]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - sound/soc/atmel/atmel_ssc_dai.c
ASoC: atmel_ssc_dai: if not provided, default to sensible dividers
[mirror_ubuntu-bionic-kernel.git] / sound / soc / atmel / atmel_ssc_dai.c
CommitLineData
6c742509
SG
1/*
2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
3 *
4 * Copyright (C) 2005 SAN People
5 * Copyright (C) 2008 Atmel
6 *
7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8 * ATMEL CORP.
9 *
10 * Based on at91-ssc.c by
11 * Frank Mandarino <fmandarino@endrelia.com>
12 * Based on pxa2xx Platform drivers by
64ca0404 13 * Liam Girdwood <lrg@slimlogic.co.uk>
6c742509
SG
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30#include <linux/init.h>
31#include <linux/module.h>
32#include <linux/interrupt.h>
33#include <linux/device.h>
34#include <linux/delay.h>
35#include <linux/clk.h>
36#include <linux/atmel_pdc.h>
37
38#include <linux/atmel-ssc.h>
39#include <sound/core.h>
40#include <sound/pcm.h>
41#include <sound/pcm_params.h>
42#include <sound/initval.h>
43#include <sound/soc.h>
44
6c742509
SG
45#include "atmel-pcm.h"
46#include "atmel_ssc_dai.h"
47
48
6c742509 49#define NUM_SSC_DEVICES 3
6c742509
SG
50
51/*
52 * SSC PDC registers required by the PCM DMA engine.
53 */
54static struct atmel_pdc_regs pdc_tx_reg = {
55 .xpr = ATMEL_PDC_TPR,
56 .xcr = ATMEL_PDC_TCR,
57 .xnpr = ATMEL_PDC_TNPR,
58 .xncr = ATMEL_PDC_TNCR,
59};
60
61static struct atmel_pdc_regs pdc_rx_reg = {
62 .xpr = ATMEL_PDC_RPR,
63 .xcr = ATMEL_PDC_RCR,
64 .xnpr = ATMEL_PDC_RNPR,
65 .xncr = ATMEL_PDC_RNCR,
66};
67
68/*
69 * SSC & PDC status bits for transmit and receive.
70 */
71static struct atmel_ssc_mask ssc_tx_mask = {
72 .ssc_enable = SSC_BIT(CR_TXEN),
73 .ssc_disable = SSC_BIT(CR_TXDIS),
74 .ssc_endx = SSC_BIT(SR_ENDTX),
75 .ssc_endbuf = SSC_BIT(SR_TXBUFE),
f1b0dd8b 76 .ssc_error = SSC_BIT(SR_OVRUN),
6c742509
SG
77 .pdc_enable = ATMEL_PDC_TXTEN,
78 .pdc_disable = ATMEL_PDC_TXTDIS,
79};
80
81static struct atmel_ssc_mask ssc_rx_mask = {
82 .ssc_enable = SSC_BIT(CR_RXEN),
83 .ssc_disable = SSC_BIT(CR_RXDIS),
84 .ssc_endx = SSC_BIT(SR_ENDRX),
85 .ssc_endbuf = SSC_BIT(SR_RXBUFF),
f1b0dd8b 86 .ssc_error = SSC_BIT(SR_OVRUN),
6c742509
SG
87 .pdc_enable = ATMEL_PDC_RXTEN,
88 .pdc_disable = ATMEL_PDC_RXTDIS,
89};
90
91
92/*
93 * DMA parameters.
94 */
95static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
96 {{
97 .name = "SSC0 PCM out",
98 .pdc = &pdc_tx_reg,
99 .mask = &ssc_tx_mask,
100 },
101 {
102 .name = "SSC0 PCM in",
103 .pdc = &pdc_rx_reg,
104 .mask = &ssc_rx_mask,
105 } },
6c742509
SG
106 {{
107 .name = "SSC1 PCM out",
108 .pdc = &pdc_tx_reg,
109 .mask = &ssc_tx_mask,
110 },
111 {
112 .name = "SSC1 PCM in",
113 .pdc = &pdc_rx_reg,
114 .mask = &ssc_rx_mask,
115 } },
116 {{
117 .name = "SSC2 PCM out",
118 .pdc = &pdc_tx_reg,
119 .mask = &ssc_tx_mask,
120 },
121 {
122 .name = "SSC2 PCM in",
123 .pdc = &pdc_rx_reg,
124 .mask = &ssc_rx_mask,
125 } },
6c742509
SG
126};
127
128
129static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
130 {
131 .name = "ssc0",
132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 .dir_mask = SSC_DIR_MASK_UNUSED,
134 .initialized = 0,
135 },
6c742509
SG
136 {
137 .name = "ssc1",
138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 .dir_mask = SSC_DIR_MASK_UNUSED,
140 .initialized = 0,
141 },
142 {
143 .name = "ssc2",
144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 .dir_mask = SSC_DIR_MASK_UNUSED,
146 .initialized = 0,
147 },
6c742509
SG
148};
149
150
151/*
152 * SSC interrupt handler. Passes PDC interrupts to the DMA
153 * interrupt handler in the PCM driver.
