]> git.proxmox.com Git - rustc.git/blame - src/liballoc/arc.rs
Imported Upstream version 1.6.0+dfsg1
[rustc.git] / src / liballoc / arc.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
85aaf69f 11#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
12
13//! Threadsafe reference-counted boxes (the `Arc<T>` type).
14//!
85aaf69f
SL
15//! The `Arc<T>` type provides shared ownership of an immutable value.
16//! Destruction is deterministic, and will occur as soon as the last owner is
17//! gone. It is marked as `Send` because it uses atomic reference counting.
1a4d82fc 18//!
85aaf69f
SL
19//! If you do not need thread-safety, and just need shared ownership, consider
20//! the [`Rc<T>` type](../rc/struct.Rc.html). It is the same as `Arc<T>`, but
21//! does not use atomics, making it both thread-unsafe as well as significantly
22//! faster when updating the reference count.
1a4d82fc 23//!
85aaf69f
SL
24//! The `downgrade` method can be used to create a non-owning `Weak<T>` pointer
25//! to the box. A `Weak<T>` pointer can be upgraded to an `Arc<T>` pointer, but
26//! will return `None` if the value has already been dropped.
1a4d82fc 27//!
85aaf69f
SL
28//! For example, a tree with parent pointers can be represented by putting the
29//! nodes behind strong `Arc<T>` pointers, and then storing the parent pointers
30//! as `Weak<T>` pointers.
1a4d82fc
JJ
31//!
32//! # Examples
33//!
bd371182 34//! Sharing some immutable data between threads:
1a4d82fc 35//!
c34b1796 36//! ```no_run
1a4d82fc 37//! use std::sync::Arc;
85aaf69f 38//! use std::thread;
1a4d82fc 39//!
85aaf69f 40//! let five = Arc::new(5);
1a4d82fc 41//!
85aaf69f 42//! for _ in 0..10 {
1a4d82fc
JJ
43//! let five = five.clone();
44//!
85aaf69f 45//! thread::spawn(move || {
1a4d82fc
JJ
46//! println!("{:?}", five);
47//! });
48//! }
49//! ```
50//!
bd371182 51//! Sharing mutable data safely between threads with a `Mutex`:
1a4d82fc 52//!
c34b1796 53//! ```no_run
1a4d82fc 54//! use std::sync::{Arc, Mutex};
85aaf69f 55//! use std::thread;
1a4d82fc 56//!
85aaf69f 57//! let five = Arc::new(Mutex::new(5));
1a4d82fc 58//!
85aaf69f 59//! for _ in 0..10 {
1a4d82fc
JJ
60//! let five = five.clone();
61//!
85aaf69f 62//! thread::spawn(move || {
1a4d82fc
JJ
63//! let mut number = five.lock().unwrap();
64//!
65//! *number += 1;
66//!
67//! println!("{}", *number); // prints 6
68//! });
69//! }
70//! ```
71
c34b1796
AL
72use boxed::Box;
73
e9174d1e
SL
74use core::sync::atomic;
75use core::sync::atomic::Ordering::{Relaxed, Release, Acquire, SeqCst};
76use core::borrow;
85aaf69f 77use core::fmt;
c34b1796 78use core::cmp::Ordering;
62682a34 79use core::mem::{align_of_val, size_of_val};
92a42be0 80use core::intrinsics::abort;
1a4d82fc 81use core::mem;
92a42be0
SL
82use core::ops::Deref;
83#[cfg(not(stage0))]
84use core::ops::CoerceUnsized;
b039eaaf 85use core::ptr::{self, Shared};
92a42be0 86#[cfg(not(stage0))]
62682a34 87use core::marker::Unsize;
1a4d82fc 88use core::hash::{Hash, Hasher};
c1a9b12d 89use core::{usize, isize};
92a42be0 90use core::convert::From;
1a4d82fc
JJ
91use heap::deallocate;
92
c1a9b12d
SL
93const MAX_REFCOUNT: usize = (isize::MAX) as usize;
94
1a4d82fc
JJ
95/// An atomically reference counted wrapper for shared state.
96///
c34b1796 97/// # Examples
1a4d82fc 98///
b039eaaf 99/// In this example, a large vector is shared between several threads.
85aaf69f 100/// With simple pipes, without `Arc`, a copy would have to be made for each
bd371182 101/// thread.
1a4d82fc 102///
c34b1796
AL
103/// When you clone an `Arc<T>`, it will create another pointer to the data and
104/// increase the reference counter.
105///
106/// ```
1a4d82fc 107/// use std::sync::Arc;
85aaf69f 108/// use std::thread;
1a4d82fc
JJ
109///
110/// fn main() {
9346a6ac 111/// let numbers: Vec<_> = (0..100u32).collect();
1a4d82fc
JJ
112/// let shared_numbers = Arc::new(numbers);
113///
85aaf69f 114/// for _ in 0..10 {
1a4d82fc
JJ
115/// let child_numbers = shared_numbers.clone();
116///
85aaf69f 117/// thread::spawn(move || {
c34b1796 118/// let local_numbers = &child_numbers[..];
1a4d82fc
JJ
119///
120/// // Work with the local numbers
121/// });
122/// }
123/// }
124/// ```
125#[unsafe_no_drop_flag]
85aaf69f 126#[stable(feature = "rust1", since = "1.0.0")]
62682a34 127pub struct Arc<T: ?Sized> {
1a4d82fc
JJ
128 // FIXME #12808: strange name to try to avoid interfering with
129 // field accesses of the contained type via Deref
b039eaaf 130 _ptr: Shared<ArcInner<T>>,
1a4d82fc
JJ
131}
132
92a42be0
SL
133#[stable(feature = "rust1", since = "1.0.0")]
134unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
135#[stable(feature = "rust1", since = "1.0.0")]
136unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
1a4d82fc 137
92a42be0
SL
138// remove cfg after new snapshot
139#[cfg(not(stage0))]
140#[unstable(feature = "coerce_unsized", issue = "27732")]
62682a34 141impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {}
1a4d82fc
JJ
142
143/// A weak pointer to an `Arc`.
