]> git.proxmox.com Git - rustc.git/blame - src/liballoc/vec.rs
New upstream version 1.34.2+dfsg1
[rustc.git] / src / liballoc / vec.rs
CommitLineData
7453a54e 1//! A contiguous growable array type with heap-allocated contents, written
041b39d2 2//! `Vec<T>`.
1a4d82fc 3//!
62682a34
SL
4//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
5//! `O(1)` pop (from the end).
1a4d82fc
JJ
6//!
7//! # Examples
8//!
cc61c64b 9//! You can explicitly create a [`Vec<T>`] with [`new`]:
1a4d82fc
JJ
10//!
11//! ```
d9579d0f 12//! let v: Vec<i32> = Vec::new();
1a4d82fc
JJ
13//! ```
14//!
c30ab7b3 15//! ...or by using the [`vec!`] macro:
1a4d82fc
JJ
16//!
17//! ```
d9579d0f 18//! let v: Vec<i32> = vec![];
1a4d82fc 19//!
d9579d0f
AL
20//! let v = vec![1, 2, 3, 4, 5];
21//!
22//! let v = vec![0; 10]; // ten zeroes
1a4d82fc
JJ
23//! ```
24//!
c30ab7b3 25//! You can [`push`] values onto the end of a vector (which will grow the vector
e9174d1e 26//! as needed):
1a4d82fc
JJ
27//!
28//! ```
d9579d0f 29//! let mut v = vec![1, 2];
1a4d82fc 30//!
d9579d0f 31//! v.push(3);
1a4d82fc
JJ
32//! ```
33//!
d9579d0f
AL
34//! Popping values works in much the same way:
35//!
36//! ```
37//! let mut v = vec![1, 2];
1a4d82fc 38//!
d9579d0f 39//! let two = v.pop();
1a4d82fc 40//! ```
1a4d82fc 41//!
c30ab7b3 42//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
d9579d0f
AL
43//!
44//! ```
45//! let mut v = vec![1, 2, 3];
46//! let three = v[2];
47//! v[1] = v[1] + 5;
1a4d82fc 48//! ```
c30ab7b3
SL
49//!
50//! [`Vec<T>`]: ../../std/vec/struct.Vec.html
cc61c64b 51//! [`new`]: ../../std/vec/struct.Vec.html#method.new
c30ab7b3
SL
52//! [`push`]: ../../std/vec/struct.Vec.html#method.push
53//! [`Index`]: ../../std/ops/trait.Index.html
54//! [`IndexMut`]: ../../std/ops/trait.IndexMut.html
55//! [`vec!`]: ../../std/macro.vec.html
1a4d82fc 56
85aaf69f 57#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 58
0531ce1d 59use core::cmp::{self, Ordering};
1a4d82fc
JJ
60use core::fmt;
61use core::hash::{self, Hash};
54a0048b 62use core::intrinsics::{arith_offset, assume};
c30ab7b3 63use core::iter::{FromIterator, FusedIterator, TrustedLen};
ff7c6d11 64use core::marker::PhantomData;
1a4d82fc 65use core::mem;
9fa01778 66use core::ops::{self, Index, IndexMut, RangeBounds};
0531ce1d 67use core::ops::Bound::{Excluded, Included, Unbounded};
9fa01778
XL
68use core::ptr::{self, NonNull};
69use core::slice::{self, SliceIndex};
70
71use crate::borrow::{ToOwned, Cow};
72use crate::collections::CollectionAllocErr;
73use crate::boxed::Box;
74use crate::raw_vec::RawVec;
d9579d0f 75
c30ab7b3 76/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
1a4d82fc
JJ
77///
78/// # Examples
79///
80/// ```
81/// let mut vec = Vec::new();
85aaf69f
SL
82/// vec.push(1);
83/// vec.push(2);
1a4d82fc
JJ
84///
85/// assert_eq!(vec.len(), 2);
86/// assert_eq!(vec[0], 1);
87///
88/// assert_eq!(vec.pop(), Some(2));
89/// assert_eq!(vec.len(), 1);
90///
85aaf69f 91/// vec[0] = 7;
1a4d82fc
JJ
92/// assert_eq!(vec[0], 7);
93///
62682a34 94/// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc 95///
62682a34 96/// for x in &vec {
1a4d82fc
JJ
97/// println!("{}", x);
98/// }
c34b1796 99/// assert_eq!(vec, [7, 1, 2, 3]);
1a4d82fc
JJ
100/// ```
101///
c30ab7b3 102/// The [`vec!`] macro is provided to make initialization more convenient:
1a4d82fc
JJ
103///
104/// ```
85aaf69f 105/// let mut vec = vec![1, 2, 3];
1a4d82fc 106/// vec.push(4);
c34b1796 107/// assert_eq!(vec, [1, 2, 3, 4]);
1a4d82fc
JJ
108/// ```
109///
0bf4aa26
XL
110/// It can also initialize each element of a `Vec<T>` with a given value.
111/// This may be more efficient than performing allocation and initialization
112/// in separate steps, especially when initializing a vector of zeros:
c1a9b12d
SL
113///
114/// ```
115/// let vec = vec![0; 5];
116/// assert_eq!(vec, [0, 0, 0, 0, 0]);
0bf4aa26
XL
117///
118/// // The following is equivalent, but potentially slower:
119/// let mut vec1 = Vec::with_capacity(5);
120/// vec1.resize(5, 0);
c1a9b12d
SL
121/// ```
122///
1a4d82fc
JJ
123/// Use a `Vec<T>` as an efficient stack:
124///
125/// ```
126/// let mut stack = Vec::new();
127///
85aaf69f
SL
128/// stack.push(1);
129/// stack.push(2);
130/// stack.push(3);
1a4d82fc 131///
bd371182 132/// while let Some(top) = stack.pop() {
1a4d82fc
JJ
133/// // Prints 3, 2, 1
134/// println!("{}", top);
135/// }
136/// ```
137///
7453a54e
SL
138/// # Indexing
139///
c30ab7b3
SL
140/// The `Vec` type allows to access values by index, because it implements the
141/// [`Index`] trait. An example will be more explicit:
7453a54e
SL
142///
143/// ```
c30ab7b3 144/// let v = vec![0, 2, 4, 6];
7453a54e
SL
145/// println!("{}", v[1]); // it will display '2'
146/// ```
147///
c30ab7b3 148/// However be careful: if you try to access an index which isn't in the `Vec`,
7453a54e
SL
149/// your software will panic! You cannot do this:
150///
041b39d2 151/// ```should_panic
c30ab7b3 152/// let v = vec![0, 2, 4, 6];
7453a54e
SL
153/// println!("{}", v[6]); // it will panic!
154/// ```
155///
156/// In conclusion: always check if the index you want to get really exists
157/// before doing it.
158///
159/// # Slicing
160///
c30ab7b3
SL
161/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
162/// To get a slice, use `&`. Example:
7453a54e
SL
163///
164/// ```
165/// fn read_slice(slice: &[usize]) {
166/// // ...
167/// }
168///
c30ab7b3 169/// let v = vec![0, 1];
7453a54e
SL
170/// read_slice(&v);
171///
172/// // ... and that's all!
173/// // you can also do it like this:
174/// let x : &[usize] = &v;
175/// ```
176///
177/// In Rust, it's more common to pass slices as arguments rather than vectors
c30ab7b3
SL
178/// when you just want to provide a read access. The same goes for [`String`] and
179/// [`&str`].
7453a54e 180///
1a4d82fc
JJ
181/// # Capacity and reallocation
182///
c34b1796
AL
183/// The capacity of a vector is the amount of space allocated for any future
184/// elements that will be added onto the vector. This is not to be confused with
185/// the *length* of a vector, which specifies the number of actual elements
186/// within the vector. If a vector's length exceeds its capacity, its capacity
187/// will automatically be increased, but its elements will have to be
1a4d82fc
JJ
188/// reallocated.
189///
c34b1796
AL
190/// For example, a vector with capacity 10 and length 0 would be an empty vector
191/// with space for 10 more elements. Pushing 10 or fewer elements onto the
192/// vector will not change its capacity or cause reallocation to occur. However,
193/// if the vector's length is increased to 11, it will have to reallocate, which
c30ab7b3 194/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
c34b1796 195/// whenever possible to specify how big the vector is expected to get.
b039eaaf
SL
196///
197/// # Guarantees
198///
c30ab7b3 199/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
b039eaaf
SL
200/// about its design. This ensures that it's as low-overhead as possible in
201/// the general case, and can be correctly manipulated in primitive ways
202/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
0731742a 203/// If additional type parameters are added (e.g., to support custom allocators),
b039eaaf
SL
204/// overriding their defaults may change the behavior.
205///
c30ab7b3 206/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
b039eaaf
SL
207/// triplet. No more, no less. The order of these fields is completely
208/// unspecified, and you should use the appropriate methods to modify these.
209/// The pointer will never be null, so this type is null-pointer-optimized.
210///
211/// However, the pointer may not actually point to allocated memory. In particular,
cc61c64b
XL
212/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
213/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
c30ab7b3
SL
214/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
215/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
cc61c64b 216/// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only
041b39d2 217/// if [`mem::size_of::<T>`]`() * capacity() > 0`. In general, `Vec`'s allocation
ff7c6d11
XL
218/// details are very subtle &mdash; if you intend to allocate memory using a `Vec`
219/// and use it for something else (either to pass to unsafe code, or to build your
220/// own memory-backed collection), be sure to deallocate this memory by using
221/// `from_raw_parts` to recover the `Vec` and then dropping it.
b039eaaf 222///
c30ab7b3 223/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
b039eaaf 224/// (as defined by the allocator Rust is configured to use by default), and its
0531ce1d
XL
225/// pointer points to [`len`] initialized, contiguous elements in order (what
226/// you would see if you coerced it to a slice), followed by [`capacity`]` -
227/// `[`len`] logically uninitialized, contiguous elements.
b039eaaf 228///
c30ab7b3 229/// `Vec` will never perform a "small optimization" where elements are actually
b039eaaf
SL
230/// stored on the stack for two reasons:
231///
232/// * It would make it more difficult for unsafe code to correctly manipulate
c30ab7b3
SL
233/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
234/// only moved, and it would be more difficult to determine if a `Vec` had
b039eaaf
SL
235/// actually allocated memory.
236///
237/// * It would penalize the general case, incurring an additional branch
238/// on every access.
239///
c30ab7b3
SL
240/// `Vec` will never automatically shrink itself, even if completely empty. This
241/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
cc61c64b 242/// and then filling it back up to the same [`len`] should incur no calls to
c30ab7b3 243/// the allocator. If you wish to free up unused memory, use
cc61c64b 244/// [`shrink_to_fit`][`shrink_to_fit`].
b039eaaf 245///
c30ab7b3
SL
246/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
247/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
cc61c64b 248/// [`len`]` == `[`capacity`]. That is, the reported capacity is completely
c30ab7b3
SL
249/// accurate, and can be relied on. It can even be used to manually free the memory
250/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
251/// when not necessary.
b039eaaf 252///
c30ab7b3
SL
253/// `Vec` does not guarantee any particular growth strategy when reallocating
254/// when full, nor when [`reserve`] is called. The current strategy is basic
b039eaaf 255/// and it may prove desirable to use a non-constant growth factor. Whatever
c30ab7b3 256/// strategy is used will of course guarantee `O(1)` amortized [`push`].
b039eaaf 257///
c30ab7b3
SL
258/// `vec![x; n]`, `vec![a, b, c, d]`, and
259/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
cc61c64b 260/// with exactly the requested capacity. If [`len`]` == `[`capacity`],
c30ab7b3
SL
261/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
262/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
b039eaaf 263///
c30ab7b3 264/// `Vec` will not specifically overwrite any data that is removed from it,
b039eaaf
SL
265/// but also won't specifically preserve it. Its uninitialized memory is
266/// scratch space that it may use however it wants. It will generally just do
267/// whatever is most efficient or otherwise easy to implement. Do not rely on
c30ab7b3
SL
268/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
269/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
b039eaaf 270/// first, that may not actually happen because the optimizer does not consider
7cac9316
XL
271/// this a side-effect that must be preserved. There is one case which we will
272/// not break, however: using `unsafe` code to write to the excess capacity,
273/// and then increasing the length to match, is always valid.
b039eaaf 274///
0531ce1d
XL
275/// `Vec` does not currently guarantee the order in which elements are dropped.
276/// The order has changed in the past and may change again.
b039eaaf 277///
c30ab7b3
SL
278/// [`vec!`]: ../../std/macro.vec.html
279/// [`Index`]: ../../std/ops/trait.Index.html
280/// [`String`]: ../../std/string/struct.String.html
281/// [`&str`]: ../../std/primitive.str.html
282/// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity
cc61c64b
XL
283/// [`Vec::new`]: ../../std/vec/struct.Vec.html#method.new
284/// [`shrink_to_fit`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit
285/// [`capacity`]: ../../std/vec/struct.Vec.html#method.capacity
286/// [`mem::size_of::<T>`]: ../../std/mem/fn.size_of.html
287/// [`len`]: ../../std/vec/struct.Vec.html#method.len
c30ab7b3
SL
288/// [`push`]: ../../std/vec/struct.Vec.html#method.push
289/// [`insert`]: ../../std/vec/struct.Vec.html#method.insert
290/// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve
291/// [owned slice]: ../../std/boxed/struct.Box.html
85aaf69f 292#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 293pub struct Vec<T> {
c1a9b12d 294 buf: RawVec<T>,
85aaf69f 295 len: usize,
1a4d82fc
JJ
296}
297
1a4d82fc
JJ
298////////////////////////////////////////////////////////////////////////////////
299// Inherent methods
300////////////////////////////////////////////////////////////////////////////////
301
302impl<T> Vec<T> {
303 /// Constructs a new, empty `Vec<T>`.
