]> git.proxmox.com Git - rustc.git/blame - src/liballoc/vec.rs
New upstream version 1.30.0+dfsg1
[rustc.git] / src / liballoc / vec.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
7453a54e 11//! A contiguous growable array type with heap-allocated contents, written
041b39d2 12//! `Vec<T>`.
1a4d82fc 13//!
62682a34
SL
14//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
15//! `O(1)` pop (from the end).
1a4d82fc
JJ
16//!
17//! # Examples
18//!
cc61c64b 19//! You can explicitly create a [`Vec<T>`] with [`new`]:
1a4d82fc
JJ
20//!
21//! ```
d9579d0f 22//! let v: Vec<i32> = Vec::new();
1a4d82fc
JJ
23//! ```
24//!
c30ab7b3 25//! ...or by using the [`vec!`] macro:
1a4d82fc
JJ
26//!
27//! ```
d9579d0f 28//! let v: Vec<i32> = vec![];
1a4d82fc 29//!
d9579d0f
AL
30//! let v = vec![1, 2, 3, 4, 5];
31//!
32//! let v = vec![0; 10]; // ten zeroes
1a4d82fc
JJ
33//! ```
34//!
c30ab7b3 35//! You can [`push`] values onto the end of a vector (which will grow the vector
e9174d1e 36//! as needed):
1a4d82fc
JJ
37//!
38//! ```
d9579d0f 39//! let mut v = vec![1, 2];
1a4d82fc 40//!
d9579d0f 41//! v.push(3);
1a4d82fc
JJ
42//! ```
43//!
d9579d0f
AL
44//! Popping values works in much the same way:
45//!
46//! ```
47//! let mut v = vec![1, 2];
1a4d82fc 48//!
d9579d0f 49//! let two = v.pop();
1a4d82fc 50//! ```
1a4d82fc 51//!
c30ab7b3 52//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
d9579d0f
AL
53//!
54//! ```
55//! let mut v = vec![1, 2, 3];
56//! let three = v[2];
57//! v[1] = v[1] + 5;
1a4d82fc 58//! ```
c30ab7b3
SL
59//!
60//! [`Vec<T>`]: ../../std/vec/struct.Vec.html
cc61c64b 61//! [`new`]: ../../std/vec/struct.Vec.html#method.new
c30ab7b3
SL
62//! [`push`]: ../../std/vec/struct.Vec.html#method.push
63//! [`Index`]: ../../std/ops/trait.Index.html
64//! [`IndexMut`]: ../../std/ops/trait.IndexMut.html
65//! [`vec!`]: ../../std/macro.vec.html
1a4d82fc 66
85aaf69f 67#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 68
0531ce1d 69use core::cmp::{self, Ordering};
1a4d82fc
JJ
70use core::fmt;
71use core::hash::{self, Hash};
54a0048b 72use core::intrinsics::{arith_offset, assume};
c30ab7b3 73use core::iter::{FromIterator, FusedIterator, TrustedLen};
ff7c6d11 74use core::marker::PhantomData;
1a4d82fc 75use core::mem;
0531ce1d 76use core::ops::Bound::{Excluded, Included, Unbounded};
83c7162d 77use core::ops::{Index, IndexMut, RangeBounds};
1a4d82fc
JJ
78use core::ops;
79use core::ptr;
2c00a5a8 80use core::ptr::NonNull;
85aaf69f 81use core::slice;
85aaf69f 82
8faf50e0 83use collections::CollectionAllocErr;
041b39d2
XL
84use borrow::ToOwned;
85use borrow::Cow;
86use boxed::Box;
87use raw_vec::RawVec;
d9579d0f 88
c30ab7b3 89/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
1a4d82fc
JJ
90///
91/// # Examples
92///
93/// ```
94/// let mut vec = Vec::new();
85aaf69f
SL
95/// vec.push(1);
96/// vec.push(2);
1a4d82fc
JJ
97///
98/// assert_eq!(vec.len(), 2);
99/// assert_eq!(vec[0], 1);
100///
101/// assert_eq!(vec.pop(), Some(2));
102/// assert_eq!(vec.len(), 1);
103///
85aaf69f 104/// vec[0] = 7;
1a4d82fc
JJ
105/// assert_eq!(vec[0], 7);
106///
62682a34 107/// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc 108///
62682a34 109/// for x in &vec {
1a4d82fc
JJ
110/// println!("{}", x);
111/// }
c34b1796 112/// assert_eq!(vec, [7, 1, 2, 3]);
1a4d82fc
JJ
113/// ```
114///
c30ab7b3 115/// The [`vec!`] macro is provided to make initialization more convenient:
1a4d82fc
JJ
116///
117/// ```
85aaf69f 118/// let mut vec = vec![1, 2, 3];
1a4d82fc 119/// vec.push(4);
c34b1796 120/// assert_eq!(vec, [1, 2, 3, 4]);
1a4d82fc
JJ
121/// ```
122///
c1a9b12d
SL
123/// It can also initialize each element of a `Vec<T>` with a given value:
124///
125/// ```
126/// let vec = vec![0; 5];
127/// assert_eq!(vec, [0, 0, 0, 0, 0]);
128/// ```
129///
1a4d82fc
JJ
130/// Use a `Vec<T>` as an efficient stack:
131///
132/// ```
133/// let mut stack = Vec::new();
134///
85aaf69f
SL
135/// stack.push(1);
136/// stack.push(2);
137/// stack.push(3);
1a4d82fc 138///
bd371182 139/// while let Some(top) = stack.pop() {
1a4d82fc
JJ
140/// // Prints 3, 2, 1
141/// println!("{}", top);
142/// }
143/// ```
144///
7453a54e
SL
145/// # Indexing
146///
c30ab7b3
SL
147/// The `Vec` type allows to access values by index, because it implements the
148/// [`Index`] trait. An example will be more explicit:
7453a54e
SL
149///
150/// ```
c30ab7b3 151/// let v = vec![0, 2, 4, 6];
7453a54e
SL
152/// println!("{}", v[1]); // it will display '2'
153/// ```
154///
c30ab7b3 155/// However be careful: if you try to access an index which isn't in the `Vec`,
7453a54e
SL
156/// your software will panic! You cannot do this:
157///
041b39d2 158/// ```should_panic
c30ab7b3 159/// let v = vec![0, 2, 4, 6];
7453a54e
SL
160/// println!("{}", v[6]); // it will panic!
161/// ```
162///
163/// In conclusion: always check if the index you want to get really exists
164/// before doing it.
165///
166/// # Slicing
167///
c30ab7b3
SL
168/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
169/// To get a slice, use `&`. Example:
7453a54e
SL
170///
171/// ```
172/// fn read_slice(slice: &[usize]) {
173/// // ...
174/// }
175///
c30ab7b3 176/// let v = vec![0, 1];
7453a54e
SL
177/// read_slice(&v);
178///
179/// // ... and that's all!
180/// // you can also do it like this:
181/// let x : &[usize] = &v;
182/// ```
183///
184/// In Rust, it's more common to pass slices as arguments rather than vectors
c30ab7b3
SL
185/// when you just want to provide a read access. The same goes for [`String`] and
186/// [`&str`].
7453a54e 187///
1a4d82fc
JJ
188/// # Capacity and reallocation
189///
c34b1796
AL
190/// The capacity of a vector is the amount of space allocated for any future
191/// elements that will be added onto the vector. This is not to be confused with
192/// the *length* of a vector, which specifies the number of actual elements
193/// within the vector. If a vector's length exceeds its capacity, its capacity
194/// will automatically be increased, but its elements will have to be
1a4d82fc
JJ
195/// reallocated.
196///
c34b1796
AL
197/// For example, a vector with capacity 10 and length 0 would be an empty vector
198/// with space for 10 more elements. Pushing 10 or fewer elements onto the
199/// vector will not change its capacity or cause reallocation to occur. However,
200/// if the vector's length is increased to 11, it will have to reallocate, which
c30ab7b3 201/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
c34b1796 202/// whenever possible to specify how big the vector is expected to get.
b039eaaf
SL
203///
204/// # Guarantees
205///
c30ab7b3 206/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
b039eaaf
SL
207/// about its design. This ensures that it's as low-overhead as possible in
208/// the general case, and can be correctly manipulated in primitive ways
209/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
210/// If additional type parameters are added (e.g. to support custom allocators),
211/// overriding their defaults may change the behavior.
212///
c30ab7b3 213/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
b039eaaf
SL
214/// triplet. No more, no less. The order of these fields is completely
215/// unspecified, and you should use the appropriate methods to modify these.
216/// The pointer will never be null, so this type is null-pointer-optimized.
217///
218/// However, the pointer may not actually point to allocated memory. In particular,
cc61c64b
XL
219/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
220/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
c30ab7b3
SL
221/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
222/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
cc61c64b 223/// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only
041b39d2 224/// if [`mem::size_of::<T>`]`() * capacity() > 0`. In general, `Vec`'s allocation
ff7c6d11
XL
225/// details are very subtle &mdash; if you intend to allocate memory using a `Vec`
226/// and use it for something else (either to pass to unsafe code, or to build your
227/// own memory-backed collection), be sure to deallocate this memory by using
228/// `from_raw_parts` to recover the `Vec` and then dropping it.
b039eaaf 229///
c30ab7b3 230/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
b039eaaf 231/// (as defined by the allocator Rust is configured to use by default), and its
0531ce1d
XL
232/// pointer points to [`len`] initialized, contiguous elements in order (what
233/// you would see if you coerced it to a slice), followed by [`capacity`]` -
234/// `[`len`] logically uninitialized, contiguous elements.
b039eaaf 235///
c30ab7b3 236/// `Vec` will never perform a "small optimization" where elements are actually
b039eaaf
SL
237/// stored on the stack for two reasons:
238///
239/// * It would make it more difficult for unsafe code to correctly manipulate
c30ab7b3
SL
240/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
241/// only moved, and it would be more difficult to determine if a `Vec` had
b039eaaf
SL
242/// actually allocated memory.
243///
244/// * It would penalize the general case, incurring an additional branch
245/// on every access.
246///
c30ab7b3
SL
247/// `Vec` will never automatically shrink itself, even if completely empty. This
248/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
cc61c64b 249/// and then filling it back up to the same [`len`] should incur no calls to
c30ab7b3 250/// the allocator. If you wish to free up unused memory, use
cc61c64b 251/// [`shrink_to_fit`][`shrink_to_fit`].
b039eaaf 252///
c30ab7b3
SL
253/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
254/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
cc61c64b 255/// [`len`]` == `[`capacity`]. That is, the reported capacity is completely
c30ab7b3
SL
256/// accurate, and can be relied on. It can even be used to manually free the memory
257/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
258/// when not necessary.
b039eaaf 259///
c30ab7b3
SL
260/// `Vec` does not guarantee any particular growth strategy when reallocating
261/// when full, nor when [`reserve`] is called. The current strategy is basic
b039eaaf 262/// and it may prove desirable to use a non-constant growth factor. Whatever
c30ab7b3 263/// strategy is used will of course guarantee `O(1)` amortized [`push`].
b039eaaf 264///
c30ab7b3
SL
265/// `vec![x; n]`, `vec![a, b, c, d]`, and
266/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
cc61c64b 267/// with exactly the requested capacity. If [`len`]` == `[`capacity`],
c30ab7b3
SL
268/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
269/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
b039eaaf 270///
c30ab7b3 271/// `Vec` will not specifically overwrite any data that is removed from it,
b039eaaf
SL
272/// but also won't specifically preserve it. Its uninitialized memory is
273/// scratch space that it may use however it wants. It will generally just do
274/// whatever is most efficient or otherwise easy to implement. Do not rely on
c30ab7b3
SL
275/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
276/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
b039eaaf 277/// first, that may not actually happen because the optimizer does not consider
7cac9316
XL
278/// this a side-effect that must be preserved. There is one case which we will
279/// not break, however: using `unsafe` code to write to the excess capacity,
280/// and then increasing the length to match, is always valid.
b039eaaf 281///
0531ce1d
XL
282/// `Vec` does not currently guarantee the order in which elements are dropped.
283/// The order has changed in the past and may change again.
b039eaaf 284///
c30ab7b3
SL
285/// [`vec!`]: ../../std/macro.vec.html
286/// [`Index`]: ../../std/ops/trait.Index.html
287/// [`String`]: ../../std/string/struct.String.html
288/// [`&str`]: ../../std/primitive.str.html
289/// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity
cc61c64b
XL
290/// [`Vec::new`]: ../../std/vec/struct.Vec.html#method.new
291/// [`shrink_to_fit`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit
292/// [`capacity`]: ../../std/vec/struct.Vec.html#method.capacity
293/// [`mem::size_of::<T>`]: ../../std/mem/fn.size_of.html
294/// [`len`]: ../../std/vec/struct.Vec.html#method.len
c30ab7b3
SL
295/// [`push`]: ../../std/vec/struct.Vec.html#method.push
296/// [`insert`]: ../../std/vec/struct.Vec.html#method.insert
297/// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve
298/// [owned slice]: ../../std/boxed/struct.Box.html
85aaf69f 299#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 300pub struct Vec<T> {
c1a9b12d 301 buf: RawVec<T>,
85aaf69f 302 len: usize,
1a4d82fc
JJ
303}
304
1a4d82fc
JJ
305////////////////////////////////////////////////////////////////////////////////
306// Inherent methods
307////////////////////////////////////////////////////////////////////////////////
308
309impl<T> Vec<T> {
310 /// Constructs a new, empty `Vec<T>`.