144///
c34b1796
AL
145/// Weak pointers will not keep the data inside of the `Arc` alive, and can be
146/// used to break cycles between `Arc` pointers.
1a4d82fc 147#[unsafe_no_drop_flag]
e9174d1e 148#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 149pub struct Weak<T: ?Sized> {
1a4d82fc
JJ
150 // FIXME #12808: strange name to try to avoid interfering with
151 // field accesses of the contained type via Deref
b039eaaf 152 _ptr: Shared<ArcInner<T>>,
1a4d82fc
JJ
153}
154
92a42be0
SL
155#[stable(feature = "rust1", since = "1.0.0")]
156unsafe impl<T: ?Sized + Sync + Send> Send for Weak<T> {}
157#[stable(feature = "rust1", since = "1.0.0")]
158unsafe impl<T: ?Sized + Sync + Send> Sync for Weak<T> {}
1a4d82fc 159
92a42be0
SL
160// remove cfg after new snapshot
161#[cfg(not(stage0))]
162#[unstable(feature = "coerce_unsized", issue = "27732")]
c1a9b12d
SL
163impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
164
c34b1796 165#[stable(feature = "rust1", since = "1.0.0")]
62682a34 166impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
c34b1796
AL
167 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
168 write!(f, "(Weak)")
169 }
170}
171
62682a34 172struct ArcInner<T: ?Sized> {
85aaf69f 173 strong: atomic::AtomicUsize,
c1a9b12d
SL
174
175 // the value usize::MAX acts as a sentinel for temporarily "locking" the
176 // ability to upgrade weak pointers or downgrade strong ones; this is used
e9174d1e 177 // to avoid races in `make_mut` and `get_mut`.
85aaf69f 178 weak: atomic::AtomicUsize,
c1a9b12d 179
1a4d82fc
JJ
180 data: T,
181}
182
62682a34
SL
183unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
184unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
1a4d82fc
JJ
185
186impl<T> Arc<T> {
187 /// Constructs a new `Arc<T>`.
188 ///
189 /// # Examples
190 ///
191 /// ```
192 /// use std::sync::Arc;
193 ///
85aaf69f 194 /// let five = Arc::new(5);
1a4d82fc
JJ
195 /// ```
196 #[inline]
85aaf69f 197 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
198 pub fn new(data: T) -> Arc<T> {
199 // Start the weak pointer count as 1 which is the weak pointer that's
200 // held by all the strong pointers (kinda), see std/rc.rs for more info
c34b1796 201 let x: Box<_> = box ArcInner {
85aaf69f
SL
202 strong: atomic::AtomicUsize::new(1),
203 weak: atomic::AtomicUsize::new(1),
1a4d82fc
JJ
204 data: data,
205 };
b039eaaf 206 Arc { _ptr: unsafe { Shared::new(Box::into_raw(x)) } }
e9174d1e
SL
207 }
208
209 /// Unwraps the contained value if the `Arc<T>` has only one strong reference.
210 /// This will succeed even if there are outstanding weak references.
211 ///
212 /// Otherwise, an `Err` is returned with the same `Arc<T>`.
213 ///
214 /// # Examples
215 ///
216 /// ```
217 /// use std::sync::Arc;
218 ///
219 /// let x = Arc::new(3);
220 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
221 ///
222 /// let x = Arc::new(4);
223 /// let _y = x.clone();
224 /// assert_eq!(Arc::try_unwrap(x), Err(Arc::new(4)));
225 /// ```
226 #[inline]
227 #[stable(feature = "arc_unique", since = "1.4.0")]
228 pub fn try_unwrap(this: Self) -> Result<T, Self> {
229 // See `drop` for why all these atomics are like this
b039eaaf 230 if this.inner().strong.compare_and_swap(1, 0, Release) != 1 {
92a42be0 231 return Err(this);
b039eaaf 232 }
e9174d1e
SL
233
234 atomic::fence(Acquire);
235
236 unsafe {
237 let ptr = *this._ptr;
238 let elem = ptr::read(&(*ptr).data);
239
240 // Make a weak pointer to clean up the implicit strong-weak reference
241 let _weak = Weak { _ptr: this._ptr };
242 mem::forget(this);
243
244 Ok(elem)
245 }
1a4d82fc 246 }
62682a34 247}
1a4d82fc 248
62682a34 249impl<T: ?Sized> Arc<T> {
1a4d82fc
JJ
250 /// Downgrades the `Arc<T>` to a `Weak<T>` reference.
251 ///
252 /// # Examples
253 ///
254 /// ```
255 /// use std::sync::Arc;
256 ///
85aaf69f 257 /// let five = Arc::new(5);
1a4d82fc 258 ///
e9174d1e 259 /// let weak_five = Arc::downgrade(&five);
1a4d82fc 260 /// ```
e9174d1e
SL
261 #[stable(feature = "arc_weak", since = "1.4.0")]
262 pub fn downgrade(this: &Self) -> Weak<T> {
c1a9b12d
SL
263 loop {
264 // This Relaxed is OK because we're checking the value in the CAS
265 // below.
e9174d1e 266 let cur = this.inner().weak.load(Relaxed);
c1a9b12d
SL
267
268 // check if the weak counter is currently "locked"; if so, spin.
b039eaaf 269 if cur == usize::MAX {
92a42be0 270 continue;
b039eaaf 271 }
c1a9b12d
SL
272
273 // NOTE: this code currently ignores the possibility of overflow
274 // into usize::MAX; in general both Rc and Arc need to be adjusted
275 // to deal with overflow.
276
277 // Unlike with Clone(), we need this to be an Acquire read to
278 // synchronize with the write coming from `is_unique`, so that the
279 // events prior to that write happen before this read.
e9174d1e 280 if this.inner().weak.compare_and_swap(cur, cur + 1, Acquire) == cur {
92a42be0 281 return Weak { _ptr: this._ptr };
c1a9b12d
SL
282 }
283 }
1a4d82fc 284 }
1a4d82fc 285
62682a34
SL
286 /// Get the number of weak references to this value.
