]> git.proxmox.com Git - rustc.git/blame - src/compiler-rt/lib/sanitizer_common/sanitizer_allocator.h
New upstream version 1.12.0+dfsg1
[rustc.git] / src / compiler-rt / lib / sanitizer_common / sanitizer_allocator.h
CommitLineData
1a4d82fc
JJ
1//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SANITIZER_ALLOCATOR_H
15#define SANITIZER_ALLOCATOR_H
16
17#include "sanitizer_internal_defs.h"
18#include "sanitizer_common.h"
19#include "sanitizer_libc.h"
20#include "sanitizer_list.h"
21#include "sanitizer_mutex.h"
22#include "sanitizer_lfstack.h"
23
24namespace __sanitizer {
25
92a42be0
SL
26// Prints error message and kills the program.
27void NORETURN ReportAllocatorCannotReturnNull();
1a4d82fc
JJ
28
29// SizeClassMap maps allocation sizes into size classes and back.
30// Class 0 corresponds to size 0.
31// Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
32// Next 4 classes: 256 + i * 64 (i = 1 to 4).
33// Next 4 classes: 512 + i * 128 (i = 1 to 4).
34// ...
35// Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
36// Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
37//
38// This structure of the size class map gives us:
39// - Efficient table-free class-to-size and size-to-class functions.
40// - Difference between two consequent size classes is betweed 14% and 25%
41//
42// This class also gives a hint to a thread-caching allocator about the amount
43// of chunks that need to be cached per-thread:
44// - kMaxNumCached is the maximal number of chunks per size class.
45// - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
46//
47// Part of output of SizeClassMap::Print():
48// c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
49// c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
50// c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
51// c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
52// c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
53// c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
54// c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
55// c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
56//
57// c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
58// c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
59// c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
60// c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
61// c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
62// c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
63// c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
64// c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
65//
66// c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
67// c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
68// c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
69// c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
70//
71// c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
72// c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
73// c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
74// c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
75//
76// c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
77// c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
78// c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
79// c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
80//
81// ...
82//
83// c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
84// c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
85// c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
86// c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
87//
88// c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
89
90template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
91class SizeClassMap {
92 static const uptr kMinSizeLog = 4;
93 static const uptr kMidSizeLog = kMinSizeLog + 4;
94 static const uptr kMinSize = 1 << kMinSizeLog;
95 static const uptr kMidSize = 1 << kMidSizeLog;
96 static const uptr kMidClass = kMidSize / kMinSize;
97 static const uptr S = 2;
98 static const uptr M = (1 << S) - 1;
99
100 public:
101 static const uptr kMaxNumCached = kMaxNumCachedT;
102 // We transfer chunks between central and thread-local free lists in batches.
103 // For small size classes we allocate batches separately.
104 // For large size classes we use one of the chunks to store the batch.
105 struct TransferBatch {
106 TransferBatch *next;
107 uptr count;
108 void *batch[kMaxNumCached];
109 };
110
111 static const uptr kMaxSize = 1UL << kMaxSizeLog;
112 static const uptr kNumClasses =
113 kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
114 COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
115 static const uptr kNumClassesRounded =
116 kNumClasses == 32 ? 32 :
117 kNumClasses <= 64 ? 64 :
118 kNumClasses <= 128 ? 128 : 256;
119
120 static uptr Size(uptr class_id) {
121 if (class_id <= kMidClass)
122 return kMinSize * class_id;
123 class_id -= kMidClass;
124 uptr t = kMidSize << (class_id >> S);
125 return t + (t >> S) * (class_id & M);
126 }
127
128 static uptr ClassID(uptr size) {
129 if (size <= kMidSize)
130 return (size + kMinSize - 1) >> kMinSizeLog;
131 if (size > kMaxSize) return 0;
132 uptr l = MostSignificantSetBitIndex(size);
133 uptr hbits = (size >> (l - S)) & M;
134 uptr lbits = size & ((1 << (l - S)) - 1);
135 uptr l1 = l - kMidSizeLog;
136 return kMidClass + (l1 << S) + hbits + (lbits > 0);
137 }
138
139 static uptr MaxCached(uptr class_id) {
140 if (class_id == 0) return 0;
141 uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
142 return Max<uptr>(1, Min(kMaxNumCached, n));
143 }
144
145 static void Print() {
146 uptr prev_s = 0;
147 uptr total_cached = 0;
148 for (uptr i = 0; i < kNumClasses; i++) {
149 uptr s = Size(i);
150 if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
151 Printf("\n");
152 uptr d = s - prev_s;
153 uptr p = prev_s ? (d * 100 / prev_s) : 0;
154 uptr l = s ? MostSignificantSetBitIndex(s) : 0;
155 uptr cached = MaxCached(i) * s;
156 Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
157 "cached: %zd %zd; id %zd\n",
158 i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
159 total_cached += cached;
160 prev_s = s;
161 }
162 Printf("Total cached: %zd\n", total_cached);
163 }
164
165 static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
166 return Size(class_id) < sizeof(TransferBatch) -
167 sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
168 }
169
170 static void Validate() {
171 for (uptr c = 1; c < kNumClasses; c++) {
172 // Printf("Validate: c%zd\n", c);
173 uptr s = Size(c);
174 CHECK_NE(s, 0U);
175 CHECK_EQ(ClassID(s), c);
176 if (c != kNumClasses - 1)
177 CHECK_EQ(ClassID(s + 1), c + 1);
178 CHECK_EQ(ClassID(s - 1), c);
179 if (c)
180 CHECK_GT(Size(c), Size(c-1));
181 }
182 CHECK_EQ(ClassID(kMaxSize + 1), 0);
183
184 for (uptr s = 1; s <= kMaxSize; s++) {
185 uptr c = ClassID(s);
186 // Printf("s%zd => c%zd\n", s, c);
187 CHECK_LT(c, kNumClasses);
188 CHECK_GE(Size(c), s);
189 if (c > 0)
190 CHECK_LT(Size(c-1), s);
191 }
192 }
193};
194
195typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
196typedef SizeClassMap<17, 64, 14> CompactSizeClassMap;
197template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
198
199// Memory allocator statistics
200enum AllocatorStat {
92a42be0
SL
201 AllocatorStatAllocated,
202 AllocatorStatMapped,
1a4d82fc
JJ
203 AllocatorStatCount
204};
205
92a42be0 206typedef uptr AllocatorStatCounters[AllocatorStatCount];
1a4d82fc
JJ
207
208// Per-thread stats, live in per-thread cache.