311 ///
312 /// The vector will not allocate until elements are pushed onto it.
313 ///
314 /// # Examples
315 ///
316 /// ```
92a42be0 317 /// # #![allow(unused_mut)]
85aaf69f 318 /// let mut vec: Vec<i32> = Vec::new();
1a4d82fc
JJ
319 /// ```
320 #[inline]
85aaf69f 321 #[stable(feature = "rust1", since = "1.0.0")]
83c7162d
XL
322 #[rustc_const_unstable(feature = "const_vec_new")]
323 pub const fn new() -> Vec<T> {
92a42be0
SL
324 Vec {
325 buf: RawVec::new(),
326 len: 0,
327 }
1a4d82fc
JJ
328 }
329
330 /// Constructs a new, empty `Vec<T>` with the specified capacity.
331 ///
e9174d1e
SL
332 /// The vector will be able to hold exactly `capacity` elements without
333 /// reallocating. If `capacity` is 0, the vector will not allocate.
1a4d82fc 334 ///
0531ce1d
XL
335 /// It is important to note that although the returned vector has the
336 /// *capacity* specified, the vector will have a zero *length*. For an
337 /// explanation of the difference between length and capacity, see
338 /// *[Capacity and reallocation]*.
c30ab7b3
SL
339 ///
340 /// [Capacity and reallocation]: #capacity-and-reallocation
1a4d82fc
JJ
341 ///
342 /// # Examples
343 ///
344 /// ```
9346a6ac 345 /// let mut vec = Vec::with_capacity(10);
1a4d82fc
JJ
346 ///
347 /// // The vector contains no items, even though it has capacity for more
348 /// assert_eq!(vec.len(), 0);
349 ///
350 /// // These are all done without reallocating...
85aaf69f 351 /// for i in 0..10 {
1a4d82fc
JJ
352 /// vec.push(i);
353 /// }
354 ///
355 /// // ...but this may make the vector reallocate
356 /// vec.push(11);
357 /// ```
358 #[inline]
85aaf69f
SL
359 #[stable(feature = "rust1", since = "1.0.0")]
360 pub fn with_capacity(capacity: usize) -> Vec<T> {
92a42be0
SL
361 Vec {
362 buf: RawVec::with_capacity(capacity),
363 len: 0,
364 }
1a4d82fc
JJ
365 }
366
367 /// Creates a `Vec<T>` directly from the raw components of another vector.
368 ///
b039eaaf 369 /// # Safety
c1a9b12d
SL
370 ///
371 /// This is highly unsafe, due to the number of invariants that aren't
372 /// checked:
373 ///
c30ab7b3 374 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
c1a9b12d 375 /// (at least, it's highly likely to be incorrect if it wasn't).
ea8adc8c 376 /// * `ptr`'s `T` needs to have the same size and alignment as it was allocated with.
5bcae85e 377 /// * `length` needs to be less than or equal to `capacity`.
c1a9b12d
SL
378 /// * `capacity` needs to be the capacity that the pointer was allocated with.
379 ///
380 /// Violating these may cause problems like corrupting the allocator's
3b2f2976 381 /// internal data structures. For example it is **not** safe
32a655c1 382 /// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`.
1a4d82fc 383 ///
5bcae85e
SL
384 /// The ownership of `ptr` is effectively transferred to the
385 /// `Vec<T>` which may then deallocate, reallocate or change the
386 /// contents of memory pointed to by the pointer at will. Ensure
387 /// that nothing else uses the pointer after calling this
388 /// function.
389 ///
c30ab7b3
SL
390 /// [`String`]: ../../std/string/struct.String.html
391 ///
1a4d82fc
JJ
392 /// # Examples
393 ///
394 /// ```
395 /// use std::ptr;
396 /// use std::mem;
397 ///
398 /// fn main() {
85aaf69f 399 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
400 ///
401 /// // Pull out the various important pieces of information about `v`
402 /// let p = v.as_mut_ptr();
403 /// let len = v.len();
404 /// let cap = v.capacity();
405 ///
406 /// unsafe {
407 /// // Cast `v` into the void: no destructor run, so we are in
408 /// // complete control of the allocation to which `p` points.
409 /// mem::forget(v);
410 ///
411 /// // Overwrite memory with 4, 5, 6
85aaf69f 412 /// for i in 0..len as isize {
1a4d82fc
JJ
413 /// ptr::write(p.offset(i), 4 + i);
414 /// }
415 ///
416 /// // Put everything back together into a Vec
417 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
c34b1796 418 /// assert_eq!(rebuilt, [4, 5, 6]);
1a4d82fc
JJ
419 /// }
420 /// }
421 /// ```
85aaf69f 422 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0 423 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
85aaf69f 424 Vec {
c1a9b12d 425 buf: RawVec::from_raw_parts(ptr, capacity),
85aaf69f 426 len: length,
85aaf69f 427 }
1a4d82fc
JJ
428 }
429
1a4d82fc
JJ
430 /// Returns the number of elements the vector can hold without
431 /// reallocating.
432 ///
433 /// # Examples
434 ///
435 /// ```
85aaf69f 436 /// let vec: Vec<i32> = Vec::with_capacity(10);
1a4d82fc
JJ
437 /// assert_eq!(vec.capacity(), 10);
438 /// ```
439 #[inline]
85aaf69f
SL
440 #[stable(feature = "rust1", since = "1.0.0")]
441 pub fn capacity(&self) -> usize {
c1a9b12d 442 self.buf.cap()
1a4d82fc
JJ
443 }
444
c34b1796
AL
445 /// Reserves capacity for at least `additional` more elements to be inserted
446 /// in the given `Vec<T>`. The collection may reserve more space to avoid
8bb4bdeb
XL
447 /// frequent reallocations. After calling `reserve`, capacity will be
448 /// greater than or equal to `self.len() + additional`. Does nothing if
449 /// capacity is already sufficient.
1a4d82fc
JJ
450 ///
451 /// # Panics
452 ///
85aaf69f 453 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
454 ///
455 /// # Examples
456 ///
457 /// ```
85aaf69f 458 /// let mut vec = vec![1];
1a4d82fc
JJ
459 /// vec.reserve(10);
460 /// assert!(vec.capacity() >= 11);
461 /// ```
85aaf69f
SL
462 #[stable(feature = "rust1", since = "1.0.0")]
463 pub fn reserve(&mut self, additional: usize) {
c1a9b12d 464 self.buf.reserve(self.len, additional);
1a4d82fc
JJ
465 }
466
467 /// Reserves the minimum capacity for exactly `additional` more elements to
8bb4bdeb
XL
468 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
469 /// capacity will be greater than or equal to `self.len() + additional`.
470 /// Does nothing if the capacity is already sufficient.
1a4d82fc
JJ
471 ///
472 /// Note that the allocator may give the collection more space than it
473 /// requests. Therefore capacity can not be relied upon to be precisely
474 /// minimal. Prefer `reserve` if future insertions are expected.
475 ///
476 /// # Panics
477 ///
85aaf69f 478 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
479 ///
480 /// # Examples
481 ///
482 /// ```
85aaf69f 483 /// let mut vec = vec![1];
1a4d82fc
JJ
484 /// vec.reserve_exact(10);
485 /// assert!(vec.capacity() >= 11);
486 /// ```
85aaf69f
SL
487 #[stable(feature = "rust1", since = "1.0.0")]
488 pub fn reserve_exact(&mut self, additional: usize) {
c1a9b12d 489 self.buf.reserve_exact(self.len, additional);
1a4d82fc
JJ
490 }
491
0531ce1d
XL
492 /// Tries to reserve capacity for at least `additional` more elements to be inserted
493 /// in the given `Vec<T>`. The collection may reserve more space to avoid
494 /// frequent reallocations. After calling `reserve`, capacity will be
495 /// greater than or equal to `self.len() + additional`. Does nothing if
496 /// capacity is already sufficient.
497 ///
498 /// # Errors
499 ///
500 /// If the capacity overflows, or the allocator reports a failure, then an error
501 /// is returned.
502 ///
503 /// # Examples
504 ///
505 /// ```
506 /// #![feature(try_reserve)]
507 /// use std::collections::CollectionAllocErr;
508 ///
509 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> {
510 /// let mut output = Vec::new();
511 ///
512 /// // Pre-reserve the memory, exiting if we can't
513 /// output.try_reserve(data.len())?;
514 ///
515 /// // Now we know this can't OOM in the middle of our complex work
516 /// output.extend(data.iter().map(|&val| {
517 /// val * 2 + 5 // very complicated
518 /// }));
519 ///
520 /// Ok(output)
521 /// }
522 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
523 /// ```
524 #[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
525 pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
526 self.buf.try_reserve(self.len, additional)
527 }
528
529 /// Tries to reserves the minimum capacity for exactly `additional` more elements to
530 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
531 /// capacity will be greater than or equal to `self.len() + additional`.
532 /// Does nothing if the capacity is already sufficient.
533 ///
534 /// Note that the allocator may give the collection more space than it
535 /// requests. Therefore capacity can not be relied upon to be precisely
536 /// minimal. Prefer `reserve` if future insertions are expected.
537 ///
538 /// # Errors
539 ///
540 /// If the capacity overflows, or the allocator reports a failure, then an error
541 /// is returned.
542 ///
543 /// # Examples
544 ///
545 /// ```
546 /// #![feature(try_reserve)]
547 /// use std::collections::CollectionAllocErr;
548 ///
549 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> {
550 /// let mut output = Vec::new();
551 ///
552 /// // Pre-reserve the memory, exiting if we can't
553 /// output.try_reserve(data.len())?;
554 ///
555 /// // Now we know this can't OOM in the middle of our complex work
556 /// output.extend(data.iter().map(|&val| {
557 /// val * 2 + 5 // very complicated
558 /// }));
559 ///
560 /// Ok(output)
561 /// }
562 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
563 /// ```
564 #[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
565 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
566 self.buf.try_reserve_exact(self.len, additional)
567 }
568
1a4d82fc
JJ
569 /// Shrinks the capacity of the vector as much as possible.
570 ///
571 /// It will drop down as close as possible to the length but the allocator
572 /// may still inform the vector that there is space for a few more elements.
573 ///
574 /// # Examples
575 ///
576 /// ```
85aaf69f 577 /// let mut vec = Vec::with_capacity(10);
62682a34 578 /// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc
JJ
579 /// assert_eq!(vec.capacity(), 10);
580 /// vec.shrink_to_fit();
581 /// assert!(vec.capacity() >= 3);
582 /// ```
85aaf69f 583 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 584 pub fn shrink_to_fit(&mut self) {
83c7162d
XL
585 if self.capacity() != self.len {
586 self.buf.shrink_to_fit(self.len);
587 }
1a4d82fc
JJ
588 }
589
0531ce1d
XL
590 /// Shrinks the capacity of the vector with a lower bound.
591 ///
592 /// The capacity will remain at least as large as both the length
593 /// and the supplied value.
594 ///
595 /// Panics if the current capacity is smaller than the supplied
596 /// minimum capacity.
597 ///
598 /// # Examples
599 ///
600 /// ```
601 /// #![feature(shrink_to)]
602 /// let mut vec = Vec::with_capacity(10);
603 /// vec.extend([1, 2, 3].iter().cloned());
604 /// assert_eq!(vec.capacity(), 10);
605 /// vec.shrink_to(4);
606 /// assert!(vec.capacity() >= 4);
607 /// vec.shrink_to(0);
608 /// assert!(vec.capacity() >= 3);
609 /// ```
610 #[unstable(feature = "shrink_to", reason = "new API", issue="0")]
611 pub fn shrink_to(&mut self, min_capacity: usize) {
612 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
613 }
614
c30ab7b3 615 /// Converts the vector into [`Box<[T]>`][owned slice].
1a4d82fc 616 ///
ea8adc8c 617 /// Note that this will drop any excess capacity.
c30ab7b3
SL
618 ///
619 /// [owned slice]: ../../std/boxed/struct.Box.html
5bcae85e
SL
620 ///
621 /// # Examples
622 ///
623 /// ```
624 /// let v = vec![1, 2, 3];
625 ///
626 /// let slice = v.into_boxed_slice();
627 /// ```
628 ///
629 /// Any excess capacity is removed:
630 ///
631 /// ```
632 /// let mut vec = Vec::with_capacity(10);
633 /// vec.extend([1, 2, 3].iter().cloned());
634 ///
635 /// assert_eq!(vec.capacity(), 10);
636 /// let slice = vec.into_boxed_slice();
637 /// assert_eq!(slice.into_vec().capacity(), 3);
638 /// ```
c34b1796 639 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 640 pub fn into_boxed_slice(mut self) -> Box<[T]> {
1a4d82fc 641 unsafe {
c1a9b12d
SL
642 self.shrink_to_fit();
643 let buf = ptr::read(&self.buf);
1a4d82fc 644 mem::forget(self);
c1a9b12d 645 buf.into_box()
1a4d82fc
JJ
646 }
647 }
648
5bcae85e
SL
649 /// Shortens the vector, keeping the first `len` elements and dropping
650 /// the rest.
1a4d82fc
JJ
651 ///
652 /// If `len` is greater than the vector's current length, this has no
653 /// effect.
654 ///
5bcae85e
SL
655 /// The [`drain`] method can emulate `truncate`, but causes the excess
656 /// elements to be returned instead of dropped.
