]> git.proxmox.com Git - rustc.git/blame - src/libcollections/binary_heap.rs
Imported Upstream version 1.9.0+dfsg1
[rustc.git] / src / libcollections / binary_heap.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! A priority queue implemented with a binary heap.
12//!
62682a34
SL
13//! Insertion and popping the largest element have `O(log n)` time complexity.
14//! Checking the largest element is `O(1)`. Converting a vector to a binary heap
15//! can be done in-place, and has `O(n)` complexity. A binary heap can also be
16//! converted to a sorted vector in-place, allowing it to be used for an `O(n
17//! log n)` in-place heapsort.
1a4d82fc
JJ
18//!
19//! # Examples
20//!
21//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
22//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
23//! It shows how to use `BinaryHeap` with custom types.
24//!
25//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
26//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
27//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
28//!
29//! ```
30//! use std::cmp::Ordering;
31//! use std::collections::BinaryHeap;
85aaf69f 32//! use std::usize;
1a4d82fc 33//!
c34b1796 34//! #[derive(Copy, Clone, Eq, PartialEq)]
1a4d82fc 35//! struct State {
85aaf69f
SL
36//! cost: usize,
37//! position: usize,
1a4d82fc
JJ
38//! }
39//!
40//! // The priority queue depends on `Ord`.
41//! // Explicitly implement the trait so the queue becomes a min-heap
42//! // instead of a max-heap.
43//! impl Ord for State {
44//! fn cmp(&self, other: &State) -> Ordering {
45//! // Notice that the we flip the ordering here
46//! other.cost.cmp(&self.cost)
47//! }
48//! }
49//!
50//! // `PartialOrd` needs to be implemented as well.
51//! impl PartialOrd for State {
52//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
53//! Some(self.cmp(other))
54//! }
55//! }
56//!
85aaf69f 57//! // Each node is represented as an `usize`, for a shorter implementation.
1a4d82fc 58//! struct Edge {
85aaf69f
SL
59//! node: usize,
60//! cost: usize,
1a4d82fc
JJ
61//! }
62//!
63//! // Dijkstra's shortest path algorithm.
64//!
65//! // Start at `start` and use `dist` to track the current shortest distance
66//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
85aaf69f 67//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
1a4d82fc 68//! // for a simpler implementation.
9cc50fc6 69//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
1a4d82fc 70//! // dist[node] = current shortest distance from `start` to `node`
85aaf69f 71//! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
1a4d82fc
JJ
72//!
73//! let mut heap = BinaryHeap::new();
74//!
75//! // We're at `start`, with a zero cost
76//! dist[start] = 0;
77//! heap.push(State { cost: 0, position: start });
78//!
79//! // Examine the frontier with lower cost nodes first (min-heap)
80//! while let Some(State { cost, position }) = heap.pop() {
81//! // Alternatively we could have continued to find all shortest paths
9cc50fc6 82//! if position == goal { return Some(cost); }
1a4d82fc
JJ
83//!
84//! // Important as we may have already found a better way
85//! if cost > dist[position] { continue; }
86//!
87//! // For each node we can reach, see if we can find a way with
88//! // a lower cost going through this node
62682a34 89//! for edge in &adj_list[position] {
1a4d82fc
JJ
90//! let next = State { cost: cost + edge.cost, position: edge.node };
91//!
92//! // If so, add it to the frontier and continue
93//! if next.cost < dist[next.position] {
94//! heap.push(next);
95//! // Relaxation, we have now found a better way
96//! dist[next.position] = next.cost;
97//! }
98//! }
99//! }
100//!
101//! // Goal not reachable
9cc50fc6 102//! None
1a4d82fc
JJ
103//! }
104//!
105//! fn main() {
106//! // This is the directed graph we're going to use.
107//! // The node numbers correspond to the different states,
108//! // and the edge weights symbolize the cost of moving
109//! // from one node to another.
110//! // Note that the edges are one-way.
111//! //
112//! // 7
113//! // +-----------------+
114//! // | |
e9174d1e 115//! // v 1 2 | 2
1a4d82fc
JJ
116//! // 0 -----> 1 -----> 3 ---> 4
117//! // | ^ ^ ^
118//! // | | 1 | |
119//! // | | | 3 | 1
120//! // +------> 2 -------+ |
121//! // 10 | |
122//! // +---------------+
123//! //
124//! // The graph is represented as an adjacency list where each index,
125//! // corresponding to a node value, has a list of outgoing edges.