209class AllocatorStats {
210 public:
211 void Init() {
212 internal_memset(this, 0, sizeof(*this));
213 }
92a42be0 214 void InitLinkerInitialized() {}
1a4d82fc 215
92a42be0 216 void Add(AllocatorStat i, uptr v) {
1a4d82fc
JJ
217 v += atomic_load(&stats_[i], memory_order_relaxed);
218 atomic_store(&stats_[i], v, memory_order_relaxed);
219 }
220
92a42be0
SL
221 void Sub(AllocatorStat i, uptr v) {
222 v = atomic_load(&stats_[i], memory_order_relaxed) - v;
1a4d82fc
JJ
223 atomic_store(&stats_[i], v, memory_order_relaxed);
224 }
225
92a42be0
SL
226 void Set(AllocatorStat i, uptr v) {
227 atomic_store(&stats_[i], v, memory_order_relaxed);
228 }
229
230 uptr Get(AllocatorStat i) const {
1a4d82fc
JJ
231 return atomic_load(&stats_[i], memory_order_relaxed);
232 }
233
234 private:
235 friend class AllocatorGlobalStats;
236 AllocatorStats *next_;
237 AllocatorStats *prev_;
92a42be0 238 atomic_uintptr_t stats_[AllocatorStatCount];
1a4d82fc
JJ
239};
240
241// Global stats, used for aggregation and querying.
242class AllocatorGlobalStats : public AllocatorStats {
243 public:
92a42be0 244 void InitLinkerInitialized() {
1a4d82fc
JJ
245 next_ = this;
246 prev_ = this;
247 }
92a42be0
SL
248 void Init() {
249 internal_memset(this, 0, sizeof(*this));
250 InitLinkerInitialized();
251 }
1a4d82fc
JJ
252
253 void Register(AllocatorStats *s) {
254 SpinMutexLock l(&mu_);
255 s->next_ = next_;
256 s->prev_ = this;
257 next_->prev_ = s;
258 next_ = s;
259 }
260
261 void Unregister(AllocatorStats *s) {
262 SpinMutexLock l(&mu_);
263 s->prev_->next_ = s->next_;
264 s->next_->prev_ = s->prev_;
265 for (int i = 0; i < AllocatorStatCount; i++)
266 Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
267 }
268
269 void Get(AllocatorStatCounters s) const {
92a42be0 270 internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
1a4d82fc
JJ
271 SpinMutexLock l(&mu_);
272 const AllocatorStats *stats = this;
273 for (;;) {
274 for (int i = 0; i < AllocatorStatCount; i++)
275 s[i] += stats->Get(AllocatorStat(i));
276 stats = stats->next_;
277 if (stats == this)
278 break;
279 }
92a42be0
SL
280 // All stats must be non-negative.
281 for (int i = 0; i < AllocatorStatCount; i++)
282 s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
1a4d82fc
JJ
283 }
284
285 private:
286 mutable SpinMutex mu_;
287};
288
289// Allocators call these callbacks on mmap/munmap.
290struct NoOpMapUnmapCallback {
291 void OnMap(uptr p, uptr size) const { }
292 void OnUnmap(uptr p, uptr size) const { }
293};
294
295// Callback type for iterating over chunks.
296typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
297
298// SizeClassAllocator64 -- allocator for 64-bit address space.
299//
5bcae85e
SL
300// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
301// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
302// Otherwise SpaceBeg=kSpaceBeg (fixed address).
303// kSpaceSize is a power of two.
1a4d82fc
JJ
304// At the beginning the entire space is mprotect-ed, then small parts of it
305// are mapped on demand.
306//
307// Region: a part of Space dedicated to a single size class.
308// There are kNumClasses Regions of equal size.
309//
310// UserChunk: a piece of memory returned to user.
311// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
312//
313// A Region looks like this:
314// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
315template <const uptr kSpaceBeg, const uptr kSpaceSize,
316 const uptr kMetadataSize, class SizeClassMap,
317 class MapUnmapCallback = NoOpMapUnmapCallback>
318class SizeClassAllocator64 {
319 public:
320 typedef typename SizeClassMap::TransferBatch Batch;
321 typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
322 SizeClassMap, MapUnmapCallback> ThisT;
323 typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
324
325 void Init() {
5bcae85e
SL
326 uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
327 if (kUsingConstantSpaceBeg) {
328 CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
329 MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
330 } else {
331 NonConstSpaceBeg =
332 reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
333 CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
334 }
335 MapWithCallback(SpaceEnd(), AdditionalSize());
1a4d82fc
JJ
336 }
337
338 void MapWithCallback(uptr beg, uptr size) {
339 CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
340 MapUnmapCallback().OnMap(beg, size);
341 }
342
343 void UnmapWithCallback(uptr beg, uptr size) {
344 MapUnmapCallback().OnUnmap(beg, size);
345 UnmapOrDie(reinterpret_cast<void *>(beg), size);
346 }
347
348 static bool CanAllocate(uptr size, uptr alignment) {
349 return size <= SizeClassMap::kMaxSize &&
350 alignment <= SizeClassMap::kMaxSize;
351 }
352
353 NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
354 uptr class_id) {
355 CHECK_LT(class_id, kNumClasses);
356 RegionInfo *region = GetRegionInfo(class_id);
357 Batch *b = region->free_list.Pop();
92a42be0 358 if (!b)
1a4d82fc
JJ
359 b = PopulateFreeList(stat, c, class_id, region);
360 region->n_allocated += b->count;
361 return b;
362 }
363
364 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
365 RegionInfo *region = GetRegionInfo(class_id);
366 CHECK_GT(b->count, 0);
367 region->free_list.Push(b);
368 region->n_freed += b->count;
369 }
370
5bcae85e
SL
371 bool PointerIsMine(const void *p) {
372 uptr P = reinterpret_cast<uptr>(p);
373 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
374 return P / kSpaceSize == kSpaceBeg / kSpaceSize;
375 return P >= SpaceBeg() && P < SpaceEnd();
1a4d82fc
JJ
376 }
377
5bcae85e
SL
378 uptr GetSizeClass(const void *p) {
379 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
380 return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
381 return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
382 kNumClassesRounded;
1a4d82fc
JJ
383 }
384
385 void *GetBlockBegin(const void *p) {
386 uptr class_id = GetSizeClass(p);
387 uptr size = SizeClassMap::Size(class_id);
92a42be0 388 if (!size) return nullptr;
1a4d82fc
JJ
389 uptr chunk_idx = GetChunkIdx((uptr)p, size);
390 uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
391 uptr beg = chunk_idx * size;
392 uptr next_beg = beg + size;
92a42be0 393 if (class_id >= kNumClasses) return nullptr;
1a4d82fc
JJ
394 RegionInfo *region = GetRegionInfo(class_id);
395 if (region->mapped_user >= next_beg)
396 return reinterpret_cast<void*>(reg_beg + beg);
92a42be0 397 return nullptr;
1a4d82fc
JJ
398 }
399
5bcae85e 400 uptr GetActuallyAllocatedSize(void *p) {
1a4d82fc
JJ
401 CHECK(PointerIsMine(p));
402 return SizeClassMap::Size(GetSizeClass(p));
403 }
404
405 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
406
407 void *GetMetaData(const void *p) {
408 uptr class_id = GetSizeClass(p);
409 uptr size = SizeClassMap::Size(class_id);
410 uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
5bcae85e
SL
411 return reinterpret_cast<void *>(SpaceBeg() +
412 (kRegionSize * (class_id + 1)) -
413 (1 + chunk_idx) * kMetadataSize);
1a4d82fc
JJ
414 }
415
416 uptr TotalMemoryUsed() {
417 uptr res = 0;
418 for (uptr i = 0; i < kNumClasses; i++)
419 res += GetRegionInfo(i)->allocated_user;
420 return res;
421 }
422
423 // Test-only.