304 ///
305 /// The vector will not allocate until elements are pushed onto it.
306 ///
307 /// # Examples
308 ///
309 /// ```
92a42be0 310 /// # #![allow(unused_mut)]
85aaf69f 311 /// let mut vec: Vec<i32> = Vec::new();
1a4d82fc
JJ
312 /// ```
313 #[inline]
85aaf69f 314 #[stable(feature = "rust1", since = "1.0.0")]
83c7162d
XL
315 #[rustc_const_unstable(feature = "const_vec_new")]
316 pub const fn new() -> Vec<T> {
92a42be0
SL
317 Vec {
318 buf: RawVec::new(),
319 len: 0,
320 }
1a4d82fc
JJ
321 }
322
323 /// Constructs a new, empty `Vec<T>` with the specified capacity.
324 ///
e9174d1e
SL
325 /// The vector will be able to hold exactly `capacity` elements without
326 /// reallocating. If `capacity` is 0, the vector will not allocate.
1a4d82fc 327 ///
0531ce1d
XL
328 /// It is important to note that although the returned vector has the
329 /// *capacity* specified, the vector will have a zero *length*. For an
330 /// explanation of the difference between length and capacity, see
331 /// *[Capacity and reallocation]*.
c30ab7b3
SL
332 ///
333 /// [Capacity and reallocation]: #capacity-and-reallocation
1a4d82fc
JJ
334 ///
335 /// # Examples
336 ///
337 /// ```
9346a6ac 338 /// let mut vec = Vec::with_capacity(10);
1a4d82fc
JJ
339 ///
340 /// // The vector contains no items, even though it has capacity for more
341 /// assert_eq!(vec.len(), 0);
342 ///
343 /// // These are all done without reallocating...
85aaf69f 344 /// for i in 0..10 {
1a4d82fc
JJ
345 /// vec.push(i);
346 /// }
347 ///
348 /// // ...but this may make the vector reallocate
349 /// vec.push(11);
350 /// ```
351 #[inline]
85aaf69f
SL
352 #[stable(feature = "rust1", since = "1.0.0")]
353 pub fn with_capacity(capacity: usize) -> Vec<T> {
92a42be0
SL
354 Vec {
355 buf: RawVec::with_capacity(capacity),
356 len: 0,
357 }
1a4d82fc
JJ
358 }
359
360 /// Creates a `Vec<T>` directly from the raw components of another vector.
361 ///
b039eaaf 362 /// # Safety
c1a9b12d
SL
363 ///
364 /// This is highly unsafe, due to the number of invariants that aren't
365 /// checked:
366 ///
c30ab7b3 367 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
c1a9b12d 368 /// (at least, it's highly likely to be incorrect if it wasn't).
ea8adc8c 369 /// * `ptr`'s `T` needs to have the same size and alignment as it was allocated with.
5bcae85e 370 /// * `length` needs to be less than or equal to `capacity`.
c1a9b12d
SL
371 /// * `capacity` needs to be the capacity that the pointer was allocated with.
372 ///
373 /// Violating these may cause problems like corrupting the allocator's
3b2f2976 374 /// internal data structures. For example it is **not** safe
32a655c1 375 /// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`.
1a4d82fc 376 ///
5bcae85e
SL
377 /// The ownership of `ptr` is effectively transferred to the
378 /// `Vec<T>` which may then deallocate, reallocate or change the
379 /// contents of memory pointed to by the pointer at will. Ensure
380 /// that nothing else uses the pointer after calling this
381 /// function.
382 ///
c30ab7b3
SL
383 /// [`String`]: ../../std/string/struct.String.html
384 ///
1a4d82fc
JJ
385 /// # Examples
386 ///
387 /// ```
388 /// use std::ptr;
389 /// use std::mem;
390 ///
391 /// fn main() {
85aaf69f 392 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
393 ///
394 /// // Pull out the various important pieces of information about `v`
395 /// let p = v.as_mut_ptr();
396 /// let len = v.len();
397 /// let cap = v.capacity();
398 ///
399 /// unsafe {
400 /// // Cast `v` into the void: no destructor run, so we are in
401 /// // complete control of the allocation to which `p` points.
402 /// mem::forget(v);
403 ///
404 /// // Overwrite memory with 4, 5, 6
85aaf69f 405 /// for i in 0..len as isize {
1a4d82fc
JJ
406 /// ptr::write(p.offset(i), 4 + i);
407 /// }
408 ///
409 /// // Put everything back together into a Vec
410 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
c34b1796 411 /// assert_eq!(rebuilt, [4, 5, 6]);
1a4d82fc
JJ
412 /// }
413 /// }
414 /// ```
85aaf69f 415 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0 416 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
85aaf69f 417 Vec {
c1a9b12d 418 buf: RawVec::from_raw_parts(ptr, capacity),
85aaf69f 419 len: length,
85aaf69f 420 }
1a4d82fc
JJ
421 }
422
1a4d82fc
JJ
423 /// Returns the number of elements the vector can hold without
424 /// reallocating.
425 ///
426 /// # Examples
427 ///
428 /// ```
85aaf69f 429 /// let vec: Vec<i32> = Vec::with_capacity(10);
1a4d82fc
JJ
430 /// assert_eq!(vec.capacity(), 10);
431 /// ```
432 #[inline]
85aaf69f
SL
433 #[stable(feature = "rust1", since = "1.0.0")]
434 pub fn capacity(&self) -> usize {
c1a9b12d 435 self.buf.cap()
1a4d82fc
JJ
436 }
437
c34b1796
AL
438 /// Reserves capacity for at least `additional` more elements to be inserted
439 /// in the given `Vec<T>`. The collection may reserve more space to avoid
8bb4bdeb
XL
440 /// frequent reallocations. After calling `reserve`, capacity will be
441 /// greater than or equal to `self.len() + additional`. Does nothing if
442 /// capacity is already sufficient.
1a4d82fc
JJ
443 ///
444 /// # Panics
445 ///
85aaf69f 446 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
447 ///
448 /// # Examples
449 ///
450 /// ```
85aaf69f 451 /// let mut vec = vec![1];
1a4d82fc
JJ
452 /// vec.reserve(10);
453 /// assert!(vec.capacity() >= 11);
454 /// ```
85aaf69f
SL
455 #[stable(feature = "rust1", since = "1.0.0")]
456 pub fn reserve(&mut self, additional: usize) {
c1a9b12d 457 self.buf.reserve(self.len, additional);
1a4d82fc
JJ
458 }
459
460 /// Reserves the minimum capacity for exactly `additional` more elements to
8bb4bdeb
XL
461 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
462 /// capacity will be greater than or equal to `self.len() + additional`.
463 /// Does nothing if the capacity is already sufficient.
1a4d82fc
JJ
464 ///
465 /// Note that the allocator may give the collection more space than it
9fa01778 466 /// requests. Therefore, capacity can not be relied upon to be precisely
1a4d82fc
JJ
467 /// minimal. Prefer `reserve` if future insertions are expected.
468 ///
469 /// # Panics
470 ///
85aaf69f 471 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
472 ///
473 /// # Examples
474 ///
475 /// ```
85aaf69f 476 /// let mut vec = vec![1];
1a4d82fc
JJ
477 /// vec.reserve_exact(10);
478 /// assert!(vec.capacity() >= 11);
479 /// ```
85aaf69f
SL
480 #[stable(feature = "rust1", since = "1.0.0")]
481 pub fn reserve_exact(&mut self, additional: usize) {
c1a9b12d 482 self.buf.reserve_exact(self.len, additional);
1a4d82fc
JJ
483 }
484
0531ce1d
XL
485 /// Tries to reserve capacity for at least `additional` more elements to be inserted
486 /// in the given `Vec<T>`. The collection may reserve more space to avoid
487 /// frequent reallocations. After calling `reserve`, capacity will be
488 /// greater than or equal to `self.len() + additional`. Does nothing if
489 /// capacity is already sufficient.
490 ///
491 /// # Errors
492 ///
493 /// If the capacity overflows, or the allocator reports a failure, then an error
494 /// is returned.
495 ///
496 /// # Examples
497 ///
498 /// ```
499 /// #![feature(try_reserve)]
500 /// use std::collections::CollectionAllocErr;
501 ///
502 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> {
503 /// let mut output = Vec::new();
504 ///
505 /// // Pre-reserve the memory, exiting if we can't
506 /// output.try_reserve(data.len())?;
507 ///
508 /// // Now we know this can't OOM in the middle of our complex work
509 /// output.extend(data.iter().map(|&val| {
510 /// val * 2 + 5 // very complicated
511 /// }));
512 ///
513 /// Ok(output)
514 /// }
515 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
516 /// ```
517 #[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
518 pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
519 self.buf.try_reserve(self.len, additional)
520 }
521
522 /// Tries to reserves the minimum capacity for exactly `additional` more elements to
523 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
524 /// capacity will be greater than or equal to `self.len() + additional`.
525 /// Does nothing if the capacity is already sufficient.
526 ///
527 /// Note that the allocator may give the collection more space than it
9fa01778 528 /// requests. Therefore, capacity can not be relied upon to be precisely
0531ce1d
XL
529 /// minimal. Prefer `reserve` if future insertions are expected.
530 ///
531 /// # Errors
532 ///
533 /// If the capacity overflows, or the allocator reports a failure, then an error
534 /// is returned.
535 ///
536 /// # Examples
537 ///
538 /// ```
539 /// #![feature(try_reserve)]
540 /// use std::collections::CollectionAllocErr;
541 ///
542 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> {
543 /// let mut output = Vec::new();
544 ///
545 /// // Pre-reserve the memory, exiting if we can't
546 /// output.try_reserve(data.len())?;
547 ///
548 /// // Now we know this can't OOM in the middle of our complex work
549 /// output.extend(data.iter().map(|&val| {
550 /// val * 2 + 5 // very complicated
551 /// }));
552 ///
553 /// Ok(output)
554 /// }
555 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
556 /// ```
557 #[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
558 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
559 self.buf.try_reserve_exact(self.len, additional)
560 }
561
1a4d82fc
JJ
562 /// Shrinks the capacity of the vector as much as possible.
563 ///
564 /// It will drop down as close as possible to the length but the allocator
565 /// may still inform the vector that there is space for a few more elements.
566 ///
567 /// # Examples
568 ///
569 /// ```
85aaf69f 570 /// let mut vec = Vec::with_capacity(10);
62682a34 571 /// vec.extend([1, 2, 3].iter().cloned());
1a4d82fc
JJ
572 /// assert_eq!(vec.capacity(), 10);
573 /// vec.shrink_to_fit();
574 /// assert!(vec.capacity() >= 3);
575 /// ```
85aaf69f 576 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 577 pub fn shrink_to_fit(&mut self) {
83c7162d
XL
578 if self.capacity() != self.len {
579 self.buf.shrink_to_fit(self.len);
580 }
1a4d82fc
JJ
581 }
582
0531ce1d
XL
583 /// Shrinks the capacity of the vector with a lower bound.
584 ///
585 /// The capacity will remain at least as large as both the length
586 /// and the supplied value.
587 ///
588 /// Panics if the current capacity is smaller than the supplied
589 /// minimum capacity.
590 ///
591 /// # Examples
592 ///
593 /// ```
594 /// #![feature(shrink_to)]
595 /// let mut vec = Vec::with_capacity(10);
596 /// vec.extend([1, 2, 3].iter().cloned());
597 /// assert_eq!(vec.capacity(), 10);
598 /// vec.shrink_to(4);
599 /// assert!(vec.capacity() >= 4);
600 /// vec.shrink_to(0);
601 /// assert!(vec.capacity() >= 3);
602 /// ```
a1dfa0c6 603 #[unstable(feature = "shrink_to", reason = "new API", issue="56431")]
0531ce1d
XL
604 pub fn shrink_to(&mut self, min_capacity: usize) {
605 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
606 }
607
c30ab7b3 608 /// Converts the vector into [`Box<[T]>`][owned slice].
1a4d82fc 609 ///
ea8adc8c 610 /// Note that this will drop any excess capacity.
c30ab7b3
SL
611 ///
612 /// [owned slice]: ../../std/boxed/struct.Box.html
5bcae85e
SL
613 ///
614 /// # Examples
615 ///
616 /// ```
617 /// let v = vec![1, 2, 3];
618 ///
619 /// let slice = v.into_boxed_slice();
620 /// ```
621 ///
622 /// Any excess capacity is removed:
623 ///
624 /// ```
625 /// let mut vec = Vec::with_capacity(10);
626 /// vec.extend([1, 2, 3].iter().cloned());
627 ///
628 /// assert_eq!(vec.capacity(), 10);
629 /// let slice = vec.into_boxed_slice();
630 /// assert_eq!(slice.into_vec().capacity(), 3);
631 /// ```
c34b1796 632 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 633 pub fn into_boxed_slice(mut self) -> Box<[T]> {
1a4d82fc 634 unsafe {
c1a9b12d
SL
635 self.shrink_to_fit();
636 let buf = ptr::read(&self.buf);
1a4d82fc 637 mem::forget(self);
c1a9b12d 638 buf.into_box()
1a4d82fc
JJ
639 }
640 }
641
5bcae85e
SL
642 /// Shortens the vector, keeping the first `len` elements and dropping
643 /// the rest.
1a4d82fc
JJ
644 ///
645 /// If `len` is greater than the vector's current length, this has no
646 /// effect.