126//! // Chosen for its efficiency.
127//! let graph = vec![
128//! // Node 0
129//! vec![Edge { node: 2, cost: 10 },
130//! Edge { node: 1, cost: 1 }],
131//! // Node 1
132//! vec![Edge { node: 3, cost: 2 }],
133//! // Node 2
134//! vec![Edge { node: 1, cost: 1 },
135//! Edge { node: 3, cost: 3 },
136//! Edge { node: 4, cost: 1 }],
137//! // Node 3
138//! vec![Edge { node: 0, cost: 7 },
139//! Edge { node: 4, cost: 2 }],
140//! // Node 4
141//! vec![]];
142//!
9cc50fc6
SL
143//! assert_eq!(shortest_path(&graph, 0, 1), Some(1));
144//! assert_eq!(shortest_path(&graph, 0, 3), Some(3));
145//! assert_eq!(shortest_path(&graph, 3, 0), Some(7));
146//! assert_eq!(shortest_path(&graph, 0, 4), Some(5));
147//! assert_eq!(shortest_path(&graph, 4, 0), None);
1a4d82fc
JJ
148//! }
149//! ```
150
151#![allow(missing_docs)]
85aaf69f 152#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 153
92a42be0 154use core::iter::FromIterator;
d9579d0f 155use core::mem::swap;
1a4d82fc 156use core::ptr;
e9174d1e 157use core::fmt;
1a4d82fc
JJ
158
159use slice;
160use vec::{self, Vec};
161
162/// A priority queue implemented with a binary heap.
163///
164/// This will be a max-heap.
c34b1796
AL
165///
166/// It is a logic error for an item to be modified in such a way that the
167/// item's ordering relative to any other item, as determined by the `Ord`
168/// trait, changes while it is in the heap. This is normally only possible
169/// through `Cell`, `RefCell`, global state, I/O, or unsafe code.
54a0048b
SL
170///
171/// # Examples
172///
173/// ```
174/// use std::collections::BinaryHeap;
175///
176/// // Type inference lets us omit an explicit type signature (which
177/// // would be `BinaryHeap<i32>` in this example).
178/// let mut heap = BinaryHeap::new();
179///
180/// // We can use peek to look at the next item in the heap. In this case,
181/// // there's no items in there yet so we get None.
182/// assert_eq!(heap.peek(), None);
183///
184/// // Let's add some scores...
185/// heap.push(1);
186/// heap.push(5);
187/// heap.push(2);
188///
189/// // Now peek shows the most important item in the heap.
190/// assert_eq!(heap.peek(), Some(&5));
191///
192/// // We can check the length of a heap.
193/// assert_eq!(heap.len(), 3);
194///
195/// // We can iterate over the items in the heap, although they are returned in
196/// // a random order.
197/// for x in &heap {
198/// println!("{}", x);
199/// }
200///
201/// // If we instead pop these scores, they should come back in order.
202/// assert_eq!(heap.pop(), Some(5));
203/// assert_eq!(heap.pop(), Some(2));
204/// assert_eq!(heap.pop(), Some(1));
205/// assert_eq!(heap.pop(), None);
206///
207/// // We can clear the heap of any remaining items.
208/// heap.clear();
209///
210/// // The heap should now be empty.
211/// assert!(heap.is_empty())
212/// ```
85aaf69f 213#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
214pub struct BinaryHeap<T> {
215 data: Vec<T>,
216}
217
b039eaaf
SL
218#[stable(feature = "rust1", since = "1.0.0")]
219impl<T: Clone> Clone for BinaryHeap<T> {
220 fn clone(&self) -> Self {
221 BinaryHeap { data: self.data.clone() }
222 }
223
224 fn clone_from(&mut self, source: &Self) {
225 self.data.clone_from(&source.data);
226 }
227}
228
85aaf69f 229#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
230impl<T: Ord> Default for BinaryHeap<T> {
231 #[inline]
92a42be0
SL
232 fn default() -> BinaryHeap<T> {
233 BinaryHeap::new()
234 }
1a4d82fc
JJ
235}
236
e9174d1e
SL
237#[stable(feature = "binaryheap_debug", since = "1.4.0")]
238impl<T: fmt::Debug + Ord> fmt::Debug for BinaryHeap<T> {
239 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
240 f.debug_list().entries(self.iter()).finish()
241 }
242}
243
1a4d82fc
JJ
244impl<T: Ord> BinaryHeap<T> {
245 /// Creates an empty `BinaryHeap` as a max-heap.