657 ///
8bb4bdeb
XL
658 /// Note that this method has no effect on the allocated capacity
659 /// of the vector.
660 ///
1a4d82fc
JJ
661 /// # Examples
662 ///
5bcae85e
SL
663 /// Truncating a five element vector to two elements:
664 ///
1a4d82fc 665 /// ```
92a42be0 666 /// let mut vec = vec![1, 2, 3, 4, 5];
1a4d82fc 667 /// vec.truncate(2);
c34b1796 668 /// assert_eq!(vec, [1, 2]);
1a4d82fc 669 /// ```
5bcae85e
SL
670 ///
671 /// No truncation occurs when `len` is greater than the vector's current
672 /// length:
673 ///
674 /// ```
675 /// let mut vec = vec![1, 2, 3];
676 /// vec.truncate(8);
677 /// assert_eq!(vec, [1, 2, 3]);
678 /// ```
679 ///
680 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
681 /// method.
682 ///
683 /// ```
684 /// let mut vec = vec![1, 2, 3];
685 /// vec.truncate(0);
686 /// assert_eq!(vec, []);
687 /// ```
688 ///
689 /// [`clear`]: #method.clear
690 /// [`drain`]: #method.drain
85aaf69f
SL
691 #[stable(feature = "rust1", since = "1.0.0")]
692 pub fn truncate(&mut self, len: usize) {
b7449926 693 let current_len = self.len;
1a4d82fc 694 unsafe {
b7449926
XL
695 let mut ptr = self.as_mut_ptr().add(self.len);
696 // Set the final length at the end, keeping in mind that
697 // dropping an element might panic. Works around a missed
698 // optimization, as seen in the following issue:
699 // https://github.com/rust-lang/rust/issues/51802
700 let mut local_len = SetLenOnDrop::new(&mut self.len);
701
1a4d82fc 702 // drop any extra elements
b7449926
XL
703 for _ in len..current_len {
704 local_len.decrement_len(1);
705 ptr = ptr.offset(-1);
706 ptr::drop_in_place(ptr);
1a4d82fc
JJ
707 }
708 }
709 }
710
9346a6ac 711 /// Extracts a slice containing the entire vector.
62682a34
SL
712 ///
713 /// Equivalent to `&s[..]`.
5bcae85e
SL
714 ///
715 /// # Examples
716 ///
717 /// ```
718 /// use std::io::{self, Write};
719 /// let buffer = vec![1, 2, 3, 5, 8];
720 /// io::sink().write(buffer.as_slice()).unwrap();
721 /// ```
1a4d82fc 722 #[inline]
9cc50fc6 723 #[stable(feature = "vec_as_slice", since = "1.7.0")]
c34b1796
AL
724 pub fn as_slice(&self) -> &[T] {
725 self
726 }
727
62682a34
SL
728 /// Extracts a mutable slice of the entire vector.
729 ///
730 /// Equivalent to `&mut s[..]`.
5bcae85e
SL
731 ///
732 /// # Examples
733 ///
734 /// ```
735 /// use std::io::{self, Read};
736 /// let mut buffer = vec![0; 3];
737 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
738 /// ```
c34b1796 739 #[inline]
9cc50fc6 740 #[stable(feature = "vec_as_slice", since = "1.7.0")]
85aaf69f 741 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e 742 self
1a4d82fc
JJ
743 }
744
1a4d82fc
JJ
745 /// Sets the length of a vector.
746 ///
747 /// This will explicitly set the size of the vector, without actually
748 /// modifying its buffers, so it is up to the caller to ensure that the
749 /// vector is actually the specified size.
750 ///
751 /// # Examples
752 ///
753 /// ```
5bcae85e
SL
754 /// use std::ptr;
755 ///
756 /// let mut vec = vec!['r', 'u', 's', 't'];
757 ///
758 /// unsafe {
759 /// ptr::drop_in_place(&mut vec[3]);
760 /// vec.set_len(3);
761 /// }
762 /// assert_eq!(vec, ['r', 'u', 's']);
763 /// ```
764 ///
765 /// In this example, there is a memory leak since the memory locations
766 /// owned by the inner vectors were not freed prior to the `set_len` call:
767 ///
768 /// ```
769 /// let mut vec = vec![vec![1, 0, 0],
770 /// vec![0, 1, 0],
771 /// vec![0, 0, 1]];
1a4d82fc 772 /// unsafe {
5bcae85e
SL
773 /// vec.set_len(0);
774 /// }
775 /// ```
776 ///
777 /// In this example, the vector gets expanded from zero to four items
778 /// without any memory allocations occurring, resulting in vector
779 /// values of unallocated memory:
780 ///
781 /// ```
782 /// let mut vec: Vec<char> = Vec::new();
783 ///
784 /// unsafe {
785 /// vec.set_len(4);
1a4d82fc
JJ
786 /// }
787 /// ```
788 #[inline]
85aaf69f
SL
789 #[stable(feature = "rust1", since = "1.0.0")]
790 pub unsafe fn set_len(&mut self, len: usize) {
1a4d82fc
JJ
791 self.len = len;
792 }
793
cc61c64b
XL
794 /// Removes an element from the vector and returns it.
795 ///
796 /// The removed element is replaced by the last element of the vector.
1a4d82fc
JJ
797 ///
798 /// This does not preserve ordering, but is O(1).
799 ///
800 /// # Panics
801 ///
802 /// Panics if `index` is out of bounds.
803 ///
804 /// # Examples
805 ///
806 /// ```
807 /// let mut v = vec!["foo", "bar", "baz", "qux"];
808 ///
809 /// assert_eq!(v.swap_remove(1), "bar");
c34b1796 810 /// assert_eq!(v, ["foo", "qux", "baz"]);
1a4d82fc
JJ
811 ///
812 /// assert_eq!(v.swap_remove(0), "foo");
c34b1796 813 /// assert_eq!(v, ["baz", "qux"]);
1a4d82fc
JJ
814 /// ```
815 #[inline]
85aaf69f
SL
816 #[stable(feature = "rust1", since = "1.0.0")]
817 pub fn swap_remove(&mut self, index: usize) -> T {
8faf50e0
XL
818 unsafe {
819 // We replace self[index] with the last element. Note that if the
820 // bounds check on hole succeeds there must be a last element (which
821 // can be self[index] itself).
822 let hole: *mut T = &mut self[index];
823 let last = ptr::read(self.get_unchecked(self.len - 1));
824 self.len -= 1;
825 ptr::replace(hole, last)
826 }
1a4d82fc
JJ
827 }
828
829 /// Inserts an element at position `index` within the vector, shifting all
7453a54e 830 /// elements after it to the right.
1a4d82fc
JJ
831 ///
832 /// # Panics
833 ///
2c00a5a8 834 /// Panics if `index > len`.
1a4d82fc
JJ
835 ///
836 /// # Examples
837 ///
838 /// ```
85aaf69f 839 /// let mut vec = vec![1, 2, 3];
1a4d82fc 840 /// vec.insert(1, 4);
c34b1796 841 /// assert_eq!(vec, [1, 4, 2, 3]);
1a4d82fc 842 /// vec.insert(4, 5);
c34b1796 843 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1a4d82fc 844 /// ```
85aaf69f
SL
845 #[stable(feature = "rust1", since = "1.0.0")]
846 pub fn insert(&mut self, index: usize, element: T) {
1a4d82fc
JJ
847 let len = self.len();
848 assert!(index <= len);
c1a9b12d 849
1a4d82fc 850 // space for the new element
92a42be0 851 if len == self.buf.cap() {
94b46f34 852 self.reserve(1);
92a42be0 853 }
1a4d82fc 854
92a42be0
SL
855 unsafe {
856 // infallible
1a4d82fc
JJ
857 // The spot to put the new value
858 {
b7449926 859 let p = self.as_mut_ptr().add(index);
1a4d82fc
JJ
860 // Shift everything over to make space. (Duplicating the
861 // `index`th element into two consecutive places.)
c1a9b12d 862 ptr::copy(p, p.offset(1), len - index);
1a4d82fc
JJ
863 // Write it in, overwriting the first copy of the `index`th
864 // element.
c1a9b12d 865 ptr::write(p, element);
1a4d82fc
JJ
866 }
867 self.set_len(len + 1);
868 }
869 }
870
871 /// Removes and returns the element at position `index` within the vector,
7453a54e 872 /// shifting all elements after it to the left.
1a4d82fc
JJ
873 ///
874 /// # Panics
875 ///
bd371182 876 /// Panics if `index` is out of bounds.
1a4d82fc
JJ
877 ///
878 /// # Examples
879 ///
880 /// ```
85aaf69f 881 /// let mut v = vec![1, 2, 3];
1a4d82fc 882 /// assert_eq!(v.remove(1), 2);
c34b1796 883 /// assert_eq!(v, [1, 3]);
1a4d82fc 884 /// ```
85aaf69f
SL
885 #[stable(feature = "rust1", since = "1.0.0")]
886 pub fn remove(&mut self, index: usize) -> T {
1a4d82fc
JJ
887 let len = self.len();
888 assert!(index < len);
92a42be0
SL
889 unsafe {
890 // infallible
1a4d82fc
JJ
891 let ret;
892 {
893 // the place we are taking from.
b7449926 894 let ptr = self.as_mut_ptr().add(index);
1a4d82fc
JJ
895 // copy it out, unsafely having a copy of the value on
896 // the stack and in the vector at the same time.
85aaf69f 897 ret = ptr::read(ptr);
1a4d82fc
JJ
898
899 // Shift everything down to fill in that spot.
c1a9b12d 900 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1a4d82fc
JJ
901 }
902 self.set_len(len - 1);
903 ret
904 }
905 }
906
907 /// Retains only the elements specified by the predicate.
908 ///
c30ab7b3 909 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
1a4d82fc
JJ
910 /// This method operates in place and preserves the order of the retained
911 /// elements.
912 ///
913 /// # Examples
914 ///
915 /// ```
85aaf69f 916 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 917 /// vec.retain(|&x| x%2 == 0);
c34b1796 918 /// assert_eq!(vec, [2, 4]);
1a4d82fc 919 /// ```
85aaf69f 920 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
921 pub fn retain<F>(&mut self, mut f: F)
922 where F: FnMut(&T) -> bool
923 {
0531ce1d 924 self.drain_filter(|x| !f(x));
1a4d82fc
JJ
925 }
926
041b39d2
XL
927 /// Removes all but the first of consecutive elements in the vector that resolve to the same
928 /// key.
c30ab7b3
SL
929 ///
930 /// If the vector is sorted, this removes all duplicates.
931 ///
932 /// # Examples
933 ///
934 /// ```
c30ab7b3
SL
935 /// let mut vec = vec![10, 20, 21, 30, 20];
936 ///
937 /// vec.dedup_by_key(|i| *i / 10);
938 ///
939 /// assert_eq!(vec, [10, 20, 30, 20]);
940 /// ```
32a655c1 941 #[stable(feature = "dedup_by", since = "1.16.0")]
c30ab7b3
SL
942 #[inline]
943 pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq {
944 self.dedup_by(|a, b| key(a) == key(b))
945 }
946
041b39d2
XL
947 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
948 /// relation.
cc61c64b
XL
949 ///
950 /// The `same_bucket` function is passed references to two elements from the vector, and
041b39d2
XL
951 /// returns `true` if the elements compare equal, or `false` if they do not. The elements are
952 /// passed in opposite order from their order in the vector, so if `same_bucket(a, b)` returns
953 /// `true`, `a` is removed.
c30ab7b3
SL
954 ///
955 /// If the vector is sorted, this removes all duplicates.
956 ///
957 /// # Examples
958 ///
959 /// ```
c30ab7b3
SL
960 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
961 ///
962 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
963 ///
964 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
965 /// ```
32a655c1 966 #[stable(feature = "dedup_by", since = "1.16.0")]
c30ab7b3
SL
967 pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
968 unsafe {
969 // Although we have a mutable reference to `self`, we cannot make
970 // *arbitrary* changes. The `same_bucket` calls could panic, so we
971 // must ensure that the vector is in a valid state at all time.
972 //
973 // The way that we handle this is by using swaps; we iterate
974 // over all the elements, swapping as we go so that at the end
975 // the elements we wish to keep are in the front, and those we
976 // wish to reject are at the back. We can then truncate the
977 // vector. This operation is still O(n).
978 //
979 // Example: We start in this state, where `r` represents "next
980 // read" and `w` represents "next_write`.
981 //
982 // r
983 // +---+---+---+---+---+---+
984 // | 0 | 1 | 1 | 2 | 3 | 3 |
985 // +---+---+---+---+---+---+
986 // w
987 //
988 // Comparing self[r] against self[w-1], this is not a duplicate, so
989 // we swap self[r] and self[w] (no effect as r==w) and then increment both
990 // r and w, leaving us with:
991 //
992 // r
993 // +---+---+---+---+---+---+
994 // | 0 | 1 | 1 | 2 | 3 | 3 |
995 // +---+---+---+---+---+---+
996 // w
997 //
998 // Comparing self[r] against self[w-1], this value is a duplicate,
999 // so we increment `r` but leave everything else unchanged:
1000 //
1001 // r
1002 // +---+---+---+---+---+---+
1003 // | 0 | 1 | 1 | 2 | 3 | 3 |
1004 // +---+---+---+---+---+---+
1005 // w
1006 //
1007 // Comparing self[r] against self[w-1], this is not a duplicate,
1008 // so swap self[r] and self[w] and advance r and w:
1009 //
1010 // r
1011 // +---+---+---+---+---+---+
1012 // | 0 | 1 | 2 | 1 | 3 | 3 |
1013 // +---+---+---+---+---+---+
1014 // w
1015 //
1016 // Not a duplicate, repeat:
1017 //
1018 // r
1019 // +---+---+---+---+---+---+
1020 // | 0 | 1 | 2 | 3 | 1 | 3 |
1021 // +---+---+---+---+---+---+
1022 // w
1023 //
1024 // Duplicate, advance r. End of vec. Truncate to w.