287 #[inline]
e9174d1e
SL
288 #[unstable(feature = "arc_counts", reason = "not clearly useful, and racy",
289 issue = "28356")]
290 pub fn weak_count(this: &Self) -> usize {
62682a34
SL
291 this.inner().weak.load(SeqCst) - 1
292 }
293
294 /// Get the number of strong references to this value.
295 #[inline]
e9174d1e
SL
296 #[unstable(feature = "arc_counts", reason = "not clearly useful, and racy",
297 issue = "28356")]
298 pub fn strong_count(this: &Self) -> usize {
62682a34
SL
299 this.inner().strong.load(SeqCst)
300 }
301
1a4d82fc
JJ
302 #[inline]
303 fn inner(&self) -> &ArcInner<T> {
c34b1796
AL
304 // This unsafety is ok because while this arc is alive we're guaranteed
305 // that the inner pointer is valid. Furthermore, we know that the
306 // `ArcInner` structure itself is `Sync` because the inner data is
307 // `Sync` as well, so we're ok loaning out an immutable pointer to these
308 // contents.
1a4d82fc
JJ
309 unsafe { &**self._ptr }
310 }
c34b1796
AL
311
312 // Non-inlined part of `drop`.
313 #[inline(never)]
314 unsafe fn drop_slow(&mut self) {
315 let ptr = *self._ptr;
316
317 // Destroy the data at this time, even though we may not free the box
318 // allocation itself (there may still be weak pointers lying around).
92a42be0 319 ptr::drop_in_place(&mut (*ptr).data);
c34b1796
AL
320
321 if self.inner().weak.fetch_sub(1, Release) == 1 {
322 atomic::fence(Acquire);
62682a34 323 deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr))
c34b1796
AL
324 }
325 }
1a4d82fc
JJ
326}
327
85aaf69f 328#[stable(feature = "rust1", since = "1.0.0")]
62682a34 329impl<T: ?Sized> Clone for Arc<T> {
1a4d82fc
JJ
330 /// Makes a clone of the `Arc<T>`.
331 ///
332 /// This increases the strong reference count.
333 ///
334 /// # Examples
335 ///
336 /// ```
337 /// use std::sync::Arc;
338 ///
85aaf69f 339 /// let five = Arc::new(5);
1a4d82fc
JJ
340 ///
341 /// five.clone();
342 /// ```
343 #[inline]
344 fn clone(&self) -> Arc<T> {
c34b1796
AL
345 // Using a relaxed ordering is alright here, as knowledge of the
346 // original reference prevents other threads from erroneously deleting
347 // the object.
1a4d82fc 348 //
c34b1796
AL
349 // As explained in the [Boost documentation][1], Increasing the
350 // reference counter can always be done with memory_order_relaxed: New
351 // references to an object can only be formed from an existing
352 // reference, and passing an existing reference from one thread to
353 // another must already provide any required synchronization.
1a4d82fc
JJ
354 //
355 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
c1a9b12d
SL
356 let old_size = self.inner().strong.fetch_add(1, Relaxed);
357
358 // However we need to guard against massive refcounts in case someone
359 // is `mem::forget`ing Arcs. If we don't do this the count can overflow
360 // and users will use-after free. We racily saturate to `isize::MAX` on
361 // the assumption that there aren't ~2 billion threads incrementing
362 // the reference count at once. This branch will never be taken in
363 // any realistic program.
364 //
365 // We abort because such a program is incredibly degenerate, and we
366 // don't care to support it.
367 if old_size > MAX_REFCOUNT {
b039eaaf
SL
368 unsafe {
369 abort();
370 }
c1a9b12d
SL
371 }
372
1a4d82fc
JJ
373 Arc { _ptr: self._ptr }
374 }
375}
376
85aaf69f 377#[stable(feature = "rust1", since = "1.0.0")]
62682a34 378impl<T: ?Sized> Deref for Arc<T> {
1a4d82fc
JJ
379 type Target = T;
380
381 #[inline]
382 fn deref(&self) -> &T {
383 &self.inner().data
384 }
385}
386
c34b1796 387impl<T: Clone> Arc<T> {
e9174d1e
SL
388 #[unstable(feature = "arc_make_unique", reason = "renamed to Arc::make_mut",
389 issue = "27718")]
92a42be0 390 #[rustc_deprecated(since = "1.4.0", reason = "renamed to Arc::make_mut")]
e9174d1e
SL
391 pub fn make_unique(this: &mut Self) -> &mut T {
392 Arc::make_mut(this)
393 }
394
395 /// Make a mutable reference into the given `Arc<T>` by cloning the inner
396 /// data if the `Arc<T>` doesn't have one strong reference and no weak
397 /// references.
1a4d82fc 398 ///
e9174d1e 399 /// This is also referred to as a copy-on-write.
62682a34 400 ///
1a4d82fc
JJ
401 /// # Examples
402 ///
403 /// ```
404 /// use std::sync::Arc;
405 ///
e9174d1e
SL
406 /// let mut data = Arc::new(5);
407 ///
408 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
409 /// let mut other_data = data.clone(); // Won't clone inner data
410 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
411 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
412 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
413 ///
414 /// // Note: data and other_data now point to different numbers
415 /// assert_eq!(*data, 8);
416 /// assert_eq!(*other_data, 12);
1a4d82fc 417 ///
1a4d82fc
JJ
418 /// ```
419 #[inline]
e9174d1e
SL
420 #[stable(feature = "arc_unique", since = "1.4.0")]
421 pub fn make_mut(this: &mut Self) -> &mut T {
c1a9b12d
SL
422 // Note that we hold both a strong reference and a weak reference.
423 // Thus, releasing our strong reference only will not, by itself, cause
424 // the memory to be deallocated.
62682a34 425 //
c1a9b12d
SL
426 // Use Acquire to ensure that we see any writes to `weak` that happen
427 // before release writes (i.e., decrements) to `strong`. Since we hold a
428 // weak count, there's no chance the ArcInner itself could be
429 // deallocated.