246 ///
247 /// # Examples
248 ///
54a0048b
SL
249 /// Basic usage:
250 ///
1a4d82fc
JJ
251 /// ```
252 /// use std::collections::BinaryHeap;
253 /// let mut heap = BinaryHeap::new();
85aaf69f 254 /// heap.push(4);
1a4d82fc 255 /// ```
85aaf69f 256 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
257 pub fn new() -> BinaryHeap<T> {
258 BinaryHeap { data: vec![] }
259 }
1a4d82fc
JJ
260
261 /// Creates an empty `BinaryHeap` with a specific capacity.
262 /// This preallocates enough memory for `capacity` elements,
263 /// so that the `BinaryHeap` does not have to be reallocated
264 /// until it contains at least that many values.
265 ///
266 /// # Examples
267 ///
54a0048b
SL
268 /// Basic usage:
269 ///
1a4d82fc
JJ
270 /// ```
271 /// use std::collections::BinaryHeap;
272 /// let mut heap = BinaryHeap::with_capacity(10);
85aaf69f 273 /// heap.push(4);
1a4d82fc 274 /// ```
85aaf69f
SL
275 #[stable(feature = "rust1", since = "1.0.0")]
276 pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
1a4d82fc
JJ
277 BinaryHeap { data: Vec::with_capacity(capacity) }
278 }
279
1a4d82fc
JJ
280 /// Returns an iterator visiting all values in the underlying vector, in
281 /// arbitrary order.
282 ///
283 /// # Examples
284 ///
54a0048b
SL
285 /// Basic usage:
286 ///
1a4d82fc
JJ
287 /// ```
288 /// use std::collections::BinaryHeap;
b039eaaf 289 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
1a4d82fc
JJ
290 ///
291 /// // Print 1, 2, 3, 4 in arbitrary order
292 /// for x in heap.iter() {
293 /// println!("{}", x);
294 /// }
295 /// ```
85aaf69f 296 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
297 pub fn iter(&self) -> Iter<T> {
298 Iter { iter: self.data.iter() }
299 }
300
1a4d82fc
JJ
301 /// Returns the greatest item in the binary heap, or `None` if it is empty.
302 ///
303 /// # Examples
304 ///
54a0048b
SL
305 /// Basic usage:
306 ///
1a4d82fc
JJ
307 /// ```
308 /// use std::collections::BinaryHeap;
309 /// let mut heap = BinaryHeap::new();
310 /// assert_eq!(heap.peek(), None);
311 ///
85aaf69f 312 /// heap.push(1);
1a4d82fc
JJ
313 /// heap.push(5);
314 /// heap.push(2);
315 /// assert_eq!(heap.peek(), Some(&5));
316 ///
317 /// ```
85aaf69f 318 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
319 pub fn peek(&self) -> Option<&T> {
320 self.data.get(0)
321 }
322
323 /// Returns the number of elements the binary heap can hold without reallocating.
324 ///
325 /// # Examples
326 ///
54a0048b
SL
327 /// Basic usage:
328 ///
1a4d82fc
JJ
329 /// ```
330 /// use std::collections::BinaryHeap;
331 /// let mut heap = BinaryHeap::with_capacity(100);
332 /// assert!(heap.capacity() >= 100);
85aaf69f 333 /// heap.push(4);
1a4d82fc 334 /// ```
85aaf69f 335 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
336 pub fn capacity(&self) -> usize {
337 self.data.capacity()
338 }
1a4d82fc
JJ
339
340 /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
341 /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
342 ///
343 /// Note that the allocator may give the collection more space than it requests. Therefore
344 /// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
345 /// insertions are expected.
346 ///
347 /// # Panics
348 ///
85aaf69f 349 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
350 ///
351 /// # Examples
352 ///
54a0048b
SL
353 /// Basic usage:
354 ///
1a4d82fc
JJ
355 /// ```
356 /// use std::collections::BinaryHeap;
357 /// let mut heap = BinaryHeap::new();
358 /// heap.reserve_exact(100);
359 /// assert!(heap.capacity() >= 100);
85aaf69f 360 /// heap.push(4);
1a4d82fc 361 /// ```
85aaf69f
SL
362 #[stable(feature = "rust1", since = "1.0.0")]
363 pub fn reserve_exact(&mut self, additional: usize) {
1a4d82fc
JJ
364 self.data.reserve_exact(additional);
365 }
366
367 /// Reserves capacity for at least `additional` more elements to be inserted in the
368 /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
369 ///
370 /// # Panics
371 ///
85aaf69f 372 /// Panics if the new capacity overflows `usize`.