424 void TestOnlyUnmap() {
5bcae85e 425 UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
1a4d82fc
JJ
426 }
427
428 void PrintStats() {
429 uptr total_mapped = 0;
430 uptr n_allocated = 0;
431 uptr n_freed = 0;
432 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
433 RegionInfo *region = GetRegionInfo(class_id);
434 total_mapped += region->mapped_user;
435 n_allocated += region->n_allocated;
436 n_freed += region->n_freed;
437 }
438 Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
439 "remains %zd\n",
440 total_mapped >> 20, n_allocated, n_allocated - n_freed);
441 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
442 RegionInfo *region = GetRegionInfo(class_id);
443 if (region->mapped_user == 0) continue;
444 Printf(" %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
445 class_id,
446 SizeClassMap::Size(class_id),
447 region->mapped_user >> 10,
448 region->n_allocated,
449 region->n_allocated - region->n_freed);
450 }
451 }
452
453 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
454 // introspection API.
455 void ForceLock() {
456 for (uptr i = 0; i < kNumClasses; i++) {
457 GetRegionInfo(i)->mutex.Lock();
458 }
459 }
460
461 void ForceUnlock() {
462 for (int i = (int)kNumClasses - 1; i >= 0; i--) {
463 GetRegionInfo(i)->mutex.Unlock();
464 }
465 }
466
467 // Iterate over all existing chunks.
468 // The allocator must be locked when calling this function.
469 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
470 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
471 RegionInfo *region = GetRegionInfo(class_id);
472 uptr chunk_size = SizeClassMap::Size(class_id);
5bcae85e 473 uptr region_beg = SpaceBeg() + class_id * kRegionSize;
1a4d82fc
JJ
474 for (uptr chunk = region_beg;
475 chunk < region_beg + region->allocated_user;
476 chunk += chunk_size) {
477 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
478 callback(chunk, arg);
479 }
480 }
481 }
482
92a42be0
SL
483 static uptr AdditionalSize() {
484 return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
485 GetPageSizeCached());
486 }
487
1a4d82fc
JJ
488 typedef SizeClassMap SizeClassMapT;
489 static const uptr kNumClasses = SizeClassMap::kNumClasses;
490 static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
491
492 private:
493 static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
5bcae85e
SL
494
495 static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
496 uptr NonConstSpaceBeg;
497 uptr SpaceBeg() const {
498 return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
499 }
500 uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
1a4d82fc
JJ
501 // kRegionSize must be >= 2^32.
502 COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
503 // Populate the free list with at most this number of bytes at once
504 // or with one element if its size is greater.
505 static const uptr kPopulateSize = 1 << 14;
506 // Call mmap for user memory with at least this size.
507 static const uptr kUserMapSize = 1 << 16;
508 // Call mmap for metadata memory with at least this size.
509 static const uptr kMetaMapSize = 1 << 16;
510
511 struct RegionInfo {
512 BlockingMutex mutex;
513 LFStack<Batch> free_list;
514 uptr allocated_user; // Bytes allocated for user memory.
515 uptr allocated_meta; // Bytes allocated for metadata.
516 uptr mapped_user; // Bytes mapped for user memory.
517 uptr mapped_meta; // Bytes mapped for metadata.
518 uptr n_allocated, n_freed; // Just stats.
519 };
520 COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
521
1a4d82fc
JJ
522 RegionInfo *GetRegionInfo(uptr class_id) {
523 CHECK_LT(class_id, kNumClasses);
5bcae85e
SL
524 RegionInfo *regions =
525 reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
1a4d82fc
JJ
526 return &regions[class_id];
527 }
528
529 static uptr GetChunkIdx(uptr chunk, uptr size) {
530 uptr offset = chunk % kRegionSize;
531 // Here we divide by a non-constant. This is costly.
532 // size always fits into 32-bits. If the offset fits too, use 32-bit div.
533 if (offset >> (SANITIZER_WORDSIZE / 2))
534 return offset / size;
535 return (u32)offset / (u32)size;
536 }
537
538 NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
539 uptr class_id, RegionInfo *region) {
540 BlockingMutexLock l(&region->mutex);
541 Batch *b = region->free_list.Pop();
542 if (b)
543 return b;
544 uptr size = SizeClassMap::Size(class_id);
545 uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
546 uptr beg_idx = region->allocated_user;
547 uptr end_idx = beg_idx + count * size;
5bcae85e 548 uptr region_beg = SpaceBeg() + kRegionSize * class_id;
1a4d82fc
JJ
549 if (end_idx + size > region->mapped_user) {
550 // Do the mmap for the user memory.
551 uptr map_size = kUserMapSize;
552 while (end_idx + size > region->mapped_user + map_size)
553 map_size += kUserMapSize;
554 CHECK_GE(region->mapped_user + map_size, end_idx);
555 MapWithCallback(region_beg + region->mapped_user, map_size);
92a42be0 556 stat->Add(AllocatorStatMapped, map_size);
1a4d82fc
JJ
557 region->mapped_user += map_size;
558 }
559 uptr total_count = (region->mapped_user - beg_idx - size)
560 / size / count * count;
561 region->allocated_meta += total_count * kMetadataSize;
562 if (region->allocated_meta > region->mapped_meta) {
563 uptr map_size = kMetaMapSize;
564 while (region->allocated_meta > region->mapped_meta + map_size)
565 map_size += kMetaMapSize;
566 // Do the mmap for the metadata.