430 if this.inner().strong.compare_and_swap(1, 0, Acquire) != 1 {
431 // Another srong pointer exists; clone
432 *this = Arc::new((**this).clone());
433 } else if this.inner().weak.load(Relaxed) != 1 {
434 // Relaxed suffices in the above because this is fundamentally an
435 // optimization: we are always racing with weak pointers being
436 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
437
438 // We removed the last strong ref, but there are additional weak
439 // refs remaining. We'll move the contents to a new Arc, and
440 // invalidate the other weak refs.
441
442 // Note that it is not possible for the read of `weak` to yield
443 // usize::MAX (i.e., locked), since the weak count can only be
444 // locked by a thread with a strong reference.
445
446 // Materialize our own implicit weak pointer, so that it can clean
447 // up the ArcInner as needed.
448 let weak = Weak { _ptr: this._ptr };
449
450 // mark the data itself as already deallocated
451 unsafe {
452 // there is no data race in the implicit write caused by `read`
453 // here (due to zeroing) because data is no longer accessed by
454 // other threads (due to there being no more strong refs at this
455 // point).
456 let mut swap = Arc::new(ptr::read(&(**weak._ptr).data));
457 mem::swap(this, &mut swap);
458 mem::forget(swap);
459 }
460 } else {
461 // We were the sole reference of either kind; bump back up the
462 // strong ref count.
463 this.inner().strong.store(1, Release);
1a4d82fc 464 }
c1a9b12d 465
9346a6ac 466 // As with `get_mut()`, the unsafety is ok because our reference was
c34b1796 467 // either unique to begin with, or became one upon cloning the contents.
c1a9b12d
SL
468 unsafe {
469 let inner = &mut **this._ptr;
470 &mut inner.data
471 }
1a4d82fc
JJ
472 }
473}
474
c1a9b12d 475impl<T: ?Sized> Arc<T> {
e9174d1e
SL
476 /// Returns a mutable reference to the contained value if the `Arc<T>` has
477 /// one strong reference and no weak references.
c1a9b12d
SL
478 ///
479 /// # Examples
480 ///
481 /// ```
e9174d1e 482 /// use std::sync::Arc;
c1a9b12d
SL
483 ///
484 /// let mut x = Arc::new(3);
485 /// *Arc::get_mut(&mut x).unwrap() = 4;
486 /// assert_eq!(*x, 4);
487 ///
488 /// let _y = x.clone();
489 /// assert!(Arc::get_mut(&mut x).is_none());
c1a9b12d
SL
490 /// ```
491 #[inline]
e9174d1e
SL
492 #[stable(feature = "arc_unique", since = "1.4.0")]
493 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
c1a9b12d
SL
494 if this.is_unique() {
495 // This unsafety is ok because we're guaranteed that the pointer
496 // returned is the *only* pointer that will ever be returned to T. Our
497 // reference count is guaranteed to be 1 at this point, and we required
498 // the Arc itself to be `mut`, so we're returning the only possible
499 // reference to the inner data.
500 unsafe {
501 let inner = &mut **this._ptr;
502 Some(&mut inner.data)
503 }
504 } else {
505 None
506 }
507 }
508
509 /// Determine whether this is the unique reference (including weak refs) to
510 /// the underlying data.
511 ///
512 /// Note that this requires locking the weak ref count.
513 fn is_unique(&mut self) -> bool {
514 // lock the weak pointer count if we appear to be the sole weak pointer
515 // holder.
516 //
517 // The acquire label here ensures a happens-before relationship with any
518 // writes to `strong` prior to decrements of the `weak` count (via drop,
519 // which uses Release).
520 if self.inner().weak.compare_and_swap(1, usize::MAX, Acquire) == 1 {
521 // Due to the previous acquire read, this will observe any writes to
522 // `strong` that were due to upgrading weak pointers; only strong
523 // clones remain, which require that the strong count is > 1 anyway.
524 let unique = self.inner().strong.load(Relaxed) == 1;
525
526 // The release write here synchronizes with a read in `downgrade`,
527 // effectively preventing the above read of `strong` from happening
528 // after the write.
529 self.inner().weak.store(1, Release); // release the lock
530 unique
531 } else {
532 false
533 }
534 }
535}
536
85aaf69f 537#[stable(feature = "rust1", since = "1.0.0")]
62682a34 538impl<T: ?Sized> Drop for Arc<T> {
1a4d82fc
JJ
539 /// Drops the `Arc<T>`.
540 ///
c34b1796
AL
541 /// This will decrement the strong reference count. If the strong reference
542 /// count becomes zero and the only other references are `Weak<T>` ones,
543 /// `drop`s the inner value.
1a4d82fc
JJ
544 ///
545 /// # Examples
546 ///
547 /// ```
548 /// use std::sync::Arc;
549 ///
550 /// {
85aaf69f 551 /// let five = Arc::new(5);
1a4d82fc
JJ
552 ///
553 /// // stuff
554 ///
85aaf69f 555 /// drop(five); // explicit drop
1a4d82fc
JJ
556 /// }
557 /// {
85aaf69f 558 /// let five = Arc::new(5);
1a4d82fc
JJ
559 ///
560 /// // stuff
561 ///
562 /// } // implicit drop
563 /// ```
b039eaaf 564 #[unsafe_destructor_blind_to_params]
c34b1796 565 #[inline]
1a4d82fc 566 fn drop(&mut self) {
c34b1796
AL
567 // This structure has #[unsafe_no_drop_flag], so this drop glue may run
568 // more than once (but it is guaranteed to be zeroed after the first if
569 // it's run more than once)
1a4d82fc 570 let ptr = *self._ptr;
c34b1796 571 // if ptr.is_null() { return }
62682a34 572 if ptr as *mut u8 as usize == 0 || ptr as *mut u8 as usize == mem::POST_DROP_USIZE {
92a42be0 573 return;
62682a34 574 }
1a4d82fc 575
c34b1796
AL
576 // Because `fetch_sub` is already atomic, we do not need to synchronize
577 // with other threads unless we are going to delete the object. This
578 // same logic applies to the below `fetch_sub` to the `weak` count.
b039eaaf 579 if self.inner().strong.fetch_sub(1, Release) != 1 {
92a42be0 580 return;
b039eaaf 581 }
1a4d82fc 582
c34b1796
AL
583 // This fence is needed to prevent reordering of use of the data and
584 // deletion of the data. Because it is marked `Release`, the decreasing
585 // of the reference count synchronizes with this `Acquire` fence. This
586 // means that use of the data happens before decreasing the reference
587 // count, which happens before this fence, which happens before the
588 // deletion of the data.