1025
1026 let ln = self.len();
1027 if ln <= 1 {
1028 return;
1029 }
1030
1031 // Avoid bounds checks by using raw pointers.
1032 let p = self.as_mut_ptr();
1033 let mut r: usize = 1;
1034 let mut w: usize = 1;
1035
1036 while r < ln {
b7449926
XL
1037 let p_r = p.add(r);
1038 let p_wm1 = p.add(w - 1);
c30ab7b3
SL
1039 if !same_bucket(&mut *p_r, &mut *p_wm1) {
1040 if r != w {
1041 let p_w = p_wm1.offset(1);
1042 mem::swap(&mut *p_r, &mut *p_w);
1043 }
1044 w += 1;
1045 }
1046 r += 1;
1047 }
1048
1049 self.truncate(w);
1050 }
1051 }
1052
1a4d82fc
JJ
1053 /// Appends an element to the back of a collection.
1054 ///
1055 /// # Panics
1056 ///
85aaf69f 1057 /// Panics if the number of elements in the vector overflows a `usize`.
1a4d82fc
JJ
1058 ///
1059 /// # Examples
1060 ///
c34b1796 1061 /// ```
c1a9b12d 1062 /// let mut vec = vec![1, 2];
1a4d82fc 1063 /// vec.push(3);
c34b1796 1064 /// assert_eq!(vec, [1, 2, 3]);
1a4d82fc
JJ
1065 /// ```
1066 #[inline]
85aaf69f 1067 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1068 pub fn push(&mut self, value: T) {
c1a9b12d
SL
1069 // This will panic or abort if we would allocate > isize::MAX bytes
1070 // or if the length increment would overflow for zero-sized types.
92a42be0 1071 if self.len == self.buf.cap() {
94b46f34 1072 self.reserve(1);
92a42be0 1073 }
1a4d82fc 1074 unsafe {
b7449926 1075 let end = self.as_mut_ptr().add(self.len);
c1a9b12d 1076 ptr::write(end, value);
1a4d82fc
JJ
1077 self.len += 1;
1078 }
1079 }
1080
c30ab7b3 1081 /// Removes the last element from a vector and returns it, or [`None`] if it
e9174d1e 1082 /// is empty.
1a4d82fc 1083 ///
c30ab7b3
SL
1084 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1085 ///
1a4d82fc
JJ
1086 /// # Examples
1087 ///
c34b1796 1088 /// ```
85aaf69f 1089 /// let mut vec = vec![1, 2, 3];
1a4d82fc 1090 /// assert_eq!(vec.pop(), Some(3));
c34b1796 1091 /// assert_eq!(vec, [1, 2]);
1a4d82fc
JJ
1092 /// ```
1093 #[inline]
85aaf69f 1094 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1095 pub fn pop(&mut self) -> Option<T> {
1096 if self.len == 0 {
1097 None
1098 } else {
1099 unsafe {
1100 self.len -= 1;
1101 Some(ptr::read(self.get_unchecked(self.len())))
1102 }
1103 }
1104 }
1105
85aaf69f
SL
1106 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
1107 ///
1108 /// # Panics
1109 ///
1110 /// Panics if the number of elements in the vector overflows a `usize`.
1111 ///
1112 /// # Examples
1113 ///
1114 /// ```
1115 /// let mut vec = vec![1, 2, 3];
1116 /// let mut vec2 = vec![4, 5, 6];
1117 /// vec.append(&mut vec2);
c34b1796
AL
1118 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1119 /// assert_eq!(vec2, []);
85aaf69f
SL
1120 /// ```
1121 #[inline]
e9174d1e 1122 #[stable(feature = "append", since = "1.4.0")]
85aaf69f 1123 pub fn append(&mut self, other: &mut Self) {
92a42be0 1124 unsafe {
cc61c64b 1125 self.append_elements(other.as_slice() as _);
92a42be0
SL
1126 other.set_len(0);
1127 }
85aaf69f
SL
1128 }
1129
cc61c64b
XL
1130 /// Appends elements to `Self` from other buffer.
1131 #[inline]
1132 unsafe fn append_elements(&mut self, other: *const [T]) {
1133 let count = (*other).len();
1134 self.reserve(count);
1135 let len = self.len();
1136 ptr::copy_nonoverlapping(other as *const T, self.get_unchecked_mut(len), count);
1137 self.len += count;
1138 }
1139
7cac9316 1140 /// Creates a draining iterator that removes the specified range in the vector
9cc50fc6 1141 /// and yields the removed items.
d9579d0f 1142 ///
32a655c1
SL
1143 /// Note 1: The element range is removed even if the iterator is only
1144 /// partially consumed or not consumed at all.
9cc50fc6 1145 ///
7cac9316 1146 /// Note 2: It is unspecified how many elements are removed from the vector
d9579d0f
AL
1147 /// if the `Drain` value is leaked.
1148 ///
1149 /// # Panics
1150 ///
1151 /// Panics if the starting point is greater than the end point or if
1152 /// the end point is greater than the length of the vector.
1a4d82fc
JJ
1153 ///
1154 /// # Examples
1155 ///
1156 /// ```
d9579d0f 1157 /// let mut v = vec![1, 2, 3];
9cc50fc6
SL
1158 /// let u: Vec<_> = v.drain(1..).collect();
1159 /// assert_eq!(v, &[1]);
1160 /// assert_eq!(u, &[2, 3]);
1161 ///
1162 /// // A full range clears the vector
1163 /// v.drain(..);
d9579d0f 1164 /// assert_eq!(v, &[]);
1a4d82fc 1165 /// ```
92a42be0
SL
1166 #[stable(feature = "drain", since = "1.6.0")]
1167 pub fn drain<R>(&mut self, range: R) -> Drain<T>
0531ce1d 1168 where R: RangeBounds<usize>
92a42be0 1169 {
d9579d0f
AL
1170 // Memory safety
1171 //
1172 // When the Drain is first created, it shortens the length of
ff7c6d11 1173 // the source vector to make sure no uninitialized or moved-from elements
d9579d0f
AL
1174 // are accessible at all if the Drain's destructor never gets to run.
1175 //
1176 // Drain will ptr::read out the values to remove.
1177 // When finished, remaining tail of the vec is copied back to cover
1178 // the hole, and the vector length is restored to the new length.
1179 //
1180 let len = self.len();
94b46f34 1181 let start = match range.start_bound() {
32a655c1
SL
1182 Included(&n) => n,
1183 Excluded(&n) => n + 1,
1184 Unbounded => 0,
1185 };
94b46f34 1186 let end = match range.end_bound() {
32a655c1
SL
1187 Included(&n) => n + 1,
1188 Excluded(&n) => n,
1189 Unbounded => len,
1190 };
d9579d0f
AL
1191 assert!(start <= end);
1192 assert!(end <= len);
1193
1a4d82fc 1194 unsafe {
d9579d0f
AL
1195 // set self.vec length's to start, to be safe in case Drain is leaked
1196 self.set_len(start);
1197 // Use the borrow in the IterMut to indicate borrowing behavior of the
1198 // whole Drain iterator (like &mut T).
b7449926 1199 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start),
92a42be0 1200 end - start);
1a4d82fc 1201 Drain {
d9579d0f
AL
1202 tail_start: end,
1203 tail_len: len - end,
5bcae85e 1204 iter: range_slice.iter(),
2c00a5a8 1205 vec: NonNull::from(self),
1a4d82fc
JJ
1206 }
1207 }
1208 }
1209
1210 /// Clears the vector, removing all values.
1211 ///
8bb4bdeb
XL
1212 /// Note that this method has no effect on the allocated capacity
1213 /// of the vector.
1214 ///
1a4d82fc
JJ
1215 /// # Examples
1216 ///
1217 /// ```
85aaf69f 1218 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
1219 ///
1220 /// v.clear();
1221 ///
1222 /// assert!(v.is_empty());
1223 /// ```
1224 #[inline]
85aaf69f 1225 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1226 pub fn clear(&mut self) {
1227 self.truncate(0)
1228 }
1229
7cac9316
XL
1230 /// Returns the number of elements in the vector, also referred to
1231 /// as its 'length'.
1a4d82fc
JJ
1232 ///
1233 /// # Examples
1234 ///
1235 /// ```
85aaf69f 1236 /// let a = vec![1, 2, 3];
1a4d82fc
JJ
1237 /// assert_eq!(a.len(), 3);
1238 /// ```
1239 #[inline]
85aaf69f 1240 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1241 pub fn len(&self) -> usize {
1242 self.len
1243 }
1a4d82fc
JJ
1244
1245 /// Returns `true` if the vector contains no elements.
1246 ///
1247 /// # Examples
1248 ///
1249 /// ```
1250 /// let mut v = Vec::new();
1251 /// assert!(v.is_empty());
1252 ///
85aaf69f 1253 /// v.push(1);
1a4d82fc
JJ
1254 /// assert!(!v.is_empty());
1255 /// ```
85aaf69f 1256 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1257 pub fn is_empty(&self) -> bool {
1258 self.len() == 0
1259 }
1a4d82fc 1260
85aaf69f
SL
1261 /// Splits the collection into two at the given index.
1262 ///
1263 /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
1264 /// and the returned `Self` contains elements `[at, len)`.
1265 ///
1266 /// Note that the capacity of `self` does not change.
1267 ///
1268 /// # Panics
1269 ///
1270 /// Panics if `at > len`.
1271 ///
1272 /// # Examples
1273 ///
1274 /// ```
1275 /// let mut vec = vec![1,2,3];
1276 /// let vec2 = vec.split_off(1);
c34b1796
AL
1277 /// assert_eq!(vec, [1]);
1278 /// assert_eq!(vec2, [2, 3]);
85aaf69f
SL
1279 /// ```
1280 #[inline]
e9174d1e 1281 #[stable(feature = "split_off", since = "1.4.0")]
85aaf69f
SL
1282 pub fn split_off(&mut self, at: usize) -> Self {
1283 assert!(at <= self.len(), "`at` out of bounds");
1284
1285 let other_len = self.len - at;
1286 let mut other = Vec::with_capacity(other_len);
1287
1288 // Unsafely `set_len` and copy items to `other`.
1289 unsafe {
1290 self.set_len(at);
1291 other.set_len(other_len);
1292
b7449926 1293 ptr::copy_nonoverlapping(self.as_ptr().add(at),
92a42be0
SL
1294 other.as_mut_ptr(),
1295 other.len());
85aaf69f
SL
1296 }
1297 other
1298 }
83c7162d
XL
1299
1300 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1301 ///
1302 /// If `new_len` is greater than `len`, the `Vec` is extended by the
1303 /// difference, with each additional slot filled with the result of
1304 /// calling the closure `f`. The return values from `f` will end up
1305 /// in the `Vec` in the order they have been generated.
1306 ///
1307 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1308 ///
1309 /// This method uses a closure to create new values on every push. If
1310 /// you'd rather [`Clone`] a given value, use [`resize`]. If you want
1311 /// to use the [`Default`] trait to generate values, you can pass
1312 /// [`Default::default()`] as the second argument..
1313 ///
1314 /// # Examples
1315 ///
1316 /// ```
1317 /// #![feature(vec_resize_with)]
1318 ///
1319 /// let mut vec = vec![1, 2, 3];
1320 /// vec.resize_with(5, Default::default);
1321 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
1322 ///
1323 /// let mut vec = vec![];
1324 /// let mut p = 1;
1325 /// vec.resize_with(4, || { p *= 2; p });
1326 /// assert_eq!(vec, [2, 4, 8, 16]);
1327 /// ```
1328 ///
1329 /// [`resize`]: #method.resize
1330 /// [`Clone`]: ../../std/clone/trait.Clone.html
1331 #[unstable(feature = "vec_resize_with", issue = "41758")]
1332 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
1333 where F: FnMut() -> T
1334 {
1335 let len = self.len();
1336 if new_len > len {
1337 self.extend_with(new_len - len, ExtendFunc(f));
1338 } else {
1339 self.truncate(new_len);
1340 }
1341 }
1a4d82fc
JJ
1342}
1343
1344impl<T: Clone> Vec<T> {
7cac9316 1345 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1a4d82fc 1346 ///
7cac9316 1347 /// If `new_len` is greater than `len`, the `Vec` is extended by the
92a42be0 1348 /// difference, with each additional slot filled with `value`.
7cac9316
XL
1349 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1350 ///
0531ce1d 1351 /// This method requires [`Clone`] to be able clone the passed value. If
83c7162d
XL
1352 /// you need more flexibility (or want to rely on [`Default`] instead of
1353 /// [`Clone`]), use [`resize_with`].