154 */
155static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
156{
157 struct atmel_ssc_info *ssc_p = dev_id;
158 struct atmel_pcm_dma_params *dma_params;
159 u32 ssc_sr;
160 u32 ssc_substream_mask;
161 int i;
162
163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
165
166 /*
167 * Loop through the substreams attached to this SSC. If
168 * a DMA-related interrupt occurred on that substream, call
169 * the DMA interrupt handler function, if one has been
170 * registered in the dma_params structure by the PCM driver.
171 */
172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 dma_params = ssc_p->dma_params[i];
174
175 if ((dma_params != NULL) &&
176 (dma_params->dma_intr_handler != NULL)) {
177 ssc_substream_mask = (dma_params->mask->ssc_endx |
178 dma_params->mask->ssc_endbuf);
179 if (ssc_sr & ssc_substream_mask) {
180 dma_params->dma_intr_handler(ssc_sr,
181 dma_params->
182 substream);
183 }
184 }
185 }
186
187 return IRQ_HANDLED;
188}
189
b6d6c6e9
PR
190/*
191 * When the bit clock is input, limit the maximum rate according to the
192 * Serial Clock Ratio Considerations section from the SSC documentation:
193 *
194 * The Transmitter and the Receiver can be programmed to operate
195 * with the clock signals provided on either the TK or RK pins.
196 * This allows the SSC to support many slave-mode data transfers.
197 * In this case, the maximum clock speed allowed on the RK pin is:
198 * - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199 * - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200 * In addition, the maximum clock speed allowed on the TK pin is:
201 * - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202 * - Peripheral clock divided by 2 if Transmit Frame Synchro is output
203 *
204 * When the bit clock is output, limit the rate according to the
205 * SSC divider restrictions.
206 */
207static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 struct snd_pcm_hw_rule *rule)
209{
210 struct atmel_ssc_info *ssc_p = rule->private;
211 struct ssc_device *ssc = ssc_p->ssc;
212 struct snd_interval *i = hw_param_interval(params, rule->var);
213 struct snd_interval t;
214 struct snd_ratnum r = {
215 .den_min = 1,
216 .den_max = 4095,
217 .den_step = 1,
218 };
219 unsigned int num = 0, den = 0;
220 int frame_size;
221 int mck_div = 2;
222 int ret;
223
224 frame_size = snd_soc_params_to_frame_size(params);
225 if (frame_size < 0)
226 return frame_size;
227
228 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 case SND_SOC_DAIFMT_CBM_CFS:
230 if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 && ssc->clk_from_rk_pin)
232 /* Receiver Frame Synchro (i.e. capture)
233 * is output (format is _CFS) and the RK pin
234 * is used for input (format is _CBM_).
235 */
236 mck_div = 3;
237 break;
238
239 case SND_SOC_DAIFMT_CBM_CFM:
240 if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 && !ssc->clk_from_rk_pin)
242 /* Transmit Frame Synchro (i.e. playback)
243 * is input (format is _CFM) and the TK pin
244 * is used for input (format _CBM_ but not
245 * using the RK pin).
246 */
247 mck_div = 6;
248 break;
249 }
250
251 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 case SND_SOC_DAIFMT_CBS_CFS:
253 r.num = ssc_p->mck_rate / mck_div / frame_size;
254
255 ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 params->rate_num = num;
258 params->rate_den = den;
259 }
260 break;
261
262 case SND_SOC_DAIFMT_CBM_CFS:
263 case SND_SOC_DAIFMT_CBM_CFM:
264 t.min = 8000;
265 t.max = ssc_p->mck_rate / mck_div / frame_size;
266 t.openmin = t.openmax = 0;
267 t.integer = 0;
268 ret = snd_interval_refine(i, &t);
269 break;
270
271 default:
272 ret = -EINVAL;
273 break;
274 }
275
276 return ret;
277}
6c742509
SG
278
279/*-------------------------------------------------------------------------*\
280 * DAI functions
281\*-------------------------------------------------------------------------*/
282/*
283 * Startup. Only that one substream allowed in each direction.
