]> git.proxmox.com Git - rustc.git/blame - src/compiler-rt/lib/lsan/lsan_common_linux.cc
New upstream version 1.12.0+dfsg1
[rustc.git] / src / compiler-rt / lib / lsan / lsan_common_linux.cc
CommitLineData
1a4d82fc
JJ
1//=-- lsan_common_linux.cc ------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of LeakSanitizer.
11// Implementation of common leak checking functionality. Linux-specific code.
12//
13//===----------------------------------------------------------------------===//
14
15#include "sanitizer_common/sanitizer_platform.h"
16#include "lsan_common.h"
17
18#if CAN_SANITIZE_LEAKS && SANITIZER_LINUX
19#include <link.h>
20
21#include "sanitizer_common/sanitizer_common.h"
22#include "sanitizer_common/sanitizer_flags.h"
23#include "sanitizer_common/sanitizer_linux.h"
24#include "sanitizer_common/sanitizer_stackdepot.h"
25
26namespace __lsan {
27
28static const char kLinkerName[] = "ld";
5bcae85e
SL
29
30static char linker_placeholder[sizeof(LoadedModule)] ALIGNED(64);
92a42be0 31static LoadedModule *linker = nullptr;
1a4d82fc
JJ
32
33static bool IsLinker(const char* full_name) {
34 return LibraryNameIs(full_name, kLinkerName);
35}
36
37void InitializePlatformSpecificModules() {
5bcae85e
SL
38 ListOfModules modules;
39 modules.init();
40 for (LoadedModule &module : modules) {
41 if (!IsLinker(module.full_name())) continue;
42 if (linker == nullptr) {
43 linker = reinterpret_cast<LoadedModule *>(linker_placeholder);
44 *linker = module;
45 module = LoadedModule();
46 } else {
47 VReport(1, "LeakSanitizer: Multiple modules match \"%s\". "
48 "TLS will not be handled correctly.\n", kLinkerName);
49 linker->clear();
50 linker = nullptr;
51 return;
52 }
1a4d82fc 53 }
5bcae85e
SL
54 VReport(1, "LeakSanitizer: Dynamic linker not found. "
55 "TLS will not be handled correctly.\n");
1a4d82fc
JJ
56}
57
58static int ProcessGlobalRegionsCallback(struct dl_phdr_info *info, size_t size,
59 void *data) {
60 Frontier *frontier = reinterpret_cast<Frontier *>(data);
61 for (uptr j = 0; j < info->dlpi_phnum; j++) {
62 const ElfW(Phdr) *phdr = &(info->dlpi_phdr[j]);
63 // We're looking for .data and .bss sections, which reside in writeable,
64 // loadable segments.
65 if (!(phdr->p_flags & PF_W) || (phdr->p_type != PT_LOAD) ||
66 (phdr->p_memsz == 0))
67 continue;
68 uptr begin = info->dlpi_addr + phdr->p_vaddr;
69 uptr end = begin + phdr->p_memsz;
70 uptr allocator_begin = 0, allocator_end = 0;
71 GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
72 if (begin <= allocator_begin && allocator_begin < end) {
73 CHECK_LE(allocator_begin, allocator_end);
74 CHECK_LT(allocator_end, end);
75 if (begin < allocator_begin)
76 ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
77 kReachable);
78 if (allocator_end < end)
79 ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL",
80 kReachable);
81 } else {
82 ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
83 }
84 }
85 return 0;
86}
87
88// Scans global variables for heap pointers.
89void ProcessGlobalRegions(Frontier *frontier) {
90 if (!flags()->use_globals) return;
1a4d82fc
JJ
91 dl_iterate_phdr(ProcessGlobalRegionsCallback, frontier);
92}
93
94static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
95 CHECK(stack_id);
92a42be0 96 StackTrace stack = map->Get(stack_id);
1a4d82fc 97 // The top frame is our malloc/calloc/etc. The next frame is the caller.