647 ///
5bcae85e
SL
648 /// The [`drain`] method can emulate `truncate`, but causes the excess
649 /// elements to be returned instead of dropped.
650 ///
8bb4bdeb
XL
651 /// Note that this method has no effect on the allocated capacity
652 /// of the vector.
653 ///
1a4d82fc
JJ
654 /// # Examples
655 ///
5bcae85e
SL
656 /// Truncating a five element vector to two elements:
657 ///
1a4d82fc 658 /// ```
92a42be0 659 /// let mut vec = vec![1, 2, 3, 4, 5];
1a4d82fc 660 /// vec.truncate(2);
c34b1796 661 /// assert_eq!(vec, [1, 2]);
1a4d82fc 662 /// ```
5bcae85e
SL
663 ///
664 /// No truncation occurs when `len` is greater than the vector's current
665 /// length:
666 ///
667 /// ```
668 /// let mut vec = vec![1, 2, 3];
669 /// vec.truncate(8);
670 /// assert_eq!(vec, [1, 2, 3]);
671 /// ```
672 ///
673 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
674 /// method.
675 ///
676 /// ```
677 /// let mut vec = vec![1, 2, 3];
678 /// vec.truncate(0);
679 /// assert_eq!(vec, []);
680 /// ```
681 ///
682 /// [`clear`]: #method.clear
683 /// [`drain`]: #method.drain
85aaf69f
SL
684 #[stable(feature = "rust1", since = "1.0.0")]
685 pub fn truncate(&mut self, len: usize) {
b7449926 686 let current_len = self.len;
1a4d82fc 687 unsafe {
b7449926
XL
688 let mut ptr = self.as_mut_ptr().add(self.len);
689 // Set the final length at the end, keeping in mind that
690 // dropping an element might panic. Works around a missed
691 // optimization, as seen in the following issue:
692 // https://github.com/rust-lang/rust/issues/51802
693 let mut local_len = SetLenOnDrop::new(&mut self.len);
694
1a4d82fc 695 // drop any extra elements
b7449926
XL
696 for _ in len..current_len {
697 local_len.decrement_len(1);
698 ptr = ptr.offset(-1);
699 ptr::drop_in_place(ptr);
1a4d82fc
JJ
700 }
701 }
702 }
703
9346a6ac 704 /// Extracts a slice containing the entire vector.
62682a34
SL
705 ///
706 /// Equivalent to `&s[..]`.
5bcae85e
SL
707 ///
708 /// # Examples
709 ///
710 /// ```
711 /// use std::io::{self, Write};
712 /// let buffer = vec![1, 2, 3, 5, 8];
713 /// io::sink().write(buffer.as_slice()).unwrap();
714 /// ```
1a4d82fc 715 #[inline]
9cc50fc6 716 #[stable(feature = "vec_as_slice", since = "1.7.0")]
c34b1796
AL
717 pub fn as_slice(&self) -> &[T] {
718 self
719 }
720
62682a34
SL
721 /// Extracts a mutable slice of the entire vector.
722 ///
723 /// Equivalent to `&mut s[..]`.
5bcae85e
SL
724 ///
725 /// # Examples
726 ///
727 /// ```
728 /// use std::io::{self, Read};
729 /// let mut buffer = vec![0; 3];
730 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
731 /// ```
c34b1796 732 #[inline]
9cc50fc6 733 #[stable(feature = "vec_as_slice", since = "1.7.0")]
85aaf69f 734 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e 735 self
1a4d82fc
JJ
736 }
737
0731742a 738 /// Forces the length of the vector to `new_len`.
1a4d82fc 739 ///
0731742a 740 /// This is a low-level operation that maintains none of the normal
9fa01778 741 /// invariants of the type. Normally changing the length of a vector
0731742a
XL
742 /// is done using one of the safe operations instead, such as
743 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1a4d82fc 744 ///
0731742a
XL
745 /// [`truncate`]: #method.truncate
746 /// [`resize`]: #method.resize
747 /// [`extend`]: #method.extend-1
748 /// [`clear`]: #method.clear
1a4d82fc 749 ///
0731742a 750 /// # Safety
5bcae85e 751 ///
0731742a
XL
752 /// - `new_len` must be less than or equal to [`capacity()`].
753 /// - The elements at `old_len..new_len` must be initialized.
5bcae85e 754 ///
0731742a
XL
755 /// [`capacity()`]: #method.capacity
756 ///
757 /// # Examples
758 ///
759 /// This method can be useful for situations in which the vector
760 /// is serving as a buffer for other code, particularly over FFI:
761 ///
762 /// ```no_run
763 /// # #![allow(dead_code)]
764 /// # // This is just a minimal skeleton for the doc example;
765 /// # // don't use this as a starting point for a real library.
766 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
767 /// # const Z_OK: i32 = 0;
768 /// # extern "C" {
769 /// # fn deflateGetDictionary(
770 /// # strm: *mut std::ffi::c_void,
771 /// # dictionary: *mut u8,
772 /// # dictLength: *mut usize,
773 /// # ) -> i32;
774 /// # }
775 /// # impl StreamWrapper {
776 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
777 /// // Per the FFI method's docs, "32768 bytes is always enough".
778 /// let mut dict = Vec::with_capacity(32_768);
779 /// let mut dict_length = 0;
780 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
781 /// // 1. `dict_length` elements were initialized.
782 /// // 2. `dict_length` <= the capacity (32_768)
783 /// // which makes `set_len` safe to call.
784 /// unsafe {
785 /// // Make the FFI call...
786 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
787 /// if r == Z_OK {
788 /// // ...and update the length to what was initialized.
789 /// dict.set_len(dict_length);
790 /// Some(dict)
791 /// } else {
792 /// None
793 /// }
794 /// }
5bcae85e 795 /// }
0731742a 796 /// # }
5bcae85e
SL
797 /// ```
798 ///
0731742a
XL
799 /// While the following example is sound, there is a memory leak since
800 /// the inner vectors were not freed prior to the `set_len` call:
5bcae85e
SL
801 ///
802 /// ```
803 /// let mut vec = vec![vec![1, 0, 0],
804 /// vec![0, 1, 0],
805 /// vec![0, 0, 1]];
0731742a
XL
806 /// // SAFETY:
807 /// // 1. `old_len..0` is empty so no elements need to be initialized.
808 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1a4d82fc 809 /// unsafe {
5bcae85e
SL
810 /// vec.set_len(0);
811 /// }
812 /// ```
813 ///
0731742a
XL
814 /// Normally, here, one would use [`clear`] instead to correctly drop
815 /// the contents and thus not leak memory.
1a4d82fc 816 #[inline]
85aaf69f 817 #[stable(feature = "rust1", since = "1.0.0")]
0731742a
XL
818 pub unsafe fn set_len(&mut self, new_len: usize) {
819 debug_assert!(new_len <= self.capacity());
820
821 self.len = new_len;
1a4d82fc
JJ
822 }
823
cc61c64b
XL
824 /// Removes an element from the vector and returns it.
825 ///
826 /// The removed element is replaced by the last element of the vector.
1a4d82fc
JJ
827 ///
828 /// This does not preserve ordering, but is O(1).
829 ///
830 /// # Panics
831 ///
832 /// Panics if `index` is out of bounds.
833 ///
834 /// # Examples
835 ///
836 /// ```
837 /// let mut v = vec!["foo", "bar", "baz", "qux"];
838 ///
839 /// assert_eq!(v.swap_remove(1), "bar");
c34b1796 840 /// assert_eq!(v, ["foo", "qux", "baz"]);
1a4d82fc
JJ
841 ///
842 /// assert_eq!(v.swap_remove(0), "foo");
c34b1796 843 /// assert_eq!(v, ["baz", "qux"]);
1a4d82fc
JJ
844 /// ```
845 #[inline]
85aaf69f
SL
846 #[stable(feature = "rust1", since = "1.0.0")]
847 pub fn swap_remove(&mut self, index: usize) -> T {
8faf50e0
XL
848 unsafe {
849 // We replace self[index] with the last element. Note that if the
850 // bounds check on hole succeeds there must be a last element (which
851 // can be self[index] itself).
852 let hole: *mut T = &mut self[index];
853 let last = ptr::read(self.get_unchecked(self.len - 1));
854 self.len -= 1;
855 ptr::replace(hole, last)
856 }
1a4d82fc
JJ
857 }
858
859 /// Inserts an element at position `index` within the vector, shifting all
7453a54e 860 /// elements after it to the right.
1a4d82fc
JJ
861 ///
862 /// # Panics
863 ///
2c00a5a8 864 /// Panics if `index > len`.
1a4d82fc
JJ
865 ///
866 /// # Examples
867 ///
868 /// ```
85aaf69f 869 /// let mut vec = vec![1, 2, 3];
1a4d82fc 870 /// vec.insert(1, 4);
c34b1796 871 /// assert_eq!(vec, [1, 4, 2, 3]);
1a4d82fc 872 /// vec.insert(4, 5);
c34b1796 873 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1a4d82fc 874 /// ```
85aaf69f
SL
875 #[stable(feature = "rust1", since = "1.0.0")]
876 pub fn insert(&mut self, index: usize, element: T) {
1a4d82fc
JJ
877 let len = self.len();
878 assert!(index <= len);
c1a9b12d 879
1a4d82fc 880 // space for the new element
92a42be0 881 if len == self.buf.cap() {
94b46f34 882 self.reserve(1);
92a42be0 883 }
1a4d82fc 884
92a42be0
SL
885 unsafe {
886 // infallible
1a4d82fc
JJ
887 // The spot to put the new value
888 {
b7449926 889 let p = self.as_mut_ptr().add(index);
1a4d82fc
JJ
890 // Shift everything over to make space. (Duplicating the
891 // `index`th element into two consecutive places.)
c1a9b12d 892 ptr::copy(p, p.offset(1), len - index);
1a4d82fc
JJ
893 // Write it in, overwriting the first copy of the `index`th
894 // element.
c1a9b12d 895 ptr::write(p, element);
1a4d82fc
JJ
896 }
897 self.set_len(len + 1);
898 }
899 }
900
901 /// Removes and returns the element at position `index` within the vector,
7453a54e 902 /// shifting all elements after it to the left.
1a4d82fc
JJ
903 ///
904 /// # Panics
905 ///
bd371182 906 /// Panics if `index` is out of bounds.
1a4d82fc
JJ
907 ///
908 /// # Examples
909 ///
910 /// ```
85aaf69f 911 /// let mut v = vec![1, 2, 3];
1a4d82fc 912 /// assert_eq!(v.remove(1), 2);
c34b1796 913 /// assert_eq!(v, [1, 3]);
1a4d82fc 914 /// ```
85aaf69f
SL
915 #[stable(feature = "rust1", since = "1.0.0")]
916 pub fn remove(&mut self, index: usize) -> T {
1a4d82fc
JJ
917 let len = self.len();
918 assert!(index < len);
92a42be0
SL
919 unsafe {
920 // infallible
1a4d82fc
JJ
921 let ret;
922 {
923 // the place we are taking from.
b7449926 924 let ptr = self.as_mut_ptr().add(index);
1a4d82fc
JJ
925 // copy it out, unsafely having a copy of the value on
926 // the stack and in the vector at the same time.
85aaf69f 927 ret = ptr::read(ptr);
1a4d82fc
JJ
928
929 // Shift everything down to fill in that spot.
c1a9b12d 930 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1a4d82fc
JJ
931 }
932 self.set_len(len - 1);
933 ret
934 }
935 }
936
937 /// Retains only the elements specified by the predicate.
938 ///
c30ab7b3 939 /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
1a4d82fc
JJ
940 /// This method operates in place and preserves the order of the retained
941 /// elements.
942 ///
943 /// # Examples
944 ///
945 /// ```
85aaf69f 946 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 947 /// vec.retain(|&x| x%2 == 0);
c34b1796 948 /// assert_eq!(vec, [2, 4]);
1a4d82fc 949 /// ```
85aaf69f 950 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
951 pub fn retain<F>(&mut self, mut f: F)
952 where F: FnMut(&T) -> bool
953 {
0531ce1d 954 self.drain_filter(|x| !f(x));
1a4d82fc
JJ
955 }
956
041b39d2
XL
957 /// Removes all but the first of consecutive elements in the vector that resolve to the same
958 /// key.
c30ab7b3
SL
959 ///
960 /// If the vector is sorted, this removes all duplicates.
961 ///
962 /// # Examples
963 ///
964 /// ```
c30ab7b3
SL
965 /// let mut vec = vec![10, 20, 21, 30, 20];
966 ///
967 /// vec.dedup_by_key(|i| *i / 10);
968 ///
969 /// assert_eq!(vec, [10, 20, 30, 20]);
970 /// ```
32a655c1 971 #[stable(feature = "dedup_by", since = "1.16.0")]
c30ab7b3
SL
972 #[inline]
973 pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq {
974 self.dedup_by(|a, b| key(a) == key(b))
975 }
976
041b39d2
XL
977 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
978 /// relation.
cc61c64b 979 ///
0bf4aa26
XL
980 /// The `same_bucket` function is passed references to two elements from the vector and
981 /// must determine if the elements compare equal. The elements are passed in opposite order
982 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
c30ab7b3
SL
983 ///
984 /// If the vector is sorted, this removes all duplicates.
985 ///
986 /// # Examples
987 ///
988 /// ```
c30ab7b3
SL
989 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
990 ///
991 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
992 ///
993 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
994 /// ```
32a655c1 995 #[stable(feature = "dedup_by", since = "1.16.0")]
0bf4aa26
XL
996 pub fn dedup_by<F>(&mut self, same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
997 let len = {
998 let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
999 dedup.len()
1000 };
1001 self.truncate(len);
c30ab7b3
SL
1002 }
1003
1a4d82fc
JJ
1004 /// Appends an element to the back of a collection.