284 */
dee89c4d
MB
285static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 struct snd_soc_dai *dai)
6c742509 287{
c706f2e5
SW
288 struct platform_device *pdev = to_platform_device(dai->dev);
289 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
01f00d55
BS
290 struct atmel_pcm_dma_params *dma_params;
291 int dir, dir_mask;
b6d6c6e9 292 int ret;
6c742509 293
56113f6e 294 pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
6c742509
SG
295 ssc_readl(ssc_p->ssc->regs, SR));
296
cbaadf0f
BS
297 /* Enable PMC peripheral clock for this SSC */
298 pr_debug("atmel_ssc_dai: Starting clock\n");
299 clk_enable(ssc_p->ssc->clk);
b6d6c6e9 300 ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
cbaadf0f 301
3e103a65
CH
302 /* Reset the SSC unless initialized to keep it in a clean state */
303 if (!ssc_p->initialized)
304 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
cbaadf0f 305
01f00d55
BS
306 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
307 dir = 0;
6c742509 308 dir_mask = SSC_DIR_MASK_PLAYBACK;
01f00d55
BS
309 } else {
310 dir = 1;
6c742509 311 dir_mask = SSC_DIR_MASK_CAPTURE;
01f00d55
BS
312 }
313
b6d6c6e9
PR
314 ret = snd_pcm_hw_rule_add(substream->runtime, 0,
315 SNDRV_PCM_HW_PARAM_RATE,
316 atmel_ssc_hw_rule_rate,
317 ssc_p,
318 SNDRV_PCM_HW_PARAM_FRAME_BITS,
319 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
320 if (ret < 0) {
321 dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
322 return ret;
323 }
324
e401029e 325 dma_params = &ssc_dma_params[pdev->id][dir];
01f00d55
BS
326 dma_params->ssc = ssc_p->ssc;
327 dma_params->substream = substream;
328
329 ssc_p->dma_params[dir] = dma_params;
330
331 snd_soc_dai_set_dma_data(dai, substream, dma_params);
6c742509
SG
332
333 spin_lock_irq(&ssc_p->lock);
334 if (ssc_p->dir_mask & dir_mask) {
335 spin_unlock_irq(&ssc_p->lock);
336 return -EBUSY;
337 }
338 ssc_p->dir_mask |= dir_mask;
339 spin_unlock_irq(&ssc_p->lock);
340
341 return 0;
342}
343
344/*
345 * Shutdown. Clear DMA parameters and shutdown the SSC if there
346 * are no other substreams open.
347 */
dee89c4d
MB
348static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
349 struct snd_soc_dai *dai)
6c742509 350{
c706f2e5
SW
351 struct platform_device *pdev = to_platform_device(dai->dev);
352 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
6c742509
SG
353 struct atmel_pcm_dma_params *dma_params;
354 int dir, dir_mask;
355
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
357 dir = 0;
358 else
359 dir = 1;
360
361 dma_params = ssc_p->dma_params[dir];
362
363 if (dma_params != NULL) {
6c742509
SG
364 dma_params->ssc = NULL;
365 dma_params->substream = NULL;
366 ssc_p->dma_params[dir] = NULL;
367 }
368
369 dir_mask = 1 << dir;
370
371 spin_lock_irq(&ssc_p->lock);
372 ssc_p->dir_mask &= ~dir_mask;
373 if (!ssc_p->dir_mask) {
374 if (ssc_p->initialized) {
6c742509
SG
375 free_irq(ssc_p->ssc->irq, ssc_p);
376 ssc_p->initialized = 0;
377 }
378
379 /* Reset the SSC */
380 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
381 /* Clear the SSC dividers */
382 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
a85787ed 383 ssc_p->forced_divider = 0;
6c742509
SG
384 }
385 spin_unlock_irq(&ssc_p->lock);
cbaadf0f
BS
386
387 /* Shutdown the SSC clock. */
388 pr_debug("atmel_ssc_dai: Stopping clock\n");
389 clk_disable(ssc_p->ssc->clk);
6c742509
SG
390}
391
392
393/*
394 * Record the DAI format for use in hw_params().
395 */
396static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
397 unsigned int fmt)
398{
c706f2e5
SW
399 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
400 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
6c742509
SG
401
402 ssc_p->daifmt = fmt;
403 return 0;
404}
405
406/*
407 * Record SSC clock dividers for use in hw_params().
408 */
409static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
410 int div_id, int div)
411{
c706f2e5
SW
412 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
413 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
6c742509
SG
414
415 switch (div_id) {
416 case ATMEL_SSC_CMR_DIV:
417 /*
418 * The same master clock divider is used for both
419 * transmit and receive, so if a value has already
420 * been set, it must match this value.