1a4d82fc
JJ
589 //
590 // As explained in the [Boost documentation][1],
591 //
c34b1796
AL
592 // > It is important to enforce any possible access to the object in one
593 // > thread (through an existing reference) to *happen before* deleting
594 // > the object in a different thread. This is achieved by a "release"
595 // > operation after dropping a reference (any access to the object
596 // > through this reference must obviously happened before), and an
597 // > "acquire" operation before deleting the object.
1a4d82fc
JJ
598 //
599 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
600 atomic::fence(Acquire);
601
c34b1796 602 unsafe {
b039eaaf 603 self.drop_slow();
1a4d82fc
JJ
604 }
605 }
606}
607
62682a34 608impl<T: ?Sized> Weak<T> {
1a4d82fc
JJ
609 /// Upgrades a weak reference to a strong reference.
610 ///
611 /// Upgrades the `Weak<T>` reference to an `Arc<T>`, if possible.
612 ///
c34b1796
AL
613 /// Returns `None` if there were no strong references and the data was
614 /// destroyed.
1a4d82fc
JJ
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// use std::sync::Arc;
620 ///
85aaf69f 621 /// let five = Arc::new(5);
1a4d82fc 622 ///
e9174d1e 623 /// let weak_five = Arc::downgrade(&five);
1a4d82fc
JJ
624 ///
625 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
626 /// ```
e9174d1e 627 #[stable(feature = "arc_weak", since = "1.4.0")]
1a4d82fc 628 pub fn upgrade(&self) -> Option<Arc<T>> {
c34b1796 629 // We use a CAS loop to increment the strong count instead of a
9346a6ac 630 // fetch_add because once the count hits 0 it must never be above 0.
1a4d82fc
JJ
631 let inner = self.inner();
632 loop {
c1a9b12d
SL
633 // Relaxed load because any write of 0 that we can observe
634 // leaves the field in a permanently zero state (so a
635 // "stale" read of 0 is fine), and any other value is
636 // confirmed via the CAS below.
637 let n = inner.strong.load(Relaxed);
b039eaaf 638 if n == 0 {
92a42be0
SL
639 return None;
640 }
641
642 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
643 if n > MAX_REFCOUNT {
644 unsafe { abort(); }
b039eaaf 645 }
c1a9b12d
SL
646
647 // Relaxed is valid for the same reason it is on Arc's Clone impl
648 let old = inner.strong.compare_and_swap(n, n + 1, Relaxed);
b039eaaf 649 if old == n {
92a42be0 650 return Some(Arc { _ptr: self._ptr });
b039eaaf 651 }
1a4d82fc
JJ
652 }
653 }
654
655 #[inline]
656 fn inner(&self) -> &ArcInner<T> {
657 // See comments above for why this is "safe"
658 unsafe { &**self._ptr }
659 }
660}
661
e9174d1e 662#[stable(feature = "arc_weak", since = "1.4.0")]
62682a34 663impl<T: ?Sized> Clone for Weak<T> {
1a4d82fc
JJ
664 /// Makes a clone of the `Weak<T>`.
665 ///
666 /// This increases the weak reference count.
667 ///
668 /// # Examples
669 ///
670 /// ```
671 /// use std::sync::Arc;
672 ///
e9174d1e 673 /// let weak_five = Arc::downgrade(&Arc::new(5));
1a4d82fc
JJ
674 ///
675 /// weak_five.clone();
676 /// ```
677 #[inline]
678 fn clone(&self) -> Weak<T> {
c1a9b12d
SL
679 // See comments in Arc::clone() for why this is relaxed. This can use a
680 // fetch_add (ignoring the lock) because the weak count is only locked
681 // where are *no other* weak pointers in existence. (So we can't be
682 // running this code in that case).
683 let old_size = self.inner().weak.fetch_add(1, Relaxed);
684
685 // See comments in Arc::clone() for why we do this (for mem::forget).
686 if old_size > MAX_REFCOUNT {
b039eaaf
SL
687 unsafe {
688 abort();
689 }
c1a9b12d
SL
690 }
691
92a42be0 692 return Weak { _ptr: self._ptr };
1a4d82fc
JJ
693 }
694}
695
85aaf69f 696#[stable(feature = "rust1", since = "1.0.0")]
62682a34 697impl<T: ?Sized> Drop for Weak<T> {
1a4d82fc
JJ
698 /// Drops the `Weak<T>`.
699 ///
700 /// This will decrement the weak reference count.
701 ///
702 /// # Examples
703 ///
704 /// ```
705 /// use std::sync::Arc;
706 ///
707 /// {
85aaf69f 708 /// let five = Arc::new(5);
e9174d1e 709 /// let weak_five = Arc::downgrade(&five);
1a4d82fc
JJ
710 ///
711 /// // stuff
712 ///
85aaf69f 713 /// drop(weak_five); // explicit drop
1a4d82fc
JJ
714 /// }
715 /// {
85aaf69f 716 /// let five = Arc::new(5);
e9174d1e 717 /// let weak_five = Arc::downgrade(&five);
1a4d82fc
JJ
718 ///
719 /// // stuff
720 ///
721 /// } // implicit drop
722 /// ```
723 fn drop(&mut self) {
724 let ptr = *self._ptr;
725
726 // see comments above for why this check is here
62682a34 727 if ptr as *mut u8 as usize == 0 || ptr as *mut u8 as usize == mem::POST_DROP_USIZE {
92a42be0 728 return;
62682a34 729 }
1a4d82fc 730
c34b1796
AL
731 // If we find out that we were the last weak pointer, then its time to
732 // deallocate the data entirely. See the discussion in Arc::drop() about
733 // the memory orderings
c1a9b12d
SL
734 //
735 // It's not necessary to check for the locked state here, because the
736 // weak count can only be locked if there was precisely one weak ref,
737 // meaning that drop could only subsequently run ON that remaining weak
738 // ref, which can only happen after the lock is released.
