snd_hda_build_controls - build mixer controls
1122 * @bus: the BUS
1123 *
1124 * Creates mixer controls for each codec included in the bus.
1125 *
1126 * Returns 0 if successful, otherwise a negative error code.
1127 */
1128int snd_hda_build_controls(struct hda_bus *bus)
1129{
1130 struct list_head *p;
1131
1132 /* build controls */
1133 list_for_each(p, &bus->codec_list) {
1134 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1135 int err;
1136 if (! codec->patch_ops.build_controls)
1137 continue;
1138 err = codec->patch_ops.build_controls(codec);
1139 if (err < 0)
1140 return err;
1141 }
1142
1143 /* initialize */
1144 list_for_each(p, &bus->codec_list) {
1145 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1146 int err;
1147 if (! codec->patch_ops.init)
1148 continue;
1149 err = codec->patch_ops.init(codec);
1150 if (err < 0)
1151 return err;
1152 }
1153 return 0;
1154}
1155
1156
1157/*
1158 * stream formats
1159 */
1160static unsigned int rate_bits[][3] = {
1161 /* rate in Hz, ALSA rate bitmask, HDA format value */
1162 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1163 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1164 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1165 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1166 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1167 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1168 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1169 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1170 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1171 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1172 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1173 { 0 }
1174};
1175
1176/**
1177 * snd_hda_calc_stream_format - calculate format bitset
1178 * @rate: the sample rate
1179 * @channels: the number of channels
1180 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1181 * @maxbps: the max. bps
1182 *
1183 * Calculate the format bitset from the given rate, channels and th PCM format.
1184 *
1185 * Return zero if invalid.
1186 */
1187unsigned int snd_hda_calc_stream_format(unsigned int rate,
1188 unsigned int channels,
1189 unsigned int format,
1190 unsigned int maxbps)
1191{
1192 int i;
1193 unsigned int val = 0;
1194
1195 for (i = 0; rate_bits[i][0]; i++)
1196 if (rate_bits[i][0] == rate) {
1197 val = rate_bits[i][2];
1198 break;
1199 }
1200 if (! rate_bits[i][0]) {
1201 snd_printdd("invalid rate %d\n", rate);
1202 return 0;
1203 }
1204
1205 if (channels == 0 || channels > 8) {
1206 snd_printdd("invalid channels %d\n", channels);
1207 return 0;
1208 }
1209 val |= channels - 1;
1210
1211 switch (snd_pcm_format_width(format)) {
1212 case 8: val |= 0x00; break;
1213 case 16: val |= 0x10; break;
1214 case 20:
1215 case 24:
1216 case 32:
1217 if (maxbps >= 32)
1218 val |= 0x40;
1219 else if (maxbps >= 24)
1220 val |= 0x30;
1221 else
1222 val |= 0x20;
1223 break;
1224 default:
1225 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1226 return 0;
1227 }
1228
1229 return val;
1230}
1231
1232/**
1233 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1234 * @codec: the HDA codec
1235 * @nid: NID to query
1236 * @ratesp: the pointer to store the detected rate bitflags
1237 * @formatsp: the pointer to store the detected formats
1238 * @bpsp: the pointer to store the detected format widths
1239 *
1240 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1241 * or @bsps argument is ignored.
1242 *
1243 * Returns 0 if successful, otherwise a negative error code.
