]> git.proxmox.com Git - rustc.git/blame - src/compiler-rt/lib/esan/working_set.cpp
New upstream version 1.19.0+dfsg1
[rustc.git] / src / compiler-rt / lib / esan / working_set.cpp
CommitLineData
5bcae85e
SL
1//===-- working_set.cpp ---------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of EfficiencySanitizer, a family of performance tuners.
11//
12// This file contains working-set-specific code.
13//===----------------------------------------------------------------------===//
14
15#include "working_set.h"
16#include "esan.h"
17#include "esan_circular_buffer.h"
18#include "esan_flags.h"
19#include "esan_shadow.h"
20#include "esan_sideline.h"
21#include "sanitizer_common/sanitizer_procmaps.h"
22
23// We shadow every cache line of app memory with one shadow byte.
24// - The highest bit of each shadow byte indicates whether the corresponding
25// cache line has ever been accessed.
26// - The lowest bit of each shadow byte indicates whether the corresponding
27// cache line was accessed since the last sample.
28// - The other bits are used for working set snapshots at successively
29// lower frequencies, each bit to the left from the lowest bit stepping
30// down the frequency by 2 to the power of getFlags()->snapshot_step.
31// Thus we have something like this:
32// Bit 0: Since last sample
33// Bit 1: Since last 2^2 samples
34// Bit 2: Since last 2^4 samples
35// Bit 3: ...
36// Bit 7: Ever accessed.
37// We live with races in accessing each shadow byte.
38typedef unsigned char byte;
39
40namespace __esan {
41
42// Our shadow memory assumes that the line size is 64.
43static const u32 CacheLineSize = 64;
44
45// See the shadow byte layout description above.
46static const u32 TotalWorkingSetBitIdx = 7;
47// We accumulate to the left until we hit this bit.
48// We don't need to accumulate to the final bit as it's set on each ref
49// by the compiler instrumentation.
50static const u32 MaxAccumBitIdx = 6;
51static const u32 CurWorkingSetBitIdx = 0;
52static const byte ShadowAccessedVal =
53 (1 << TotalWorkingSetBitIdx) | (1 << CurWorkingSetBitIdx);
54
55static SidelineThread Thread;
56// If we use real-time-based timer samples this won't overflow in any realistic
57// scenario, but if we switch to some other unit (such as memory accesses) we
58// may want to consider a 64-bit int.
59static u32 SnapshotNum;
60
61// We store the wset size for each of 8 different sampling frequencies.
62static const u32 NumFreq = 8; // One for each bit of our shadow bytes.
63// We cannot use static objects as the global destructor is called
64// prior to our finalize routine.
65// These are each circular buffers, sized up front.
66CircularBuffer<u32> SizePerFreq[NumFreq];
67// We cannot rely on static initializers (they may run too late) but
68// we record the size here for clarity:
69u32 CircularBufferSizes[NumFreq] = {
70 // These are each mmap-ed so our minimum is one page.
71 32*1024,
72 16*1024,
73 8*1024,
74 4*1024,
75 4*1024,
76 4*1024,
77 4*1024,
78 4*1024,
79};
80
81void processRangeAccessWorkingSet(uptr PC, uptr Addr, SIZE_T Size,
82 bool IsWrite) {
83 if (Size == 0)
84 return;
85 SIZE_T I = 0;
86 uptr LineSize = getFlags()->cache_line_size;
87 // As Addr+Size could overflow at the top of a 32-bit address space,
88 // we avoid the simpler formula that rounds the start and end.
89 SIZE_T NumLines = Size / LineSize +
90 // Add any extra at the start or end adding on an extra line:
91 (LineSize - 1 + Addr % LineSize + Size % LineSize) / LineSize;
92 byte *Shadow = (byte *)appToShadow(Addr);
93 // Write shadow bytes until we're word-aligned.
94 while (I < NumLines && (uptr)Shadow % 4 != 0) {
95 if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
96 *Shadow |= ShadowAccessedVal;
97 ++Shadow;
98 ++I;
99 }
100 // Write whole shadow words at a time.
