]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - sound/soc/fsl/fsl_ssi.c
ASoC: fsl: make fsl_ssi driver compilable on ARM/IMX
[mirror_ubuntu-bionic-kernel.git] / sound / soc / fsl / fsl_ssi.c
CommitLineData
17467f23
TT
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
17467f23
TT
11 */
12
13#include <linux/init.h>
dfa1a107 14#include <linux/io.h>
17467f23
TT
15#include <linux/module.h>
16#include <linux/interrupt.h>
17#include <linux/device.h>
18#include <linux/delay.h>
5a0e3ad6 19#include <linux/slab.h>
dfa1a107
SG
20#include <linux/of_address.h>
21#include <linux/of_irq.h>
f0fba2ad 22#include <linux/of_platform.h>
17467f23 23
17467f23
TT
24#include <sound/core.h>
25#include <sound/pcm.h>
26#include <sound/pcm_params.h>
27#include <sound/initval.h>
28#include <sound/soc.h>
29
17467f23
TT
30#include "fsl_ssi.h"
31
dfa1a107
SG
32#ifdef PPC
33#define read_ssi(addr) in_be32(addr)
34#define write_ssi(val, addr) out_be32(addr, val)
35#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
36#elif defined ARM
37#define read_ssi(addr) readl(addr)
38#define write_ssi(val, addr) writel(val, addr)
39/*
40 * FIXME: Proper locking should be added at write_ssi_mask caller level
41 * to ensure this register read/modify/write sequence is race free.
42 */
43static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
44{
45 u32 val = readl(addr);
46 val = (val & ~clear) | set;
47 writel(val, addr);
48}
49#endif
50
17467f23
TT
51/**
52 * FSLSSI_I2S_RATES: sample rates supported by the I2S
53 *
54 * This driver currently only supports the SSI running in I2S slave mode,
55 * which means the codec determines the sample rate. Therefore, we tell
56 * ALSA that we support all rates and let the codec driver decide what rates
57 * are really supported.
58 */
59#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
60 SNDRV_PCM_RATE_CONTINUOUS)
61
62/**
63 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
64 *
65 * This driver currently only supports the SSI running in I2S slave mode.
66 *
67 * The SSI has a limitation in that the samples must be in the same byte
68 * order as the host CPU. This is because when multiple bytes are written
69 * to the STX register, the bytes and bits must be written in the same
70 * order. The STX is a shift register, so all the bits need to be aligned
71 * (bit-endianness must match byte-endianness). Processors typically write
72 * the bits within a byte in the same order that the bytes of a word are
73 * written in. So if the host CPU is big-endian, then only big-endian
74 * samples will be written to STX properly.
75 */
76#ifdef __BIG_ENDIAN
77#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
78 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
79 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
80#else
81#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
82 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
83 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
84#endif
85
d5a908b2
TT
86/* SIER bitflag of interrupts to enable */
87#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
88 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
89 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
90 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
91 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
92
17467f23
TT
93/**
94 * fsl_ssi_private: per-SSI private data
95 *
17467f23
TT
96 * @ssi: pointer to the SSI's registers
97 * @ssi_phys: physical address of the SSI registers
98 * @irq: IRQ of this SSI
be41e941
TT
99 * @first_stream: pointer to the stream that was opened first
100 * @second_stream: pointer to second stream
17467f23
TT
101 * @playback: the number of playback streams opened
102 * @capture: the number of capture streams opened
103 * @cpu_dai: the CPU DAI for this device
104 * @dev_attr: the sysfs device attribute structure
105 * @stats: SSI statistics
f0fba2ad 106 * @name: name for this device
17467f23
TT
107 */
108struct fsl_ssi_private {
17467f23
TT
109 struct ccsr_ssi __iomem *ssi;
110 dma_addr_t ssi_phys;
111 unsigned int irq;
be41e941
TT
112 struct snd_pcm_substream *first_stream;
113 struct snd_pcm_substream *second_stream;
8e9d8690 114 unsigned int fifo_depth;
f0fba2ad 115 struct snd_soc_dai_driver cpu_dai_drv;
17467f23 116 struct device_attribute dev_attr;
f0fba2ad 117 struct platform_device *pdev;
17467f23
TT
118
119 struct {
120 unsigned int rfrc;
121 unsigned int tfrc;
122 unsigned int cmdau;
123 unsigned int cmddu;
124 unsigned int rxt;
125 unsigned int rdr1;
126 unsigned int rdr0;
127 unsigned int tde1;
128 unsigned int tde0;
129 unsigned int roe1;
130 unsigned int roe0;
131 unsigned int tue1;
132 unsigned int tue0;
133 unsigned int tfs;
134 unsigned int rfs;
135 unsigned int tls;
136 unsigned int rls;
137 unsigned int rff1;
138 unsigned int rff0;
139 unsigned int tfe1;
140 unsigned int tfe0;
141 } stats;
f0fba2ad
LG
142
143 char name[1];
17467f23
TT
144};
145
146/**
147 * fsl_ssi_isr: SSI interrupt handler
148 *
149 * Although it's possible to use the interrupt handler to send and receive
150 * data to/from the SSI, we use the DMA instead. Programming is more
151 * complicated, but the performance is much better.