1005 ///
1006 /// # Panics
1007 ///
85aaf69f 1008 /// Panics if the number of elements in the vector overflows a `usize`.
1a4d82fc
JJ
1009 ///
1010 /// # Examples
1011 ///
c34b1796 1012 /// ```
c1a9b12d 1013 /// let mut vec = vec![1, 2];
1a4d82fc 1014 /// vec.push(3);
c34b1796 1015 /// assert_eq!(vec, [1, 2, 3]);
1a4d82fc
JJ
1016 /// ```
1017 #[inline]
85aaf69f 1018 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1019 pub fn push(&mut self, value: T) {
c1a9b12d
SL
1020 // This will panic or abort if we would allocate > isize::MAX bytes
1021 // or if the length increment would overflow for zero-sized types.
92a42be0 1022 if self.len == self.buf.cap() {
94b46f34 1023 self.reserve(1);
92a42be0 1024 }
1a4d82fc 1025 unsafe {
b7449926 1026 let end = self.as_mut_ptr().add(self.len);
c1a9b12d 1027 ptr::write(end, value);
1a4d82fc
JJ
1028 self.len += 1;
1029 }
1030 }
1031
c30ab7b3 1032 /// Removes the last element from a vector and returns it, or [`None`] if it
e9174d1e 1033 /// is empty.
1a4d82fc 1034 ///
c30ab7b3
SL
1035 /// [`None`]: ../../std/option/enum.Option.html#variant.None
1036 ///
1a4d82fc
JJ
1037 /// # Examples
1038 ///
c34b1796 1039 /// ```
85aaf69f 1040 /// let mut vec = vec![1, 2, 3];
1a4d82fc 1041 /// assert_eq!(vec.pop(), Some(3));
c34b1796 1042 /// assert_eq!(vec, [1, 2]);
1a4d82fc
JJ
1043 /// ```
1044 #[inline]
85aaf69f 1045 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1046 pub fn pop(&mut self) -> Option<T> {
1047 if self.len == 0 {
1048 None
1049 } else {
1050 unsafe {
1051 self.len -= 1;
1052 Some(ptr::read(self.get_unchecked(self.len())))
1053 }
1054 }
1055 }
1056
85aaf69f
SL
1057 /// Moves all the elements of `other` into `Self`, leaving `other` empty.
1058 ///
1059 /// # Panics
1060 ///
1061 /// Panics if the number of elements in the vector overflows a `usize`.
1062 ///
1063 /// # Examples
1064 ///
1065 /// ```
1066 /// let mut vec = vec![1, 2, 3];
1067 /// let mut vec2 = vec![4, 5, 6];
1068 /// vec.append(&mut vec2);
c34b1796
AL
1069 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1070 /// assert_eq!(vec2, []);
85aaf69f
SL
1071 /// ```
1072 #[inline]
e9174d1e 1073 #[stable(feature = "append", since = "1.4.0")]
85aaf69f 1074 pub fn append(&mut self, other: &mut Self) {
92a42be0 1075 unsafe {
cc61c64b 1076 self.append_elements(other.as_slice() as _);
92a42be0
SL
1077 other.set_len(0);
1078 }
85aaf69f
SL
1079 }
1080
cc61c64b
XL
1081 /// Appends elements to `Self` from other buffer.
1082 #[inline]
1083 unsafe fn append_elements(&mut self, other: *const [T]) {
1084 let count = (*other).len();
1085 self.reserve(count);
1086 let len = self.len();
1087 ptr::copy_nonoverlapping(other as *const T, self.get_unchecked_mut(len), count);
1088 self.len += count;
1089 }
1090
7cac9316 1091 /// Creates a draining iterator that removes the specified range in the vector
9cc50fc6 1092 /// and yields the removed items.
d9579d0f 1093 ///
32a655c1
SL
1094 /// Note 1: The element range is removed even if the iterator is only
1095 /// partially consumed or not consumed at all.
9cc50fc6 1096 ///
7cac9316 1097 /// Note 2: It is unspecified how many elements are removed from the vector
d9579d0f
AL
1098 /// if the `Drain` value is leaked.
1099 ///
1100 /// # Panics
1101 ///
1102 /// Panics if the starting point is greater than the end point or if
1103 /// the end point is greater than the length of the vector.
1a4d82fc
JJ
1104 ///
1105 /// # Examples
1106 ///
1107 /// ```
d9579d0f 1108 /// let mut v = vec![1, 2, 3];
9cc50fc6
SL
1109 /// let u: Vec<_> = v.drain(1..).collect();
1110 /// assert_eq!(v, &[1]);
1111 /// assert_eq!(u, &[2, 3]);
1112 ///
1113 /// // A full range clears the vector
1114 /// v.drain(..);
d9579d0f 1115 /// assert_eq!(v, &[]);
1a4d82fc 1116 /// ```
92a42be0 1117 #[stable(feature = "drain", since = "1.6.0")]
9fa01778 1118 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
0531ce1d 1119 where R: RangeBounds<usize>
92a42be0 1120 {
d9579d0f
AL
1121 // Memory safety
1122 //
1123 // When the Drain is first created, it shortens the length of
ff7c6d11 1124 // the source vector to make sure no uninitialized or moved-from elements
d9579d0f
AL
1125 // are accessible at all if the Drain's destructor never gets to run.
1126 //
1127 // Drain will ptr::read out the values to remove.
1128 // When finished, remaining tail of the vec is copied back to cover
1129 // the hole, and the vector length is restored to the new length.
1130 //
1131 let len = self.len();
94b46f34 1132 let start = match range.start_bound() {
32a655c1
SL
1133 Included(&n) => n,
1134 Excluded(&n) => n + 1,
1135 Unbounded => 0,
1136 };
94b46f34 1137 let end = match range.end_bound() {
32a655c1
SL
1138 Included(&n) => n + 1,
1139 Excluded(&n) => n,
1140 Unbounded => len,
1141 };
d9579d0f
AL
1142 assert!(start <= end);
1143 assert!(end <= len);
1144
1a4d82fc 1145 unsafe {
d9579d0f
AL
1146 // set self.vec length's to start, to be safe in case Drain is leaked
1147 self.set_len(start);
1148 // Use the borrow in the IterMut to indicate borrowing behavior of the
1149 // whole Drain iterator (like &mut T).
b7449926 1150 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start),
92a42be0 1151 end - start);
1a4d82fc 1152 Drain {
d9579d0f
AL
1153 tail_start: end,
1154 tail_len: len - end,
5bcae85e 1155 iter: range_slice.iter(),
2c00a5a8 1156 vec: NonNull::from(self),
1a4d82fc
JJ
1157 }
1158 }
1159 }
1160
1161 /// Clears the vector, removing all values.
1162 ///
8bb4bdeb
XL
1163 /// Note that this method has no effect on the allocated capacity
1164 /// of the vector.
1165 ///
1a4d82fc
JJ
1166 /// # Examples
1167 ///
1168 /// ```
85aaf69f 1169 /// let mut v = vec![1, 2, 3];
1a4d82fc
JJ
1170 ///
1171 /// v.clear();
1172 ///
1173 /// assert!(v.is_empty());
1174 /// ```
1175 #[inline]
85aaf69f 1176 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1177 pub fn clear(&mut self) {
1178 self.truncate(0)
1179 }
1180
7cac9316
XL
1181 /// Returns the number of elements in the vector, also referred to
1182 /// as its 'length'.
1a4d82fc
JJ
1183 ///
1184 /// # Examples
1185 ///
1186 /// ```
85aaf69f 1187 /// let a = vec![1, 2, 3];
1a4d82fc
JJ
1188 /// assert_eq!(a.len(), 3);
1189 /// ```
1190 #[inline]
85aaf69f 1191 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1192 pub fn len(&self) -> usize {
1193 self.len
1194 }
1a4d82fc
JJ
1195
1196 /// Returns `true` if the vector contains no elements.
1197 ///
1198 /// # Examples
1199 ///
1200 /// ```
1201 /// let mut v = Vec::new();
1202 /// assert!(v.is_empty());
1203 ///
85aaf69f 1204 /// v.push(1);
1a4d82fc
JJ
1205 /// assert!(!v.is_empty());
1206 /// ```
85aaf69f 1207 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
1208 pub fn is_empty(&self) -> bool {
1209 self.len() == 0
1210 }
1a4d82fc 1211
85aaf69f
SL
1212 /// Splits the collection into two at the given index.
1213 ///
1214 /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
1215 /// and the returned `Self` contains elements `[at, len)`.
1216 ///
1217 /// Note that the capacity of `self` does not change.
1218 ///
1219 /// # Panics
1220 ///
1221 /// Panics if `at > len`.
1222 ///
1223 /// # Examples
1224 ///
1225 /// ```
1226 /// let mut vec = vec![1,2,3];
1227 /// let vec2 = vec.split_off(1);
c34b1796
AL
1228 /// assert_eq!(vec, [1]);
1229 /// assert_eq!(vec2, [2, 3]);
85aaf69f
SL
1230 /// ```
1231 #[inline]
e9174d1e 1232 #[stable(feature = "split_off", since = "1.4.0")]
85aaf69f
SL
1233 pub fn split_off(&mut self, at: usize) -> Self {
1234 assert!(at <= self.len(), "`at` out of bounds");
1235
1236 let other_len = self.len - at;
1237 let mut other = Vec::with_capacity(other_len);
1238
1239 // Unsafely `set_len` and copy items to `other`.
1240 unsafe {
1241 self.set_len(at);
1242 other.set_len(other_len);
1243
b7449926 1244 ptr::copy_nonoverlapping(self.as_ptr().add(at),
92a42be0
SL
1245 other.as_mut_ptr(),
1246 other.len());
85aaf69f
SL
1247 }
1248 other
1249 }
83c7162d
XL
1250
1251 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1252 ///
1253 /// If `new_len` is greater than `len`, the `Vec` is extended by the
1254 /// difference, with each additional slot filled with the result of
1255 /// calling the closure `f`. The return values from `f` will end up
1256 /// in the `Vec` in the order they have been generated.
1257 ///
1258 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1259 ///
1260 /// This method uses a closure to create new values on every push. If
1261 /// you'd rather [`Clone`] a given value, use [`resize`]. If you want
1262 /// to use the [`Default`] trait to generate values, you can pass
1263 /// [`Default::default()`] as the second argument..
1264 ///
1265 /// # Examples
1266 ///
1267 /// ```
83c7162d
XL
1268 /// let mut vec = vec![1, 2, 3];
1269 /// vec.resize_with(5, Default::default);
1270 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
1271 ///
1272 /// let mut vec = vec![];
1273 /// let mut p = 1;
1274 /// vec.resize_with(4, || { p *= 2; p });
1275 /// assert_eq!(vec, [2, 4, 8, 16]);
1276 /// ```
1277 ///
1278 /// [`resize`]: #method.resize
1279 /// [`Clone`]: ../../std/clone/trait.Clone.html
0731742a 1280 #[stable(feature = "vec_resize_with", since = "1.33.0")]
83c7162d
XL
1281 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
1282 where F: FnMut() -> T
1283 {
1284 let len = self.len();
1285 if new_len > len {
1286 self.extend_with(new_len - len, ExtendFunc(f));
1287 } else {
1288 self.truncate(new_len);
1289 }
1290 }
1a4d82fc
JJ
1291}
1292
1293impl<T: Clone> Vec<T> {
7cac9316 1294 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1a4d82fc 1295 ///
7cac9316 1296 /// If `new_len` is greater than `len`, the `Vec` is extended by the
92a42be0 1297 /// difference, with each additional slot filled with `value`.
7cac9316
XL
1298 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1299 ///
0531ce1d 1300 /// This method requires [`Clone`] to be able clone the passed value. If
83c7162d
XL
1301 /// you need more flexibility (or want to rely on [`Default`] instead of
1302 /// [`Clone`]), use [`resize_with`].
1a4d82fc
JJ
1303 ///
1304 /// # Examples
1305 ///
1306 /// ```
1307 /// let mut vec = vec!["hello"];
1308 /// vec.resize(3, "world");
c34b1796 1309 /// assert_eq!(vec, ["hello", "world", "world"]);
1a4d82fc 1310 ///
85aaf69f 1311 /// let mut vec = vec![1, 2, 3, 4];
1a4d82fc 1312 /// vec.resize(2, 0);
c34b1796 1313 /// assert_eq!(vec, [1, 2]);
1a4d82fc 1314 /// ```
7cac9316 1315 ///
0531ce1d
XL
1316 /// [`Clone`]: ../../std/clone/trait.Clone.html
1317 /// [`Default`]: ../../std/default/trait.Default.html
83c7162d 1318 /// [`resize_with`]: #method.resize_with
b039eaaf 1319 #[stable(feature = "vec_resize", since = "1.5.0")]
85aaf69f 1320 pub fn resize(&mut self, new_len: usize, value: T) {
1a4d82fc
JJ
1321 let len = self.len();
1322
1323 if new_len > len {
7cac9316 1324 self.extend_with(new_len - len, ExtendElement(value))
1a4d82fc
JJ
1325 } else {
1326 self.truncate(new_len);
1327 }
1328 }
1329
7cac9316
XL
1330 /// Clones and appends all elements in a slice to the `Vec`.
1331 ///
1332 /// Iterates over the slice `other`, clones each element, and then appends
1333 /// it to this `Vec`. The `other` vector is traversed in-order.