1a4d82fc
JJ
373 ///
374 /// # Examples
375 ///
54a0048b
SL
376 /// Basic usage:
377 ///
1a4d82fc
JJ
378 /// ```
379 /// use std::collections::BinaryHeap;
380 /// let mut heap = BinaryHeap::new();
381 /// heap.reserve(100);
382 /// assert!(heap.capacity() >= 100);
85aaf69f 383 /// heap.push(4);
1a4d82fc 384 /// ```
85aaf69f
SL
385 #[stable(feature = "rust1", since = "1.0.0")]
386 pub fn reserve(&mut self, additional: usize) {
1a4d82fc
JJ
387 self.data.reserve(additional);
388 }
389
390 /// Discards as much additional capacity as possible.
54a0048b
SL
391 ///
392 /// # Examples
393 ///
394 /// Basic usage:
395 ///
396 /// ```
397 /// use std::collections::BinaryHeap;
398 /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
399 ///
400 /// assert!(heap.capacity() >= 100);
401 /// heap.shrink_to_fit();
402 /// assert!(heap.capacity() == 0);
403 /// ```
85aaf69f 404 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
405 pub fn shrink_to_fit(&mut self) {
406 self.data.shrink_to_fit();
407 }
408
409 /// Removes the greatest item from the binary heap and returns it, or `None` if it
410 /// is empty.
411 ///
412 /// # Examples
413 ///
54a0048b
SL
414 /// Basic usage:
415 ///
1a4d82fc
JJ
416 /// ```
417 /// use std::collections::BinaryHeap;
b039eaaf 418 /// let mut heap = BinaryHeap::from(vec![1, 3]);
1a4d82fc
JJ
419 ///
420 /// assert_eq!(heap.pop(), Some(3));
421 /// assert_eq!(heap.pop(), Some(1));
422 /// assert_eq!(heap.pop(), None);
423 /// ```
85aaf69f 424 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
425 pub fn pop(&mut self) -> Option<T> {
426 self.data.pop().map(|mut item| {
427 if !self.is_empty() {
428 swap(&mut item, &mut self.data[0]);
9cc50fc6 429 self.sift_down_to_bottom(0);
1a4d82fc
JJ
430 }
431 item
432 })
433 }
434
435 /// Pushes an item onto the binary heap.
436 ///
437 /// # Examples
438 ///
54a0048b
SL
439 /// Basic usage:
440 ///
1a4d82fc
JJ
441 /// ```
442 /// use std::collections::BinaryHeap;
443 /// let mut heap = BinaryHeap::new();
85aaf69f 444 /// heap.push(3);
1a4d82fc
JJ
445 /// heap.push(5);
446 /// heap.push(1);
447 ///
448 /// assert_eq!(heap.len(), 3);
449 /// assert_eq!(heap.peek(), Some(&5));
450 /// ```
85aaf69f 451 #[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
452 pub fn push(&mut self, item: T) {
453 let old_len = self.len();
454 self.data.push(item);
455 self.sift_up(0, old_len);
456 }
457
458 /// Pushes an item onto the binary heap, then pops the greatest item off the queue in
459 /// an optimized fashion.
460 ///
461 /// # Examples
462 ///
54a0048b
SL
463 /// Basic usage:
464 ///
1a4d82fc 465 /// ```
e9174d1e 466 /// #![feature(binary_heap_extras)]
c1a9b12d 467 ///
1a4d82fc
JJ
468 /// use std::collections::BinaryHeap;
469 /// let mut heap = BinaryHeap::new();
85aaf69f 470 /// heap.push(1);
1a4d82fc
JJ
471 /// heap.push(5);
472 ///
473 /// assert_eq!(heap.push_pop(3), 5);
474 /// assert_eq!(heap.push_pop(9), 9);
475 /// assert_eq!(heap.len(), 2);
476 /// assert_eq!(heap.peek(), Some(&3));
477 /// ```
e9174d1e
SL
478 #[unstable(feature = "binary_heap_extras",
479 reason = "needs to be audited",
480 issue = "28147")]
1a4d82fc
JJ
481 pub fn push_pop(&mut self, mut item: T) -> T {
482 match self.data.get_mut(0) {
483 None => return item,
92a42be0
SL
484 Some(top) => {
485 if *top > item {
486 swap(&mut item, top);
487 } else {
488 return item;
489 }
490 }
1a4d82fc
JJ
491 }
492
493 self.sift_down(0);
494 item
495 }
496
497 /// Pops the greatest item off the binary heap, then pushes an item onto the queue in
498 /// an optimized fashion. The push is done regardless of whether the binary heap
499 /// was empty.