152 *
153 * This interrupt handler is used only to gather statistics.
154 *
155 * @irq: IRQ of the SSI device
156 * @dev_id: pointer to the ssi_private structure for this SSI device
157 */
158static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
159{
160 struct fsl_ssi_private *ssi_private = dev_id;
161 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
162 irqreturn_t ret = IRQ_NONE;
163 __be32 sisr;
164 __be32 sisr2 = 0;
165
166 /* We got an interrupt, so read the status register to see what we
167 were interrupted for. We mask it with the Interrupt Enable register
168 so that we only check for events that we're interested in.
169 */
dfa1a107 170 sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
17467f23
TT
171
172 if (sisr & CCSR_SSI_SISR_RFRC) {
173 ssi_private->stats.rfrc++;
174 sisr2 |= CCSR_SSI_SISR_RFRC;
175 ret = IRQ_HANDLED;
176 }
177
178 if (sisr & CCSR_SSI_SISR_TFRC) {
179 ssi_private->stats.tfrc++;
180 sisr2 |= CCSR_SSI_SISR_TFRC;
181 ret = IRQ_HANDLED;
182 }
183
184 if (sisr & CCSR_SSI_SISR_CMDAU) {
185 ssi_private->stats.cmdau++;
186 ret = IRQ_HANDLED;
187 }
188
189 if (sisr & CCSR_SSI_SISR_CMDDU) {
190 ssi_private->stats.cmddu++;
191 ret = IRQ_HANDLED;
192 }
193
194 if (sisr & CCSR_SSI_SISR_RXT) {
195 ssi_private->stats.rxt++;
196 ret = IRQ_HANDLED;
197 }
198
199 if (sisr & CCSR_SSI_SISR_RDR1) {
200 ssi_private->stats.rdr1++;
201 ret = IRQ_HANDLED;
202 }
203
204 if (sisr & CCSR_SSI_SISR_RDR0) {
205 ssi_private->stats.rdr0++;
206 ret = IRQ_HANDLED;
207 }
208
209 if (sisr & CCSR_SSI_SISR_TDE1) {
210 ssi_private->stats.tde1++;
211 ret = IRQ_HANDLED;
212 }
213
214 if (sisr & CCSR_SSI_SISR_TDE0) {
215 ssi_private->stats.tde0++;
216 ret = IRQ_HANDLED;
217 }
218
219 if (sisr & CCSR_SSI_SISR_ROE1) {
220 ssi_private->stats.roe1++;
221 sisr2 |= CCSR_SSI_SISR_ROE1;
222 ret = IRQ_HANDLED;
223 }
224
225 if (sisr & CCSR_SSI_SISR_ROE0) {
226 ssi_private->stats.roe0++;
227 sisr2 |= CCSR_SSI_SISR_ROE0;
228 ret = IRQ_HANDLED;
229 }
230
231 if (sisr & CCSR_SSI_SISR_TUE1) {
232 ssi_private->stats.tue1++;
233 sisr2 |= CCSR_SSI_SISR_TUE1;
234 ret = IRQ_HANDLED;
235 }
236
237 if (sisr & CCSR_SSI_SISR_TUE0) {
238 ssi_private->stats.tue0++;
239 sisr2 |= CCSR_SSI_SISR_TUE0;
240 ret = IRQ_HANDLED;
241 }
242
243 if (sisr & CCSR_SSI_SISR_TFS) {
244 ssi_private->stats.tfs++;
245 ret = IRQ_HANDLED;
246 }
247
248 if (sisr & CCSR_SSI_SISR_RFS) {
249 ssi_private->stats.rfs++;
250 ret = IRQ_HANDLED;
251 }
252
253 if (sisr & CCSR_SSI_SISR_TLS) {
254 ssi_private->stats.tls++;
255 ret = IRQ_HANDLED;
256 }
257
258 if (sisr & CCSR_SSI_SISR_RLS) {
259 ssi_private->stats.rls++;
260 ret = IRQ_HANDLED;
261 }
262
263 if (sisr & CCSR_SSI_SISR_RFF1) {
264 ssi_private->stats.rff1++;
265 ret = IRQ_HANDLED;
266 }
267
268 if (sisr & CCSR_SSI_SISR_RFF0) {
269 ssi_private->stats.rff0++;
270 ret = IRQ_HANDLED;
271 }
272
273 if (sisr & CCSR_SSI_SISR_TFE1) {
274 ssi_private->stats.tfe1++;
275 ret = IRQ_HANDLED;
276 }
277
278 if (sisr & CCSR_SSI_SISR_TFE0) {
279 ssi_private->stats.tfe0++;
280 ret = IRQ_HANDLED;