1a4d82fc
JJ
1354 ///
1355 /// # Examples
1356 ///
1357 /// ```
1358 /// let mut vec = vec!["hello"];
1359 /// vec.resize(3, "world");
c34b1796 1360 /// assert_eq!(vec, ["hello", "world", "world"]);
1a4d82fc 1361 ///
85aaf69f 1362 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 1363 /// vec.resize(2, 0);
c34b1796 1364 /// assert_eq!(vec, [1, 2]);
1a4d82fc 1365 /// ```
7cac9316 1366 ///
0531ce1d
XL
1367 /// [`Clone`]: ../../std/clone/trait.Clone.html
1368 /// [`Default`]: ../../std/default/trait.Default.html
83c7162d 1369 /// [`resize_with`]: #method.resize_with
b039eaaf 1370 #[stable(feature = "vec_resize", since = "1.5.0")]
85aaf69f 1371 pub fn resize(&mut self, new_len: usize, value: T) {
1a4d82fc
JJ
1372 let len = self.len();
1373
1374 if new_len > len {
7cac9316 1375 self.extend_with(new_len - len, ExtendElement(value))
1a4d82fc
JJ
1376 } else {
1377 self.truncate(new_len);
1378 }
1379 }
1380
7cac9316
XL
1381 /// Clones and appends all elements in a slice to the `Vec`.
1382 ///
1383 /// Iterates over the slice `other`, clones each element, and then appends
1384 /// it to this `Vec`. The `other` vector is traversed in-order.
1385 ///
0531ce1d 1386 /// Note that this function is same as [`extend`] except that it is
7cac9316
XL
1387 /// specialized to work with slices instead. If and when Rust gets
1388 /// specialization this function will likely be deprecated (but still
1389 /// available).
1390 ///
1391 /// # Examples
1392 ///
1393 /// ```
1394 /// let mut vec = vec![1];
1395 /// vec.extend_from_slice(&[2, 3, 4]);
1396 /// assert_eq!(vec, [1, 2, 3, 4]);
1397 /// ```
0531ce1d
XL
1398 ///
1399 /// [`extend`]: #method.extend
7cac9316
XL
1400 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
1401 pub fn extend_from_slice(&mut self, other: &[T]) {
1402 self.spec_extend(other.iter())
1403 }
1404}
1405
1406impl<T: Default> Vec<T> {
1407 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1408 ///
1409 /// If `new_len` is greater than `len`, the `Vec` is extended by the
0531ce1d 1410 /// difference, with each additional slot filled with [`Default::default()`].
7cac9316
XL
1411 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1412 ///
0531ce1d
XL
1413 /// This method uses [`Default`] to create new values on every push. If
1414 /// you'd rather [`Clone`] a given value, use [`resize`].
7cac9316
XL
1415 ///
1416 /// # Examples
1417 ///
1418 /// ```
1419 /// #![feature(vec_resize_default)]
1420 ///
1421 /// let mut vec = vec![1, 2, 3];
1422 /// vec.resize_default(5);
1423 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
1424 ///
1425 /// let mut vec = vec![1, 2, 3, 4];
1426 /// vec.resize_default(2);
1427 /// assert_eq!(vec, [1, 2]);
1428 /// ```
1429 ///
1430 /// [`resize`]: #method.resize
0531ce1d
XL
1431 /// [`Default::default()`]: ../../std/default/trait.Default.html#tymethod.default
1432 /// [`Default`]: ../../std/default/trait.Default.html
1433 /// [`Clone`]: ../../std/clone/trait.Clone.html
7cac9316
XL
1434 #[unstable(feature = "vec_resize_default", issue = "41758")]
1435 pub fn resize_default(&mut self, new_len: usize) {
1436 let len = self.len();
1437
1438 if new_len > len {
1439 self.extend_with(new_len - len, ExtendDefault);
1440 } else {
1441 self.truncate(new_len);
1442 }
1443 }
1444}
1445
1446// This code generalises `extend_with_{element,default}`.
1447trait ExtendWith<T> {
83c7162d 1448 fn next(&mut self) -> T;
7cac9316
XL
1449 fn last(self) -> T;
1450}
1451
1452struct ExtendElement<T>(T);
1453impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
83c7162d 1454 fn next(&mut self) -> T { self.0.clone() }
7cac9316
XL
1455 fn last(self) -> T { self.0 }
1456}
1457
1458struct ExtendDefault;
1459impl<T: Default> ExtendWith<T> for ExtendDefault {
83c7162d 1460 fn next(&mut self) -> T { Default::default() }
7cac9316
XL
1461 fn last(self) -> T { Default::default() }
1462}
83c7162d
XL
1463
1464struct ExtendFunc<F>(F);
1465impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
1466 fn next(&mut self) -> T { (self.0)() }
1467 fn last(mut self) -> T { (self.0)() }
1468}
1469
7cac9316
XL
1470impl<T> Vec<T> {
1471 /// Extend the vector by `n` values, using the given generator.
83c7162d 1472 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
c1a9b12d
SL
1473 self.reserve(n);
1474
1475 unsafe {
b7449926 1476 let mut ptr = self.as_mut_ptr().add(self.len());
9e0c209e 1477 // Use SetLenOnDrop to work around bug where compiler
8bb4bdeb 1478 // may not realize the store through `ptr` through self.set_len()
9e0c209e
SL
1479 // don't alias.
1480 let mut local_len = SetLenOnDrop::new(&mut self.len);
1481
c1a9b12d 1482 // Write all elements except the last one
9e0c209e 1483 for _ in 1..n {
7cac9316 1484 ptr::write(ptr, value.next());
c1a9b12d 1485 ptr = ptr.offset(1);
7cac9316 1486 // Increment the length in every step in case next() panics
9e0c209e 1487 local_len.increment_len(1);
c1a9b12d
SL
1488 }
1489
1490 if n > 0 {
1491 // We can write the last element directly without cloning needlessly
7cac9316 1492 ptr::write(ptr, value.last());
9e0c209e 1493 local_len.increment_len(1);
c1a9b12d 1494 }
9e0c209e
SL
1495
1496 // len set by scope guard
c1a9b12d
SL
1497 }
1498 }
1a4d82fc
JJ
1499}
1500
9e0c209e
SL
1501// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
1502//
1503// The idea is: The length field in SetLenOnDrop is a local variable
1504// that the optimizer will see does not alias with any stores through the Vec's data
1505// pointer. This is a workaround for alias analysis issue #32155
1506struct SetLenOnDrop<'a> {
1507 len: &'a mut usize,
1508 local_len: usize,
1509}
1510
1511impl<'a> SetLenOnDrop<'a> {
1512 #[inline]
1513 fn new(len: &'a mut usize) -> Self {
1514 SetLenOnDrop { local_len: *len, len: len }
1515 }
1516
1517 #[inline]
1518 fn increment_len(&mut self, increment: usize) {
1519 self.local_len += increment;
1520 }
b7449926
XL
1521
1522 #[inline]
1523 fn decrement_len(&mut self, decrement: usize) {
1524 self.local_len -= decrement;
1525 }
9e0c209e
SL
1526}
1527
1528impl<'a> Drop for SetLenOnDrop<'a> {
1529 #[inline]
1530 fn drop(&mut self) {
1531 *self.len = self.local_len;
1532 }
1533}
1534
1a4d82fc
JJ
1535impl<T: PartialEq> Vec<T> {
1536 /// Removes consecutive repeated elements in the vector.
1537 ///
1538 /// If the vector is sorted, this removes all duplicates.
1539 ///
1540 /// # Examples
1541 ///
1542 /// ```
85aaf69f 1543 /// let mut vec = vec![1, 2, 2, 3, 2];
1a4d82fc
JJ
1544 ///
1545 /// vec.dedup();
1546 ///
c34b1796 1547 /// assert_eq!(vec, [1, 2, 3, 2]);
1a4d82fc 1548 /// ```
85aaf69f 1549 #[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 1550 #[inline]
1a4d82fc 1551 pub fn dedup(&mut self) {
c30ab7b3 1552 self.dedup_by(|a, b| a == b)
1a4d82fc 1553 }
8bb4bdeb
XL
1554
1555 /// Removes the first instance of `item` from the vector if the item exists.
1556 ///
1557 /// # Examples
1558 ///
1559 /// ```
cc61c64b 1560 /// # #![feature(vec_remove_item)]
8bb4bdeb
XL
1561 /// let mut vec = vec![1, 2, 3, 1];
1562 ///
1563 /// vec.remove_item(&1);
1564 ///
1565 /// assert_eq!(vec, vec![2, 3, 1]);
1566 /// ```
1567 #[unstable(feature = "vec_remove_item", reason = "recently added", issue = "40062")]
1568 pub fn remove_item(&mut self, item: &T) -> Option<T> {
ff7c6d11 1569 let pos = self.iter().position(|x| *x == *item)?;
8bb4bdeb
XL
1570 Some(self.remove(pos))
1571 }
1a4d82fc
JJ
1572}
1573
1574////////////////////////////////////////////////////////////////////////////////
1575// Internal methods and functions
1576////////////////////////////////////////////////////////////////////////////////
1577
85aaf69f
SL
1578#[doc(hidden)]
1579#[stable(feature = "rust1", since = "1.0.0")]
1580pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
cc61c64b
XL
1581 <T as SpecFromElem>::from_elem(elem, n)
1582}
1583
1584// Specialization trait used for Vec::from_elem
1585trait SpecFromElem: Sized {
1586 fn from_elem(elem: Self, n: usize) -> Vec<Self>;
1587}
1588
1589impl<T: Clone> SpecFromElem for T {
1590 default fn from_elem(elem: Self, n: usize) -> Vec<Self> {
1591 let mut v = Vec::with_capacity(n);
7cac9316 1592 v.extend_with(n, ExtendElement(elem));
cc61c64b
XL
1593 v
1594 }
85aaf69f
SL
1595}
1596
cc61c64b
XL
1597impl SpecFromElem for u8 {
1598 #[inline]
1599 fn from_elem(elem: u8, n: usize) -> Vec<u8> {
1600 if elem == 0 {
1601 return Vec {
1602 buf: RawVec::with_capacity_zeroed(n),
1603 len: n,
1604 }
1605 }
1606 unsafe {
1607 let mut v = Vec::with_capacity(n);
1608 ptr::write_bytes(v.as_mut_ptr(), elem, n);
1609 v.set_len(n);
1610 v
1611 }
1612 }
1613}
1614
83c7162d
XL
1615impl<T: Clone + IsZero> SpecFromElem for T {
1616 #[inline]
1617 fn from_elem(elem: T, n: usize) -> Vec<T> {
1618 if elem.is_zero() {
1619 return Vec {
1620 buf: RawVec::with_capacity_zeroed(n),
1621 len: n,
1622 }
1623 }
1624 let mut v = Vec::with_capacity(n);
1625 v.extend_with(n, ExtendElement(elem));
1626 v
1627 }
1628}
1629
1630unsafe trait IsZero {
1631 /// Whether this value is zero
1632 fn is_zero(&self) -> bool;
1633}
1634
1635macro_rules! impl_is_zero {
cc61c64b 1636 ($t: ty, $is_zero: expr) => {
83c7162d 1637 unsafe impl IsZero for $t {
cc61c64b 1638 #[inline]
83c7162d
XL
1639 fn is_zero(&self) -> bool {
1640 $is_zero(*self)
cc61c64b
XL
1641 }
1642 }
83c7162d 1643 }
cc61c64b
XL
1644}
1645
83c7162d
XL
1646impl_is_zero!(i8, |x| x == 0);
1647impl_is_zero!(i16, |x| x == 0);
1648impl_is_zero!(i32, |x| x == 0);
1649impl_is_zero!(i64, |x| x == 0);
1650impl_is_zero!(i128, |x| x == 0);
1651impl_is_zero!(isize, |x| x == 0);
1652
1653impl_is_zero!(u16, |x| x == 0);
1654impl_is_zero!(u32, |x| x == 0);
1655impl_is_zero!(u64, |x| x == 0);
1656impl_is_zero!(u128, |x| x == 0);
1657impl_is_zero!(usize, |x| x == 0);
cc61c64b 1658
83c7162d
XL
1659impl_is_zero!(char, |x| x == '\0');
1660
1661impl_is_zero!(f32, |x: f32| x.to_bits() == 0);
1662impl_is_zero!(f64, |x: f64| x.to_bits() == 0);
1663
1664unsafe impl<T: ?Sized> IsZero for *const T {
1665 #[inline]
1666 fn is_zero(&self) -> bool {
1667 (*self).is_null()
1668 }
1669}
1670
1671unsafe impl<T: ?Sized> IsZero for *mut T {
1672 #[inline]
1673 fn is_zero(&self) -> bool {
1674 (*self).is_null()
1675 }
1676}
cc61c64b 1677
cc61c64b 1678
1a4d82fc
JJ
1679////////////////////////////////////////////////////////////////////////////////
1680// Common trait implementations for Vec
1681////////////////////////////////////////////////////////////////////////////////
1682
bd371182 1683#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1684impl<T: Clone> Clone for Vec<T> {
c34b1796 1685 #[cfg(not(test))]
92a42be0
SL
1686 fn clone(&self) -> Vec<T> {
1687 <[T]>::to_vec(&**self)
1688 }
c34b1796
AL
1689
1690 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
1691 // required for this method definition, is not available. Instead use the
1692 // `slice::to_vec` function which is only available with cfg(test)
1693 // NB see the slice::hack module in slice.rs for more information
1694 #[cfg(test)]
1695 fn clone(&self) -> Vec<T> {
1696 ::slice::to_vec(&**self)
1697 }
1a4d82fc
JJ
1698
1699 fn clone_from(&mut self, other: &Vec<T>) {
cc61c64b 1700 other.as_slice().clone_into(self);
1a4d82fc
JJ
1701 }
1702}
1703
85aaf69f 1704#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1705impl<T: Hash> Hash for Vec<T> {
1a4d82fc 1706 #[inline]
85aaf69f
SL
1707 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1708 Hash::hash(&**self, state)
1a4d82fc
JJ
1709 }
1710}
1711
85aaf69f 1712#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
1713#[rustc_on_unimplemented(
1714 message="vector indices are of type `usize` or ranges of `usize`",
1715 label="vector indices are of type `usize` or ranges of `usize`",
1716)]
0531ce1d
XL
1717impl<T, I> Index<I> for Vec<T>
1718where
1719 I: ::core::slice::SliceIndex<[T]>,
1720{
1721 type Output = I::Output;
54a0048b
SL
1722
1723 #[inline]
0531ce1d 1724 fn index(&self, index: I) -> &Self::Output {
54a0048b
SL
1725 Index::index(&**self, index)
1726 }
1727}
1a4d82fc 1728
85aaf69f 1729#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
1730#[rustc_on_unimplemented(
1731 message="vector indices are of type `usize` or ranges of `usize`",
1732 label="vector indices are of type `usize` or ranges of `usize`",
1733)]
0531ce1d
XL
1734impl<T, I> IndexMut<I> for Vec<T>
1735where
1736 I: ::core::slice::SliceIndex<[T]>,
1737{
54a0048b 1738 #[inline]
0531ce1d 1739 fn index_mut(&mut self, index: I) -> &mut Self::Output {
54a0048b
SL
1740 IndexMut::index_mut(&mut **self, index)
1741 }
1742}
1a4d82fc 1743
85aaf69f 1744#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1745impl<T> ops::Deref for Vec<T> {
1746 type Target = [T];
1747
c34b1796
AL
1748 fn deref(&self) -> &[T] {
1749 unsafe {
c1a9b12d 1750 let p = self.buf.ptr();
e9174d1e 1751 assume(!p.is_null());
c34b1796
AL
1752 slice::from_raw_parts(p, self.len)
1753 }
1754 }
1a4d82fc
JJ
1755}
1756
85aaf69f 1757#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1758impl<T> ops::DerefMut for Vec<T> {
c34b1796
AL
1759 fn deref_mut(&mut self) -> &mut [T] {
1760 unsafe {
c1a9b12d 1761 let ptr = self.buf.ptr();
c34b1796
AL
1762 assume(!ptr.is_null());
1763 slice::from_raw_parts_mut(ptr, self.len)
1764 }
1765 }
1a4d82fc
JJ
1766}
1767
85aaf69f 1768#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1769impl<T> FromIterator<T> for Vec<T> {
1770 #[inline]
54a0048b 1771 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
cc61c64b 1772 <Self as SpecExtend<T, I::IntoIter>>::from_iter(iter.into_iter())
1a4d82fc
JJ
1773 }
1774}
1775
85aaf69f
SL
1776#[stable(feature = "rust1", since = "1.0.0")]
1777impl<T> IntoIterator for Vec<T> {
1778 type Item = T;
1779 type IntoIter = IntoIter<T>;
1780
9346a6ac
AL
1781 /// Creates a consuming iterator, that is, one that moves each value out of
1782 /// the vector (from start to end). The vector cannot be used after calling
1783 /// this.