500 ///
501 /// # Examples
502 ///
54a0048b
SL
503 /// Basic usage:
504 ///
1a4d82fc 505 /// ```
e9174d1e 506 /// #![feature(binary_heap_extras)]
c1a9b12d 507 ///
1a4d82fc
JJ
508 /// use std::collections::BinaryHeap;
509 /// let mut heap = BinaryHeap::new();
510 ///
85aaf69f 511 /// assert_eq!(heap.replace(1), None);
1a4d82fc
JJ
512 /// assert_eq!(heap.replace(3), Some(1));
513 /// assert_eq!(heap.len(), 1);
514 /// assert_eq!(heap.peek(), Some(&3));
515 /// ```
e9174d1e
SL
516 #[unstable(feature = "binary_heap_extras",
517 reason = "needs to be audited",
518 issue = "28147")]
1a4d82fc
JJ
519 pub fn replace(&mut self, mut item: T) -> Option<T> {
520 if !self.is_empty() {
521 swap(&mut item, &mut self.data[0]);
522 self.sift_down(0);
523 Some(item)
524 } else {
525 self.push(item);
526 None
527 }
528 }
529
530 /// Consumes the `BinaryHeap` and returns the underlying vector
531 /// in arbitrary order.
532 ///
533 /// # Examples
534 ///
54a0048b
SL
535 /// Basic usage:
536 ///
1a4d82fc
JJ
537 /// ```
538 /// use std::collections::BinaryHeap;
b039eaaf 539 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
1a4d82fc
JJ
540 /// let vec = heap.into_vec();
541 ///
542 /// // Will print in some order
62682a34 543 /// for x in vec {
1a4d82fc
JJ
544 /// println!("{}", x);
545 /// }
546 /// ```
b039eaaf
SL
547 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
548 pub fn into_vec(self) -> Vec<T> {
549 self.into()
550 }
1a4d82fc
JJ
551
552 /// Consumes the `BinaryHeap` and returns a vector in sorted
553 /// (ascending) order.
554 ///
555 /// # Examples
556 ///
54a0048b
SL
557 /// Basic usage:
558 ///
1a4d82fc
JJ
559 /// ```
560 /// use std::collections::BinaryHeap;
561 ///
b039eaaf 562 /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]);
1a4d82fc
JJ
563 /// heap.push(6);
564 /// heap.push(3);
565 ///
566 /// let vec = heap.into_sorted_vec();
c34b1796 567 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
1a4d82fc 568 /// ```
b039eaaf 569 #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
1a4d82fc
JJ
570 pub fn into_sorted_vec(mut self) -> Vec<T> {
571 let mut end = self.len();
572 while end > 1 {
573 end -= 1;
574 self.data.swap(0, end);
575 self.sift_down_range(0, end);
576 }
577 self.into_vec()
578 }
579
580 // The implementations of sift_up and sift_down use unsafe blocks in
581 // order to move an element out of the vector (leaving behind a
d9579d0f
AL
582 // hole), shift along the others and move the removed element back into the
583 // vector at the final location of the hole.
584 // The `Hole` type is used to represent this, and make sure
585 // the hole is filled back at the end of its scope, even on panic.
586 // Using a hole reduces the constant factor compared to using swaps,
587 // which involves twice as many moves.
588 fn sift_up(&mut self, start: usize, pos: usize) {
1a4d82fc 589 unsafe {
d9579d0f
AL
590 // Take out the value at `pos` and create a hole.
591 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc 592
d9579d0f
AL
593 while hole.pos() > start {
594 let parent = (hole.pos() - 1) / 2;
92a42be0
SL
595 if hole.element() <= hole.get(parent) {
596 break;
597 }
d9579d0f 598 hole.move_to(parent);
1a4d82fc 599 }
1a4d82fc
JJ
600 }
601 }
602
92a42be0
SL
603 /// Take an element at `pos` and move it down the heap,
604 /// while its children are larger.