421 */
eb58960e
PR
422 if (ssc_p->dir_mask !=
423 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
424 ssc_p->cmr_div = div;
425 else if (ssc_p->cmr_div == 0)
6c742509
SG
426 ssc_p->cmr_div = div;
427 else
428 if (div != ssc_p->cmr_div)
429 return -EBUSY;
a85787ed 430 ssc_p->forced_divider |= BIT(ATMEL_SSC_CMR_DIV);
6c742509
SG
431 break;
432
433 case ATMEL_SSC_TCMR_PERIOD:
434 ssc_p->tcmr_period = div;
a85787ed 435 ssc_p->forced_divider |= BIT(ATMEL_SSC_TCMR_PERIOD);
6c742509
SG
436 break;
437
438 case ATMEL_SSC_RCMR_PERIOD:
439 ssc_p->rcmr_period = div;
a85787ed 440 ssc_p->forced_divider |= BIT(ATMEL_SSC_RCMR_PERIOD);
6c742509
SG
441 break;
442
443 default:
444 return -EINVAL;
445 }
446
447 return 0;
448}
449
a85787ed
PR
450/* Is the cpu-dai master of the frame clock? */
451static int atmel_ssc_cfs(struct atmel_ssc_info *ssc_p)
452{
453 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
454 case SND_SOC_DAIFMT_CBM_CFS:
455 case SND_SOC_DAIFMT_CBS_CFS:
456 return 1;
457 }
458 return 0;
459}
460
461/* Is the cpu-dai master of the bit clock? */
462static int atmel_ssc_cbs(struct atmel_ssc_info *ssc_p)
463{
464 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
465 case SND_SOC_DAIFMT_CBS_CFM:
466 case SND_SOC_DAIFMT_CBS_CFS:
467 return 1;
468 }
469 return 0;
470}
471
6c742509
SG
472/*
473 * Configure the SSC.
474 */
475static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
dee89c4d
MB
476 struct snd_pcm_hw_params *params,
477 struct snd_soc_dai *dai)
6c742509 478{
c706f2e5
SW
479 struct platform_device *pdev = to_platform_device(dai->dev);
480 int id = pdev->id;
6c742509 481 struct atmel_ssc_info *ssc_p = &ssc_info[id];
048d4ff8 482 struct ssc_device *ssc = ssc_p->ssc;
6c742509
SG
483 struct atmel_pcm_dma_params *dma_params;
484 int dir, channels, bits;
485 u32 tfmr, rfmr, tcmr, rcmr;
6c742509 486 int ret;
dfaf5356 487 int fslen, fslen_ext;
a85787ed
PR
488 u32 cmr_div;
489 u32 tcmr_period;
490 u32 rcmr_period;
6c742509
SG
491
492 /*
493 * Currently, there is only one set of dma params for
494 * each direction. If more are added, this code will
495 * have to be changed to select the proper set.
496 */
497 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
498 dir = 0;
499 else
500 dir = 1;
501
a85787ed
PR
502 /*
503 * If the cpu dai should provide BCLK, but noone has provided the
504 * divider needed for that to work, fall back to something sensible.
505 */
506 cmr_div = ssc_p->cmr_div;
507 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_CMR_DIV)) &&
508 atmel_ssc_cbs(ssc_p)) {
509 int bclk_rate = snd_soc_params_to_bclk(params);
510
511 if (bclk_rate < 0) {
512 dev_err(dai->dev, "unable to calculate cmr_div: %d\n",
513 bclk_rate);
514 return bclk_rate;
515 }
516
517 cmr_div = DIV_ROUND_CLOSEST(ssc_p->mck_rate, 2 * bclk_rate);
518 }
519
520 /*
521 * If the cpu dai should provide LRCLK, but noone has provided the
522 * dividers needed for that to work, fall back to something sensible.
523 */
524 tcmr_period = ssc_p->tcmr_period;
525 rcmr_period = ssc_p->rcmr_period;
526 if (atmel_ssc_cfs(ssc_p)) {
527 int frame_size = snd_soc_params_to_frame_size(params);
528
529 if (frame_size < 0) {
530 dev_err(dai->dev,
531 "unable to calculate tx/rx cmr_period: %d\n",
532 frame_size);
533 return frame_size;
534 }
535
536 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_TCMR_PERIOD)))
537 tcmr_period = frame_size / 2 - 1;
538 if (!(ssc_p->forced_divider & BIT(ATMEL_SSC_RCMR_PERIOD)))
539 rcmr_period = frame_size / 2 - 1;
540 }
541
01f00d55 542 dma_params = ssc_p->dma_params[dir];
6c742509
SG
543
544 channels = params_channels(params);
545
546 /*
547 * Determine sample size in bits and the PDC increment.