567 CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
568 MapWithCallback(region_beg + kRegionSize -
569 region->mapped_meta - map_size, map_size);
570 region->mapped_meta += map_size;
571 }
572 CHECK_LE(region->allocated_meta, region->mapped_meta);
573 if (region->mapped_user + region->mapped_meta > kRegionSize) {
574 Printf("%s: Out of memory. Dying. ", SanitizerToolName);
575 Printf("The process has exhausted %zuMB for size class %zu.\n",
576 kRegionSize / 1024 / 1024, size);
577 Die();
578 }
579 for (;;) {
580 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
581 b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
582 else
583 b = (Batch*)(region_beg + beg_idx);
584 b->count = count;
585 for (uptr i = 0; i < count; i++)
586 b->batch[i] = (void*)(region_beg + beg_idx + i * size);
587 region->allocated_user += count * size;
588 CHECK_LE(region->allocated_user, region->mapped_user);
589 beg_idx += count * size;
590 if (beg_idx + count * size + size > region->mapped_user)
591 break;
592 CHECK_GT(b->count, 0);
593 region->free_list.Push(b);
594 }
595 return b;
596 }
597};
598
599// Maps integers in rage [0, kSize) to u8 values.
600template<u64 kSize>
601class FlatByteMap {
602 public:
603 void TestOnlyInit() {
604 internal_memset(map_, 0, sizeof(map_));
605 }
606
607 void set(uptr idx, u8 val) {
608 CHECK_LT(idx, kSize);
609 CHECK_EQ(0U, map_[idx]);
610 map_[idx] = val;
611 }
612 u8 operator[] (uptr idx) {
613 CHECK_LT(idx, kSize);
614 // FIXME: CHECK may be too expensive here.
615 return map_[idx];
616 }
617 private:
618 u8 map_[kSize];
619};
620
621// TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
622// It is implemented as a two-dimensional array: array of kSize1 pointers
623// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
624// Each value is initially zero and can be set to something else only once.
625// Setting and getting values from multiple threads is safe w/o extra locking.
626template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
627class TwoLevelByteMap {
628 public:
629 void TestOnlyInit() {
630 internal_memset(map1_, 0, sizeof(map1_));
631 mu_.Init();
632 }
92a42be0 633
1a4d82fc
JJ
634 void TestOnlyUnmap() {
635 for (uptr i = 0; i < kSize1; i++) {
636 u8 *p = Get(i);
637 if (!p) continue;
638 MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
639 UnmapOrDie(p, kSize2);
640 }
641 }
642
643 uptr size() const { return kSize1 * kSize2; }
644 uptr size1() const { return kSize1; }
645 uptr size2() const { return kSize2; }
646
647 void set(uptr idx, u8 val) {
648 CHECK_LT(idx, kSize1 * kSize2);
649 u8 *map2 = GetOrCreate(idx / kSize2);
650 CHECK_EQ(0U, map2[idx % kSize2]);
651 map2[idx % kSize2] = val;
652 }
653
654 u8 operator[] (uptr idx) const {
655 CHECK_LT(idx, kSize1 * kSize2);
656 u8 *map2 = Get(idx / kSize2);
657 if (!map2) return 0;
658 return map2[idx % kSize2];
659 }
660
661 private:
662 u8 *Get(uptr idx) const {
663 CHECK_LT(idx, kSize1);
664 return reinterpret_cast<u8 *>(
665 atomic_load(&map1_[idx], memory_order_acquire));
666 }
667
668 u8 *GetOrCreate(uptr idx) {
669 u8 *res = Get(idx);
670 if (!res) {
671 SpinMutexLock l(&mu_);
672 if (!(res = Get(idx))) {
673 res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
674 MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
675 atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
676 memory_order_release);
677 }
678 }
679 return res;
680 }
681
682 atomic_uintptr_t map1_[kSize1];
683 StaticSpinMutex mu_;
684};
685
686// SizeClassAllocator32 -- allocator for 32-bit address space.
687// This allocator can theoretically be used on 64-bit arch, but there it is less
688// efficient than SizeClassAllocator64.
689//
690// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
691// be returned by MmapOrDie().
692//
693// Region:
694// a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
695// Since the regions are aligned by kRegionSize, there are exactly
696// kNumPossibleRegions possible regions in the address space and so we keep
697// a ByteMap possible_regions to store the size classes of each Region.
698// 0 size class means the region is not used by the allocator.
699//
700// One Region is used to allocate chunks of a single size class.
701// A Region looks like this:
702// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
703//
704// In order to avoid false sharing the objects of this class should be
705// chache-line aligned.