281 }
282
283 /* Clear the bits that we set */
284 if (sisr2)
dfa1a107 285 write_ssi(sisr2, &ssi->sisr);
17467f23
TT
286
287 return ret;
288}
289
290/**
291 * fsl_ssi_startup: create a new substream
292 *
293 * This is the first function called when a stream is opened.
294 *
295 * If this is the first stream open, then grab the IRQ and program most of
296 * the SSI registers.
297 */
dee89c4d
MB
298static int fsl_ssi_startup(struct snd_pcm_substream *substream,
299 struct snd_soc_dai *dai)
17467f23
TT
300{
301 struct snd_soc_pcm_runtime *rtd = substream->private_data;
5e538eca
TT
302 struct fsl_ssi_private *ssi_private =
303 snd_soc_dai_get_drvdata(rtd->cpu_dai);
304 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
17467f23
TT
305
306 /*
307 * If this is the first stream opened, then request the IRQ
308 * and initialize the SSI registers.
309 */
5e538eca 310 if (!ssi_private->first_stream) {
17467f23 311 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
17467f23 312
5e538eca
TT
313 ssi_private->first_stream = substream;
314
17467f23
TT
315 /*
316 * Section 16.5 of the MPC8610 reference manual says that the
317 * SSI needs to be disabled before updating the registers we set
318 * here.
319 */
dfa1a107 320 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
17467f23
TT
321
322 /*
323 * Program the SSI into I2S Slave Non-Network Synchronous mode.
324 * Also enable the transmit and receive FIFO.
325 *
326 * FIXME: Little-endian samples require a different shift dir
327 */
dfa1a107 328 write_ssi_mask(&ssi->scr,
a454dad1
TT
329 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
330 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
5e538eca 331 | (synchronous ? CCSR_SSI_SCR_SYN : 0));
17467f23 332
dfa1a107 333 write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
17467f23 334 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
dfa1a107 335 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
17467f23 336
dfa1a107 337 write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
17467f23 338 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
dfa1a107 339 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
17467f23
TT
340
341 /*
342 * The DC and PM bits are only used if the SSI is the clock
343 * master.
344 */
345
5e538eca 346 /* Enable the interrupts and DMA requests */
dfa1a107 347 write_ssi(SIER_FLAGS, &ssi->sier);
17467f23
TT
348
349 /*
350 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
8e9d8690
TT
351 * don't use FIFO 1. We program the transmit water to signal a
352 * DMA transfer if there are only two (or fewer) elements left
353 * in the FIFO. Two elements equals one frame (left channel,
354 * right channel). This value, however, depends on the depth of
355 * the transmit buffer.
356 *
357 * We program the receive FIFO to notify us if at least two
358 * elements (one frame) have been written to the FIFO. We could
359 * make this value larger (and maybe we should), but this way
360 * data will be written to memory as soon as it's available.