548 */
549 switch (params_format(params)) {
550 case SNDRV_PCM_FORMAT_S8:
551 bits = 8;
552 dma_params->pdc_xfer_size = 1;
553 break;
554 case SNDRV_PCM_FORMAT_S16_LE:
555 bits = 16;
556 dma_params->pdc_xfer_size = 2;
557 break;
558 case SNDRV_PCM_FORMAT_S24_LE:
559 bits = 24;
560 dma_params->pdc_xfer_size = 4;
561 break;
562 case SNDRV_PCM_FORMAT_S32_LE:
563 bits = 32;
564 dma_params->pdc_xfer_size = 4;
565 break;
566 default:
567 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
568 return -EINVAL;
569 }
570
6c742509
SG
571 /*
572 * Compute SSC register settings.
573 */
574 switch (ssc_p->daifmt
575 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
576
577 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
578 /*
579 * I2S format, SSC provides BCLK and LRC clocks.
580 *
581 * The SSC transmit and receive clocks are generated
582 * from the MCK divider, and the BCLK signal
583 * is output on the SSC TK line.
584 */
dfaf5356
BS
585
586 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
587 dev_err(dai->dev,
588 "sample size %d is too large for SSC device\n",
589 bits);
590 return -EINVAL;
591 }
592
593 fslen_ext = (bits - 1) / 16;
594 fslen = (bits - 1) % 16;
595
a85787ed 596 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
6c742509
SG
597 | SSC_BF(RCMR_STTDLY, START_DELAY)
598 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
599 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
600 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
601 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
602
dfaf5356
BS
603 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
604 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
6c742509 605 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
dfaf5356 606 | SSC_BF(RFMR_FSLEN, fslen)
6c742509
SG
607 | SSC_BF(RFMR_DATNB, (channels - 1))
608 | SSC_BIT(RFMR_MSBF)
609 | SSC_BF(RFMR_LOOP, 0)
610 | SSC_BF(RFMR_DATLEN, (bits - 1));
611
a85787ed 612 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
6c742509
SG
613 | SSC_BF(TCMR_STTDLY, START_DELAY)
614 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
615 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
616 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
617 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
618
dfaf5356
BS
619 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
620 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
6c742509
SG
621 | SSC_BF(TFMR_FSDEN, 0)
622 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
dfaf5356 623 | SSC_BF(TFMR_FSLEN, fslen)
6c742509
SG
624 | SSC_BF(TFMR_DATNB, (channels - 1))
625 | SSC_BIT(TFMR_MSBF)
626 | SSC_BF(TFMR_DATDEF, 0)
627 | SSC_BF(TFMR_DATLEN, (bits - 1));
628 break;
629
630 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
67d1aed0 631 /* I2S format, CODEC supplies BCLK and LRC clocks. */
6c742509
SG
632 rcmr = SSC_BF(RCMR_PERIOD, 0)
633 | SSC_BF(RCMR_STTDLY, START_DELAY)
a43bd7e1 634 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
6c742509
SG
635 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
636 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
048d4ff8
BS
637 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
638 SSC_CKS_PIN : SSC_CKS_CLOCK);
6c742509
SG
639
640 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
641 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
642 | SSC_BF(RFMR_FSLEN, 0)
a43bd7e1 643 | SSC_BF(RFMR_DATNB, (channels - 1))
6c742509
SG
644 | SSC_BIT(RFMR_MSBF)
645 | SSC_BF(RFMR_LOOP, 0)
646 | SSC_BF(RFMR_DATLEN, (bits - 1));
647
648 tcmr = SSC_BF(TCMR_PERIOD, 0)
649 | SSC_BF(TCMR_STTDLY, START_DELAY)
a43bd7e1 650 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
6c742509
SG
651 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
652 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
048d4ff8
BS
653 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
654 SSC_CKS_CLOCK : SSC_CKS_PIN);
6c742509
SG
655
656 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
657 | SSC_BF(TFMR_FSDEN, 0)
658 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
659 | SSC_BF(TFMR_FSLEN, 0)
a43bd7e1 660 | SSC_BF(TFMR_DATNB, (channels - 1))
6c742509
SG
661 | SSC_BIT(TFMR_MSBF)
662 | SSC_BF(TFMR_DATDEF, 0)
663 | SSC_BF(TFMR_DATLEN, (bits - 1));
664 break;
665
eb527149
PR
666 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
667 /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
668 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
669 dev_err(dai->dev,
670 "sample size %d is too large for SSC device\n",
671 bits);
672 return -EINVAL;
673 }
674
675 fslen_ext = (bits - 1) / 16;
676 fslen = (bits - 1) % 16;
677