1334 ///
0531ce1d 1335 /// Note that this function is same as [`extend`] except that it is
7cac9316
XL
1336 /// specialized to work with slices instead. If and when Rust gets
1337 /// specialization this function will likely be deprecated (but still
1338 /// available).
1339 ///
1340 /// # Examples
1341 ///
1342 /// ```
1343 /// let mut vec = vec![1];
1344 /// vec.extend_from_slice(&[2, 3, 4]);
1345 /// assert_eq!(vec, [1, 2, 3, 4]);
1346 /// ```
0531ce1d
XL
1347 ///
1348 /// [`extend`]: #method.extend
7cac9316
XL
1349 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
1350 pub fn extend_from_slice(&mut self, other: &[T]) {
1351 self.spec_extend(other.iter())
1352 }
1353}
1354
1355impl<T: Default> Vec<T> {
1356 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
1357 ///
1358 /// If `new_len` is greater than `len`, the `Vec` is extended by the
0531ce1d 1359 /// difference, with each additional slot filled with [`Default::default()`].
7cac9316
XL
1360 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
1361 ///
0531ce1d
XL
1362 /// This method uses [`Default`] to create new values on every push. If
1363 /// you'd rather [`Clone`] a given value, use [`resize`].
7cac9316
XL
1364 ///
1365 /// # Examples
1366 ///
1367 /// ```
9fa01778 1368 /// # #![allow(deprecated)]
7cac9316
XL
1369 /// #![feature(vec_resize_default)]
1370 ///
1371 /// let mut vec = vec![1, 2, 3];
1372 /// vec.resize_default(5);
1373 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
1374 ///
1375 /// let mut vec = vec![1, 2, 3, 4];
1376 /// vec.resize_default(2);
1377 /// assert_eq!(vec, [1, 2]);
1378 /// ```
1379 ///
1380 /// [`resize`]: #method.resize
0531ce1d
XL
1381 /// [`Default::default()`]: ../../std/default/trait.Default.html#tymethod.default
1382 /// [`Default`]: ../../std/default/trait.Default.html
1383 /// [`Clone`]: ../../std/clone/trait.Clone.html
7cac9316 1384 #[unstable(feature = "vec_resize_default", issue = "41758")]
9fa01778
XL
1385 #[rustc_deprecated(reason = "This is moving towards being removed in favor \
1386 of `.resize_with(Default::default)`. If you disagree, please comment \
1387 in the tracking issue.", since = "1.33.0")]
7cac9316
XL
1388 pub fn resize_default(&mut self, new_len: usize) {
1389 let len = self.len();
1390
1391 if new_len > len {
1392 self.extend_with(new_len - len, ExtendDefault);
1393 } else {
1394 self.truncate(new_len);
1395 }
1396 }
1397}
1398
1399// This code generalises `extend_with_{element,default}`.
1400trait ExtendWith<T> {
83c7162d 1401 fn next(&mut self) -> T;
7cac9316
XL
1402 fn last(self) -> T;
1403}
1404
1405struct ExtendElement<T>(T);
1406impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
83c7162d 1407 fn next(&mut self) -> T { self.0.clone() }
7cac9316
XL
1408 fn last(self) -> T { self.0 }
1409}
1410
1411struct ExtendDefault;
1412impl<T: Default> ExtendWith<T> for ExtendDefault {
83c7162d 1413 fn next(&mut self) -> T { Default::default() }
7cac9316
XL
1414 fn last(self) -> T { Default::default() }
1415}
83c7162d
XL
1416
1417struct ExtendFunc<F>(F);
1418impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
1419 fn next(&mut self) -> T { (self.0)() }
1420 fn last(mut self) -> T { (self.0)() }
1421}
1422
7cac9316
XL
1423impl<T> Vec<T> {
1424 /// Extend the vector by `n` values, using the given generator.
83c7162d 1425 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
c1a9b12d
SL
1426 self.reserve(n);
1427
1428 unsafe {
b7449926 1429 let mut ptr = self.as_mut_ptr().add(self.len());
9e0c209e 1430 // Use SetLenOnDrop to work around bug where compiler
8bb4bdeb 1431 // may not realize the store through `ptr` through self.set_len()
9e0c209e
SL
1432 // don't alias.
1433 let mut local_len = SetLenOnDrop::new(&mut self.len);
1434
c1a9b12d 1435 // Write all elements except the last one
9e0c209e 1436 for _ in 1..n {
7cac9316 1437 ptr::write(ptr, value.next());
c1a9b12d 1438 ptr = ptr.offset(1);
7cac9316 1439 // Increment the length in every step in case next() panics
9e0c209e 1440 local_len.increment_len(1);
c1a9b12d
SL
1441 }
1442
1443 if n > 0 {
1444 // We can write the last element directly without cloning needlessly
7cac9316 1445 ptr::write(ptr, value.last());
9e0c209e 1446 local_len.increment_len(1);
c1a9b12d 1447 }
9e0c209e
SL
1448
1449 // len set by scope guard
c1a9b12d
SL
1450 }
1451 }
1a4d82fc
JJ
1452}
1453
9e0c209e
SL
1454// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
1455//
1456// The idea is: The length field in SetLenOnDrop is a local variable
1457// that the optimizer will see does not alias with any stores through the Vec's data
1458// pointer. This is a workaround for alias analysis issue #32155
1459struct SetLenOnDrop<'a> {
1460 len: &'a mut usize,
1461 local_len: usize,
1462}
1463
1464impl<'a> SetLenOnDrop<'a> {
1465 #[inline]
1466 fn new(len: &'a mut usize) -> Self {
1467 SetLenOnDrop { local_len: *len, len: len }
1468 }
1469
1470 #[inline]
1471 fn increment_len(&mut self, increment: usize) {
1472 self.local_len += increment;
1473 }
b7449926
XL
1474
1475 #[inline]
1476 fn decrement_len(&mut self, decrement: usize) {
1477 self.local_len -= decrement;
1478 }
9e0c209e
SL
1479}
1480
9fa01778 1481impl Drop for SetLenOnDrop<'_> {
9e0c209e
SL
1482 #[inline]
1483 fn drop(&mut self) {
1484 *self.len = self.local_len;
1485 }
1486}
1487
1a4d82fc 1488impl<T: PartialEq> Vec<T> {
0bf4aa26
XL
1489 /// Removes consecutive repeated elements in the vector according to the
1490 /// [`PartialEq`] trait implementation.
1a4d82fc
JJ
1491 ///
1492 /// If the vector is sorted, this removes all duplicates.
1493 ///
1494 /// # Examples
1495 ///
1496 /// ```
85aaf69f 1497 /// let mut vec = vec![1, 2, 2, 3, 2];
1a4d82fc
JJ
1498 ///
1499 /// vec.dedup();
1500 ///
c34b1796 1501 /// assert_eq!(vec, [1, 2, 3, 2]);
1a4d82fc 1502 /// ```
85aaf69f 1503 #[stable(feature = "rust1", since = "1.0.0")]
c30ab7b3 1504 #[inline]
1a4d82fc 1505 pub fn dedup(&mut self) {
c30ab7b3 1506 self.dedup_by(|a, b| a == b)
1a4d82fc 1507 }
8bb4bdeb
XL
1508
1509 /// Removes the first instance of `item` from the vector if the item exists.
1510 ///
1511 /// # Examples
1512 ///
1513 /// ```
cc61c64b 1514 /// # #![feature(vec_remove_item)]
8bb4bdeb
XL
1515 /// let mut vec = vec![1, 2, 3, 1];
1516 ///
1517 /// vec.remove_item(&1);
1518 ///
1519 /// assert_eq!(vec, vec![2, 3, 1]);
1520 /// ```
1521 #[unstable(feature = "vec_remove_item", reason = "recently added", issue = "40062")]
1522 pub fn remove_item(&mut self, item: &T) -> Option<T> {
ff7c6d11 1523 let pos = self.iter().position(|x| *x == *item)?;
8bb4bdeb
XL
1524 Some(self.remove(pos))
1525 }
1a4d82fc
JJ
1526}
1527
1528////////////////////////////////////////////////////////////////////////////////
1529// Internal methods and functions
1530////////////////////////////////////////////////////////////////////////////////
1531
85aaf69f
SL
1532#[doc(hidden)]
1533#[stable(feature = "rust1", since = "1.0.0")]
1534pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
cc61c64b
XL
1535 <T as SpecFromElem>::from_elem(elem, n)
1536}
1537
1538// Specialization trait used for Vec::from_elem
1539trait SpecFromElem: Sized {
1540 fn from_elem(elem: Self, n: usize) -> Vec<Self>;
1541}
1542
1543impl<T: Clone> SpecFromElem for T {
1544 default fn from_elem(elem: Self, n: usize) -> Vec<Self> {
1545 let mut v = Vec::with_capacity(n);
7cac9316 1546 v.extend_with(n, ExtendElement(elem));
cc61c64b
XL
1547 v
1548 }
85aaf69f
SL
1549}
1550
cc61c64b
XL
1551impl SpecFromElem for u8 {
1552 #[inline]
1553 fn from_elem(elem: u8, n: usize) -> Vec<u8> {
1554 if elem == 0 {
1555 return Vec {
1556 buf: RawVec::with_capacity_zeroed(n),
1557 len: n,
1558 }
1559 }
1560 unsafe {
1561 let mut v = Vec::with_capacity(n);
1562 ptr::write_bytes(v.as_mut_ptr(), elem, n);
1563 v.set_len(n);
1564 v
1565 }
1566 }
1567}
1568
83c7162d
XL
1569impl<T: Clone + IsZero> SpecFromElem for T {
1570 #[inline]
1571 fn from_elem(elem: T, n: usize) -> Vec<T> {
1572 if elem.is_zero() {
1573 return Vec {
1574 buf: RawVec::with_capacity_zeroed(n),
1575 len: n,
1576 }
1577 }
1578 let mut v = Vec::with_capacity(n);
1579 v.extend_with(n, ExtendElement(elem));
1580 v
1581 }
1582}
1583
1584unsafe trait IsZero {
1585 /// Whether this value is zero
1586 fn is_zero(&self) -> bool;
1587}
1588
1589macro_rules! impl_is_zero {
cc61c64b 1590 ($t: ty, $is_zero: expr) => {
83c7162d 1591 unsafe impl IsZero for $t {
cc61c64b 1592 #[inline]
83c7162d
XL
1593 fn is_zero(&self) -> bool {
1594 $is_zero(*self)
cc61c64b
XL
1595 }
1596 }
83c7162d 1597 }
cc61c64b
XL
1598}
1599
83c7162d
XL
1600impl_is_zero!(i8, |x| x == 0);
1601impl_is_zero!(i16, |x| x == 0);
1602impl_is_zero!(i32, |x| x == 0);
1603impl_is_zero!(i64, |x| x == 0);
1604impl_is_zero!(i128, |x| x == 0);
1605impl_is_zero!(isize, |x| x == 0);
1606
1607impl_is_zero!(u16, |x| x == 0);
1608impl_is_zero!(u32, |x| x == 0);
1609impl_is_zero!(u64, |x| x == 0);
1610impl_is_zero!(u128, |x| x == 0);
1611impl_is_zero!(usize, |x| x == 0);
cc61c64b 1612
9fa01778 1613impl_is_zero!(bool, |x| x == false);
83c7162d
XL
1614impl_is_zero!(char, |x| x == '\0');
1615
1616impl_is_zero!(f32, |x: f32| x.to_bits() == 0);
1617impl_is_zero!(f64, |x: f64| x.to_bits() == 0);
1618
1619unsafe impl<T: ?Sized> IsZero for *const T {
1620 #[inline]
1621 fn is_zero(&self) -> bool {
1622 (*self).is_null()
1623 }
1624}
1625
1626unsafe impl<T: ?Sized> IsZero for *mut T {
1627 #[inline]
1628 fn is_zero(&self) -> bool {
1629 (*self).is_null()
1630 }
1631}
cc61c64b 1632
cc61c64b 1633
1a4d82fc
JJ
1634////////////////////////////////////////////////////////////////////////////////
1635// Common trait implementations for Vec
1636////////////////////////////////////////////////////////////////////////////////
1637
bd371182 1638#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 1639impl<T: Clone> Clone for Vec<T> {
c34b1796 1640 #[cfg(not(test))]
92a42be0
SL
1641 fn clone(&self) -> Vec<T> {
1642 <[T]>::to_vec(&**self)
1643 }
c34b1796
AL
1644
1645 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
1646 // required for this method definition, is not available. Instead use the
1647 // `slice::to_vec` function which is only available with cfg(test)
1648 // NB see the slice::hack module in slice.rs for more information
1649 #[cfg(test)]
1650 fn clone(&self) -> Vec<T> {
9fa01778 1651 crate::slice::to_vec(&**self)
c34b1796 1652 }
1a4d82fc
JJ
1653
1654 fn clone_from(&mut self, other: &Vec<T>) {
cc61c64b 1655 other.as_slice().clone_into(self);
1a4d82fc
JJ
1656 }
1657}
1658
85aaf69f 1659#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 1660impl<T: Hash> Hash for Vec<T> {
1a4d82fc 1661 #[inline]
85aaf69f
SL
1662 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1663 Hash::hash(&**self, state)
1a4d82fc
JJ
1664 }
1665}
1666
85aaf69f 1667#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
1668#[rustc_on_unimplemented(
1669 message="vector indices are of type `usize` or ranges of `usize`",
1670 label="vector indices are of type `usize` or ranges of `usize`",
1671)]
9fa01778 1672impl<T, I: SliceIndex<[T]>> Index<I> for Vec<T> {
0531ce1d 1673 type Output = I::Output;
54a0048b
SL
1674
1675 #[inline]
0531ce1d 1676 fn index(&self, index: I) -> &Self::Output {
54a0048b
SL
1677 Index::index(&**self, index)
1678 }
1679}
1a4d82fc 1680
85aaf69f 1681#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
1682#[rustc_on_unimplemented(
1683 message="vector indices are of type `usize` or ranges of `usize`",
1684 label="vector indices are of type `usize` or ranges of `usize`",
1685)]
9fa01778 1686impl<T, I: SliceIndex<[T]>> IndexMut<I> for Vec<T> {
54a0048b 1687 #[inline]
0531ce1d 1688 fn index_mut(&mut self, index: I) -> &mut Self::Output {
54a0048b
SL
1689 IndexMut::index_mut(&mut **self, index)
1690 }
1691}
1a4d82fc 1692
85aaf69f 1693#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1694impl<T> ops::Deref for Vec<T> {
1695 type Target = [T];
1696
c34b1796
AL
1697 fn deref(&self) -> &[T] {
1698 unsafe {
c1a9b12d 1699 let p = self.buf.ptr();
e9174d1e 1700 assume(!p.is_null());
c34b1796
AL
1701 slice::from_raw_parts(p, self.len)
1702 }
1703 }
1a4d82fc
JJ
1704}
1705
85aaf69f 1706#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1707impl<T> ops::DerefMut for Vec<T> {
c34b1796
AL
1708 fn deref_mut(&mut self) -> &mut [T] {
1709 unsafe {
c1a9b12d 1710 let ptr = self.buf.ptr();
c34b1796
AL
1711 assume(!ptr.is_null());
1712 slice::from_raw_parts_mut(ptr, self.len)
1713 }
1714 }
1a4d82fc
JJ
1715}
1716
85aaf69f 1717#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1718impl<T> FromIterator<T> for Vec<T> {
1719 #[inline]
54a0048b 1720 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
cc61c64b 1721 <Self as SpecExtend<T, I::IntoIter>>::from_iter(iter.into_iter())
1a4d82fc
JJ
1722 }
1723}
1724
85aaf69f
SL
1725#[stable(feature = "rust1", since = "1.0.0")]
1726impl<T> IntoIterator for Vec<T> {
1727 type Item = T;
1728 type IntoIter = IntoIter<T>;
1729
9346a6ac
AL
1730 /// Creates a consuming iterator, that is, one that moves each value out of
1731 /// the vector (from start to end). The vector cannot be used after calling
1732 /// this.