1a4d82fc
JJ
739 if self.inner().weak.fetch_sub(1, Release) == 1 {
740 atomic::fence(Acquire);
b039eaaf 741 unsafe { deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr)) }
1a4d82fc
JJ
742 }
743 }
744}
745
85aaf69f 746#[stable(feature = "rust1", since = "1.0.0")]
62682a34 747impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
1a4d82fc
JJ
748 /// Equality for two `Arc<T>`s.
749 ///
750 /// Two `Arc<T>`s are equal if their inner value are equal.
751 ///
752 /// # Examples
753 ///
754 /// ```
755 /// use std::sync::Arc;
756 ///
85aaf69f 757 /// let five = Arc::new(5);
1a4d82fc 758 ///
85aaf69f 759 /// five == Arc::new(5);
1a4d82fc 760 /// ```
b039eaaf
SL
761 fn eq(&self, other: &Arc<T>) -> bool {
762 *(*self) == *(*other)
763 }
1a4d82fc
JJ
764
765 /// Inequality for two `Arc<T>`s.
766 ///
767 /// Two `Arc<T>`s are unequal if their inner value are unequal.
768 ///
769 /// # Examples
770 ///
771 /// ```
772 /// use std::sync::Arc;
773 ///
85aaf69f 774 /// let five = Arc::new(5);
1a4d82fc 775 ///
85aaf69f 776 /// five != Arc::new(5);
1a4d82fc 777 /// ```
b039eaaf
SL
778 fn ne(&self, other: &Arc<T>) -> bool {
779 *(*self) != *(*other)
780 }
1a4d82fc 781}
85aaf69f 782#[stable(feature = "rust1", since = "1.0.0")]
62682a34 783impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
1a4d82fc
JJ
784 /// Partial comparison for two `Arc<T>`s.
785 ///
786 /// The two are compared by calling `partial_cmp()` on their inner values.
787 ///
788 /// # Examples
789 ///
790 /// ```
791 /// use std::sync::Arc;
792 ///
85aaf69f 793 /// let five = Arc::new(5);
1a4d82fc 794 ///
85aaf69f 795 /// five.partial_cmp(&Arc::new(5));
1a4d82fc
JJ
796 /// ```
797 fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
798 (**self).partial_cmp(&**other)
799 }
800
801 /// Less-than comparison for two `Arc<T>`s.
802 ///
803 /// The two are compared by calling `<` on their inner values.
804 ///
805 /// # Examples
806 ///
807 /// ```
808 /// use std::sync::Arc;
809 ///
85aaf69f 810 /// let five = Arc::new(5);
1a4d82fc 811 ///
85aaf69f 812 /// five < Arc::new(5);
1a4d82fc 813 /// ```
b039eaaf
SL
814 fn lt(&self, other: &Arc<T>) -> bool {
815 *(*self) < *(*other)
816 }
1a4d82fc
JJ
817
818 /// 'Less-than or equal to' comparison for two `Arc<T>`s.
819 ///
820 /// The two are compared by calling `<=` on their inner values.
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// use std::sync::Arc;
826 ///
85aaf69f 827 /// let five = Arc::new(5);
1a4d82fc 828 ///
85aaf69f 829 /// five <= Arc::new(5);
1a4d82fc 830 /// ```
b039eaaf
SL
831 fn le(&self, other: &Arc<T>) -> bool {
832 *(*self) <= *(*other)
833 }
1a4d82fc
JJ
834
835 /// Greater-than comparison for two `Arc<T>`s.
836 ///
837 /// The two are compared by calling `>` on their inner values.
838 ///
839 /// # Examples
840 ///
841 /// ```
842 /// use std::sync::Arc;
843 ///
85aaf69f 844 /// let five = Arc::new(5);
1a4d82fc 845 ///
85aaf69f 846 /// five > Arc::new(5);
1a4d82fc 847 /// ```
b039eaaf
SL
848 fn gt(&self, other: &Arc<T>) -> bool {
849 *(*self) > *(*other)
850 }
1a4d82fc
JJ
851
852 /// 'Greater-than or equal to' comparison for two `Arc<T>`s.
853 ///
854 /// The two are compared by calling `>=` on their inner values.