1244 */
1245int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1246 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1247{
1248 int i;
1249 unsigned int val, streams;
1250
1251 val = 0;
1252 if (nid != codec->afg &&
1253 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1254 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1255 if (val == -1)
1256 return -EIO;
1257 }
1258 if (! val)
1259 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1260
1261 if (ratesp) {
1262 u32 rates = 0;
1263 for (i = 0; rate_bits[i][0]; i++) {
1264 if (val & (1 << i))
1265 rates |= rate_bits[i][1];
1266 }
1267 *ratesp = rates;
1268 }
1269
1270 if (formatsp || bpsp) {
1271 u64 formats = 0;
1272 unsigned int bps;
1273 unsigned int wcaps;
1274
1275 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1276 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1277 if (streams == -1)
1278 return -EIO;
1279 if (! streams) {
1280 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1281 if (streams == -1)
1282 return -EIO;
1283 }
1284
1285 bps = 0;
1286 if (streams & AC_SUPFMT_PCM) {
1287 if (val & AC_SUPPCM_BITS_8) {
1288 formats |= SNDRV_PCM_FMTBIT_U8;
1289 bps = 8;
1290 }
1291 if (val & AC_SUPPCM_BITS_16) {
1292 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1293 bps = 16;
1294 }
1295 if (wcaps & AC_WCAP_DIGITAL) {
1296 if (val & AC_SUPPCM_BITS_32)
1297 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1298 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1299 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1300 if (val & AC_SUPPCM_BITS_24)
1301 bps = 24;
1302 else if (val & AC_SUPPCM_BITS_20)
1303 bps = 20;
1304 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1305 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1306 if (val & AC_SUPPCM_BITS_32)
1307 bps = 32;
1308 else if (val & AC_SUPPCM_BITS_20)
1309 bps = 20;
1310 else if (val & AC_SUPPCM_BITS_24)
1311 bps = 24;
1312 }
1313 }
1314 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1315 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1316 bps = 32;
1317 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1318 /* temporary hack: we have still no proper support
1319 * for the direct AC3 stream...
1320 */
1321 formats |= SNDRV_PCM_FMTBIT_U8;
1322 bps = 8;
1323 }
1324 if (formatsp)
1325 *formatsp = formats;
1326 if (bpsp)
1327 *bpsp = bps;
1328 }
1329
1330 return 0;
1331}
1332
1333/**
1334 * snd_hda_is_supported_format - check whether the given node supports the format val
1335 *
1336 * Returns 1 if supported, 0 if not.
1337 */
1338int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1339 unsigned int format)
1340{
1341 int i;
1342 unsigned int val = 0, rate, stream;
1343
1344 if (nid != codec->afg &&
1345 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1346 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1347 if (val == -1)
1348 return 0;
1349 }
1350 if (! val) {
1351 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1352 if (val == -1)
1353 return 0;
1354 }
1355
1356 rate = format & 0xff00;
1357 for (i = 0; rate_bits[i][0]; i++)
1358 if (rate_bits[i][2] == rate) {
1359 if (val & (1 << i))
1360 break;
1361 return 0;
1362 }
1363 if (! rate_bits[i][0])
1364 return 0;
1365
1366 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1367 if (stream == -1)
1368 return 0;
1369 if (! stream && nid != codec->afg)
1370 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1371 if (! stream || stream == -1)
1372 return 0;
1373
1374 if (stream & AC_SUPFMT_PCM) {
1375 switch (format & 0xf0) {
1376 case 0x00:
1377 if (! (val & AC_SUPPCM_BITS_8))
1378 return 0;
1379 break;
1380 case 0x10:
1381 if (! (val & AC_SUPPCM_BITS_16))
1382 return 0;
1383 break;
1384 case 0x20:
1385 if (! (val & AC_SUPPCM_BITS_20))
1386 return 0;
1387 break;
1388 case 0x30:
1389 if (! (val & AC_SUPPCM_BITS_24))
1390 return 0;
1391 break;
1392 case 0x40:
1393 if (! (val & AC_SUPPCM_BITS_32))
1394 return 0;
1395 break;
1396 default:
1397 return 0;
1398 }
1399 } else {
1400 /* FIXME: check for float32 and AC3? */
1401 }
1402
1403 return 1;
1404}
1405
1406/*
1407 * PCM stuff
1408 */
1409static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1410 struct hda_codec *codec,
1411 snd_pcm_substream_t *substream)
1412{
1413 return 0;
1414}
1415
1416static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1417 struct hda_codec *codec,
1418 unsigned int stream_tag,
1419 unsigned int format,
1420 snd_pcm_substream_t *substream)
1421{
1422 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1423 return 0;
1424}
1425
1426static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1427 struct hda_codec *codec,
1428 snd_pcm_substream_t *substream)
1429{
1430 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1431 return 0;
1432}
1433
1434static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1435{
1436 if (info->nid) {
1437 /* query support PCM information from the given NID */
1438 if (! info->rates || ! info->formats)
1439 snd_hda_query_supported_pcm(codec, info->nid,
1440 info->rates ? NULL : &info->rates,
1441 info->formats ? NULL : &info->formats,
1442 info->maxbps ? NULL : &info->maxbps);
1443 }
1444 if (info->ops.open == NULL)
1445 info->ops.open = hda_pcm_default_open_close;
1446 if (info->ops.close == NULL)
1447 info->ops.close = hda_pcm_default_open_close;
1448 if (info->ops.prepare == NULL) {
1449 snd_assert(info->nid, return -EINVAL);
1450 info->ops.prepare = hda_pcm_default_prepare;
1451 }
1da177e4
LT
1452 if (info->ops.cleanup == NULL) {
1453 snd_assert(info->nid, return -EINVAL);
1454 info->ops.cleanup = hda_pcm_default_cleanup;
1455 }
1456 return 0;
1457}
1458
1459/**
1460 * snd_hda_build_pcms - build PCM information
1461 * @bus: the BUS
1462 *
1463 * Create PCM information for each codec included in the bus.