1733 ///
1734 /// # Examples
1735 ///
1736 /// ```
1737 /// let v = vec!["a".to_string(), "b".to_string()];
1738 /// for s in v.into_iter() {
1739 /// // s has type String, not &String
1740 /// println!("{}", s);
1741 /// }
1742 /// ```
1743 #[inline]
c1a9b12d 1744 fn into_iter(mut self) -> IntoIter<T> {
9346a6ac 1745 unsafe {
5bcae85e
SL
1746 let begin = self.as_mut_ptr();
1747 assume(!begin.is_null());
9346a6ac 1748 let end = if mem::size_of::<T>() == 0 {
5bcae85e 1749 arith_offset(begin as *const i8, self.len() as isize) as *const T
9346a6ac 1750 } else {
b7449926 1751 begin.add(self.len()) as *const T
9346a6ac 1752 };
5bcae85e 1753 let cap = self.buf.cap();
9346a6ac 1754 mem::forget(self);
92a42be0 1755 IntoIter {
2c00a5a8 1756 buf: NonNull::new_unchecked(begin),
ff7c6d11 1757 phantom: PhantomData,
3b2f2976 1758 cap,
92a42be0 1759 ptr: begin,
3b2f2976 1760 end,
92a42be0 1761 }
9346a6ac 1762 }
85aaf69f
SL
1763 }
1764}
1765
1766#[stable(feature = "rust1", since = "1.0.0")]
1767impl<'a, T> IntoIterator for &'a Vec<T> {
1768 type Item = &'a T;
1769 type IntoIter = slice::Iter<'a, T>;
1770
1771 fn into_iter(self) -> slice::Iter<'a, T> {
1772 self.iter()
1773 }
1774}
1775
1776#[stable(feature = "rust1", since = "1.0.0")]
1777impl<'a, T> IntoIterator for &'a mut Vec<T> {
1778 type Item = &'a mut T;
1779 type IntoIter = slice::IterMut<'a, T>;
1780
3b2f2976 1781 fn into_iter(self) -> slice::IterMut<'a, T> {
85aaf69f
SL
1782 self.iter_mut()
1783 }
1784}
1785
bd371182 1786#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
1787impl<T> Extend<T> for Vec<T> {
1788 #[inline]
54a0048b 1789 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
cc61c64b 1790 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
62682a34
SL
1791 }
1792}
1793
476ff2be
SL
1794// Specialization trait used for Vec::from_iter and Vec::extend
1795trait SpecExtend<T, I> {
1796 fn from_iter(iter: I) -> Self;
1797 fn spec_extend(&mut self, iter: I);
c30ab7b3 1798}
c30ab7b3 1799
476ff2be
SL
1800impl<T, I> SpecExtend<T, I> for Vec<T>
1801 where I: Iterator<Item=T>,
c30ab7b3 1802{
476ff2be
SL
1803 default fn from_iter(mut iterator: I) -> Self {
1804 // Unroll the first iteration, as the vector is going to be
1805 // expanded on this iteration in every case when the iterable is not
1806 // empty, but the loop in extend_desugared() is not going to see the
1807 // vector being full in the few subsequent loop iterations.
1808 // So we get better branch prediction.
1809 let mut vector = match iterator.next() {
1810 None => return Vec::new(),
1811 Some(element) => {
1812 let (lower, _) = iterator.size_hint();
1813 let mut vector = Vec::with_capacity(lower.saturating_add(1));
1814 unsafe {
1815 ptr::write(vector.get_unchecked_mut(0), element);
1816 vector.set_len(1);
1817 }
1818 vector
1819 }
1820 };
cc61c64b 1821 <Vec<T> as SpecExtend<T, I>>::spec_extend(&mut vector, iterator);
476ff2be
SL
1822 vector
1823 }
1824
1825 default fn spec_extend(&mut self, iter: I) {
1826 self.extend_desugared(iter)
1827 }
1828}
1829
1830impl<T, I> SpecExtend<T, I> for Vec<T>
1831 where I: TrustedLen<Item=T>,
1832{
cc61c64b 1833 default fn from_iter(iterator: I) -> Self {
476ff2be
SL
1834 let mut vector = Vec::new();
1835 vector.spec_extend(iterator);
1836 vector
1837 }
1838
cc61c64b 1839 default fn spec_extend(&mut self, iterator: I) {
476ff2be
SL
1840 // This is the case for a TrustedLen iterator.
1841 let (low, high) = iterator.size_hint();
c30ab7b3
SL
1842 if let Some(high_value) = high {
1843 debug_assert_eq!(low, high_value,
1844 "TrustedLen iterator's size hint is not exact: {:?}",
1845 (low, high));
1846 }
476ff2be 1847 if let Some(additional) = high {
c30ab7b3 1848 self.reserve(additional);
62682a34 1849 unsafe {
b7449926 1850 let mut ptr = self.as_mut_ptr().add(self.len());
c30ab7b3 1851 let mut local_len = SetLenOnDrop::new(&mut self.len);
0bf4aa26 1852 iterator.for_each(move |element| {
c30ab7b3
SL
1853 ptr::write(ptr, element);
1854 ptr = ptr.offset(1);
1855 // NB can't overflow since we would have had to alloc the address space
1856 local_len.increment_len(1);
0bf4aa26 1857 });
c30ab7b3
SL
1858 }
1859 } else {
476ff2be
SL
1860 self.extend_desugared(iterator)
1861 }
1862 }
1863}
1864
cc61c64b
XL
1865impl<T> SpecExtend<T, IntoIter<T>> for Vec<T> {
1866 fn from_iter(iterator: IntoIter<T>) -> Self {
1867 // A common case is passing a vector into a function which immediately
1868 // re-collects into a vector. We can short circuit this if the IntoIter
1869 // has not been advanced at all.
7cac9316 1870 if iterator.buf.as_ptr() as *const _ == iterator.ptr {
cc61c64b 1871 unsafe {
7cac9316 1872 let vec = Vec::from_raw_parts(iterator.buf.as_ptr(),
cc61c64b
XL
1873 iterator.len(),
1874 iterator.cap);
1875 mem::forget(iterator);
1876 vec
1877 }
1878 } else {
1879 let mut vector = Vec::new();
1880 vector.spec_extend(iterator);
1881 vector
1882 }
1883 }
1884
1885 fn spec_extend(&mut self, mut iterator: IntoIter<T>) {
1886 unsafe {
1887 self.append_elements(iterator.as_slice() as _);
1888 }
1889 iterator.ptr = iterator.end;
1890 }
1891}
1892
476ff2be
SL
1893impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T>
1894 where I: Iterator<Item=&'a T>,
1895 T: Clone,
1896{
1897 default fn from_iter(iterator: I) -> Self {
1898 SpecExtend::from_iter(iterator.cloned())
1899 }
1900
1901 default fn spec_extend(&mut self, iterator: I) {
1902 self.spec_extend(iterator.cloned())
1903 }
1904}
1905
1906impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T>
1907 where T: Copy,
1908{
1909 fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
1910 let slice = iterator.as_slice();
1911 self.reserve(slice.len());
1912 unsafe {
1913 let len = self.len();
1914 self.set_len(len + slice.len());
1915 self.get_unchecked_mut(len..).copy_from_slice(slice);
1916 }
1917 }
1918}
1919
1920impl<T> Vec<T> {
1921 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
1922 // This is the case for a general iterator.
1923 //
1924 // This function should be the moral equivalent of:
1925 //
1926 // for item in iterator {
1927 // self.push(item);
1928 // }
1929 while let Some(element) = iterator.next() {
1930 let len = self.len();
1931 if len == self.capacity() {
1932 let (lower, _) = iterator.size_hint();
1933 self.reserve(lower.saturating_add(1));
1934 }
1935 unsafe {
1936 ptr::write(self.get_unchecked_mut(len), element);
1937 // NB can't overflow since we would have had to alloc the address space
1938 self.set_len(len + 1);
62682a34 1939 }
1a4d82fc
JJ
1940 }
1941 }
7cac9316
XL
1942
1943 /// Creates a splicing iterator that replaces the specified range in the vector
1944 /// with the given `replace_with` iterator and yields the removed items.
1945 /// `replace_with` does not need to be the same length as `range`.
1946 ///
1947 /// Note 1: The element range is removed even if the iterator is not
1948 /// consumed until the end.
1949 ///
1950 /// Note 2: It is unspecified how many elements are removed from the vector,
1951 /// if the `Splice` value is leaked.
1952 ///
1953 /// Note 3: The input iterator `replace_with` is only consumed
1954 /// when the `Splice` value is dropped.
1955 ///
1956 /// Note 4: This is optimal if:
1957 ///
1958 /// * The tail (elements in the vector after `range`) is empty,
1959 /// * or `replace_with` yields fewer elements than `range`’s length
1960 /// * or the lower bound of its `size_hint()` is exact.
1961 ///
1962 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
1963 ///
1964 /// # Panics
1965 ///
1966 /// Panics if the starting point is greater than the end point or if
1967 /// the end point is greater than the length of the vector.
1968 ///
1969 /// # Examples
1970 ///
1971 /// ```
7cac9316
XL
1972 /// let mut v = vec![1, 2, 3];
1973 /// let new = [7, 8];
1974 /// let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect();
1975 /// assert_eq!(v, &[7, 8, 3]);
1976 /// assert_eq!(u, &[1, 2]);
1977 /// ```
1978 #[inline]
3b2f2976 1979 #[stable(feature = "vec_splice", since = "1.21.0")]
9fa01778 1980 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter>
0531ce1d 1981 where R: RangeBounds<usize>, I: IntoIterator<Item=T>
7cac9316
XL
1982 {
1983 Splice {
1984 drain: self.drain(range),
1985 replace_with: replace_with.into_iter(),
1986 }
1987 }
1988
3b2f2976
XL
1989 /// Creates an iterator which uses a closure to determine if an element should be removed.
1990 ///
1991 /// If the closure returns true, then the element is removed and yielded.
0531ce1d
XL
1992 /// If the closure returns false, the element will remain in the vector and will not be yielded
1993 /// by the iterator.
3b2f2976
XL
1994 ///
1995 /// Using this method is equivalent to the following code:
1996 ///
1997 /// ```
ea8adc8c
XL
1998 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
1999 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3b2f2976
XL
2000 /// let mut i = 0;
2001 /// while i != vec.len() {
2002 /// if some_predicate(&mut vec[i]) {
2003 /// let val = vec.remove(i);
2004 /// // your code here
ea8adc8c
XL
2005 /// } else {
2006 /// i += 1;
3b2f2976 2007 /// }
3b2f2976 2008 /// }
ea8adc8c
XL
2009 ///
2010 /// # assert_eq!(vec, vec![1, 4, 5]);
3b2f2976
XL
2011 /// ```
2012 ///
2013 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
2014 /// because it can backshift the elements of the array in bulk.
2015 ///
2016 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
2017 /// regardless of whether you choose to keep or remove it.