605 fn sift_down_range(&mut self, pos: usize, end: usize) {
1a4d82fc 606 unsafe {
d9579d0f 607 let mut hole = Hole::new(&mut self.data, pos);
1a4d82fc
JJ
608 let mut child = 2 * pos + 1;
609 while child < end {
610 let right = child + 1;
92a42be0 611 // compare with the greater of the two children
d9579d0f 612 if right < end && !(hole.get(child) > hole.get(right)) {
1a4d82fc
JJ
613 child = right;
614 }
92a42be0
SL
615 // if we are already in order, stop.
616 if hole.element() >= hole.get(child) {
617 break;
618 }
d9579d0f
AL
619 hole.move_to(child);
620 child = 2 * hole.pos() + 1;
1a4d82fc 621 }
1a4d82fc
JJ
622 }
623 }
624
85aaf69f 625 fn sift_down(&mut self, pos: usize) {
1a4d82fc
JJ
626 let len = self.len();
627 self.sift_down_range(pos, len);
628 }
629
9cc50fc6
SL
630 /// Take an element at `pos` and move it all the way down the heap,
631 /// then sift it up to its position.
632 ///
633 /// Note: This is faster when the element is known to be large / should
634 /// be closer to the bottom.
635 fn sift_down_to_bottom(&mut self, mut pos: usize) {
636 let end = self.len();
637 let start = pos;
638 unsafe {
639 let mut hole = Hole::new(&mut self.data, pos);
640 let mut child = 2 * pos + 1;
641 while child < end {
642 let right = child + 1;
643 // compare with the greater of the two children
644 if right < end && !(hole.get(child) > hole.get(right)) {
645 child = right;
646 }
647 hole.move_to(child);
648 child = 2 * hole.pos() + 1;
649 }
650 pos = hole.pos;
651 }
652 self.sift_up(start, pos);
653 }
654
1a4d82fc 655 /// Returns the length of the binary heap.
54a0048b
SL
656 ///
657 /// # Examples
658 ///
659 /// Basic usage:
660 ///
661 /// ```
662 /// use std::collections::BinaryHeap;
663 /// let heap = BinaryHeap::from(vec![1, 3]);
664 ///
665 /// assert_eq!(heap.len(), 2);
666 /// ```
85aaf69f 667 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
668 pub fn len(&self) -> usize {
669 self.data.len()
670 }
1a4d82fc
JJ
671
672 /// Checks if the binary heap is empty.
54a0048b
SL
673 ///
674 /// # Examples
675 ///
676 /// Basic usage:
677 ///
678 /// ```
679 /// use std::collections::BinaryHeap;
680 /// let mut heap = BinaryHeap::new();
681 ///
682 /// assert!(heap.is_empty());
683 ///
684 /// heap.push(3);
685 /// heap.push(5);
686 /// heap.push(1);
687 ///
688 /// assert!(!heap.is_empty());
689 /// ```
85aaf69f 690 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
691 pub fn is_empty(&self) -> bool {
692 self.len() == 0
693 }
1a4d82fc
JJ
694
695 /// Clears the binary heap, returning an iterator over the removed elements.
c34b1796
AL
696 ///
697 /// The elements are removed in arbitrary order.
54a0048b
SL
698 ///
699 /// # Examples
700 ///
701 /// Basic usage:
702 ///
703 /// ```
704 /// use std::collections::BinaryHeap;
705 /// let mut heap = BinaryHeap::from(vec![1, 3]);
706 ///
707 /// assert!(!heap.is_empty());
708 ///
709 /// for x in heap.drain() {
710 /// println!("{}", x);
711 /// }
712 ///
713 /// assert!(heap.is_empty());
714 /// ```
1a4d82fc 715 #[inline]
92a42be0 716 #[stable(feature = "drain", since = "1.6.0")]
1a4d82fc 717 pub fn drain(&mut self) -> Drain<T> {
d9579d0f 718 Drain { iter: self.data.drain(..) }
1a4d82fc
JJ
719 }
720
721 /// Drops all items from the binary heap.