855 ///
856 /// # Examples
857 ///
858 /// ```
859 /// use std::sync::Arc;
860 ///
85aaf69f 861 /// let five = Arc::new(5);
1a4d82fc 862 ///
85aaf69f 863 /// five >= Arc::new(5);
1a4d82fc 864 /// ```
b039eaaf
SL
865 fn ge(&self, other: &Arc<T>) -> bool {
866 *(*self) >= *(*other)
867 }
1a4d82fc 868}
85aaf69f 869#[stable(feature = "rust1", since = "1.0.0")]
62682a34 870impl<T: ?Sized + Ord> Ord for Arc<T> {
b039eaaf
SL
871 fn cmp(&self, other: &Arc<T>) -> Ordering {
872 (**self).cmp(&**other)
873 }
1a4d82fc 874}
85aaf69f 875#[stable(feature = "rust1", since = "1.0.0")]
62682a34 876impl<T: ?Sized + Eq> Eq for Arc<T> {}
1a4d82fc 877
85aaf69f 878#[stable(feature = "rust1", since = "1.0.0")]
62682a34 879impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
1a4d82fc 880 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85aaf69f 881 fmt::Display::fmt(&**self, f)
1a4d82fc
JJ
882 }
883}
884
85aaf69f 885#[stable(feature = "rust1", since = "1.0.0")]
62682a34 886impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
1a4d82fc 887 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85aaf69f 888 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
889 }
890}
891
9346a6ac
AL
892#[stable(feature = "rust1", since = "1.0.0")]
893impl<T> fmt::Pointer for Arc<T> {
894 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
895 fmt::Pointer::fmt(&*self._ptr, f)
896 }
897}
898
85aaf69f 899#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 900impl<T: Default> Default for Arc<T> {
b039eaaf
SL
901 fn default() -> Arc<T> {
902 Arc::new(Default::default())
903 }
1a4d82fc
JJ
904}
905
85aaf69f 906#[stable(feature = "rust1", since = "1.0.0")]
62682a34 907impl<T: ?Sized + Hash> Hash for Arc<T> {
85aaf69f
SL
908 fn hash<H: Hasher>(&self, state: &mut H) {
909 (**self).hash(state)
910 }
911}
1a4d82fc 912
92a42be0
SL
913#[stable(feature = "from_for_ptrs", since = "1.6.0")]
914impl<T> From<T> for Arc<T> {
915 fn from(t: T) -> Self {
916 Arc::new(t)
917 }
918}
919
1a4d82fc 920#[cfg(test)]
1a4d82fc
JJ
921mod tests {
922 use std::clone::Clone;
923 use std::sync::mpsc::channel;
924 use std::mem::drop;
925 use std::ops::Drop;
926 use std::option::Option;
927 use std::option::Option::{Some, None};
928 use std::sync::atomic;
929 use std::sync::atomic::Ordering::{Acquire, SeqCst};
85aaf69f 930 use std::thread;
1a4d82fc 931 use std::vec::Vec;
e9174d1e 932 use super::{Arc, Weak};
1a4d82fc 933 use std::sync::Mutex;
92a42be0 934 use std::convert::From;
1a4d82fc 935
85aaf69f 936 struct Canary(*mut atomic::AtomicUsize);
1a4d82fc 937
92a42be0 938 impl Drop for Canary {
1a4d82fc
JJ
939 fn drop(&mut self) {
940 unsafe {
941 match *self {
942 Canary(c) => {
943 (*c).fetch_add(1, SeqCst);
944 }
945 }
946 }
947 }
948 }
949
950 #[test]
951 fn manually_share_arc() {
92a42be0 952 let v = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
1a4d82fc
JJ
953 let arc_v = Arc::new(v);
954
955 let (tx, rx) = channel();
956
85aaf69f
SL
957 let _t = thread::spawn(move || {
958 let arc_v: Arc<Vec<i32>> = rx.recv().unwrap();
1a4d82fc
JJ
959 assert_eq!((*arc_v)[3], 4);
960 });
961
962 tx.send(arc_v.clone()).unwrap();
963
964 assert_eq!((*arc_v)[2], 3);
965 assert_eq!((*arc_v)[4], 5);
966 }
967
c34b1796 968 #[test]
9346a6ac 969 fn test_arc_get_mut() {
e9174d1e
SL
970 let mut x = Arc::new(3);
971 *Arc::get_mut(&mut x).unwrap() = 4;
972 assert_eq!(*x, 4);
973 let y = x.clone();
974 assert!(Arc::get_mut(&mut x).is_none());
975 drop(y);
976 assert!(Arc::get_mut(&mut x).is_some());
977 let _w = Arc::downgrade(&x);
978 assert!(Arc::get_mut(&mut x).is_none());
c34b1796
AL
979 }
980
1a4d82fc 981 #[test]
e9174d1e
SL
982 fn try_unwrap() {
983 let x = Arc::new(3);
984 assert_eq!(Arc::try_unwrap(x), Ok(3));
985 let x = Arc::new(4);
986 let _y = x.clone();
987 assert_eq!(Arc::try_unwrap(x), Err(Arc::new(4)));
988 let x = Arc::new(5);
989 let _w = Arc::downgrade(&x);
990 assert_eq!(Arc::try_unwrap(x), Ok(5));
991 }
992
993 #[test]
994 fn test_cowarc_clone_make_mut() {
995 let mut cow0 = Arc::new(75);
996 let mut cow1 = cow0.clone();
997 let mut cow2 = cow1.clone();
998
999 assert!(75 == *Arc::make_mut(&mut cow0));
1000 assert!(75 == *Arc::make_mut(&mut cow1));
1001 assert!(75 == *Arc::make_mut(&mut cow2));
1002
1003 *Arc::make_mut(&mut cow0) += 1;
1004 *Arc::make_mut(&mut cow1) += 2;
1005 *Arc::make_mut(&mut cow2) += 3;
1006
1007 assert!(76 == *cow0);
1008 assert!(77 == *cow1);
1009 assert!(78 == *cow2);
1010
1011 // none should point to the same backing memory
1012 assert!(*cow0 != *cow1);
1013 assert!(*cow0 != *cow2);
1014 assert!(*cow1 != *cow2);
1a4d82fc
JJ
1015 }
1016
1017 #[test]
1018 fn test_cowarc_clone_unique2() {
85aaf69f 1019 let mut cow0 = Arc::new(75);
1a4d82fc
JJ
1020 let cow1 = cow0.clone();
1021 let cow2 = cow1.clone();
1022
1023 assert!(75 == *cow0);
1024 assert!(75 == *cow1);
1025 assert!(75 == *cow2);
1026
e9174d1e 1027 *Arc::make_mut(&mut cow0) += 1;
1a4d82fc
JJ
1028 assert!(76 == *cow0);
1029 assert!(75 == *cow1);
1030 assert!(75 == *cow2);
1031
1032 // cow1 and cow2 should share the same contents
1033 // cow0 should have a unique reference
1034 assert!(*cow0 != *cow1);
1035 assert!(*cow0 != *cow2);
1036 assert!(*cow1 == *cow2);
1037 }
1038
1039 #[test]
1040 fn test_cowarc_clone_weak() {
85aaf69f 1041 let mut cow0 = Arc::new(75);
e9174d1e 1042 let cow1_weak = Arc::downgrade(&cow0);
1a4d82fc
JJ
1043
1044 assert!(75 == *cow0);
1045 assert!(75 == *cow1_weak.upgrade().unwrap());
1046
e9174d1e 1047 *Arc::make_mut(&mut cow0) += 1;
1a4d82fc
JJ
1048
1049 assert!(76 == *cow0);
1050 assert!(cow1_weak.upgrade().is_none());
1051 }
1052
1053 #[test]
1054 fn test_live() {
85aaf69f 1055 let x = Arc::new(5);
e9174d1e 1056 let y = Arc::downgrade(&x);
1a4d82fc
JJ
1057 assert!(y.upgrade().is_some());
1058 }
1059
1060 #[test]
1061 fn test_dead() {
85aaf69f 1062 let x = Arc::new(5);
e9174d1e 1063 let y = Arc::downgrade(&x);
1a4d82fc
JJ
1064 drop(x);
1065 assert!(y.upgrade().is_none());
1066 }
1067
1068 #[test]
1069 fn weak_self_cyclic() {
1070 struct Cycle {
b039eaaf 1071 x: Mutex<Option<Weak<Cycle>>>,
1a4d82fc
JJ
1072 }
1073
1074 let a = Arc::new(Cycle { x: Mutex::new(None) });
e9174d1e 1075 let b = Arc::downgrade(&a.clone());
1a4d82fc
JJ
1076 *a.x.lock().unwrap() = Some(b);
1077
1078 // hopefully we don't double-free (or leak)...