a85787ed 678 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
eb527149
PR
679 | SSC_BF(RCMR_STTDLY, START_DELAY)
680 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
681 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
682 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
683 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
684 SSC_CKS_PIN : SSC_CKS_CLOCK);
685
686 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
687 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
688 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
689 | SSC_BF(RFMR_FSLEN, fslen)
690 | SSC_BF(RFMR_DATNB, (channels - 1))
691 | SSC_BIT(RFMR_MSBF)
692 | SSC_BF(RFMR_LOOP, 0)
693 | SSC_BF(RFMR_DATLEN, (bits - 1));
694
a85787ed 695 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
eb527149
PR
696 | SSC_BF(TCMR_STTDLY, START_DELAY)
697 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
698 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
699 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
700 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
701 SSC_CKS_CLOCK : SSC_CKS_PIN);
702
703 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
704 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
705 | SSC_BF(TFMR_FSDEN, 0)
706 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
707 | SSC_BF(TFMR_FSLEN, fslen)
708 | SSC_BF(TFMR_DATNB, (channels - 1))
6c742509
SG
709 | SSC_BIT(TFMR_MSBF)
710 | SSC_BF(TFMR_DATDEF, 0)
711 | SSC_BF(TFMR_DATLEN, (bits - 1));
712 break;
713
714 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
715 /*
716 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
717 *
718 * The SSC transmit and receive clocks are generated from the
719 * MCK divider, and the BCLK signal is output
720 * on the SSC TK line.
721 */
a85787ed 722 rcmr = SSC_BF(RCMR_PERIOD, rcmr_period)
6c742509
SG
723 | SSC_BF(RCMR_STTDLY, 1)
724 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
80833ff0 725 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
6c742509
SG
726 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
727 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
728
729 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
730 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
731 | SSC_BF(RFMR_FSLEN, 0)
732 | SSC_BF(RFMR_DATNB, (channels - 1))
733 | SSC_BIT(RFMR_MSBF)
734 | SSC_BF(RFMR_LOOP, 0)
735 | SSC_BF(RFMR_DATLEN, (bits - 1));
736
a85787ed 737 tcmr = SSC_BF(TCMR_PERIOD, tcmr_period)
6c742509
SG
738 | SSC_BF(TCMR_STTDLY, 1)
739 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
20cf2603 740 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
6c742509
SG
741 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
742 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
743
744 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
745 | SSC_BF(TFMR_FSDEN, 0)
746 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
747 | SSC_BF(TFMR_FSLEN, 0)
748 | SSC_BF(TFMR_DATNB, (channels - 1))
749 | SSC_BIT(TFMR_MSBF)
750 | SSC_BF(TFMR_DATDEF, 0)
751 | SSC_BF(TFMR_DATLEN, (bits - 1));
752 break;
753
754 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
f6a75d95
ZP
755 /*
756 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
757 *
f6a75d95
ZP
758 * Data is transferred on first BCLK after LRC pulse rising
759 * edge.If stereo, the right channel data is contiguous with
760 * the left channel data.
761 */
762 rcmr = SSC_BF(RCMR_PERIOD, 0)
763 | SSC_BF(RCMR_STTDLY, START_DELAY)
764 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
80833ff0 765 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
f6a75d95 766 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
048d4ff8
BS
767 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
768 SSC_CKS_PIN : SSC_CKS_CLOCK);
f6a75d95
ZP
769
770 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
771 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
772 | SSC_BF(RFMR_FSLEN, 0)
773 | SSC_BF(RFMR_DATNB, (channels - 1))
774 | SSC_BIT(RFMR_MSBF)
775 | SSC_BF(RFMR_LOOP, 0)
776 | SSC_BF(RFMR_DATLEN, (bits - 1));
777
778 tcmr = SSC_BF(TCMR_PERIOD, 0)
779 | SSC_BF(TCMR_STTDLY, START_DELAY)
780 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
781 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
782 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
048d4ff8
BS
783 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
784 SSC_CKS_CLOCK : SSC_CKS_PIN);
f6a75d95
ZP
785
786 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
787 | SSC_BF(TFMR_FSDEN, 0)
788 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
789 | SSC_BF(TFMR_FSLEN, 0)
790 | SSC_BF(TFMR_DATNB, (channels - 1))
791 | SSC_BIT(TFMR_MSBF)