54a0048b
SL
722 ///
723 /// # Examples
724 ///
725 /// Basic usage:
726 ///
727 /// ```
728 /// use std::collections::BinaryHeap;
729 /// let mut heap = BinaryHeap::from(vec![1, 3]);
730 ///
731 /// assert!(!heap.is_empty());
732 ///
733 /// heap.clear();
734 ///
735 /// assert!(heap.is_empty());
736 /// ```
85aaf69f 737 #[stable(feature = "rust1", since = "1.0.0")]
92a42be0
SL
738 pub fn clear(&mut self) {
739 self.drain();
740 }
1a4d82fc
JJ
741}
742
d9579d0f
AL
743/// Hole represents a hole in a slice i.e. an index without valid value
744/// (because it was moved from or duplicated).
745/// In drop, `Hole` will restore the slice by filling the hole
746/// position with the value that was originally removed.
747struct Hole<'a, T: 'a> {
748 data: &'a mut [T],
749 /// `elt` is always `Some` from new until drop.
750 elt: Option<T>,
751 pos: usize,
752}
753
754impl<'a, T> Hole<'a, T> {
755 /// Create a new Hole at index `pos`.
756 fn new(data: &'a mut [T], pos: usize) -> Self {
757 unsafe {
758 let elt = ptr::read(&data[pos]);
759 Hole {
760 data: data,
761 elt: Some(elt),
762 pos: pos,
763 }
764 }
765 }
766
767 #[inline(always)]
92a42be0
SL
768 fn pos(&self) -> usize {
769 self.pos
770 }
d9579d0f
AL
771
772 /// Return a reference to the element removed
773 #[inline(always)]
92a42be0 774 fn element(&self) -> &T {
d9579d0f
AL
775 self.elt.as_ref().unwrap()
776 }
777
778 /// Return a reference to the element at `index`.
779 ///
780 /// Panics if the index is out of bounds.
781 ///
782 /// Unsafe because index must not equal pos.
783 #[inline(always)]
784 unsafe fn get(&self, index: usize) -> &T {
785 debug_assert!(index != self.pos);
786 &self.data[index]
787 }
788
789 /// Move hole to new location
790 ///
791 /// Unsafe because index must not equal pos.
792 #[inline(always)]
793 unsafe fn move_to(&mut self, index: usize) {
794 debug_assert!(index != self.pos);
795 let index_ptr: *const _ = &self.data[index];
796 let hole_ptr = &mut self.data[self.pos];
797 ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
798 self.pos = index;
799 }
800}
801
802impl<'a, T> Drop for Hole<'a, T> {
803 fn drop(&mut self) {
804 // fill the hole again
805 unsafe {
806 let pos = self.pos;
807 ptr::write(&mut self.data[pos], self.elt.take().unwrap());
808 }
809 }
810}
811
1a4d82fc 812/// `BinaryHeap` iterator.
85aaf69f 813#[stable(feature = "rust1", since = "1.0.0")]
92a42be0 814pub struct Iter<'a, T: 'a> {
1a4d82fc
JJ
815 iter: slice::Iter<'a, T>,
816}
817
818// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
85aaf69f 819#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
820impl<'a, T> Clone for Iter<'a, T> {
821 fn clone(&self) -> Iter<'a, T> {
822 Iter { iter: self.iter.clone() }
823 }
824}
825
85aaf69f 826#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
827impl<'a, T> Iterator for Iter<'a, T> {
828 type Item = &'a T;
829
830 #[inline]
92a42be0
SL
831 fn next(&mut self) -> Option<&'a T> {
832 self.iter.next()
833 }
1a4d82fc
JJ
834
835 #[inline]
92a42be0
SL
836 fn size_hint(&self) -> (usize, Option<usize>) {
837 self.iter.size_hint()
838 }
1a4d82fc
JJ
839}
840
85aaf69f 841#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
842impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
843 #[inline]
92a42be0
SL
844 fn next_back(&mut self) -> Option<&'a T> {
845 self.iter.next_back()
846 }
1a4d82fc
JJ
847}
848
85aaf69f 849#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
850impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
851
852/// An iterator that moves out of a `BinaryHeap`.
85aaf69f 853#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
854pub struct IntoIter<T> {
855 iter: vec::IntoIter<T>,
856}
857
85aaf69f 858#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
859impl<T> Iterator for IntoIter<T> {
860 type Item = T;
861
862 #[inline]
92a42be0
SL
863 fn next(&mut self) -> Option<T> {
864 self.iter.next()
865 }
1a4d82fc
JJ
866
867 #[inline]
92a42be0
SL
868 fn size_hint(&self) -> (usize, Option<usize>) {
869 self.iter.size_hint()
870 }
1a4d82fc
JJ
871}
872
85aaf69f 873#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
874impl<T> DoubleEndedIterator for IntoIter<T> {
875 #[inline]
92a42be0
SL
876 fn next_back(&mut self) -> Option<T> {
877 self.iter.next_back()
878 }
1a4d82fc
JJ
879}
880
85aaf69f 881#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
882impl<T> ExactSizeIterator for IntoIter<T> {}
883
884/// An iterator that drains a `BinaryHeap`.