1464 *
1465 * The build_pcms codec patch is requested to set up codec->num_pcms and
1466 * codec->pcm_info properly. The array is referred by the top-level driver
1467 * to create its PCM instances.
1468 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1469 * callback.
1470 *
1471 * At least, substreams, channels_min and channels_max must be filled for
1472 * each stream. substreams = 0 indicates that the stream doesn't exist.
1473 * When rates and/or formats are zero, the supported values are queried
1474 * from the given nid. The nid is used also by the default ops.prepare
1475 * and ops.cleanup callbacks.
1476 *
1477 * The driver needs to call ops.open in its open callback. Similarly,
1478 * ops.close is supposed to be called in the close callback.
1479 * ops.prepare should be called in the prepare or hw_params callback
1480 * with the proper parameters for set up.
1481 * ops.cleanup should be called in hw_free for clean up of streams.
1482 *
1483 * This function returns 0 if successfull, or a negative error code.
1484 */
1485int snd_hda_build_pcms(struct hda_bus *bus)
1486{
1487 struct list_head *p;
1488
1489 list_for_each(p, &bus->codec_list) {
1490 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1491 unsigned int pcm, s;
1492 int err;
1493 if (! codec->patch_ops.build_pcms)
1494 continue;
1495 err = codec->patch_ops.build_pcms(codec);
1496 if (err < 0)
1497 return err;
1498 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1499 for (s = 0; s < 2; s++) {
1500 struct hda_pcm_stream *info;
1501 info = &codec->pcm_info[pcm].stream[s];
1502 if (! info->substreams)
1503 continue;
1504 err = set_pcm_default_values(codec, info);
1505 if (err < 0)
1506 return err;
1507 }
1508 }
1509 }
1510 return 0;
1511}
1512
1513
1514/**
1515 * snd_hda_check_board_config - compare the current codec with the config table
1516 * @codec: the HDA codec
1517 * @tbl: configuration table, terminated by null entries
1518 *
1519 * Compares the modelname or PCI subsystem id of the current codec with the
1520 * given configuration table. If a matching entry is found, returns its
1521 * config value (supposed to be 0 or positive).
1522 *
1523 * If no entries are matching, the function returns a negative value.
1524 */
1525int snd_hda_check_board_config(struct hda_codec *codec, struct hda_board_config *tbl)
1526{
1527 struct hda_board_config *c;
1528
1529 if (codec->bus->modelname) {
1530 for (c = tbl; c->modelname || c->pci_vendor; c++) {
1531 if (c->modelname &&
1532 ! strcmp(codec->bus->modelname, c->modelname)) {
1533 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1534 return c->config;
1535 }
1536 }
1537 }
1538
1539 if (codec->bus->pci) {
1540 u16 subsystem_vendor, subsystem_device;
1541 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1542 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1543 for (c = tbl; c->modelname || c->pci_vendor; c++) {
1544 if (c->pci_vendor == subsystem_vendor &&
1545 c->pci_device == subsystem_device)
1546 return c->config;
1547 }
1548 }
1549 return -1;
1550}
1551
1552/**
1553 * snd_hda_add_new_ctls - create controls from the array
1554 * @codec: the HDA codec
1555 * @knew: the array of snd_kcontrol_new_t
1556 *
1557 * This helper function creates and add new controls in the given array.