706template <const uptr kSpaceBeg, const u64 kSpaceSize,
707 const uptr kMetadataSize, class SizeClassMap,
708 const uptr kRegionSizeLog,
709 class ByteMap,
710 class MapUnmapCallback = NoOpMapUnmapCallback>
711class SizeClassAllocator32 {
712 public:
713 typedef typename SizeClassMap::TransferBatch Batch;
714 typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
715 SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
716 typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
717
718 void Init() {
719 possible_regions.TestOnlyInit();
720 internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
721 }
722
723 void *MapWithCallback(uptr size) {
724 size = RoundUpTo(size, GetPageSizeCached());
725 void *res = MmapOrDie(size, "SizeClassAllocator32");
726 MapUnmapCallback().OnMap((uptr)res, size);
727 return res;
728 }
729
730 void UnmapWithCallback(uptr beg, uptr size) {
731 MapUnmapCallback().OnUnmap(beg, size);
732 UnmapOrDie(reinterpret_cast<void *>(beg), size);
733 }
734
735 static bool CanAllocate(uptr size, uptr alignment) {
736 return size <= SizeClassMap::kMaxSize &&
737 alignment <= SizeClassMap::kMaxSize;
738 }
739
740 void *GetMetaData(const void *p) {
741 CHECK(PointerIsMine(p));
742 uptr mem = reinterpret_cast<uptr>(p);
743 uptr beg = ComputeRegionBeg(mem);
744 uptr size = SizeClassMap::Size(GetSizeClass(p));
745 u32 offset = mem - beg;
746 uptr n = offset / (u32)size; // 32-bit division
747 uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
748 return reinterpret_cast<void*>(meta);
749 }
750
751 NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
752 uptr class_id) {
753 CHECK_LT(class_id, kNumClasses);
754 SizeClassInfo *sci = GetSizeClassInfo(class_id);
755 SpinMutexLock l(&sci->mutex);
756 if (sci->free_list.empty())
757 PopulateFreeList(stat, c, sci, class_id);
758 CHECK(!sci->free_list.empty());
759 Batch *b = sci->free_list.front();
760 sci->free_list.pop_front();
761 return b;
762 }
763
764 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
765 CHECK_LT(class_id, kNumClasses);
766 SizeClassInfo *sci = GetSizeClassInfo(class_id);
767 SpinMutexLock l(&sci->mutex);
768 CHECK_GT(b->count, 0);
769 sci->free_list.push_front(b);
770 }
771
772 bool PointerIsMine(const void *p) {
5bcae85e
SL
773 uptr mem = reinterpret_cast<uptr>(p);
774 if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
775 return false;
1a4d82fc
JJ
776 return GetSizeClass(p) != 0;
777 }
778
779 uptr GetSizeClass(const void *p) {
780 return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
781 }
782
783 void *GetBlockBegin(const void *p) {
784 CHECK(PointerIsMine(p));
785 uptr mem = reinterpret_cast<uptr>(p);
786 uptr beg = ComputeRegionBeg(mem);
787 uptr size = SizeClassMap::Size(GetSizeClass(p));
788 u32 offset = mem - beg;
789 u32 n = offset / (u32)size; // 32-bit division
790 uptr res = beg + (n * (u32)size);
791 return reinterpret_cast<void*>(res);
792 }
793
794 uptr GetActuallyAllocatedSize(void *p) {
795 CHECK(PointerIsMine(p));
796 return SizeClassMap::Size(GetSizeClass(p));
797 }
798
799 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
800
801 uptr TotalMemoryUsed() {
802 // No need to lock here.
803 uptr res = 0;
804 for (uptr i = 0; i < kNumPossibleRegions; i++)
805 if (possible_regions[i])
806 res += kRegionSize;
807 return res;
808 }
809
810 void TestOnlyUnmap() {
811 for (uptr i = 0; i < kNumPossibleRegions; i++)
812 if (possible_regions[i])
813 UnmapWithCallback((i * kRegionSize), kRegionSize);
814 }
815
816 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
817 // introspection API.
818 void ForceLock() {
819 for (uptr i = 0; i < kNumClasses; i++) {
820 GetSizeClassInfo(i)->mutex.Lock();
821 }
822 }
823
824 void ForceUnlock() {
825 for (int i = kNumClasses - 1; i >= 0; i--) {
826 GetSizeClassInfo(i)->mutex.Unlock();
827 }
828 }
829
830 // Iterate over all existing chunks.
831 // The allocator must be locked when calling this function.
832 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
833 for (uptr region = 0; region < kNumPossibleRegions; region++)
834 if (possible_regions[region]) {
835 uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
836 uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
837 uptr region_beg = region * kRegionSize;
838 for (uptr chunk = region_beg;
839 chunk < region_beg + max_chunks_in_region * chunk_size;
840 chunk += chunk_size) {
841 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
842 callback(chunk, arg);
843 }
844 }
845 }
846
847 void PrintStats() {
848 }
849
92a42be0
SL
850 static uptr AdditionalSize() {
851 return 0;
852 }
853
1a4d82fc
JJ
854 typedef SizeClassMap SizeClassMapT;
855 static const uptr kNumClasses = SizeClassMap::kNumClasses;
856
857 private:
858 static const uptr kRegionSize = 1 << kRegionSizeLog;
859 static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
860
861 struct SizeClassInfo {
862 SpinMutex mutex;
863 IntrusiveList<Batch> free_list;
864 char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
865 };
866 COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
867
868 uptr ComputeRegionId(uptr mem) {
869 uptr res = mem >> kRegionSizeLog;
870 CHECK_LT(res, kNumPossibleRegions);
871 return res;
872 }
873
874 uptr ComputeRegionBeg(uptr mem) {
875 return mem & ~(kRegionSize - 1);
876 }
877
878 uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
879 CHECK_LT(class_id, kNumClasses);
880 uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
881 "SizeClassAllocator32"));
882 MapUnmapCallback().OnMap(res, kRegionSize);
92a42be0 883 stat->Add(AllocatorStatMapped, kRegionSize);
1a4d82fc
JJ
884 CHECK_EQ(0U, (res & (kRegionSize - 1)));
885 possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
886 return res;
887 }
888
889 SizeClassInfo *GetSizeClassInfo(uptr class_id) {
890 CHECK_LT(class_id, kNumClasses);
891 return &size_class_info_array[class_id];
892 }
893
894 void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
895 SizeClassInfo *sci, uptr class_id) {
896 uptr size = SizeClassMap::Size(class_id);
897 uptr reg = AllocateRegion(stat, class_id);
898 uptr n_chunks = kRegionSize / (size + kMetadataSize);
899 uptr max_count = SizeClassMap::MaxCached(class_id);
92a42be0 900 Batch *b = nullptr;
1a4d82fc 901 for (uptr i = reg; i < reg + n_chunks * size; i += size) {
92a42be0 902 if (!b) {
1a4d82fc
JJ
903 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
904 b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
905 else
906 b = (Batch*)i;
907 b->count = 0;
908 }
909 b->batch[b->count++] = (void*)i;
910 if (b->count == max_count) {
911 CHECK_GT(b->count, 0);
912 sci->free_list.push_back(b);
92a42be0 913 b = nullptr;
1a4d82fc
JJ
914 }
915 }
916 if (b) {
917 CHECK_GT(b->count, 0);
918 sci->free_list.push_back(b);
919 }
920 }
921
922 ByteMap possible_regions;
923 SizeClassInfo size_class_info_array[kNumClasses];
924};
925
926// Objects of this type should be used as local caches for SizeClassAllocator64
927// or SizeClassAllocator32. Since the typical use of this class is to have one
928// object per thread in TLS, is has to be POD.
929template<class SizeClassAllocator>
930struct SizeClassAllocatorLocalCache {
931 typedef SizeClassAllocator Allocator;
932 static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
933
934 void Init(AllocatorGlobalStats *s) {
935 stats_.Init();
936 if (s)
937 s->Register(&stats_);
938 }
939
940 void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
941 Drain(allocator);
942 if (s)
943 s->Unregister(&stats_);
944 }
945
946 void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
947 CHECK_NE(class_id, 0UL);
948 CHECK_LT(class_id, kNumClasses);
92a42be0 949 stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
1a4d82fc
JJ
950 PerClass *c = &per_class_[class_id];
951 if (UNLIKELY(c->count == 0))
952 Refill(allocator, class_id);
953 void *res = c->batch[--c->count];
954 PREFETCH(c->batch[c->count - 1]);
955 return res;
956 }
957
958 void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
959 CHECK_NE(class_id, 0UL);
960 CHECK_LT(class_id, kNumClasses);
961 // If the first allocator call on a new thread is a deallocation, then
962 // max_count will be zero, leading to check failure.