101 // Using a word-stride loop improves the runtime of a microbenchmark of
102 // memset calls by 10%.
103 u32 WordValue = ShadowAccessedVal | ShadowAccessedVal << 8 |
104 ShadowAccessedVal << 16 | ShadowAccessedVal << 24;
105 while (I + 4 <= NumLines) {
106 if ((*(u32*)Shadow & WordValue) != WordValue)
107 *(u32*)Shadow |= WordValue;
108 Shadow += 4;
109 I += 4;
110 }
111 // Write any trailing shadow bytes.
112 while (I < NumLines) {
113 if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
114 *Shadow |= ShadowAccessedVal;
115 ++Shadow;
116 ++I;
117 }
118}
119
120// This routine will word-align ShadowStart and ShadowEnd prior to scanning.
121// It does *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
122// measures the access during the entire execution and should never be cleared.
123static u32 countAndClearShadowValues(u32 BitIdx, uptr ShadowStart,
124 uptr ShadowEnd) {
125 u32 WorkingSetSize = 0;
126 u32 ByteValue = 0x1 << BitIdx;
127 u32 WordValue = ByteValue | ByteValue << 8 | ByteValue << 16 |
128 ByteValue << 24;
129 // Get word aligned start.
130 ShadowStart = RoundDownTo(ShadowStart, sizeof(u32));
131 bool Accum = getFlags()->record_snapshots && BitIdx < MaxAccumBitIdx;
132 // Do not clear the bit that measures access during the entire execution.
133 bool Clear = BitIdx < TotalWorkingSetBitIdx;
134 for (u32 *Ptr = (u32 *)ShadowStart; Ptr < (u32 *)ShadowEnd; ++Ptr) {
135 if ((*Ptr & WordValue) != 0) {
136 byte *BytePtr = (byte *)Ptr;
137 for (u32 j = 0; j < sizeof(u32); ++j) {
138 if (BytePtr[j] & ByteValue) {
139 ++WorkingSetSize;
140 if (Accum) {
141 // Accumulate to the lower-frequency bit to the left.
142 BytePtr[j] |= (ByteValue << 1);
143 }
144 }
145 }
146 if (Clear) {
147 // Clear this bit from every shadow byte.
148 *Ptr &= ~WordValue;
149 }
150 }
151 }
152 return WorkingSetSize;
153}
154
155// Scan shadow memory to calculate the number of cache lines being accessed,
156// i.e., the number of non-zero bits indexed by BitIdx in each shadow byte.
157// We also clear the lowest bits (most recent working set snapshot).
158// We do *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
159// measures the access during the entire execution and should never be cleared.
160static u32 computeWorkingSizeAndReset(u32 BitIdx) {
161 u32 WorkingSetSize = 0;
162 MemoryMappingLayout MemIter(true/*cache*/);
163 uptr Start, End, Prot;
164 while (MemIter.Next(&Start, &End, nullptr/*offs*/, nullptr/*file*/,
165 0/*file size*/, &Prot)) {
166 VPrintf(4, "%s: considering %p-%p app=%d shadow=%d prot=%u\n",
167 __FUNCTION__, Start, End, Prot, isAppMem(Start),
168 isShadowMem(Start));
169 if (isShadowMem(Start) && (Prot & MemoryMappingLayout::kProtectionWrite)) {
170 VPrintf(3, "%s: walking %p-%p\n", __FUNCTION__, Start, End);
171 WorkingSetSize += countAndClearShadowValues(BitIdx, Start, End);
172 }
173 }
174 return WorkingSetSize;
175}
176
177// This is invoked from a signal handler but in a sideline thread doing nothing
178// else so it is a little less fragile than a typical signal handler.
179static void takeSample(void *Arg) {
180 u32 BitIdx = CurWorkingSetBitIdx;
181 u32 Freq = 1;
182 ++SnapshotNum; // Simpler to skip 0 whose mod matches everything.