2018 ///
2019 ///
2020 /// # Examples
2021 ///
2022 /// Splitting an array into evens and odds, reusing the original allocation:
2023 ///
2024 /// ```
2025 /// #![feature(drain_filter)]
2026 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
2027 ///
2028 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
2029 /// let odds = numbers;
2030 ///
2031 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
2032 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
2033 /// ```
2034 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
9fa01778 2035 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F>
3b2f2976
XL
2036 where F: FnMut(&mut T) -> bool,
2037 {
2038 let old_len = self.len();
2039
2040 // Guard against us getting leaked (leak amplification)
2041 unsafe { self.set_len(0); }
2042
2043 DrainFilter {
2044 vec: self,
2045 idx: 0,
2046 del: 0,
2047 old_len,
2048 pred: filter,
2049 }
2050 }
1a4d82fc
JJ
2051}
2052
3b2f2976
XL
2053/// Extend implementation that copies elements out of references before pushing them onto the Vec.
2054///
2055/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
2056/// append the entire slice at once.
2057///
2058/// [`copy_from_slice`]: ../../std/primitive.slice.html#method.copy_from_slice
62682a34
SL
2059#[stable(feature = "extend_ref", since = "1.2.0")]
2060impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
92a42be0 2061 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
476ff2be 2062 self.spec_extend(iter.into_iter())
62682a34
SL
2063 }
2064}
2065
92a42be0
SL
2066macro_rules! __impl_slice_eq1 {
2067 ($Lhs: ty, $Rhs: ty) => {
2068 __impl_slice_eq1! { $Lhs, $Rhs, Sized }
2069 };
2070 ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
2071 #[stable(feature = "rust1", since = "1.0.0")]
2072 impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
2073 #[inline]
2074 fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
2075 #[inline]
2076 fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
2077 }
2078 }
2079}
2080
c34b1796
AL
2081__impl_slice_eq1! { Vec<A>, Vec<B> }
2082__impl_slice_eq1! { Vec<A>, &'b [B] }
2083__impl_slice_eq1! { Vec<A>, &'b mut [B] }
2084__impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone }
2085__impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone }
2086__impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone }
2087
2088macro_rules! array_impls {
2089 ($($N: expr)+) => {
2090 $(
2091 // NOTE: some less important impls are omitted to reduce code bloat
2092 __impl_slice_eq1! { Vec<A>, [B; $N] }
2093 __impl_slice_eq1! { Vec<A>, &'b [B; $N] }
2094 // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
2095 // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
2096 // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
2097 // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
2098 )+
1a4d82fc
JJ
2099 }
2100}
2101
c34b1796
AL
2102array_impls! {
2103 0 1 2 3 4 5 6 7 8 9
2104 10 11 12 13 14 15 16 17 18 19
2105 20 21 22 23 24 25 26 27 28 29
2106 30 31 32
1a4d82fc
JJ
2107}
2108
8bb4bdeb 2109/// Implements comparison of vectors, lexicographically.
85aaf69f 2110#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2111impl<T: PartialOrd> PartialOrd for Vec<T> {
2112 #[inline]
2113 fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
85aaf69f 2114 PartialOrd::partial_cmp(&**self, &**other)
1a4d82fc
JJ
2115 }
2116}
2117
85aaf69f 2118#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2119impl<T: Eq> Eq for Vec<T> {}
2120
8bb4bdeb 2121/// Implements ordering of vectors, lexicographically.
85aaf69f 2122#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2123impl<T: Ord> Ord for Vec<T> {
2124 #[inline]
2125 fn cmp(&self, other: &Vec<T>) -> Ordering {
85aaf69f 2126 Ord::cmp(&**self, &**other)
1a4d82fc
JJ
2127 }
2128}
2129
85aaf69f 2130#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2131unsafe impl<#[may_dangle] T> Drop for Vec<T> {
1a4d82fc 2132 fn drop(&mut self) {
9e0c209e
SL
2133 unsafe {
2134 // use drop for [T]
2135 ptr::drop_in_place(&mut self[..]);
1a4d82fc 2136 }
c1a9b12d 2137 // RawVec handles deallocation
1a4d82fc
JJ
2138 }
2139}
2140
85aaf69f 2141#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2142impl<T> Default for Vec<T> {
9e0c209e 2143 /// Creates an empty `Vec<T>`.
1a4d82fc
JJ
2144 fn default() -> Vec<T> {
2145 Vec::new()
2146 }
2147}
2148
85aaf69f
SL
2149#[stable(feature = "rust1", since = "1.0.0")]
2150impl<T: fmt::Debug> fmt::Debug for Vec<T> {
9fa01778 2151 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
85aaf69f 2152 fmt::Debug::fmt(&**self, f)
1a4d82fc
JJ
2153 }
2154}
2155
c34b1796
AL
2156#[stable(feature = "rust1", since = "1.0.0")]
2157impl<T> AsRef<Vec<T>> for Vec<T> {
2158 fn as_ref(&self) -> &Vec<T> {
2159 self
2160 }
2161}
2162
b039eaaf
SL
2163#[stable(feature = "vec_as_mut", since = "1.5.0")]
2164impl<T> AsMut<Vec<T>> for Vec<T> {
2165 fn as_mut(&mut self) -> &mut Vec<T> {
2166 self
2167 }
2168}
2169
c34b1796
AL
2170#[stable(feature = "rust1", since = "1.0.0")]
2171impl<T> AsRef<[T]> for Vec<T> {
2172 fn as_ref(&self) -> &[T] {
2173 self
2174 }
2175}
2176
b039eaaf
SL
2177#[stable(feature = "vec_as_mut", since = "1.5.0")]
2178impl<T> AsMut<[T]> for Vec<T> {
2179 fn as_mut(&mut self) -> &mut [T] {
2180 self
2181 }
2182}
2183
c34b1796
AL
2184#[stable(feature = "rust1", since = "1.0.0")]
2185impl<'a, T: Clone> From<&'a [T]> for Vec<T> {
2186 #[cfg(not(test))]
2187 fn from(s: &'a [T]) -> Vec<T> {
2188 s.to_vec()
2189 }
2190 #[cfg(test)]
2191 fn from(s: &'a [T]) -> Vec<T> {
9fa01778 2192 crate::slice::to_vec(s)
c34b1796
AL
2193 }
2194}
2195
7cac9316
XL
2196#[stable(feature = "vec_from_mut", since = "1.19.0")]
2197impl<'a, T: Clone> From<&'a mut [T]> for Vec<T> {
2198 #[cfg(not(test))]
2199 fn from(s: &'a mut [T]) -> Vec<T> {
2200 s.to_vec()
2201 }
2202 #[cfg(test)]
2203 fn from(s: &'a mut [T]) -> Vec<T> {
9fa01778 2204 crate::slice::to_vec(s)
7cac9316
XL
2205 }
2206}
2207
c30ab7b3
SL
2208#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
2209impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> {
2210 fn from(s: Cow<'a, [T]>) -> Vec<T> {
2211 s.into_owned()
2212 }
2213}
2214
cc61c64b
XL
2215// note: test pulls in libstd, which causes errors here
2216#[cfg(not(test))]
7cac9316 2217#[stable(feature = "vec_from_box", since = "1.18.0")]
cc61c64b
XL
2218impl<T> From<Box<[T]>> for Vec<T> {
2219 fn from(s: Box<[T]>) -> Vec<T> {
2220 s.into_vec()
2221 }
2222}
2223
041b39d2
XL
2224// note: test pulls in libstd, which causes errors here
2225#[cfg(not(test))]
2226#[stable(feature = "box_from_vec", since = "1.20.0")]
2227impl<T> From<Vec<T>> for Box<[T]> {
2228 fn from(v: Vec<T>) -> Box<[T]> {
2229 v.into_boxed_slice()
cc61c64b
XL
2230 }
2231}
2232
c34b1796
AL
2233#[stable(feature = "rust1", since = "1.0.0")]
2234impl<'a> From<&'a str> for Vec<u8> {
2235 fn from(s: &'a str) -> Vec<u8> {
2236 From::from(s.as_bytes())
2237 }
2238}
2239
1a4d82fc
JJ
2240////////////////////////////////////////////////////////////////////////////////
2241// Clone-on-write
2242////////////////////////////////////////////////////////////////////////////////
2243
7cac9316 2244#[stable(feature = "cow_from_vec", since = "1.8.0")]
7453a54e
SL
2245impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
2246 fn from(s: &'a [T]) -> Cow<'a, [T]> {
2247 Cow::Borrowed(s)
2248 }
2249}
2250
7cac9316 2251#[stable(feature = "cow_from_vec", since = "1.8.0")]
7453a54e
SL
2252impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
2253 fn from(v: Vec<T>) -> Cow<'a, [T]> {
2254 Cow::Owned(v)
2255 }
2256}
2257
94b46f34
XL
2258#[stable(feature = "cow_from_vec_ref", since = "1.28.0")]
2259impl<'a, T: Clone> From<&'a Vec<T>> for Cow<'a, [T]> {
2260 fn from(v: &'a Vec<T>) -> Cow<'a, [T]> {
2261 Cow::Borrowed(v.as_slice())
2262 }
2263}
2264
bd371182 2265#[stable(feature = "rust1", since = "1.0.0")]
85aaf69f 2266impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone {
92a42be0 2267 fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
1a4d82fc
JJ
2268 Cow::Owned(FromIterator::from_iter(it))
2269 }
2270}
2271
1a4d82fc
JJ
2272////////////////////////////////////////////////////////////////////////////////
2273// Iterators
2274////////////////////////////////////////////////////////////////////////////////
2275
2276/// An iterator that moves out of a vector.
5bcae85e
SL
2277///
2278/// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided
2279/// by the [`IntoIterator`] trait).
2280///
2281/// [`Vec`]: struct.Vec.html
2282/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
85aaf69f 2283#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 2284pub struct IntoIter<T> {
2c00a5a8 2285 buf: NonNull<T>,
ff7c6d11 2286 phantom: PhantomData<T>,
5bcae85e 2287 cap: usize,
1a4d82fc 2288 ptr: *const T,
92a42be0 2289 end: *const T,
1a4d82fc
JJ
2290}
2291
c30ab7b3 2292#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
9e0c209e 2293impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
9fa01778 2294 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
9e0c209e
SL
2295 f.debug_tuple("IntoIter")
2296 .field(&self.as_slice())
2297 .finish()
2298 }
2299}
2300
5bcae85e
SL
2301impl<T> IntoIter<T> {
2302 /// Returns the remaining items of this iterator as a slice.
2303 ///
2304 /// # Examples
2305 ///
c30ab7b3 2306 /// ```
5bcae85e
SL
2307 /// let vec = vec!['a', 'b', 'c'];
2308 /// let mut into_iter = vec.into_iter();
2309 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2310 /// let _ = into_iter.next().unwrap();
2311 /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
2312 /// ```
476ff2be 2313 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
5bcae85e
SL
2314 pub fn as_slice(&self) -> &[T] {
2315 unsafe {
2316 slice::from_raw_parts(self.ptr, self.len())
2317 }
2318 }
2319
2320 /// Returns the remaining items of this iterator as a mutable slice.
2321 ///
2322 /// # Examples
2323 ///
c30ab7b3 2324 /// ```
5bcae85e
SL
2325 /// let vec = vec!['a', 'b', 'c'];
2326 /// let mut into_iter = vec.into_iter();
2327 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
2328 /// into_iter.as_mut_slice()[2] = 'z';
2329 /// assert_eq!(into_iter.next().unwrap(), 'a');
2330 /// assert_eq!(into_iter.next().unwrap(), 'b');
2331 /// assert_eq!(into_iter.next().unwrap(), 'z');
2332 /// ```
476ff2be 2333 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
e81b0574 2334 pub fn as_mut_slice(&mut self) -> &mut [T] {
5bcae85e
SL
2335 unsafe {
2336 slice::from_raw_parts_mut(self.ptr as *mut T, self.len())
2337 }
2338 }
2339}
2340
92a42be0
SL
2341#[stable(feature = "rust1", since = "1.0.0")]
2342unsafe impl<T: Send> Send for IntoIter<T> {}
2343#[stable(feature = "rust1", since = "1.0.0")]
2344unsafe impl<T: Sync> Sync for IntoIter<T> {}
85aaf69f 2345
85aaf69f 2346#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2347impl<T> Iterator for IntoIter<T> {
2348 type Item = T;
2349
2350 #[inline]
85aaf69f 2351 fn next(&mut self) -> Option<T> {
1a4d82fc 2352 unsafe {
5bcae85e 2353 if self.ptr as *const _ == self.end {
1a4d82fc
JJ
2354 None
2355 } else {
2356 if mem::size_of::<T>() == 0 {
2357 // purposefully don't use 'ptr.offset' because for
2358 // vectors with 0-size elements this would return the
2359 // same pointer.
5bcae85e 2360 self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
1a4d82fc 2361
b7449926
XL
2362 // Make up a value of this ZST.