1784 ///
1785 /// # Examples
1786 ///
1787 /// ```
1788 /// let v = vec!["a".to_string(), "b".to_string()];
1789 /// for s in v.into_iter() {
1790 /// // s has type String, not &String
1791 /// println!("{}", s);
1792 /// }
1793 /// ```
1794 #[inline]
c1a9b12d 1795 fn into_iter(mut self) -> IntoIter<T> {
9346a6ac 1796 unsafe {
5bcae85e
SL
1797 let begin = self.as_mut_ptr();
1798 assume(!begin.is_null());
9346a6ac 1799 let end = if mem::size_of::<T>() == 0 {
5bcae85e 1800 arith_offset(begin as *const i8, self.len() as isize) as *const T
9346a6ac 1801 } else {
b7449926 1802 begin.add(self.len()) as *const T
9346a6ac 1803 };
5bcae85e 1804 let cap = self.buf.cap();
9346a6ac 1805 mem::forget(self);
92a42be0 1806 IntoIter {
2c00a5a8 1807 buf: NonNull::new_unchecked(begin),
ff7c6d11 1808 phantom: PhantomData,
3b2f2976 1809 cap,
92a42be0 1810 ptr: begin,
3b2f2976 1811 end,
92a42be0 1812 }
9346a6ac 1813 }
85aaf69f
SL
1814 }
1815}
1816
1817#[stable(feature = "rust1", since = "1.0.0")]
1818impl<'a, T> IntoIterator for &'a Vec<T> {
1819 type Item = &'a T;
1820 type IntoIter = slice::Iter<'a, T>;
1821
1822 fn into_iter(self) -> slice::Iter<'a, T> {
1823 self.iter()
1824 }
1825}
1826
1827#[stable(feature = "rust1", since = "1.0.0")]
1828impl<'a, T> IntoIterator for &'a mut Vec<T> {
1829 type Item = &'a mut T;
1830 type IntoIter = slice::IterMut<'a, T>;
1831
3b2f2976 1832 fn into_iter(self) -> slice::IterMut<'a, T> {
85aaf69f
SL
1833 self.iter_mut()
1834 }
1835}
1836
bd371182 1837#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1838impl<T> Extend<T> for Vec<T> {
1839 #[inline]
54a0048b 1840 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
cc61c64b 1841 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
62682a34
SL
1842 }
1843}
1844
476ff2be
SL
1845// Specialization trait used for Vec::from_iter and Vec::extend
1846trait SpecExtend<T, I> {
1847 fn from_iter(iter: I) -> Self;
1848 fn spec_extend(&mut self, iter: I);
c30ab7b3 1849}
c30ab7b3 1850
476ff2be
SL
1851impl<T, I> SpecExtend<T, I> for Vec<T>
1852 where I: Iterator<Item=T>,
c30ab7b3 1853{
476ff2be
SL
1854 default fn from_iter(mut iterator: I) -> Self {
1855 // Unroll the first iteration, as the vector is going to be
1856 // expanded on this iteration in every case when the iterable is not
1857 // empty, but the loop in extend_desugared() is not going to see the
1858 // vector being full in the few subsequent loop iterations.
1859 // So we get better branch prediction.
1860 let mut vector = match iterator.next() {
1861 None => return Vec::new(),
1862 Some(element) => {
1863 let (lower, _) = iterator.size_hint();
1864 let mut vector = Vec::with_capacity(lower.saturating_add(1));
1865 unsafe {
1866 ptr::write(vector.get_unchecked_mut(0), element);
1867 vector.set_len(1);
1868 }
1869 vector
1870 }
1871 };
cc61c64b 1872 <Vec<T> as SpecExtend<T, I>>::spec_extend(&mut vector, iterator);
476ff2be
SL
1873 vector
1874 }
1875
1876 default fn spec_extend(&mut self, iter: I) {
1877 self.extend_desugared(iter)
1878 }
1879}
1880
1881impl<T, I> SpecExtend<T, I> for Vec<T>
1882 where I: TrustedLen<Item=T>,
1883{
cc61c64b 1884 default fn from_iter(iterator: I) -> Self {
476ff2be
SL
1885 let mut vector = Vec::new();
1886 vector.spec_extend(iterator);
1887 vector
1888 }
1889
cc61c64b 1890 default fn spec_extend(&mut self, iterator: I) {
476ff2be
SL
1891 // This is the case for a TrustedLen iterator.
1892 let (low, high) = iterator.size_hint();
c30ab7b3
SL
1893 if let Some(high_value) = high {
1894 debug_assert_eq!(low, high_value,
1895 "TrustedLen iterator's size hint is not exact: {:?}",
1896 (low, high));
1897 }
476ff2be 1898 if let Some(additional) = high {
c30ab7b3 1899 self.reserve(additional);
62682a34 1900 unsafe {
b7449926 1901 let mut ptr = self.as_mut_ptr().add(self.len());
c30ab7b3
SL
1902 let mut local_len = SetLenOnDrop::new(&mut self.len);
1903 for element in iterator {
1904 ptr::write(ptr, element);
1905 ptr = ptr.offset(1);
1906 // NB can't overflow since we would have had to alloc the address space
1907 local_len.increment_len(1);
1908 }
1909 }
1910 } else {
476ff2be
SL
1911 self.extend_desugared(iterator)
1912 }
1913 }
1914}
1915
cc61c64b
XL
1916impl<T> SpecExtend<T, IntoIter<T>> for Vec<T> {
1917 fn from_iter(iterator: IntoIter<T>) -> Self {
1918 // A common case is passing a vector into a function which immediately
1919 // re-collects into a vector. We can short circuit this if the IntoIter
1920 // has not been advanced at all.
7cac9316 1921 if iterator.buf.as_ptr() as *const _ == iterator.ptr {
cc61c64b 1922 unsafe {
7cac9316 1923 let vec = Vec::from_raw_parts(iterator.buf.as_ptr(),
cc61c64b
XL
1924 iterator.len(),
1925 iterator.cap);
1926 mem::forget(iterator);
1927 vec
1928 }
1929 } else {
1930 let mut vector = Vec::new();
1931 vector.spec_extend(iterator);
1932 vector
1933 }
1934 }
1935
1936 fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
1937 unsafe {
1938 self.append_elements(iterator.as_slice() as _);
1939 }
1940 iterator.ptr = iterator.end;
1941 }
1942}
1943
476ff2be
SL
1944impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T>
1945 where I: Iterator<Item=&'a T>,
1946 T: Clone,
1947{
1948 default fn from_iter(iterator: I) -> Self {
1949 SpecExtend::from_iter(iterator.cloned())
1950 }
1951
1952 default fn spec_extend(&mut self, iterator: I) {
1953 self.spec_extend(iterator.cloned())
1954 }
1955}
1956
1957impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T>
1958 where T: Copy,
1959{
1960 fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
1961 let slice = iterator.as_slice();
1962 self.reserve(slice.len());
1963 unsafe {
1964 let len = self.len();
1965 self.set_len(len + slice.len());
1966 self.get_unchecked_mut(len..).copy_from_slice(slice);
1967 }
1968 }
1969}
1970
1971impl<T> Vec<T> {
1972 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
1973 // This is the case for a general iterator.
1974 //
1975 // This function should be the moral equivalent of:
1976 //
1977 // for item in iterator {
1978 // self.push(item);
1979 // }
1980 while let Some(element) = iterator.next() {
1981 let len = self.len();
1982 if len == self.capacity() {
1983 let (lower, _) = iterator.size_hint();
1984 self.reserve(lower.saturating_add(1));
1985 }
1986 unsafe {
1987 ptr::write(self.get_unchecked_mut(len), element);
1988 // NB can't overflow since we would have had to alloc the address space
1989 self.set_len(len + 1);
62682a34 1990 }
1a4d82fc
JJ
1991 }
1992 }
7cac9316
XL
1993
1994 /// Creates a splicing iterator that replaces the specified range in the vector
1995 /// with the given `replace_with` iterator and yields the removed items.
1996 /// `replace_with` does not need to be the same length as `range`.
1997 ///
1998 /// Note 1: The element range is removed even if the iterator is not
1999 /// consumed until the end.
2000 ///
2001 /// Note 2: It is unspecified how many elements are removed from the vector,
2002 /// if the `Splice` value is leaked.
2003 ///
2004 /// Note 3: The input iterator `replace_with` is only consumed
2005 /// when the `Splice` value is dropped.
2006 ///
2007 /// Note 4: This is optimal if:
2008 ///
2009 /// * The tail (elements in the vector after `range`) is empty,
2010 /// * or `replace_with` yields fewer elements than `range`’s length
2011 /// * or the lower bound of its `size_hint()` is exact.
2012 ///
2013 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2014 ///
2015 /// # Panics
2016 ///
2017 /// Panics if the starting point is greater than the end point or if
2018 /// the end point is greater than the length of the vector.
2019 ///
2020 /// # Examples
2021 ///
2022 /// ```
7cac9316
XL
2023 /// let mut v = vec![1, 2, 3];
2024 /// let new = [7, 8];
2025 /// let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect();
2026 /// assert_eq!(v, &[7, 8, 3]);
2027 /// assert_eq!(u, &[1, 2]);
2028 /// ```
2029 #[inline]
3b2f2976 2030 #[stable(feature = "vec_splice", since = "1.21.0")]
7cac9316 2031 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter>
0531ce1d 2032 where R: RangeBounds<usize>, I: IntoIterator<Item=T>
7cac9316
XL
2033 {
2034 Splice {
2035 drain: self.drain(range),
2036 replace_with: replace_with.into_iter(),
2037 }
2038 }
2039
3b2f2976
XL
2040 /// Creates an iterator which uses a closure to determine if an element should be removed.
2041 ///
2042 /// If the closure returns true, then the element is removed and yielded.
0531ce1d
XL
2043 /// If the closure returns false, the element will remain in the vector and will not be yielded
2044 /// by the iterator.