92a42be0 885#[stable(feature = "drain", since = "1.6.0")]
1a4d82fc
JJ
886pub struct Drain<'a, T: 'a> {
887 iter: vec::Drain<'a, T>,
888}
889
85aaf69f 890#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
891impl<'a, T: 'a> Iterator for Drain<'a, T> {
892 type Item = T;
893
894 #[inline]
92a42be0
SL
895 fn next(&mut self) -> Option<T> {
896 self.iter.next()
897 }
1a4d82fc
JJ
898
899 #[inline]
92a42be0
SL
900 fn size_hint(&self) -> (usize, Option<usize>) {
901 self.iter.size_hint()
902 }
1a4d82fc
JJ
903}
904
85aaf69f 905#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
906impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> {
907 #[inline]
92a42be0
SL
908 fn next_back(&mut self) -> Option<T> {
909 self.iter.next_back()
910 }
1a4d82fc
JJ
911}
912
85aaf69f 913#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc
JJ
914impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> {}
915
92a42be0 916#[stable(feature = "rust1", since = "1.0.0")]
b039eaaf
SL
917impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
918 fn from(vec: Vec<T>) -> BinaryHeap<T> {
919 let mut heap = BinaryHeap { data: vec };
920 let mut n = heap.len() / 2;
921 while n > 0 {
922 n -= 1;
923 heap.sift_down(n);
924 }
925 heap
926 }
927}
928
92a42be0 929#[stable(feature = "rust1", since = "1.0.0")]
b039eaaf
SL
930impl<T> From<BinaryHeap<T>> for Vec<T> {
931 fn from(heap: BinaryHeap<T>) -> Vec<T> {
932 heap.data
933 }
934}
935
85aaf69f 936#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 937impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
92a42be0 938 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
b039eaaf 939 BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
85aaf69f
SL
940 }
941}
942
943#[stable(feature = "rust1", since = "1.0.0")]
944impl<T: Ord> IntoIterator for BinaryHeap<T> {
945 type Item = T;
946 type IntoIter = IntoIter<T>;
947
9346a6ac
AL
948 /// Creates a consuming iterator, that is, one that moves each value out of
949 /// the binary heap in arbitrary order. The binary heap cannot be used
950 /// after calling this.
951 ///
952 /// # Examples
953 ///
54a0048b
SL
954 /// Basic usage:
955 ///
9346a6ac 956 /// ```
9346a6ac 957 /// use std::collections::BinaryHeap;
b039eaaf 958 /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
9346a6ac
AL
959 ///
960 /// // Print 1, 2, 3, 4 in arbitrary order
961 /// for x in heap.into_iter() {
962 /// // x has type i32, not &i32
963 /// println!("{}", x);
964 /// }
965 /// ```
85aaf69f 966 fn into_iter(self) -> IntoIter<T> {
9346a6ac 967 IntoIter { iter: self.data.into_iter() }
85aaf69f
SL
968 }
969}
970
971#[stable(feature = "rust1", since = "1.0.0")]
972impl<'a, T> IntoIterator for &'a BinaryHeap<T> where T: Ord {
973 type Item = &'a T;
974 type IntoIter = Iter<'a, T>;
975
976 fn into_iter(self) -> Iter<'a, T> {
977 self.iter()
1a4d82fc
JJ
978 }
979}
980
85aaf69f 981#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 982impl<T: Ord> Extend<T> for BinaryHeap<T> {
54a0048b
SL
983 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
984 let iterator = iter.into_iter();
985 let (lower, _) = iterator.size_hint();
1a4d82fc
JJ
986
987 self.reserve(lower);
988
54a0048b 989 for elem in iterator {
1a4d82fc
JJ
990 self.push(elem);
991 }
992 }
993}
62682a34
SL
994
995#[stable(feature = "extend_ref", since = "1.2.0")]
996impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
92a42be0 997 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
62682a34
SL
998 self.extend(iter.into_iter().cloned());
999 }
1000}