17467f23 361 */
dfa1a107
SG
362 write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
363 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
364 &ssi->sfcsr);
17467f23
TT
365
366 /*
367 * We keep the SSI disabled because if we enable it, then the
368 * DMA controller will start. It's not supposed to start until
369 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
370 * DMA controller will transfer one "BWC" of data (i.e. the
371 * amount of data that the MR.BWC bits are set to). The reason
372 * this is bad is because at this point, the PCM driver has not
373 * finished initializing the DMA controller.
374 */
5e538eca
TT
375 } else {
376 if (synchronous) {
377 struct snd_pcm_runtime *first_runtime =
378 ssi_private->first_stream->runtime;
379 /*
380 * This is the second stream open, and we're in
381 * synchronous mode, so we need to impose sample
382 * sample size constraints. This is because STCCR is
383 * used for playback and capture in synchronous mode,
384 * so there's no way to specify different word
385 * lengths.
386 *
387 * Note that this can cause a race condition if the
388 * second stream is opened before the first stream is
389 * fully initialized. We provide some protection by
390 * checking to make sure the first stream is
391 * initialized, but it's not perfect. ALSA sometimes
392 * re-initializes the driver with a different sample
393 * rate or size. If the second stream is opened
394 * before the first stream has received its final
395 * parameters, then the second stream may be
396 * constrained to the wrong sample rate or size.
397 */
398 if (!first_runtime->sample_bits) {
399 dev_err(substream->pcm->card->dev,
400 "set sample size in %s stream first\n",
401 substream->stream ==
402 SNDRV_PCM_STREAM_PLAYBACK
403 ? "capture" : "playback");
404 return -EAGAIN;
405 }
be41e941 406
a454dad1
TT
407 snd_pcm_hw_constraint_minmax(substream->runtime,
408 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
409 first_runtime->sample_bits,
410 first_runtime->sample_bits);
5e538eca 411 }
be41e941
TT
412
413 ssi_private->second_stream = substream;
414 }
415
17467f23
TT
416 return 0;
417}
418
419/**
85ef2375 420 * fsl_ssi_hw_params - program the sample size
17467f23
TT
421 *
422 * Most of the SSI registers have been programmed in the startup function,
423 * but the word length must be programmed here. Unfortunately, programming
424 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
425 * cause a problem with supporting simultaneous playback and capture. If
426 * the SSI is already playing a stream, then that stream may be temporarily
427 * stopped when you start capture.
428 *
429 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
430 * clock master.
431 */
85ef2375
TT
432static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
433 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
17467f23 434{
f0fba2ad 435 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
5e538eca
TT
436 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
437 unsigned int sample_size =
438 snd_pcm_format_width(params_format(hw_params));
439 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
dfa1a107 440 int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
17467f23 441
5e538eca
TT
442 /*
443 * If we're in synchronous mode, and the SSI is already enabled,
444 * then STCCR is already set properly.
445 */
446 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
447 return 0;
17467f23 448
5e538eca
TT
449 /*
450 * FIXME: The documentation says that SxCCR[WL] should not be
451 * modified while the SSI is enabled. The only time this can
452 * happen is if we're trying to do simultaneous playback and
453 * capture in asynchronous mode. Unfortunately, I have been enable
454 * to get that to work at all on the P1022DS. Therefore, we don't
455 * bother to disable/enable the SSI when setting SxCCR[WL], because
456 * the SSI will stop anyway. Maybe one day, this will get fixed.
457 */
17467f23 458
5e538eca
TT
459 /* In synchronous mode, the SSI uses STCCR for capture */
460 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
461 ssi_private->cpu_dai_drv.symmetric_rates)
dfa1a107 462 write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
5e538eca 463 else
dfa1a107 464 write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
17467f23
TT
465
466 return 0;
467}
468
469/**
470 * fsl_ssi_trigger: start and stop the DMA transfer.
471 *
472 * This function is called by ALSA to start, stop, pause, and resume the DMA
473 * transfer of data.
474 *
475 * The DMA channel is in external master start and pause mode, which
476 * means the SSI completely controls the flow of data.