963 InitCache();
92a42be0 964 stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
1a4d82fc
JJ
965 PerClass *c = &per_class_[class_id];
966 CHECK_NE(c->max_count, 0UL);
967 if (UNLIKELY(c->count == c->max_count))
968 Drain(allocator, class_id);
969 c->batch[c->count++] = p;
970 }
971
972 void Drain(SizeClassAllocator *allocator) {
973 for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
974 PerClass *c = &per_class_[class_id];
975 while (c->count > 0)
976 Drain(allocator, class_id);
977 }
978 }
979
980 // private:
981 typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
982 typedef typename SizeClassMap::TransferBatch Batch;
983 struct PerClass {
984 uptr count;
985 uptr max_count;
986 void *batch[2 * SizeClassMap::kMaxNumCached];
987 };
988 PerClass per_class_[kNumClasses];
989 AllocatorStats stats_;
990
991 void InitCache() {
992 if (per_class_[1].max_count)
993 return;
994 for (uptr i = 0; i < kNumClasses; i++) {
995 PerClass *c = &per_class_[i];
996 c->max_count = 2 * SizeClassMap::MaxCached(i);
997 }
998 }
999
1000 NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
1001 InitCache();
1002 PerClass *c = &per_class_[class_id];
1003 Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
1004 CHECK_GT(b->count, 0);
1005 for (uptr i = 0; i < b->count; i++)
1006 c->batch[i] = b->batch[i];
1007 c->count = b->count;
1008 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
1009 Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
1010 }
1011
1012 NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
1013 InitCache();
1014 PerClass *c = &per_class_[class_id];
1015 Batch *b;
1016 if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
1017 b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
1018 else
1019 b = (Batch*)c->batch[0];
1020 uptr cnt = Min(c->max_count / 2, c->count);
1021 for (uptr i = 0; i < cnt; i++) {
1022 b->batch[i] = c->batch[i];
1023 c->batch[i] = c->batch[i + c->max_count / 2];
1024 }
1025 b->count = cnt;
1026 c->count -= cnt;
1027 CHECK_GT(b->count, 0);
1028 allocator->DeallocateBatch(&stats_, class_id, b);
1029 }
1030};
1031
1032// This class can (de)allocate only large chunks of memory using mmap/unmap.
1033// The main purpose of this allocator is to cover large and rare allocation
1034// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
1035template <class MapUnmapCallback = NoOpMapUnmapCallback>
1036class LargeMmapAllocator {
1037 public:
92a42be0 1038 void InitLinkerInitialized(bool may_return_null) {
1a4d82fc 1039 page_size_ = GetPageSizeCached();
92a42be0
SL
1040 atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1041 }
1042
1043 void Init(bool may_return_null) {
1044 internal_memset(this, 0, sizeof(*this));
1045 InitLinkerInitialized(may_return_null);
1a4d82fc
JJ
1046 }
1047
1048 void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
1049 CHECK(IsPowerOfTwo(alignment));
1050 uptr map_size = RoundUpMapSize(size);
1051 if (alignment > page_size_)
1052 map_size += alignment;
92a42be0
SL
1053 // Overflow.
1054 if (map_size < size)
1055 return ReturnNullOrDie();
1a4d82fc
JJ
1056 uptr map_beg = reinterpret_cast<uptr>(
1057 MmapOrDie(map_size, "LargeMmapAllocator"));
92a42be0 1058 CHECK(IsAligned(map_beg, page_size_));
1a4d82fc
JJ
1059 MapUnmapCallback().OnMap(map_beg, map_size);
1060 uptr map_end = map_beg + map_size;
1061 uptr res = map_beg + page_size_;
1062 if (res & (alignment - 1)) // Align.
1063 res += alignment - (res & (alignment - 1));
92a42be0
SL
1064 CHECK(IsAligned(res, alignment));
1065 CHECK(IsAligned(res, page_size_));
1066 CHECK_GE(res + size, map_beg);
1a4d82fc
JJ
1067 CHECK_LE(res + size, map_end);
1068 Header *h = GetHeader(res);
1069 h->size = size;
1070 h->map_beg = map_beg;
1071 h->map_size = map_size;
1072 uptr size_log = MostSignificantSetBitIndex(map_size);
1073 CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
1074 {
1075 SpinMutexLock l(&mutex_);
1076 uptr idx = n_chunks_++;
1077 chunks_sorted_ = false;
1078 CHECK_LT(idx, kMaxNumChunks);
1079 h->chunk_idx = idx;
1080 chunks_[idx] = h;
1081 stats.n_allocs++;
1082 stats.currently_allocated += map_size;
1083 stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
1084 stats.by_size_log[size_log]++;
92a42be0
SL
1085 stat->Add(AllocatorStatAllocated, map_size);
1086 stat->Add(AllocatorStatMapped, map_size);
1a4d82fc
JJ
1087 }
1088 return reinterpret_cast<void*>(res);
1089 }
1090
92a42be0
SL
1091 void *ReturnNullOrDie() {
1092 if (atomic_load(&may_return_null_, memory_order_acquire))
1093 return nullptr;
1094 ReportAllocatorCannotReturnNull();
1095 }
1096
1097 void SetMayReturnNull(bool may_return_null) {
1098 atomic_store(&may_return_null_, may_return_null, memory_order_release);
1099 }
1100
1a4d82fc
JJ
1101 void Deallocate(AllocatorStats *stat, void *p) {
1102 Header *h = GetHeader(p);
1103 {
1104 SpinMutexLock l(&mutex_);
1105 uptr idx = h->chunk_idx;
1106 CHECK_EQ(chunks_[idx], h);
1107 CHECK_LT(idx, n_chunks_);
1108 chunks_[idx] = chunks_[n_chunks_ - 1];
1109 chunks_[idx]->chunk_idx = idx;
1110 n_chunks_--;
1111 chunks_sorted_ = false;
1112 stats.n_frees++;
1113 stats.currently_allocated -= h->map_size;
92a42be0
SL
1114 stat->Sub(AllocatorStatAllocated, h->map_size);
1115 stat->Sub(AllocatorStatMapped, h->map_size);
1a4d82fc
JJ
1116 }
1117 MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
1118 UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
1119 }
1120
1121 uptr TotalMemoryUsed() {
1122 SpinMutexLock l(&mutex_);
1123 uptr res = 0;
1124 for (uptr i = 0; i < n_chunks_; i++) {
1125 Header *h = chunks_[i];
1126 CHECK_EQ(h->chunk_idx, i);
1127 res += RoundUpMapSize(h->size);
1128 }
1129 return res;
1130 }
1131
1132 bool PointerIsMine(const void *p) {
92a42be0 1133 return GetBlockBegin(p) != nullptr;
1a4d82fc
JJ
1134 }
1135
1136 uptr GetActuallyAllocatedSize(void *p) {
1137 return RoundUpTo(GetHeader(p)->size, page_size_);
1138 }
1139
1140 // At least page_size_/2 metadata bytes is available.