92a42be0
SL
98 if (stack.size >= 2)
99 return stack.trace[1];
1a4d82fc
JJ
100 return 0;
101}
102
103struct ProcessPlatformAllocParam {
104 Frontier *frontier;
105 StackDepotReverseMap *stack_depot_reverse_map;
5bcae85e 106 bool skip_linker_allocations;
1a4d82fc
JJ
107};
108
109// ForEachChunk callback. Identifies unreachable chunks which must be treated as
110// reachable. Marks them as reachable and adds them to the frontier.
111static void ProcessPlatformSpecificAllocationsCb(uptr chunk, void *arg) {
112 CHECK(arg);
113 ProcessPlatformAllocParam *param =
114 reinterpret_cast<ProcessPlatformAllocParam *>(arg);
115 chunk = GetUserBegin(chunk);
116 LsanMetadata m(chunk);
92a42be0 117 if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
1a4d82fc
JJ
118 u32 stack_id = m.stack_trace_id();
119 uptr caller_pc = 0;
120 if (stack_id > 0)
121 caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
122 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
123 // it as reachable, as we can't properly report its allocation stack anyway.
5bcae85e
SL
124 if (caller_pc == 0 || (param->skip_linker_allocations &&
125 linker->containsAddress(caller_pc))) {
1a4d82fc
JJ
126 m.set_tag(kReachable);
127 param->frontier->push_back(chunk);
128 }
129 }
130}
131
132// Handles dynamically allocated TLS blocks by treating all chunks allocated
133// from ld-linux.so as reachable.
134// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
135// They are allocated with a __libc_memalign() call in allocate_and_init()
136// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
137// blocks, but we can make sure they come from our own allocator by intercepting
138// __libc_memalign(). On top of that, there is no easy way to reach them. Their
139// addresses are stored in a dynamically allocated array (the DTV) which is
140// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
141// being reachable from the static TLS, and the dynamic TLS being reachable from
142// the DTV. This is because the initial DTV is allocated before our interception
143// mechanism kicks in, and thus we don't recognize it as allocated memory. We
144// can't special-case it either, since we don't know its size.
145// Our solution is to include in the root set all allocations made from
146// ld-linux.so (which is where allocate_and_init() is implemented). This is
147// guaranteed to include all dynamic TLS blocks (and possibly other allocations
148// which we don't care about).
149void ProcessPlatformSpecificAllocations(Frontier *frontier) {
1a4d82fc 150 StackDepotReverseMap stack_depot_reverse_map;
5bcae85e
SL
151 ProcessPlatformAllocParam arg;
152 arg.frontier = frontier;
153 arg.stack_depot_reverse_map = &stack_depot_reverse_map;
154 arg.skip_linker_allocations =
155 flags()->use_tls && flags()->use_ld_allocations && linker != nullptr;
1a4d82fc
JJ
156 ForEachChunk(ProcessPlatformSpecificAllocationsCb, &arg);
157}
158
92a42be0
SL
159struct DoStopTheWorldParam {
160 StopTheWorldCallback callback;
161 void *argument;
162};
163
164static int DoStopTheWorldCallback(struct dl_phdr_info *info, size_t size,
165 void *data) {
166 DoStopTheWorldParam *param = reinterpret_cast<DoStopTheWorldParam *>(data);
167 StopTheWorld(param->callback, param->argument);
168 return 1;
169}
170
171// LSan calls dl_iterate_phdr() from the tracer task. This may deadlock: if one
172// of the threads is frozen while holding the libdl lock, the tracer will hang
173// in dl_iterate_phdr() forever.
174// Luckily, (a) the lock is reentrant and (b) libc can't distinguish between the
175// tracer task and the thread that spawned it. Thus, if we run the tracer task
176// while holding the libdl lock in the parent thread, we can safely reenter it
177// in the tracer. The solution is to run stoptheworld from a dl_iterate_phdr()
178// callback in the parent thread.
179void DoStopTheWorld(StopTheWorldCallback callback, void *argument) {
180 DoStopTheWorldParam param = {callback, argument};
181 dl_iterate_phdr(DoStopTheWorldCallback, &param);
182}
183
184} // namespace __lsan
185
186#endif // CAN_SANITIZE_LEAKS && SANITIZER_LINUX