477 */
dee89c4d
MB
478static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
479 struct snd_soc_dai *dai)
17467f23
TT
480{
481 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 482 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23
TT
483 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
484
485 switch (cmd) {
486 case SNDRV_PCM_TRIGGER_START:
17467f23 487 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
a4d11fe5 488 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dfa1a107 489 write_ssi_mask(&ssi->scr, 0,
be41e941 490 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
a4d11fe5 491 else
dfa1a107 492 write_ssi_mask(&ssi->scr, 0,
be41e941 493 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
17467f23
TT
494 break;
495
496 case SNDRV_PCM_TRIGGER_STOP:
17467f23
TT
497 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
498 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dfa1a107 499 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
17467f23 500 else
dfa1a107 501 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
17467f23
TT
502 break;
503
504 default:
505 return -EINVAL;
506 }
507
508 return 0;
509}
510
511/**
512 * fsl_ssi_shutdown: shutdown the SSI
513 *
514 * Shutdown the SSI if there are no other substreams open.
515 */
dee89c4d
MB
516static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
517 struct snd_soc_dai *dai)
17467f23
TT
518{
519 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 520 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23 521
be41e941
TT
522 if (ssi_private->first_stream == substream)
523 ssi_private->first_stream = ssi_private->second_stream;
524
525 ssi_private->second_stream = NULL;
526
17467f23 527 /*
1fab6caf 528 * If this is the last active substream, disable the SSI.
17467f23 529 */
5e538eca 530 if (!ssi_private->first_stream) {
17467f23
TT
531 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
532
dfa1a107 533 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
17467f23
TT
534 }
535}
536
85e7652d 537static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
6335d055
EM
538 .startup = fsl_ssi_startup,
539 .hw_params = fsl_ssi_hw_params,
540 .shutdown = fsl_ssi_shutdown,
541 .trigger = fsl_ssi_trigger,
6335d055
EM
542};
543
f0fba2ad
LG
544/* Template for the CPU dai driver structure */
545static struct snd_soc_dai_driver fsl_ssi_dai_template = {
17467f23
TT
546 .playback = {
547 /* The SSI does not support monaural audio. */
548 .channels_min = 2,
549 .channels_max = 2,
550 .rates = FSLSSI_I2S_RATES,
551 .formats = FSLSSI_I2S_FORMATS,
552 },
553 .capture = {
554 .channels_min = 2,
555 .channels_max = 2,
556 .rates = FSLSSI_I2S_RATES,
557 .formats = FSLSSI_I2S_FORMATS,
558 },
6335d055 559 .ops = &fsl_ssi_dai_ops,
17467f23
TT
560};
561
d5a908b2
TT
562/* Show the statistics of a flag only if its interrupt is enabled. The
563 * compiler will optimze this code to a no-op if the interrupt is not
564 * enabled.
565 */
566#define SIER_SHOW(flag, name) \
567 do { \
568 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
569 length += sprintf(buf + length, #name "=%u\n", \
570 ssi_private->stats.name); \
571 } while (0)
572
573
17467f23
TT
574/**
575 * fsl_sysfs_ssi_show: display SSI statistics
576 *
d5a908b2
TT
577 * Display the statistics for the current SSI device. To avoid confusion,
578 * we only show those counts that are enabled.
17467f23
TT
579 */
580static ssize_t fsl_sysfs_ssi_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582{
583 struct fsl_ssi_private *ssi_private =
d5a908b2
TT
584 container_of(attr, struct fsl_ssi_private, dev_attr);
585 ssize_t length = 0;
586
587 SIER_SHOW(RFRC_EN, rfrc);
588 SIER_SHOW(TFRC_EN, tfrc);
589 SIER_SHOW(CMDAU_EN, cmdau);
590 SIER_SHOW(CMDDU_EN, cmddu);
591 SIER_SHOW(RXT_EN, rxt);