792 | SSC_BF(TFMR_DATDEF, 0)
793 | SSC_BF(TFMR_DATLEN, (bits - 1));
794 break;
795
6c742509
SG
796 default:
797 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
798 ssc_p->daifmt);
799 return -EINVAL;
6c742509
SG
800 }
801 pr_debug("atmel_ssc_hw_params: "
802 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
803 rcmr, rfmr, tcmr, tfmr);
804
805 if (!ssc_p->initialized) {
3fd5b30c
BS
806 if (!ssc_p->ssc->pdata->use_dma) {
807 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
808 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
809 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
810 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
811
812 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
813 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
814 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
815 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
816 }
6c742509
SG
817
818 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
819 ssc_p->name, ssc_p);
820 if (ret < 0) {
821 printk(KERN_WARNING
822 "atmel_ssc_dai: request_irq failure\n");
823 pr_debug("Atmel_ssc_dai: Stoping clock\n");
824 clk_disable(ssc_p->ssc->clk);
825 return ret;
826 }
827
828 ssc_p->initialized = 1;
829 }
830
831 /* set SSC clock mode register */
a85787ed 832 ssc_writel(ssc_p->ssc->regs, CMR, cmr_div);
6c742509
SG
833
834 /* set receive clock mode and format */
835 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
836 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
837
838 /* set transmit clock mode and format */
839 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
840 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
841
842 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
843 return 0;
844}
845
846
dee89c4d
MB
847static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
848 struct snd_soc_dai *dai)
6c742509 849{
c706f2e5
SW
850 struct platform_device *pdev = to_platform_device(dai->dev);
851 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
6c742509
SG
852 struct atmel_pcm_dma_params *dma_params;
853 int dir;
854
855 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
856 dir = 0;
857 else
858 dir = 1;
859
860 dma_params = ssc_p->dma_params[dir];
861
a8f1f100 862 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
e0111434 863 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
6c742509
SG
864
865 pr_debug("%s enabled SSC_SR=0x%08x\n",
866 dir ? "receive" : "transmit",
867 ssc_readl(ssc_p->ssc->regs, SR));
868 return 0;
869}
870
a8f1f100
BS
871static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
872 int cmd, struct snd_soc_dai *dai)
873{
c706f2e5
SW
874 struct platform_device *pdev = to_platform_device(dai->dev);
875 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
a8f1f100
BS
876 struct atmel_pcm_dma_params *dma_params;
877 int dir;
878
879 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
880 dir = 0;
881 else
882 dir = 1;
883
884 dma_params = ssc_p->dma_params[dir];
885
886 switch (cmd) {
887 case SNDRV_PCM_TRIGGER_START:
888 case SNDRV_PCM_TRIGGER_RESUME:
889 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
890 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
891 break;
892 default:
893 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
894 break;
895 }
896
897 return 0;
898}
6c742509
SG
899
900#ifdef CONFIG_PM
dc7d7b83 901static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
6c742509
SG
902{
903 struct atmel_ssc_info *ssc_p;
c706f2e5 904 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
6c742509
SG
905
906 if (!cpu_dai->active)
907 return 0;
908
c706f2e5 909 ssc_p = &ssc_info[pdev->id];
6c742509
SG
910
911 /* Save the status register before disabling transmit and receive */
912 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
913 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
914
915 /* Save the current interrupt mask, then disable unmasked interrupts */
916 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
917 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
918
919 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
920 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
921 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
922 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
923 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
924
925 return 0;
926}
927
928
929
dc7d7b83 930static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
6c742509
SG
931{
932 struct atmel_ssc_info *ssc_p;
c706f2e5 933 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
6c742509
SG
934 u32 cr;
935
936 if (!cpu_dai->active)
937 return 0;
938