1558 * The array must be terminated with an empty entry as terminator.
1559 *
1560 * Returns 0 if successful, or a negative error code.
1561 */
1562int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1563{
1564 int err;
1565
1566 for (; knew->name; knew++) {
1567 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1568 if (err < 0)
1569 return err;
1570 }
1571 return 0;
1572}
1573
1574
1575/*
1576 * input MUX helper
1577 */
1578int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1579{
1580 unsigned int index;
1581
1582 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1583 uinfo->count = 1;
1584 uinfo->value.enumerated.items = imux->num_items;
1585 index = uinfo->value.enumerated.item;
1586 if (index >= imux->num_items)
1587 index = imux->num_items - 1;
1588 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1589 return 0;
1590}
1591
1592int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1593 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1594 unsigned int *cur_val)
1595{
1596 unsigned int idx;
1597
1598 idx = ucontrol->value.enumerated.item[0];
1599 if (idx >= imux->num_items)
1600 idx = imux->num_items - 1;
1601 if (*cur_val == idx && ! codec->in_resume)
1602 return 0;
1603 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1604 imux->items[idx].index);
1605 *cur_val = idx;
1606 return 1;
1607}
1608
1609
1610/*
1611 * Multi-channel / digital-out PCM helper functions
1612 */
1613
1614/*
1615 * open the digital out in the exclusive mode
1616 */
1617int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1618{
1619 down(&codec->spdif_mutex);
1620 if (mout->dig_out_used) {
1621 up(&codec->spdif_mutex);
1622 return -EBUSY; /* already being used */
1623 }
1624 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1625 up(&codec->spdif_mutex);
1626 return 0;
1627}
1628
1629/*
1630 * release the digital out
1631 */
1632int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1633{
1634 down(&codec->spdif_mutex);
1635 mout->dig_out_used = 0;
1636 up(&codec->spdif_mutex);
1637 return 0;
1638}
1639
1640/*
1641 * set up more restrictions for analog out
1642 */
1643int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1644 snd_pcm_substream_t *substream)
1645{
1646 substream->runtime->hw.channels_max = mout->max_channels;
1647 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1648 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1649}
1650
1651/*
1652 * set up the i/o for analog out
1653 * when the digital out is available, copy the front out to digital out, too.
1654 */
1655int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1656 unsigned int stream_tag,
1657 unsigned int format,
1658 snd_pcm_substream_t *substream)
1659{
1660 hda_nid_t *nids = mout->dac_nids;
1661 int chs = substream->runtime->channels;
1662 int i;
1663
1664 down(&codec->spdif_mutex);
1665 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1666 if (chs == 2 &&
1667 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1668 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1669 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1670 /* setup digital receiver */
1671 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1672 stream_tag, 0, format);
1673 } else {
1674 mout->dig_out_used = 0;
1675 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1676 }
1677 }
1678 up(&codec->spdif_mutex);
1679
1680 /* front */
1681 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1682 if (mout->hp_nid)
1683 /* headphone out will just decode front left/right (stereo) */
1684 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1685 /* surrounds */
1686 for (i = 1; i < mout->num_dacs; i++) {
1687 if (i == HDA_REAR && chs == 2) /* copy front to rear */
1688 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0, format);
1689 else if (chs >= (i + 1) * 2) /* independent out */
1690 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1691 format);
1692 }
1693 return 0;
1694}
1695
1696/*
1697 * clean up the setting for analog out
1698 */
1699int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1700{
1701 hda_nid_t *nids = mout->dac_nids;
1702 int i;
1703
1704 for (i = 0; i < mout->num_dacs; i++)
1705 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1706 if (mout->hp_nid)
1707 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1708 down(&codec->spdif_mutex);
1709 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1710 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1711 mout->dig_out_used = 0;
1712 }
1713 up(&codec->spdif_mutex);
1714 return 0;
1715}
1716
1717#ifdef CONFIG_PM
1718/*
1719 * power management
1720 */
1721
1722/**
1723 * snd_hda_suspend - suspend the codecs
1724 * @bus: the HDA bus
1725 * @state: suspsend state
1726 *
1727 * Returns 0 if successful.