592 SIER_SHOW(RDR1_EN, rdr1);
593 SIER_SHOW(RDR0_EN, rdr0);
594 SIER_SHOW(TDE1_EN, tde1);
595 SIER_SHOW(TDE0_EN, tde0);
596 SIER_SHOW(ROE1_EN, roe1);
597 SIER_SHOW(ROE0_EN, roe0);
598 SIER_SHOW(TUE1_EN, tue1);
599 SIER_SHOW(TUE0_EN, tue0);
600 SIER_SHOW(TFS_EN, tfs);
601 SIER_SHOW(RFS_EN, rfs);
602 SIER_SHOW(TLS_EN, tls);
603 SIER_SHOW(RLS_EN, rls);
604 SIER_SHOW(RFF1_EN, rff1);
605 SIER_SHOW(RFF0_EN, rff0);
606 SIER_SHOW(TFE1_EN, tfe1);
607 SIER_SHOW(TFE0_EN, tfe0);
17467f23
TT
608
609 return length;
610}
611
612/**
f0fba2ad 613 * Make every character in a string lower-case
17467f23 614 */
f0fba2ad
LG
615static void make_lowercase(char *s)
616{
617 char *p = s;
618 char c;
619
620 while ((c = *p)) {
621 if ((c >= 'A') && (c <= 'Z'))
622 *p = c + ('a' - 'A');
623 p++;
624 }
625}
626
f07eb223 627static int __devinit fsl_ssi_probe(struct platform_device *pdev)
17467f23 628{
17467f23
TT
629 struct fsl_ssi_private *ssi_private;
630 int ret = 0;
87a0632b 631 struct device_attribute *dev_attr = NULL;
38fec727 632 struct device_node *np = pdev->dev.of_node;
f0fba2ad 633 const char *p, *sprop;
8e9d8690 634 const uint32_t *iprop;
f0fba2ad
LG
635 struct resource res;
636 char name[64];
17467f23 637
ff71334a
TT
638 /* SSIs that are not connected on the board should have a
639 * status = "disabled"
640 * property in their device tree nodes.
f0fba2ad 641 */
ff71334a 642 if (!of_device_is_available(np))
f0fba2ad
LG
643 return -ENODEV;
644
ff71334a
TT
645 /* Check for a codec-handle property. */
646 if (!of_get_property(np, "codec-handle", NULL)) {
38fec727 647 dev_err(&pdev->dev, "missing codec-handle property\n");
ff71334a
TT
648 return -ENODEV;
649 }
650
f0fba2ad
LG
651 /* We only support the SSI in "I2S Slave" mode */
652 sprop = of_get_property(np, "fsl,mode", NULL);
653 if (!sprop || strcmp(sprop, "i2s-slave")) {
38fec727 654 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
f0fba2ad
LG
655 return -ENODEV;
656 }
657
658 /* The DAI name is the last part of the full name of the node. */
659 p = strrchr(np->full_name, '/') + 1;
660 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
661 GFP_KERNEL);
17467f23 662 if (!ssi_private) {
38fec727 663 dev_err(&pdev->dev, "could not allocate DAI object\n");
f0fba2ad 664 return -ENOMEM;
17467f23 665 }
17467f23 666
f0fba2ad 667 strcpy(ssi_private->name, p);
17467f23 668
f0fba2ad
LG
669 /* Initialize this copy of the CPU DAI driver structure */
670 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
671 sizeof(fsl_ssi_dai_template));
672 ssi_private->cpu_dai_drv.name = ssi_private->name;
673
674 /* Get the addresses and IRQ */
675 ret = of_address_to_resource(np, 0, &res);
676 if (ret) {
38fec727 677 dev_err(&pdev->dev, "could not determine device resources\n");
1fab6caf 678 goto error_kmalloc;
f0fba2ad 679 }
147dfe90
TT
680 ssi_private->ssi = of_iomap(np, 0);
681 if (!ssi_private->ssi) {
682 dev_err(&pdev->dev, "could not map device resources\n");
1fab6caf
TT
683 ret = -ENOMEM;
684 goto error_kmalloc;
147dfe90 685 }
f0fba2ad 686 ssi_private->ssi_phys = res.start;
1fab6caf 687
f0fba2ad 688 ssi_private->irq = irq_of_parse_and_map(np, 0);
1fab6caf
TT
689 if (ssi_private->irq == NO_IRQ) {
690 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
691 ret = -ENXIO;
692 goto error_iomap;
693 }
694
695 /* The 'name' should not have any slashes in it. */
696 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
697 ssi_private);
698 if (ret < 0) {
699 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
700 goto error_irqmap;
701 }
17467f23 702
f0fba2ad 703 /* Are the RX and the TX clocks locked? */
5e538eca 704 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
f0fba2ad 705 ssi_private->cpu_dai_drv.symmetric_rates = 1;
17467f23 706
8e9d8690
TT
707 /* Determine the FIFO depth. */