c706f2e5 939 ssc_p = &ssc_info[pdev->id];
6c742509
SG
940
941 /* restore SSC register settings */
942 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
943 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
944 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
945 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
946 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
947
948 /* re-enable interrupts */
949 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
950
25985edc 951 /* Re-enable receive and transmit as appropriate */
6c742509
SG
952 cr = 0;
953 cr |=
954 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
955 cr |=
956 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
957 ssc_writel(ssc_p->ssc->regs, CR, cr);
958
959 return 0;
960}
961#else /* CONFIG_PM */
962# define atmel_ssc_suspend NULL
963# define atmel_ssc_resume NULL
964#endif /* CONFIG_PM */
965
6c742509
SG
966#define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
967 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
968
85e7652d 969static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
6335d055
EM
970 .startup = atmel_ssc_startup,
971 .shutdown = atmel_ssc_shutdown,
972 .prepare = atmel_ssc_prepare,
a8f1f100 973 .trigger = atmel_ssc_trigger,
6335d055
EM
974 .hw_params = atmel_ssc_hw_params,
975 .set_fmt = atmel_ssc_set_dai_fmt,
976 .set_clkdiv = atmel_ssc_set_dai_clkdiv,
977};
978
be681a82 979static struct snd_soc_dai_driver atmel_ssc_dai = {
6c742509
SG
980 .suspend = atmel_ssc_suspend,
981 .resume = atmel_ssc_resume,
982 .playback = {
983 .channels_min = 1,
984 .channels_max = 2,
b6d6c6e9
PR
985 .rates = SNDRV_PCM_RATE_CONTINUOUS,
986 .rate_min = 8000,
987 .rate_max = 384000,
6c742509
SG
988 .formats = ATMEL_SSC_FORMATS,},
989 .capture = {
990 .channels_min = 1,
991 .channels_max = 2,
b6d6c6e9
PR
992 .rates = SNDRV_PCM_RATE_CONTINUOUS,
993 .rate_min = 8000,
994 .rate_max = 384000,
6c742509 995 .formats = ATMEL_SSC_FORMATS,},
6335d055 996 .ops = &atmel_ssc_dai_ops,
6c742509 997};
6c742509 998
a2c662c0
KM
999static const struct snd_soc_component_driver atmel_ssc_component = {
1000 .name = "atmel-ssc",
1001};
1002
be681a82 1003static int asoc_ssc_init(struct device *dev)
f0fba2ad 1004{
3951e4aa
BS
1005 struct platform_device *pdev = to_platform_device(dev);
1006 struct ssc_device *ssc = platform_get_drvdata(pdev);
be681a82
BS
1007 int ret;
1008
a2c662c0
KM
1009 ret = snd_soc_register_component(dev, &atmel_ssc_component,
1010 &atmel_ssc_dai, 1);
be681a82
BS
1011 if (ret) {
1012 dev_err(dev, "Could not register DAI: %d\n", ret);
1013 goto err;
1014 }
1015
3951e4aa
BS
1016 if (ssc->pdata->use_dma)
1017 ret = atmel_pcm_dma_platform_register(dev);
1018 else
1019 ret = atmel_pcm_pdc_platform_register(dev);
1020
be681a82
BS
1021 if (ret) {
1022 dev_err(dev, "Could not register PCM: %d\n", ret);
1023 goto err_unregister_dai;
1d198f26 1024 }
f0fba2ad 1025
f0fba2ad 1026 return 0;
f0fba2ad 1027
be681a82 1028err_unregister_dai:
a2c662c0 1029 snd_soc_unregister_component(dev);
be681a82
BS
1030err:
1031 return ret;
1032}
f0fba2ad 1033
be681a82
BS
1034static void asoc_ssc_exit(struct device *dev)
1035{
3951e4aa
BS
1036 struct platform_device *pdev = to_platform_device(dev);
1037 struct ssc_device *ssc = platform_get_drvdata(pdev);
1038
1039 if (ssc->pdata->use_dma)
1040 atmel_pcm_dma_platform_unregister(dev);
1041 else
1042 atmel_pcm_pdc_platform_unregister(dev);
1043
a2c662c0 1044 snd_soc_unregister_component(dev);
be681a82 1045}
f0fba2ad 1046
abfa4eae
MB
1047/**
1048 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
1049 */
1050int atmel_ssc_set_audio(int ssc_id)
1051{
1052 struct ssc_device *ssc;
abfa4eae
MB
1053 int ret;
1054
abfa4eae
MB
1055 /* If we can grab the SSC briefly to parent the DAI device off it */
1056 ssc = ssc_request(ssc_id);
be681a82
BS
1057 if (IS_ERR(ssc)) {
1058 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
abfa4eae 1059 PTR_ERR(ssc));
be681a82
BS
1060 return PTR_ERR(ssc);
1061 } else {
1062 ssc_info[ssc_id].ssc = ssc;
840d8e5e 1063 }
abfa4eae 1064
be681a82 1065 ret = asoc_ssc_init(&ssc->pdev->dev);
abfa4eae
MB
1066
1067 return ret;
1068}
1069EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
1070
be681a82
BS
1071void atmel_ssc_put_audio(int ssc_id)
1072{
1073 struct ssc_device *ssc = ssc_info[ssc_id].ssc;
1074
be681a82 1075 asoc_ssc_exit(&ssc->pdev->dev);
69706028 1076 ssc_free(ssc);
be681a82
BS
1077}
1078EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
3f4b783c 1079
6c742509
SG
1080/* Module information */
1081MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1082MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1083MODULE_LICENSE("GPL");