1728 */
1729int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1730{
1731 struct list_head *p;
1732
1733 /* FIXME: should handle power widget capabilities */
1734 list_for_each(p, &bus->codec_list) {
1735 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1736 if (codec->patch_ops.suspend)
1737 codec->patch_ops.suspend(codec, state);
1738 }
1739 return 0;
1740}
1741
1742/**
1743 * snd_hda_resume - resume the codecs
1744 * @bus: the HDA bus
1745 * @state: resume state
1746 *
1747 * Returns 0 if successful.
1748 */
1749int snd_hda_resume(struct hda_bus *bus)
1750{
1751 struct list_head *p;
1752
1753 list_for_each(p, &bus->codec_list) {
1754 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1755 if (codec->patch_ops.resume)
1756 codec->patch_ops.resume(codec);
1757 }
1758 return 0;
1759}
1760
1761/**
1762 * snd_hda_resume_ctls - resume controls in the new control list
1763 * @codec: the HDA codec
1764 * @knew: the array of snd_kcontrol_new_t
1765 *
1766 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1767 * originally for snd_hda_add_new_ctls().
1768 * The array must be terminated with an empty entry as terminator.
1769 */
1770int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1771{
1772 snd_ctl_elem_value_t *val;
1773
1774 val = kmalloc(sizeof(*val), GFP_KERNEL);
1775 if (! val)
1776 return -ENOMEM;
1777 codec->in_resume = 1;
1778 for (; knew->name; knew++) {
1779 int i, count;
1780 count = knew->count ? knew->count : 1;
1781 for (i = 0; i < count; i++) {
1782 memset(val, 0, sizeof(*val));
1783 val->id.iface = knew->iface;
1784 val->id.device = knew->device;
1785 val->id.subdevice = knew->subdevice;
1786 strcpy(val->id.name, knew->name);
1787 val->id.index = knew->index ? knew->index : i;
1788 /* Assume that get callback reads only from cache,
1789 * not accessing to the real hardware
1790 */
1791 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1792 continue;
1793 snd_ctl_elem_write(codec->bus->card, NULL, val);
1794 }
1795 }
1796 codec->in_resume = 0;
1797 kfree(val);
1798 return 0;
1799}
1800
1801/**
1802 * snd_hda_resume_spdif_out - resume the digital out
1803 * @codec: the HDA codec
1804 */
1805int snd_hda_resume_spdif_out(struct hda_codec *codec)
1806{
1807 return snd_hda_resume_ctls(codec, dig_mixes);
1808}
1809
1810/**
1811 * snd_hda_resume_spdif_in - resume the digital in
1812 * @codec: the HDA codec
1813 */
1814int snd_hda_resume_spdif_in(struct hda_codec *codec)
1815{
1816 return snd_hda_resume_ctls(codec, dig_in_ctls);
1817}
1818#endif
1819
1820/*
1821 * symbols exported for controller modules
1822 */
1823EXPORT_SYMBOL(snd_hda_codec_read);
1824EXPORT_SYMBOL(snd_hda_codec_write);
1825EXPORT_SYMBOL(snd_hda_sequence_write);
1826EXPORT_SYMBOL(snd_hda_get_sub_nodes);
1827EXPORT_SYMBOL(snd_hda_queue_unsol_event);
1828EXPORT_SYMBOL(snd_hda_bus_new);
1829EXPORT_SYMBOL(snd_hda_codec_new);
1830EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1831EXPORT_SYMBOL(snd_hda_calc_stream_format);
1832EXPORT_SYMBOL(snd_hda_build_pcms);
1833EXPORT_SYMBOL(snd_hda_build_controls);
1834#ifdef CONFIG_PM
1835EXPORT_SYMBOL(snd_hda_suspend);
1836EXPORT_SYMBOL(snd_hda_resume);
1837#endif
1838
1839/*
1840 * INIT part
1841 */
1842
1843static int __init alsa_hda_init(void)
1844{
1845 return 0;
1846}
1847
1848static void __exit alsa_hda_exit(void)
1849{
1850}
1851
1852module_init(alsa_hda_init)
1853module_exit(alsa_hda_exit)