1079 }
1080
1081 #[test]
1082 fn drop_arc() {
85aaf69f
SL
1083 let mut canary = atomic::AtomicUsize::new(0);
1084 let x = Arc::new(Canary(&mut canary as *mut atomic::AtomicUsize));
1a4d82fc
JJ
1085 drop(x);
1086 assert!(canary.load(Acquire) == 1);
1087 }
1088
1089 #[test]
1090 fn drop_arc_weak() {
85aaf69f
SL
1091 let mut canary = atomic::AtomicUsize::new(0);
1092 let arc = Arc::new(Canary(&mut canary as *mut atomic::AtomicUsize));
e9174d1e 1093 let arc_weak = Arc::downgrade(&arc);
1a4d82fc
JJ
1094 assert!(canary.load(Acquire) == 0);
1095 drop(arc);
1096 assert!(canary.load(Acquire) == 1);
1097 drop(arc_weak);
1098 }
1099
1100 #[test]
1101 fn test_strong_count() {
1102 let a = Arc::new(0u32);
e9174d1e
SL
1103 assert!(Arc::strong_count(&a) == 1);
1104 let w = Arc::downgrade(&a);
1105 assert!(Arc::strong_count(&a) == 1);
1a4d82fc 1106 let b = w.upgrade().expect("");
e9174d1e
SL
1107 assert!(Arc::strong_count(&b) == 2);
1108 assert!(Arc::strong_count(&a) == 2);
1a4d82fc
JJ
1109 drop(w);
1110 drop(a);
e9174d1e 1111 assert!(Arc::strong_count(&b) == 1);
1a4d82fc 1112 let c = b.clone();
e9174d1e
SL
1113 assert!(Arc::strong_count(&b) == 2);
1114 assert!(Arc::strong_count(&c) == 2);
1a4d82fc
JJ
1115 }
1116
1117 #[test]
1118 fn test_weak_count() {
1119 let a = Arc::new(0u32);
e9174d1e
SL
1120 assert!(Arc::strong_count(&a) == 1);
1121 assert!(Arc::weak_count(&a) == 0);
1122 let w = Arc::downgrade(&a);
1123 assert!(Arc::strong_count(&a) == 1);
1124 assert!(Arc::weak_count(&a) == 1);
1a4d82fc 1125 let x = w.clone();
e9174d1e 1126 assert!(Arc::weak_count(&a) == 2);
1a4d82fc
JJ
1127 drop(w);
1128 drop(x);
e9174d1e
SL
1129 assert!(Arc::strong_count(&a) == 1);
1130 assert!(Arc::weak_count(&a) == 0);
1a4d82fc 1131 let c = a.clone();
e9174d1e
SL
1132 assert!(Arc::strong_count(&a) == 2);
1133 assert!(Arc::weak_count(&a) == 0);
1134 let d = Arc::downgrade(&c);
1135 assert!(Arc::weak_count(&c) == 1);
1136 assert!(Arc::strong_count(&c) == 2);
1a4d82fc
JJ
1137
1138 drop(a);
1139 drop(c);
1140 drop(d);
1141 }
1142
1143 #[test]
1144 fn show_arc() {
1145 let a = Arc::new(5u32);
85aaf69f 1146 assert_eq!(format!("{:?}", a), "5");
1a4d82fc
JJ
1147 }
1148
1149 // Make sure deriving works with Arc<T>
85aaf69f 1150 #[derive(Eq, Ord, PartialEq, PartialOrd, Clone, Debug, Default)]
b039eaaf
SL
1151 struct Foo {
1152 inner: Arc<i32>,
1153 }
62682a34
SL
1154
1155 #[test]
1156 fn test_unsized() {
1157 let x: Arc<[i32]> = Arc::new([1, 2, 3]);
1158 assert_eq!(format!("{:?}", x), "[1, 2, 3]");
e9174d1e 1159 let y = Arc::downgrade(&x.clone());
62682a34
SL
1160 drop(x);
1161 assert!(y.upgrade().is_none());
1162 }
92a42be0
SL
1163
1164 #[test]
1165 fn test_from_owned() {
1166 let foo = 123;
1167 let foo_arc = Arc::from(foo);
1168 assert!(123 == *foo_arc);
1169 }
1a4d82fc 1170}
e9174d1e 1171
92a42be0 1172#[stable(feature = "rust1", since = "1.0.0")]
e9174d1e 1173impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
b039eaaf
SL
1174 fn borrow(&self) -> &T {
1175 &**self
1176 }
1177}
1178
1179#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
1180impl<T: ?Sized> AsRef<T> for Arc<T> {
1181 fn as_ref(&self) -> &T {
1182 &**self
1183 }
e9174d1e 1184}