2363 Some(mem::zeroed())
1a4d82fc
JJ
2364 } else {
2365 let old = self.ptr;
2366 self.ptr = self.ptr.offset(1);
2367
2368 Some(ptr::read(old))
2369 }
2370 }
2371 }
2372 }
2373
2374 #[inline]
85aaf69f 2375 fn size_hint(&self) -> (usize, Option<usize>) {
83c7162d
XL
2376 let exact = if mem::size_of::<T>() == 0 {
2377 (self.end as usize).wrapping_sub(self.ptr as usize)
2378 } else {
2379 unsafe { self.end.offset_from(self.ptr) as usize }
cc61c64b 2380 };
1a4d82fc
JJ
2381 (exact, Some(exact))
2382 }
d9579d0f
AL
2383
2384 #[inline]
2385 fn count(self) -> usize {
3157f602 2386 self.len()
d9579d0f 2387 }
1a4d82fc
JJ
2388}
2389
85aaf69f 2390#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
2391impl<T> DoubleEndedIterator for IntoIter<T> {
2392 #[inline]
85aaf69f 2393 fn next_back(&mut self) -> Option<T> {
1a4d82fc
JJ
2394 unsafe {
2395 if self.end == self.ptr {
2396 None
2397 } else {
2398 if mem::size_of::<T>() == 0 {
2399 // See above for why 'ptr.offset' isn't used
5bcae85e 2400 self.end = arith_offset(self.end as *const i8, -1) as *mut T;
1a4d82fc 2401
b7449926
XL
2402 // Make up a value of this ZST.
2403 Some(mem::zeroed())
1a4d82fc
JJ
2404 } else {
2405 self.end = self.end.offset(-1);
2406
e9174d1e 2407 Some(ptr::read(self.end))
1a4d82fc
JJ
2408 }
2409 }
2410 }
2411 }
2412}
2413
85aaf69f 2414#[stable(feature = "rust1", since = "1.0.0")]
476ff2be
SL
2415impl<T> ExactSizeIterator for IntoIter<T> {
2416 fn is_empty(&self) -> bool {
2417 self.ptr == self.end
2418 }
2419}
1a4d82fc 2420
0531ce1d 2421#[stable(feature = "fused", since = "1.26.0")]
9e0c209e
SL
2422impl<T> FusedIterator for IntoIter<T> {}
2423
c30ab7b3
SL
2424#[unstable(feature = "trusted_len", issue = "37572")]
2425unsafe impl<T> TrustedLen for IntoIter<T> {}
2426
7453a54e
SL
2427#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
2428impl<T: Clone> Clone for IntoIter<T> {
2429 fn clone(&self) -> IntoIter<T> {
5bcae85e 2430 self.as_slice().to_owned().into_iter()
7453a54e
SL
2431 }
2432}
2433
85aaf69f 2434#[stable(feature = "rust1", since = "1.0.0")]
32a655c1 2435unsafe impl<#[may_dangle] T> Drop for IntoIter<T> {
1a4d82fc
JJ
2436 fn drop(&mut self) {
2437 // destroy the remaining elements
5bcae85e 2438 for _x in self.by_ref() {}
c1a9b12d
SL
2439
2440 // RawVec handles deallocation
7cac9316 2441 let _ = unsafe { RawVec::from_raw_parts(self.buf.as_ptr(), self.cap) };
1a4d82fc
JJ
2442 }
2443}
2444
d9579d0f 2445/// A draining iterator for `Vec<T>`.
5bcae85e
SL
2446///
2447/// This `struct` is created by the [`drain`] method on [`Vec`].
2448///
2449/// [`drain`]: struct.Vec.html#method.drain
2450/// [`Vec`]: struct.Vec.html
92a42be0 2451#[stable(feature = "drain", since = "1.6.0")]
d9579d0f
AL
2452pub struct Drain<'a, T: 'a> {
2453 /// Index of tail to preserve
2454 tail_start: usize,
2455 /// Length of tail
2456 tail_len: usize,
2457 /// Current remaining range to remove
5bcae85e 2458 iter: slice::Iter<'a, T>,
2c00a5a8 2459 vec: NonNull<Vec<T>>,
1a4d82fc
JJ
2460}
2461
8bb4bdeb 2462#[stable(feature = "collection_debug", since = "1.17.0")]
9fa01778
XL
2463impl<T: fmt::Debug> fmt::Debug for Drain<'_, T> {
2464 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
8bb4bdeb
XL
2465 f.debug_tuple("Drain")
2466 .field(&self.iter.as_slice())
2467 .finish()
2468 }
2469}
2470
92a42be0 2471#[stable(feature = "drain", since = "1.6.0")]
9fa01778 2472unsafe impl<T: Sync> Sync for Drain<'_, T> {}
92a42be0 2473#[stable(feature = "drain", since = "1.6.0")]
9fa01778 2474unsafe impl<T: Send> Send for Drain<'_, T> {}
c34b1796 2475
c30ab7b3 2476#[stable(feature = "drain", since = "1.6.0")]
9fa01778 2477impl<T> Iterator for Drain<'_, T> {
1a4d82fc
JJ
2478 type Item = T;
2479
2480 #[inline]
2481 fn next(&mut self) -> Option<T> {
92a42be0 2482 self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2483 }
2484
85aaf69f 2485 fn size_hint(&self) -> (usize, Option<usize>) {
d9579d0f 2486 self.iter.size_hint()
1a4d82fc
JJ
2487 }
2488}
2489
c30ab7b3 2490#[stable(feature = "drain", since = "1.6.0")]
9fa01778 2491impl<T> DoubleEndedIterator for Drain<'_, T> {
1a4d82fc
JJ
2492 #[inline]
2493 fn next_back(&mut self) -> Option<T> {
92a42be0 2494 self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
1a4d82fc
JJ
2495 }
2496}
2497
c30ab7b3 2498#[stable(feature = "drain", since = "1.6.0")]
9fa01778 2499impl<T> Drop for Drain<'_, T> {
1a4d82fc 2500 fn drop(&mut self) {
d9579d0f 2501 // exhaust self first
83c7162d 2502 self.for_each(drop);
1a4d82fc 2503
d9579d0f
AL
2504 if self.tail_len > 0 {
2505 unsafe {
7cac9316 2506 let source_vec = self.vec.as_mut();
d9579d0f
AL
2507 // memmove back untouched tail, update to new length
2508 let start = source_vec.len();
2509 let tail = self.tail_start;
83c7162d 2510 if tail != start {
b7449926
XL
2511 let src = source_vec.as_ptr().add(tail);
2512 let dst = source_vec.as_mut_ptr().add(start);
83c7162d
XL
2513 ptr::copy(src, dst, self.tail_len);
2514 }
d9579d0f
AL
2515 source_vec.set_len(start + self.tail_len);
2516 }
2517 }
1a4d82fc
JJ
2518 }
2519}
2520
d9579d0f 2521
c30ab7b3 2522#[stable(feature = "drain", since = "1.6.0")]
9fa01778 2523impl<T> ExactSizeIterator for Drain<'_, T> {
476ff2be
SL
2524 fn is_empty(&self) -> bool {
2525 self.iter.is_empty()
2526 }
2527}
9e0c209e 2528
0531ce1d 2529#[stable(feature = "fused", since = "1.26.0")]
9fa01778 2530impl<T> FusedIterator for Drain<'_, T> {}
32a655c1 2531
7cac9316
XL
2532/// A splicing iterator for `Vec`.
2533///
2534/// This struct is created by the [`splice()`] method on [`Vec`]. See its
2535/// documentation for more.
2536///
2537/// [`splice()`]: struct.Vec.html#method.splice
2538/// [`Vec`]: struct.Vec.html
2539#[derive(Debug)]
3b2f2976 2540#[stable(feature = "vec_splice", since = "1.21.0")]
7cac9316
XL
2541pub struct Splice<'a, I: Iterator + 'a> {
2542 drain: Drain<'a, I::Item>,
2543 replace_with: I,
2544}
2545
3b2f2976 2546#[stable(feature = "vec_splice", since = "1.21.0")]
9fa01778 2547impl<I: Iterator> Iterator for Splice<'_, I> {
7cac9316
XL
2548 type Item = I::Item;
2549
2550 fn next(&mut self) -> Option<Self::Item> {
2551 self.drain.next()
2552 }
2553
2554 fn size_hint(&self) -> (usize, Option<usize>) {
2555 self.drain.size_hint()
2556 }
2557}
2558
3b2f2976 2559#[stable(feature = "vec_splice", since = "1.21.0")]
9fa01778 2560impl<I: Iterator> DoubleEndedIterator for Splice<'_, I> {
7cac9316
XL
2561 fn next_back(&mut self) -> Option<Self::Item> {
2562 self.drain.next_back()
2563 }
2564}
2565
3b2f2976 2566#[stable(feature = "vec_splice", since = "1.21.0")]
9fa01778 2567impl<I: Iterator> ExactSizeIterator for Splice<'_, I> {}
7cac9316
XL
2568
2569
3b2f2976 2570#[stable(feature = "vec_splice", since = "1.21.0")]
9fa01778 2571impl<I: Iterator> Drop for Splice<'_, I> {
7cac9316 2572 fn drop(&mut self) {
83c7162d 2573 self.drain.by_ref().for_each(drop);
7cac9316
XL
2574
2575 unsafe {
2576 if self.drain.tail_len == 0 {
2577 self.drain.vec.as_mut().extend(self.replace_with.by_ref());
2578 return
2579 }
2580
2581 // First fill the range left by drain().
2582 if !self.drain.fill(&mut self.replace_with) {
2583 return
2584 }
2585
2586 // There may be more elements. Use the lower bound as an estimate.
2587 // FIXME: Is the upper bound a better guess? Or something else?
2588 let (lower_bound, _upper_bound) = self.replace_with.size_hint();
2589 if lower_bound > 0 {
2590 self.drain.move_tail(lower_bound);
2591 if !self.drain.fill(&mut self.replace_with) {
2592 return
2593 }
2594 }
2595
2596 // Collect any remaining elements.
2597 // This is a zero-length vector which does not allocate if `lower_bound` was exact.
2598 let mut collected = self.replace_with.by_ref().collect::<Vec<I::Item>>().into_iter();
2599 // Now we have an exact count.
2600 if collected.len() > 0 {
2601 self.drain.move_tail(collected.len());
2602 let filled = self.drain.fill(&mut collected);
2603 debug_assert!(filled);
2604 debug_assert_eq!(collected.len(), 0);
2605 }
2606 }
2607 // Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
2608 }
2609}
2610
2611/// Private helper methods for `Splice::drop`
9fa01778 2612impl<T> Drain<'_, T> {
7cac9316
XL
2613 /// The range from `self.vec.len` to `self.tail_start` contains elements
2614 /// that have been moved out.
2615 /// Fill that range as much as possible with new elements from the `replace_with` iterator.
9fa01778 2616 /// Returns `true` if we filled the entire range. (`replace_with.next()` didn’t return `None`.)
7cac9316
XL
2617 unsafe fn fill<I: Iterator<Item=T>>(&mut self, replace_with: &mut I) -> bool {
2618 let vec = self.vec.as_mut();
2619 let range_start = vec.len;
2620 let range_end = self.tail_start;
2621 let range_slice = slice::from_raw_parts_mut(
b7449926 2622 vec.as_mut_ptr().add(range_start),
7cac9316
XL
2623 range_end - range_start);
2624
2625 for place in range_slice {
2626 if let Some(new_item) = replace_with.next() {
2627 ptr::write(place, new_item);
2628 vec.len += 1;
2629 } else {
2630 return false
2631 }
2632 }
2633 true
2634 }
2635
9fa01778 2636 /// Makes room for inserting more elements before the tail.
7cac9316
XL
2637 unsafe fn move_tail(&mut self, extra_capacity: usize) {
2638 let vec = self.vec.as_mut();
2639 let used_capacity = self.tail_start + self.tail_len;
2640 vec.buf.reserve(used_capacity, extra_capacity);
2641
2642 let new_tail_start = self.tail_start + extra_capacity;
b7449926
XL
2643 let src = vec.as_ptr().add(self.tail_start);
2644 let dst = vec.as_mut_ptr().add(new_tail_start);
7cac9316
XL
2645 ptr::copy(src, dst, self.tail_len);
2646 self.tail_start = new_tail_start;
2647 }
2648}
3b2f2976
XL
2649
2650/// An iterator produced by calling `drain_filter` on Vec.
2651#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
2652#[derive(Debug)]
9fa01778 2653pub struct DrainFilter<'a, T, F>
3b2f2976
XL
2654 where F: FnMut(&mut T) -> bool,
2655{
2656 vec: &'a mut Vec<T>,
2657 idx: usize,
2658 del: usize,
2659 old_len: usize,
2660 pred: F,
2661}
2662
2663#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
9fa01778 2664impl<T, F> Iterator for DrainFilter<'_, T, F>
3b2f2976
XL
2665 where F: FnMut(&mut T) -> bool,
2666{
2667 type Item = T;
2668
2669 fn next(&mut self) -> Option<T> {
2670 unsafe {
2671 while self.idx != self.old_len {
2672 let i = self.idx;
2673 self.idx += 1;
2674 let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
2675 if (self.pred)(&mut v[i]) {
2676 self.del += 1;
2677 return Some(ptr::read(&v[i]));
2678 } else if self.del > 0 {
ea8adc8c
XL
2679 let del = self.del;
2680 let src: *const T = &v[i];
2681 let dst: *mut T = &mut v[i - del];
2682 // This is safe because self.vec has length 0
2683 // thus its elements will not have Drop::drop
2684 // called on them in the event of a panic.
2685 ptr::copy_nonoverlapping(src, dst, 1);
3b2f2976
XL
2686 }
2687 }
2688 None
2689 }
2690 }
2691
2692 fn size_hint(&self) -> (usize, Option<usize>) {
2693 (0, Some(self.old_len - self.idx))
2694 }
2695}
2696
2697#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
9fa01778 2698impl<T, F> Drop for DrainFilter<'_, T, F>
3b2f2976
XL
2699 where F: FnMut(&mut T) -> bool,
2700{
2701 fn drop(&mut self) {
83c7162d 2702 self.for_each(drop);
3b2f2976
XL
2703 unsafe {
2704 self.vec.set_len(self.old_len - self.del);
2705 }
2706 }
2707}