1141 void *GetMetaData(const void *p) {
1142 // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1143 if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
1144 Printf("%s: bad pointer %p\n", SanitizerToolName, p);
1145 CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1146 }
1147 return GetHeader(p) + 1;
1148 }
1149
1150 void *GetBlockBegin(const void *ptr) {
1151 uptr p = reinterpret_cast<uptr>(ptr);
1152 SpinMutexLock l(&mutex_);
1153 uptr nearest_chunk = 0;
1154 // Cache-friendly linear search.
1155 for (uptr i = 0; i < n_chunks_; i++) {
1156 uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1157 if (p < ch) continue; // p is at left to this chunk, skip it.
1158 if (p - ch < p - nearest_chunk)
1159 nearest_chunk = ch;
1160 }
1161 if (!nearest_chunk)
92a42be0 1162 return nullptr;
1a4d82fc
JJ
1163 Header *h = reinterpret_cast<Header *>(nearest_chunk);
1164 CHECK_GE(nearest_chunk, h->map_beg);
1165 CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1166 CHECK_LE(nearest_chunk, p);
1167 if (h->map_beg + h->map_size <= p)
92a42be0 1168 return nullptr;
1a4d82fc
JJ
1169 return GetUser(h);
1170 }
1171
1172 // This function does the same as GetBlockBegin, but is much faster.
1173 // Must be called with the allocator locked.
1174 void *GetBlockBeginFastLocked(void *ptr) {
1175 mutex_.CheckLocked();
1176 uptr p = reinterpret_cast<uptr>(ptr);
1177 uptr n = n_chunks_;
92a42be0 1178 if (!n) return nullptr;
1a4d82fc
JJ
1179 if (!chunks_sorted_) {
1180 // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1181 SortArray(reinterpret_cast<uptr*>(chunks_), n);
1182 for (uptr i = 0; i < n; i++)
1183 chunks_[i]->chunk_idx = i;
1184 chunks_sorted_ = true;
1185 min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1186 max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1187 chunks_[n - 1]->map_size;
1188 }
1189 if (p < min_mmap_ || p >= max_mmap_)
92a42be0 1190 return nullptr;
1a4d82fc
JJ
1191 uptr beg = 0, end = n - 1;
1192 // This loop is a log(n) lower_bound. It does not check for the exact match
1193 // to avoid expensive cache-thrashing loads.
1194 while (end - beg >= 2) {
1195 uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1
1196 if (p < reinterpret_cast<uptr>(chunks_[mid]))
1197 end = mid - 1; // We are not interested in chunks_[mid].
1198 else
1199 beg = mid; // chunks_[mid] may still be what we want.
1200 }
1201
1202 if (beg < end) {
1203 CHECK_EQ(beg + 1, end);
1204 // There are 2 chunks left, choose one.
1205 if (p >= reinterpret_cast<uptr>(chunks_[end]))
1206 beg = end;
1207 }
1208
1209 Header *h = chunks_[beg];
1210 if (h->map_beg + h->map_size <= p || p < h->map_beg)
92a42be0 1211 return nullptr;
1a4d82fc
JJ
1212 return GetUser(h);
1213 }
1214
1215 void PrintStats() {
1216 Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1217 "remains %zd (%zd K) max %zd M; by size logs: ",
1218 stats.n_allocs, stats.n_allocs - stats.n_frees,
1219 stats.currently_allocated >> 10, stats.max_allocated >> 20);
1220 for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1221 uptr c = stats.by_size_log[i];
1222 if (!c) continue;
1223 Printf("%zd:%zd; ", i, c);
1224 }
1225 Printf("\n");
1226 }
1227
1228 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1229 // introspection API.
1230 void ForceLock() {
1231 mutex_.Lock();
1232 }
1233
1234 void ForceUnlock() {
1235 mutex_.Unlock();
1236 }
1237
1238 // Iterate over all existing chunks.
1239 // The allocator must be locked when calling this function.
1240 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1241 for (uptr i = 0; i < n_chunks_; i++)
1242 callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1243 }
1244
1245 private:
1246 static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1247 struct Header {
1248 uptr map_beg;
1249 uptr map_size;
1250 uptr size;
1251 uptr chunk_idx;
1252 };
1253
1254 Header *GetHeader(uptr p) {
1255 CHECK(IsAligned(p, page_size_));
1256 return reinterpret_cast<Header*>(p - page_size_);
1257 }
1258 Header *GetHeader(const void *p) {
1259 return GetHeader(reinterpret_cast<uptr>(p));
1260 }
1261
1262 void *GetUser(Header *h) {
1263 CHECK(IsAligned((uptr)h, page_size_));
1264 return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1265 }
1266
1267 uptr RoundUpMapSize(uptr size) {
1268 return RoundUpTo(size, page_size_) + page_size_;
1269 }
1270
1271 uptr page_size_;
1272 Header *chunks_[kMaxNumChunks];
1273 uptr n_chunks_;
1274 uptr min_mmap_, max_mmap_;
1275 bool chunks_sorted_;
1276 struct Stats {
1277 uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1278 } stats;
92a42be0 1279 atomic_uint8_t may_return_null_;
1a4d82fc
JJ
1280 SpinMutex mutex_;
1281};
1282
1283// This class implements a complete memory allocator by using two
1284// internal allocators:
1285// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1286// When allocating 2^x bytes it should return 2^x aligned chunk.
1287// PrimaryAllocator is used via a local AllocatorCache.
1288// SecondaryAllocator can allocate anything, but is not efficient.