3b2f2976
XL
2045 ///
2046 /// Using this method is equivalent to the following code:
2047 ///
2048 /// ```
ea8adc8c
XL
2049 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
2050 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3b2f2976
XL
2051 /// let mut i = 0;
2052 /// while i != vec.len() {
2053 /// if some_predicate(&mut vec[i]) {
2054 /// let val = vec.remove(i);
2055 /// // your code here
ea8adc8c
XL
2056 /// } else {
2057 /// i += 1;
3b2f2976 2058 /// }
3b2f2976 2059 /// }
ea8adc8c
XL
2060 ///
2061 /// # assert_eq!(vec, vec![1, 4, 5]);
3b2f2976
XL
2062 /// ```
2063 ///
2064 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
2065 /// because it can backshift the elements of the array in bulk.
2066 ///
2067 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
2068 /// regardless of whether you choose to keep or remove it.
2069 ///
2070 ///
2071 /// # Examples
2072 ///
2073 /// Splitting an array into evens and odds, reusing the original allocation:
2074 ///
2075 /// ```
2076 /// #![feature(drain_filter)]
2077 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2078 ///
2079 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
2080 /// let odds = numbers;
2081 ///
2082 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2083 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2084 /// ```
2085 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2086 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F>
2087 where F: FnMut(&mut T) -> bool,
2088 {
2089 let old_len = self.len();
2090
2091 // Guard against us getting leaked (leak amplification)
2092 unsafe { self.set_len(0); }
2093
2094 DrainFilter {
2095 vec: self,
2096 idx: 0,
2097 del: 0,
2098 old_len,
2099 pred: filter,
2100 }
2101 }
1a4d82fc
JJ
2102}
2103
3b2f2976
XL
2104/// Extend implementation that copies elements out of references before pushing them onto the Vec.
2105///
2106/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2107/// append the entire slice at once.
2108///
2109/// [`copy_from_slice`]: ../../std/primitive.slice.html#method.copy_from_slice
62682a34
SL
2110#[stable(feature = "extend_ref", since = "1.2.0")]
2111impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
92a42be0 2112 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
476ff2be 2113 self.spec_extend(iter.into_iter())
62682a34
SL
2114 }
2115}
2116
92a42be0
SL
2117macro_rules! __impl_slice_eq1 {
2118 ($Lhs: ty, $Rhs: ty) => {
2119 __impl_slice_eq1! { $Lhs, $Rhs, Sized }
2120 };
2121 ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
2122 #[stable(feature = "rust1", since = "1.0.0")]
2123 impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
2124 #[inline]
2125 fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
2126 #[inline]
2127 fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
2128 }
2129 }
2130}
2131
c34b1796
AL
2132__impl_slice_eq1! { Vec<A>, Vec<B> }
2133__impl_slice_eq1! { Vec<A>, &'b [B] }
2134__impl_slice_eq1! { Vec<A>, &'b mut [B] }
2135__impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone }
2136__impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone }
2137__impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone }
2138
2139macro_rules! array_impls {
2140 ($($N: expr)+) => {
2141 $(
2142 // NOTE: some less important impls are omitted to reduce code bloat
2143 __impl_slice_eq1! { Vec<A>, [B; $N] }
2144 __impl_slice_eq1! { Vec<A>, &'b [B; $N] }
2145 // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
2146 // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
2147 // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
2148 // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
2149 )+
1a4d82fc
JJ
2150 }
2151}
2152
c34b1796
AL
2153array_impls! {
2154 0 1 2 3 4 5 6 7 8 9
2155 10 11 12 13 14 15 16 17 18 19
2156 20 21 22 23 24 25 26 27 28 29
2157 30 31 32
1a4d82fc
JJ
2158}
2159
8bb4bdeb 2160/// Implements comparison of vectors, lexicographically.
85aaf69f 2161#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2162impl<T: PartialOrd> PartialOrd for Vec<T> {
2163 #[inline]
2164 fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
85aaf69f 2165 PartialOrd::partial_cmp(&**self, &**other)
1a4d82fc
JJ
2166 }
2167}
2168
85aaf69f 2169#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2170impl<T: Eq> Eq for Vec<T> {}
2171
8bb4bdeb 2172/// Implements ordering of vectors, lexicographically.
85aaf69f 2173#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2174impl<T: Ord> Ord for Vec<T> {
2175 #[inline]
2176 fn cmp(&self, other: &Vec<T>) -> Ordering {
85aaf69f 2177 Ord::cmp(&**self, &**other)
1a4d82fc
JJ
2178 }
2179}
2180
85aaf69f 2181#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2182unsafe impl<#[may_dangle] T> Drop for Vec<T> {
1a4d82fc 2183 fn drop(&mut self) {
9e0c209e
SL
2184 unsafe {
2185 // use drop for [T]
2186 ptr::drop_in_place(&mut self[..]);
1a4d82fc 2187 }
c1a9b12d 2188 // RawVec handles deallocation
1a4d82fc
JJ
2189 }
2190}
2191
85aaf69f 2192#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2193impl<T> Default for Vec<T> {
9e0c209e 2194 /// Creates an empty `Vec<T>`.
1a4d82fc
JJ
2195 fn default() -> Vec<T> {
2196 Vec::new()
2197 }
2198}
2199
85aaf69f
SL
2200#[stable(feature = "rust1", since = "1.0.0")]
2201impl<T: fmt::Debug> fmt::Debug for Vec<T> {
1a4d82fc 2202 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85aaf69f 2203 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
2204 }
2205}
2206
c34b1796
AL
2207#[stable(feature = "rust1", since = "1.0.0")]
2208impl<T> AsRef<Vec<T>> for Vec<T> {
2209 fn as_ref(&self) -> &Vec<T> {
2210 self
2211 }
2212}
2213
b039eaaf
SL
2214#[stable(feature = "vec_as_mut", since = "1.5.0")]
2215impl<T> AsMut<Vec<T>> for Vec<T> {
2216 fn as_mut(&mut self) -> &mut Vec<T> {
2217 self
2218 }
2219}
2220
c34b1796
AL
2221#[stable(feature = "rust1", since = "1.0.0")]
2222impl<T> AsRef<[T]> for Vec<T> {
2223 fn as_ref(&self) -> &[T] {
2224 self
2225 }
2226}
2227
b039eaaf
SL
2228#[stable(feature = "vec_as_mut", since = "1.5.0")]
2229impl<T> AsMut<[T]> for Vec<T> {
2230 fn as_mut(&mut self) -> &mut [T] {
2231 self
2232 }
2233}
2234
c34b1796
AL
2235#[stable(feature = "rust1", since = "1.0.0")]
2236impl<'a, T: Clone> From<&'a [T]> for Vec<T> {
2237 #[cfg(not(test))]
2238 fn from(s: &'a [T]) -> Vec<T> {
2239 s.to_vec()
2240 }
2241 #[cfg(test)]
2242 fn from(s: &'a [T]) -> Vec<T> {
2243 ::slice::to_vec(s)
2244 }
2245}
2246
7cac9316
XL
2247#[stable(feature = "vec_from_mut", since = "1.19.0")]
2248impl<'a, T: Clone> From<&'a mut [T]> for Vec<T> {
2249 #[cfg(not(test))]
2250 fn from(s: &'a mut [T]) -> Vec<T> {
2251 s.to_vec()
2252 }
2253 #[cfg(test)]
2254 fn from(s: &'a mut [T]) -> Vec<T> {
2255 ::slice::to_vec(s)
2256 }
2257}
2258
c30ab7b3
SL
2259#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
2260impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> {
2261 fn from(s: Cow<'a, [T]>) -> Vec<T> {
2262 s.into_owned()
2263 }
2264}
2265
cc61c64b
XL
2266// note: test pulls in libstd, which causes errors here
2267#[cfg(not(test))]
7cac9316 2268#[stable(feature = "vec_from_box", since = "1.18.0")]
cc61c64b
XL
2269impl<T> From<Box<[T]>> for Vec<T> {
2270 fn from(s: Box<[T]>) -> Vec<T> {
2271 s.into_vec()
2272 }
2273}
2274
041b39d2
XL
2275// note: test pulls in libstd, which causes errors here
2276#[cfg(not(test))]
2277#[stable(feature = "box_from_vec", since = "1.20.0")]
2278impl<T> From<Vec<T>> for Box<[T]> {
2279 fn from(v: Vec<T>) -> Box<[T]> {
2280 v.into_boxed_slice()
cc61c64b
XL
2281 }
2282}
2283
c34b1796
AL
2284#[stable(feature = "rust1", since = "1.0.0")]
2285impl<'a> From<&'a str> for Vec<u8> {
2286 fn from(s: &'a str) -> Vec<u8> {
2287 From::from(s.as_bytes())
2288 }
2289}
2290
1a4d82fc
JJ
2291////////////////////////////////////////////////////////////////////////////////
2292// Clone-on-write
2293////////////////////////////////////////////////////////////////////////////////
2294
7cac9316 2295#[stable(feature = "cow_from_vec", since = "1.8.0")]
7453a54e
SL
2296impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
2297 fn from(s: &'a [T]) -> Cow<'a, [T]> {
2298 Cow::Borrowed(s)
2299 }
2300}
2301
7cac9316 2302#[stable(feature = "cow_from_vec", since = "1.8.0")]
7453a54e
SL
2303impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
2304 fn from(v: Vec<T>) -> Cow<'a, [T]> {
2305 Cow::Owned(v)
2306 }
2307}
2308
94b46f34
XL
2309#[stable(feature = "cow_from_vec_ref", since = "1.28.0")]
2310impl<'a, T: Clone> From<&'a Vec<T>> for Cow<'a, [T]> {
2311 fn from(v: &'a Vec<T>) -> Cow<'a, [T]> {
2312 Cow::Borrowed(v.as_slice())
2313 }
2314}
2315
bd371182 2316#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 2317impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone {
92a42be0 2318 fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
1a4d82fc
JJ
2319 Cow::Owned(FromIterator::from_iter(it))
2320 }
2321}
2322
1a4d82fc
JJ
2323////////////////////////////////////////////////////////////////////////////////
2324// Iterators
2325////////////////////////////////////////////////////////////////////////////////
2326
2327/// An iterator that moves out of a vector.
5bcae85e
SL
2328///
2329/// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided
2330/// by the [`IntoIterator`] trait).
2331///
2332/// [`Vec`]: struct.Vec.html
2333/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
85aaf69f 2334#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2335pub struct IntoIter<T> {
2c00a5a8 2336 buf: NonNull<T>,
ff7c6d11 2337 phantom: PhantomData<T>,
5bcae85e 2338 cap: usize,
1a4d82fc 2339 ptr: *const T,
92a42be0 2340 end: *const T,
1a4d82fc
JJ
2341}
2342
c30ab7b3 2343#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
9e0c209e
SL
2344impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
2345 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2346 f.debug_tuple("IntoIter")
2347 .field(&self.as_slice())
2348 .finish()
2349 }
2350}
2351
5bcae85e
SL
2352impl<T> IntoIter<T> {
2353 /// Returns the remaining items of this iterator as a slice.
2354 ///
2355 /// # Examples
2356 ///
c30ab7b3 2357 /// ```
5bcae85e
SL
2358 /// let vec = vec!['a', 'b', 'c'];
2359 /// let mut into_iter = vec.into_iter();
2360 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2361 /// let _ = into_iter.next().unwrap();
2362 /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
2363 /// ```
476ff2be 2364 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
5bcae85e
SL
2365 pub fn as_slice(&self) -> &[T] {
2366 unsafe {
2367 slice::from_raw_parts(self.ptr, self.len())
2368 }
2369 }
2370
2371 /// Returns the remaining items of this iterator as a mutable slice.
2372 ///
2373 /// # Examples
2374 ///
c30ab7b3 2375 /// ```
5bcae85e
SL
2376 /// let vec = vec!['a', 'b', 'c'];
2377 /// let mut into_iter = vec.into_iter();
2378 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2379 /// into_iter.as_mut_slice()[2] = 'z';
2380 /// assert_eq!(into_iter.next().unwrap(), 'a');
2381 /// assert_eq!(into_iter.next().unwrap(), 'b');
2382 /// assert_eq!(into_iter.next().unwrap(), 'z');
2383 /// ```
476ff2be 2384 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
e81b0574 2385 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e
SL
2386 unsafe {
2387 slice::from_raw_parts_mut(self.ptr as *mut T, self.len())
2388 }
2389 }
2390}
2391
92a42be0
SL
2392#[stable(feature = "rust1", since = "1.0.0")]
2393unsafe impl<T: Send> Send for IntoIter<T> {}
2394#[stable(feature = "rust1", since = "1.0.0")]
2395unsafe impl<T: Sync> Sync for IntoIter<T> {}
85aaf69f 2396
85aaf69f 2397#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2398impl<T> Iterator for IntoIter<T> {
2399 type Item = T;
2400
2401 #[inline]
85aaf69f 2402 fn next(&mut self) -> Option<T> {
1a4d82fc 2403 unsafe {
5bcae85e 2404 if self.ptr as *const _ == self.end {
1a4d82fc
JJ
2405 None
2406 } else {
2407 if mem::size_of::<T>() == 0 {
2408 // purposefully don't use 'ptr.offset' because for
2409 // vectors with 0-size elements this would return the
2410 // same pointer.
5bcae85e 2411 self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
1a4d82fc 2412
b7449926
XL
2413 // Make up a value of this ZST.