183 while (BitIdx <= MaxAccumBitIdx && (SnapshotNum % Freq) == 0) {
184 u32 NumLines = computeWorkingSizeAndReset(BitIdx);
185 VReport(1, "%s: snapshot #%5d bit %d freq %4d: %8u\n", SanitizerToolName,
186 SnapshotNum, BitIdx, Freq, NumLines);
187 SizePerFreq[BitIdx].push_back(NumLines);
188 Freq = Freq << getFlags()->snapshot_step;
189 BitIdx++;
190 }
191}
192
7cac9316
XL
193unsigned int getSampleCountWorkingSet()
194{
195 return SnapshotNum;
196}
197
5bcae85e
SL
198// Initialization that must be done before any instrumented code is executed.
199void initializeShadowWorkingSet() {
200 CHECK(getFlags()->cache_line_size == CacheLineSize);
201 registerMemoryFaultHandler();
202}
203
204void initializeWorkingSet() {
205 if (getFlags()->record_snapshots) {
206 for (u32 i = 0; i < NumFreq; ++i)
207 SizePerFreq[i].initialize(CircularBufferSizes[i]);
208 Thread.launchThread(takeSample, nullptr, getFlags()->sample_freq);
209 }
210}
211
212static u32 getPeriodForPrinting(u32 MilliSec, const char *&Unit) {
213 if (MilliSec > 600000) {
214 Unit = "min";
215 return MilliSec / 60000;
216 } else if (MilliSec > 10000) {
217 Unit = "sec";
218 return MilliSec / 1000;
219 } else {
220 Unit = "ms";
221 return MilliSec;
222 }
223}
224
225static u32 getSizeForPrinting(u32 NumOfCachelines, const char *&Unit) {
226 // We need a constant to avoid software divide support:
227 static const u32 KilobyteCachelines = (0x1 << 10) / CacheLineSize;
228 static const u32 MegabyteCachelines = KilobyteCachelines << 10;
229
230 if (NumOfCachelines > 10 * MegabyteCachelines) {
231 Unit = "MB";
232 return NumOfCachelines / MegabyteCachelines;
233 } else if (NumOfCachelines > 10 * KilobyteCachelines) {
234 Unit = "KB";
235 return NumOfCachelines / KilobyteCachelines;
236 } else {
237 Unit = "Bytes";
238 return NumOfCachelines * CacheLineSize;
239 }
240}
241
242void reportWorkingSet() {
243 const char *Unit;
244 if (getFlags()->record_snapshots) {
245 u32 Freq = 1;
246 Report(" Total number of samples: %u\n", SnapshotNum);
247 for (u32 i = 0; i < NumFreq; ++i) {
248 u32 Time = getPeriodForPrinting(getFlags()->sample_freq*Freq, Unit);
249 Report(" Samples array #%d at period %u %s\n", i, Time, Unit);
250 // FIXME: report whether we wrapped around and thus whether we
251 // have data on the whole run or just the last N samples.
252 for (u32 j = 0; j < SizePerFreq[i].size(); ++j) {
253 u32 Size = getSizeForPrinting(SizePerFreq[i][j], Unit);
254 Report("#%4d: %8u %s (%9u cache lines)\n", j, Size, Unit,
255 SizePerFreq[i][j]);
256 }
257 Freq = Freq << getFlags()->snapshot_step;
258 }
259 }
260
261 // Get the working set size for the entire execution.
262 u32 NumOfCachelines = computeWorkingSizeAndReset(TotalWorkingSetBitIdx);
263 u32 Size = getSizeForPrinting(NumOfCachelines, Unit);
264 Report(" %s: the total working set size: %u %s (%u cache lines)\n",
265 SanitizerToolName, Size, Unit, NumOfCachelines);
266}
267
268int finalizeWorkingSet() {
269 if (getFlags()->record_snapshots)
270 Thread.joinThread();
271 reportWorkingSet();
272 if (getFlags()->record_snapshots) {
273 for (u32 i = 0; i < NumFreq; ++i)
274 SizePerFreq[i].free();
275 }
276 return 0;
277}
278
279} // namespace __esan