1289template <class PrimaryAllocator, class AllocatorCache,
1290 class SecondaryAllocator> // NOLINT
1291class CombinedAllocator {
1292 public:
92a42be0 1293 void InitCommon(bool may_return_null) {
1a4d82fc 1294 primary_.Init();
92a42be0
SL
1295 atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
1296 }
1297
1298 void InitLinkerInitialized(bool may_return_null) {
1299 secondary_.InitLinkerInitialized(may_return_null);
1300 stats_.InitLinkerInitialized();
1301 InitCommon(may_return_null);
1302 }
1303
1304 void Init(bool may_return_null) {
1305 secondary_.Init(may_return_null);
1a4d82fc 1306 stats_.Init();
92a42be0 1307 InitCommon(may_return_null);
1a4d82fc
JJ
1308 }
1309
1310 void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
92a42be0 1311 bool cleared = false, bool check_rss_limit = false) {
1a4d82fc
JJ
1312 // Returning 0 on malloc(0) may break a lot of code.
1313 if (size == 0)
1314 size = 1;
1315 if (size + alignment < size)
92a42be0
SL
1316 return ReturnNullOrDie();
1317 if (check_rss_limit && RssLimitIsExceeded())
1318 return ReturnNullOrDie();
1a4d82fc
JJ
1319 if (alignment > 8)
1320 size = RoundUpTo(size, alignment);
1321 void *res;
1322 bool from_primary = primary_.CanAllocate(size, alignment);
1323 if (from_primary)
1324 res = cache->Allocate(&primary_, primary_.ClassID(size));
1325 else
1326 res = secondary_.Allocate(&stats_, size, alignment);
1327 if (alignment > 8)
1328 CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1329 if (cleared && res && from_primary)
1330 internal_bzero_aligned16(res, RoundUpTo(size, 16));
1331 return res;
1332 }
1333
92a42be0
SL
1334 bool MayReturnNull() const {
1335 return atomic_load(&may_return_null_, memory_order_acquire);
1336 }
1337
1338 void *ReturnNullOrDie() {
1339 if (MayReturnNull())
1340 return nullptr;
1341 ReportAllocatorCannotReturnNull();
1342 }
1343
1344 void SetMayReturnNull(bool may_return_null) {
1345 secondary_.SetMayReturnNull(may_return_null);
1346 atomic_store(&may_return_null_, may_return_null, memory_order_release);
1347 }
1348
1349 bool RssLimitIsExceeded() {
1350 return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire);
1351 }
1352
1353 void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) {
1354 atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded,
1355 memory_order_release);
1356 }
1357
1a4d82fc
JJ
1358 void Deallocate(AllocatorCache *cache, void *p) {
1359 if (!p) return;
1360 if (primary_.PointerIsMine(p))
1361 cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1362 else
1363 secondary_.Deallocate(&stats_, p);
1364 }
1365
1366 void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1367 uptr alignment) {
1368 if (!p)
1369 return Allocate(cache, new_size, alignment);
1370 if (!new_size) {
1371 Deallocate(cache, p);
92a42be0 1372 return nullptr;
1a4d82fc
JJ
1373 }
1374 CHECK(PointerIsMine(p));
1375 uptr old_size = GetActuallyAllocatedSize(p);
1376 uptr memcpy_size = Min(new_size, old_size);
1377 void *new_p = Allocate(cache, new_size, alignment);
1378 if (new_p)
1379 internal_memcpy(new_p, p, memcpy_size);
1380 Deallocate(cache, p);
1381 return new_p;
1382 }
1383
1384 bool PointerIsMine(void *p) {
1385 if (primary_.PointerIsMine(p))
1386 return true;
1387 return secondary_.PointerIsMine(p);
1388 }
1389
1390 bool FromPrimary(void *p) {
1391 return primary_.PointerIsMine(p);
1392 }
1393
1394 void *GetMetaData(const void *p) {
1395 if (primary_.PointerIsMine(p))
1396 return primary_.GetMetaData(p);
1397 return secondary_.GetMetaData(p);
1398 }
1399
1400 void *GetBlockBegin(const void *p) {
1401 if (primary_.PointerIsMine(p))
1402 return primary_.GetBlockBegin(p);
1403 return secondary_.GetBlockBegin(p);
1404 }
1405
1406 // This function does the same as GetBlockBegin, but is much faster.
1407 // Must be called with the allocator locked.
1408 void *GetBlockBeginFastLocked(void *p) {
1409 if (primary_.PointerIsMine(p))
1410 return primary_.GetBlockBegin(p);
1411 return secondary_.GetBlockBeginFastLocked(p);
1412 }
1413
1414 uptr GetActuallyAllocatedSize(void *p) {
1415 if (primary_.PointerIsMine(p))
1416 return primary_.GetActuallyAllocatedSize(p);
1417 return secondary_.GetActuallyAllocatedSize(p);
1418 }
1419
1420 uptr TotalMemoryUsed() {
1421 return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1422 }
1423
1424 void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1425
1426 void InitCache(AllocatorCache *cache) {
1427 cache->Init(&stats_);
1428 }
1429
1430 void DestroyCache(AllocatorCache *cache) {
1431 cache->Destroy(&primary_, &stats_);
1432 }
1433
1434 void SwallowCache(AllocatorCache *cache) {
1435 cache->Drain(&primary_);
1436 }
1437
1438 void GetStats(AllocatorStatCounters s) const {
1439 stats_.Get(s);
1440 }
1441
1442 void PrintStats() {
1443 primary_.PrintStats();
1444 secondary_.PrintStats();
1445 }
1446
1447 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1448 // introspection API.
1449 void ForceLock() {
1450 primary_.ForceLock();
1451 secondary_.ForceLock();
1452 }
1453
1454 void ForceUnlock() {
1455 secondary_.ForceUnlock();
1456 primary_.ForceUnlock();
1457 }
1458
1459 // Iterate over all existing chunks.
1460 // The allocator must be locked when calling this function.
1461 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1462 primary_.ForEachChunk(callback, arg);
1463 secondary_.ForEachChunk(callback, arg);
1464 }
1465
1466 private:
1467 PrimaryAllocator primary_;
1468 SecondaryAllocator secondary_;
1469 AllocatorGlobalStats stats_;
92a42be0
SL
1470 atomic_uint8_t may_return_null_;
1471 atomic_uint8_t rss_limit_is_exceeded_;
1a4d82fc
JJ
1472};
1473
1474// Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1475bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1476
92a42be0 1477} // namespace __sanitizer
1a4d82fc 1478
92a42be0 1479#endif // SANITIZER_ALLOCATOR_H