708 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
709 if (iprop)
147dfe90 710 ssi_private->fifo_depth = be32_to_cpup(iprop);
8e9d8690
TT
711 else
712 /* Older 8610 DTs didn't have the fifo-depth property */
713 ssi_private->fifo_depth = 8;
714
17467f23 715 /* Initialize the the device_attribute structure */
f0fba2ad 716 dev_attr = &ssi_private->dev_attr;
0f768a72 717 sysfs_attr_init(&dev_attr->attr);
f0fba2ad 718 dev_attr->attr.name = "statistics";
17467f23
TT
719 dev_attr->attr.mode = S_IRUGO;
720 dev_attr->show = fsl_sysfs_ssi_show;
721
38fec727 722 ret = device_create_file(&pdev->dev, dev_attr);
17467f23 723 if (ret) {
38fec727 724 dev_err(&pdev->dev, "could not create sysfs %s file\n",
17467f23 725 ssi_private->dev_attr.attr.name);
1fab6caf 726 goto error_irq;
17467f23
TT
727 }
728
f0fba2ad 729 /* Register with ASoC */
38fec727 730 dev_set_drvdata(&pdev->dev, ssi_private);
3f4b783c 731
38fec727 732 ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
87a0632b 733 if (ret) {
38fec727 734 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1fab6caf 735 goto error_dev;
f0fba2ad
LG
736 }
737
738 /* Trigger the machine driver's probe function. The platform driver
2b81ec69 739 * name of the machine driver is taken from /compatible property of the
f0fba2ad
LG
740 * device tree. We also pass the address of the CPU DAI driver
741 * structure.
742 */
2b81ec69
SG
743 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
744 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
f0fba2ad
LG
745 p = strrchr(sprop, ',');
746 if (p)
747 sprop = p + 1;
748 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
749 make_lowercase(name);
750
751 ssi_private->pdev =
38fec727 752 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
f0fba2ad
LG
753 if (IS_ERR(ssi_private->pdev)) {
754 ret = PTR_ERR(ssi_private->pdev);
38fec727 755 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1fab6caf 756 goto error_dai;
3f4b783c 757 }
17467f23 758
f0fba2ad 759 return 0;
87a0632b 760
1fab6caf 761error_dai:
38fec727 762 snd_soc_unregister_dai(&pdev->dev);
1fab6caf
TT
763
764error_dev:
38fec727 765 dev_set_drvdata(&pdev->dev, NULL);
1fab6caf
TT
766 device_remove_file(&pdev->dev, dev_attr);
767
768error_irq:
769 free_irq(ssi_private->irq, ssi_private);
770
771error_irqmap:
87a0632b 772 irq_dispose_mapping(ssi_private->irq);
1fab6caf
TT
773
774error_iomap:
87a0632b 775 iounmap(ssi_private->ssi);
1fab6caf
TT
776
777error_kmalloc:
87a0632b
TT
778 kfree(ssi_private);
779
780 return ret;
17467f23 781}
17467f23 782
38fec727 783static int fsl_ssi_remove(struct platform_device *pdev)
17467f23 784{
38fec727 785 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
17467f23 786
f0fba2ad 787 platform_device_unregister(ssi_private->pdev);
38fec727
TT
788 snd_soc_unregister_dai(&pdev->dev);
789 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
3f4b783c 790
1fab6caf
TT
791 free_irq(ssi_private->irq, ssi_private);
792 irq_dispose_mapping(ssi_private->irq);
793
17467f23 794 kfree(ssi_private);
38fec727 795 dev_set_drvdata(&pdev->dev, NULL);
f0fba2ad
LG
796
797 return 0;
17467f23 798}
f0fba2ad
LG
799
800static const struct of_device_id fsl_ssi_ids[] = {
801 { .compatible = "fsl,mpc8610-ssi", },
802 {}
803};
804MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
805
f07eb223 806static struct platform_driver fsl_ssi_driver = {
f0fba2ad
LG
807 .driver = {
808 .name = "fsl-ssi-dai",
809 .owner = THIS_MODULE,
810 .of_match_table = fsl_ssi_ids,
811 },
812 .probe = fsl_ssi_probe,
813 .remove = fsl_ssi_remove,
814};
17467f23 815
ba0a7e02 816module_platform_driver(fsl_ssi_driver);
a454dad1 817
17467f23
TT
818MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
819MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
f0fba2ad 820MODULE_LICENSE("GPL v2");