2414 Some(mem::zeroed())
1a4d82fc
JJ
2415 } else {
2416 let old = self.ptr;
2417 self.ptr = self.ptr.offset(1);
2418
2419 Some(ptr::read(old))
2420 }
2421 }
2422 }
2423 }
2424
2425 #[inline]
85aaf69f 2426 fn size_hint(&self) -> (usize, Option<usize>) {
83c7162d
XL
2427 let exact = if mem::size_of::<T>() == 0 {
2428 (self.end as usize).wrapping_sub(self.ptr as usize)
2429 } else {
2430 unsafe { self.end.offset_from(self.ptr) as usize }
cc61c64b 2431 };
1a4d82fc
JJ
2432 (exact, Some(exact))
2433 }
d9579d0f
AL
2434
2435 #[inline]
2436 fn count(self) -> usize {
3157f602 2437 self.len()
d9579d0f 2438 }
1a4d82fc
JJ
2439}
2440
85aaf69f 2441#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2442impl<T> DoubleEndedIterator for IntoIter<T> {
2443 #[inline]
85aaf69f 2444 fn next_back(&mut self) -> Option<T> {
1a4d82fc
JJ
2445 unsafe {
2446 if self.end == self.ptr {
2447 None
2448 } else {
2449 if mem::size_of::<T>() == 0 {
2450 // See above for why 'ptr.offset' isn't used
5bcae85e 2451 self.end = arith_offset(self.end as *const i8, -1) as *mut T;
1a4d82fc 2452
b7449926
XL
2453 // Make up a value of this ZST.
2454 Some(mem::zeroed())
1a4d82fc
JJ
2455 } else {
2456 self.end = self.end.offset(-1);
2457
e9174d1e 2458 Some(ptr::read(self.end))
1a4d82fc
JJ
2459 }
2460 }
2461 }
2462 }
2463}
2464
85aaf69f 2465#[stable(feature = "rust1", since = "1.0.0")]
476ff2be
SL
2466impl<T> ExactSizeIterator for IntoIter<T> {
2467 fn is_empty(&self) -> bool {
2468 self.ptr == self.end
2469 }
2470}
1a4d82fc 2471
0531ce1d 2472#[stable(feature = "fused", since = "1.26.0")]
9e0c209e
SL
2473impl<T> FusedIterator for IntoIter<T> {}
2474
c30ab7b3
SL
2475#[unstable(feature = "trusted_len", issue = "37572")]
2476unsafe impl<T> TrustedLen for IntoIter<T> {}
2477
7453a54e
SL
2478#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
2479impl<T: Clone> Clone for IntoIter<T> {
2480 fn clone(&self) -> IntoIter<T> {
5bcae85e 2481 self.as_slice().to_owned().into_iter()
7453a54e
SL
2482 }
2483}
2484
85aaf69f 2485#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2486unsafe impl<#[may_dangle] T> Drop for IntoIter<T> {
1a4d82fc
JJ
2487 fn drop(&mut self) {
2488 // destroy the remaining elements
5bcae85e 2489 for _x in self.by_ref() {}
c1a9b12d
SL
2490
2491 // RawVec handles deallocation
7cac9316 2492 let _ = unsafe { RawVec::from_raw_parts(self.buf.as_ptr(), self.cap) };
1a4d82fc
JJ
2493 }
2494}
2495
d9579d0f 2496/// A draining iterator for `Vec<T>`.
5bcae85e
SL
2497///
2498/// This `struct` is created by the [`drain`] method on [`Vec`].
2499///
2500/// [`drain`]: struct.Vec.html#method.drain
2501/// [`Vec`]: struct.Vec.html
92a42be0 2502#[stable(feature = "drain", since = "1.6.0")]
d9579d0f
AL
2503pub struct Drain<'a, T: 'a> {
2504 /// Index of tail to preserve
2505 tail_start: usize,
2506 /// Length of tail
2507 tail_len: usize,
2508 /// Current remaining range to remove
5bcae85e 2509 iter: slice::Iter<'a, T>,
2c00a5a8 2510 vec: NonNull<Vec<T>>,
1a4d82fc
JJ
2511}
2512
8bb4bdeb
XL
2513#[stable(feature = "collection_debug", since = "1.17.0")]
2514impl<'a, T: 'a + fmt::Debug> fmt::Debug for Drain<'a, T> {
2515 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2516 f.debug_tuple("Drain")
2517 .field(&self.iter.as_slice())
2518 .finish()
2519 }
2520}
2521
92a42be0 2522#[stable(feature = "drain", since = "1.6.0")]
c34b1796 2523unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
92a42be0 2524#[stable(feature = "drain", since = "1.6.0")]
c34b1796
AL
2525unsafe impl<'a, T: Send> Send for Drain<'a, T> {}
2526
c30ab7b3 2527#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2528impl<'a, T> Iterator for Drain<'a, T> {
2529 type Item = T;
2530
2531 #[inline]
2532 fn next(&mut self) -> Option<T> {
92a42be0 2533 self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2534 }
2535
85aaf69f 2536 fn size_hint(&self) -> (usize, Option<usize>) {
d9579d0f 2537 self.iter.size_hint()
1a4d82fc
JJ
2538 }
2539}
2540
c30ab7b3 2541#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2542impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
2543 #[inline]
2544 fn next_back(&mut self) -> Option<T> {
92a42be0 2545 self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2546 }
2547}
2548
c30ab7b3 2549#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
2550impl<'a, T> Drop for Drain<'a, T> {
2551 fn drop(&mut self) {
d9579d0f 2552 // exhaust self first
83c7162d 2553 self.for_each(drop);
1a4d82fc 2554
d9579d0f
AL
2555 if self.tail_len > 0 {
2556 unsafe {
7cac9316 2557 let source_vec = self.vec.as_mut();
d9579d0f
AL
2558 // memmove back untouched tail, update to new length
2559 let start = source_vec.len();
2560 let tail = self.tail_start;
83c7162d 2561 if tail != start {
b7449926
XL
2562 let src = source_vec.as_ptr().add(tail);
2563 let dst = source_vec.as_mut_ptr().add(start);
83c7162d
XL
2564 ptr::copy(src, dst, self.tail_len);
2565 }
d9579d0f
AL
2566 source_vec.set_len(start + self.tail_len);
2567 }
2568 }
1a4d82fc
JJ
2569 }
2570}
2571
d9579d0f 2572
c30ab7b3 2573#[stable(feature = "drain", since = "1.6.0")]
476ff2be
SL
2574impl<'a, T> ExactSizeIterator for Drain<'a, T> {
2575 fn is_empty(&self) -> bool {
2576 self.iter.is_empty()
2577 }
2578}
9e0c209e 2579
0531ce1d 2580#[stable(feature = "fused", since = "1.26.0")]
9e0c209e 2581impl<'a, T> FusedIterator for Drain<'a, T> {}
32a655c1 2582
7cac9316
XL
2583/// A splicing iterator for `Vec`.
2584///
2585/// This struct is created by the [`splice()`] method on [`Vec`]. See its
2586/// documentation for more.
2587///
2588/// [`splice()`]: struct.Vec.html#method.splice
2589/// [`Vec`]: struct.Vec.html
2590#[derive(Debug)]
3b2f2976 2591#[stable(feature = "vec_splice", since = "1.21.0")]
7cac9316
XL
2592pub struct Splice<'a, I: Iterator + 'a> {
2593 drain: Drain<'a, I::Item>,
2594 replace_with: I,
2595}
2596
3b2f2976 2597#[stable(feature = "vec_splice", since = "1.21.0")]
7cac9316
XL
2598impl<'a, I: Iterator> Iterator for Splice<'a, I> {
2599 type Item = I::Item;
2600
2601 fn next(&mut self) -> Option<Self::Item> {
2602 self.drain.next()
2603 }
2604
2605 fn size_hint(&self) -> (usize, Option<usize>) {
2606 self.drain.size_hint()
2607 }
2608}
2609
3b2f2976 2610#[stable(feature = "vec_splice", since = "1.21.0")]
7cac9316
XL
2611impl<'a, I: Iterator> DoubleEndedIterator for Splice<'a, I> {
2612 fn next_back(&mut self) -> Option<Self::Item> {
2613 self.drain.next_back()
2614 }
2615}
2616
3b2f2976 2617#[stable(feature = "vec_splice", since = "1.21.0")]
7cac9316
XL
2618impl<'a, I: Iterator> ExactSizeIterator for Splice<'a, I> {}
2619
2620
3b2f2976 2621#[stable(feature = "vec_splice", since = "1.21.0")]
7cac9316
XL
2622impl<'a, I: Iterator> Drop for Splice<'a, I> {
2623 fn drop(&mut self) {
83c7162d 2624 self.drain.by_ref().for_each(drop);
7cac9316
XL
2625
2626 unsafe {
2627 if self.drain.tail_len == 0 {
2628 self.drain.vec.as_mut().extend(self.replace_with.by_ref());
2629 return
2630 }
2631
2632 // First fill the range left by drain().
2633 if !self.drain.fill(&mut self.replace_with) {
2634 return
2635 }
2636
2637 // There may be more elements. Use the lower bound as an estimate.
2638 // FIXME: Is the upper bound a better guess? Or something else?
2639 let (lower_bound, _upper_bound) = self.replace_with.size_hint();
2640 if lower_bound > 0 {
2641 self.drain.move_tail(lower_bound);
2642 if !self.drain.fill(&mut self.replace_with) {
2643 return
2644 }
2645 }
2646
2647 // Collect any remaining elements.
2648 // This is a zero-length vector which does not allocate if `lower_bound` was exact.
2649 let mut collected = self.replace_with.by_ref().collect::<Vec<I::Item>>().into_iter();
2650 // Now we have an exact count.
2651 if collected.len() > 0 {
2652 self.drain.move_tail(collected.len());
2653 let filled = self.drain.fill(&mut collected);
2654 debug_assert!(filled);
2655 debug_assert_eq!(collected.len(), 0);
2656 }
2657 }
2658 // Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
2659 }
2660}
2661
2662/// Private helper methods for `Splice::drop`
2663impl<'a, T> Drain<'a, T> {
2664 /// The range from `self.vec.len` to `self.tail_start` contains elements
2665 /// that have been moved out.
2666 /// Fill that range as much as possible with new elements from the `replace_with` iterator.
2667 /// Return whether we filled the entire range. (`replace_with.next()` didn’t return `None`.)
2668 unsafe fn fill<I: Iterator<Item=T>>(&mut self, replace_with: &mut I) -> bool {
2669 let vec = self.vec.as_mut();
2670 let range_start = vec.len;
2671 let range_end = self.tail_start;
2672 let range_slice = slice::from_raw_parts_mut(
b7449926 2673 vec.as_mut_ptr().add(range_start),
7cac9316
XL
2674 range_end - range_start);
2675
2676 for place in range_slice {
2677 if let Some(new_item) = replace_with.next() {
2678 ptr::write(place, new_item);
2679 vec.len += 1;
2680 } else {
2681 return false
2682 }
2683 }
2684 true
2685 }
2686
2687 /// Make room for inserting more elements before the tail.
2688 unsafe fn move_tail(&mut self, extra_capacity: usize) {
2689 let vec = self.vec.as_mut();
2690 let used_capacity = self.tail_start + self.tail_len;
2691 vec.buf.reserve(used_capacity, extra_capacity);
2692
2693 let new_tail_start = self.tail_start + extra_capacity;
b7449926
XL
2694 let src = vec.as_ptr().add(self.tail_start);
2695 let dst = vec.as_mut_ptr().add(new_tail_start);
7cac9316
XL
2696 ptr::copy(src, dst, self.tail_len);
2697 self.tail_start = new_tail_start;
2698 }
2699}
3b2f2976
XL
2700
2701/// An iterator produced by calling `drain_filter` on Vec.
2702#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2703#[derive(Debug)]
2704pub struct DrainFilter<'a, T: 'a, F>
2705 where F: FnMut(&mut T) -> bool,
2706{
2707 vec: &'a mut Vec<T>,
2708 idx: usize,
2709 del: usize,
2710 old_len: usize,
2711 pred: F,
2712}
2713
2714#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2715impl<'a, T, F> Iterator for DrainFilter<'a, T, F>
2716 where F: FnMut(&mut T) -> bool,
2717{
2718 type Item = T;
2719
2720 fn next(&mut self) -> Option<T> {
2721 unsafe {
2722 while self.idx != self.old_len {
2723 let i = self.idx;
2724 self.idx += 1;
2725 let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
2726 if (self.pred)(&mut v[i]) {
2727 self.del += 1;
2728 return Some(ptr::read(&v[i]));
2729 } else if self.del > 0 {
ea8adc8c
XL
2730 let del = self.del;
2731 let src: *const T = &v[i];
2732 let dst: *mut T = &mut v[i - del];
2733 // This is safe because self.vec has length 0
2734 // thus its elements will not have Drop::drop
2735 // called on them in the event of a panic.
2736 ptr::copy_nonoverlapping(src, dst, 1);
3b2f2976
XL
2737 }
2738 }
2739 None
2740 }
2741 }
2742
2743 fn size_hint(&self) -> (usize, Option<usize>) {
2744 (0, Some(self.old_len - self.idx))
2745 }
2746}
2747
2748#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2749impl<'a, T, F> Drop for DrainFilter<'a, T, F>
2750 where F: FnMut(&mut T) -> bool,
2751{
2752 fn drop(&mut self) {
83c7162d 2753 self.for_each(drop);
3b2f2976
XL
2754 unsafe {
2755 self.vec.set_len(self.old_len - self.del);
2756 }
2757 }
2758}